1
|
Daadi EW, Daadi ES, Oh T, Li M, Kim J, Daadi MM. Combining physical & cognitive training with iPSC-derived dopaminergic neuron transplantation promotes graft integration & better functional outcome in parkinsonian marmosets. Exp Neurol 2024; 374:114694. [PMID: 38272159 DOI: 10.1016/j.expneurol.2024.114694] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Parkinson's disease (PD) is a relentlessly progressive and currently incurable neurodegenerative disease with significant unmet medical needs. Since PD stems from the degeneration of midbrain dopaminergic (DA) neurons in a defined brain location, PD patients are considered optimal candidates for cell replacement therapy. Clinical trials for cell transplantation in PD are beginning to re-emerge worldwide with a new focus on induced pluripotent stem cells (iPSCs) as a source of DA neurons since they can be derived from adult somatic cells and produced in large quantities under current good manufacturing practices. However, for this therapeutic strategy to be realized as a viable clinical option, fundamental translational challenges need to be addressed including the manufacturing process, purity and efficacy of the cells, the method of delivery, the extent of host reinnervation and the impact of patient-centered adjunctive interventions. In this study we report on the impact of physical and cognitive training (PCT) on functional recovery in the nonhuman primate (NHP) model of PD after cell transplantation. We observed that at 6 months post-transplant, the PCT group returned to normal baseline in their daily activity measured by actigraphy, significantly improved in their sensorimotor and cognitive tasks, and showed enhanced synapse formation between grafted cells and host cells. We also describe a robust, simple, efficient, scalable, and cost-effective manufacturing process of engraftable DA neurons derived from iPSCs. This study suggests that integrating PCT with cell transplantation therapy could promote optimal graft functional integration and better outcome for patients with PD.
Collapse
Affiliation(s)
- Etienne W Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - Elyas S Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA; Department of Cell Systems & Anatomy, Long School of Medicine, University of Texas Health at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| | - Marcel M Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA; Department of Cell Systems & Anatomy, Long School of Medicine, University of Texas Health at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA; Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA.
| |
Collapse
|
2
|
Curcuma longa extract ameliorates motor and cognitive deficits of 6-hydroxydopamine-infused Parkinson’s disease model rats. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00606-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Björklund A, Parmar M. Neuronal Replacement as a Tool for Basal Ganglia Circuitry Repair: 40 Years in Perspective. Front Cell Neurosci 2020; 14:146. [PMID: 32547369 PMCID: PMC7272540 DOI: 10.3389/fncel.2020.00146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/30/2020] [Indexed: 01/07/2023] Open
Abstract
The ability of new neurons to promote repair of brain circuitry depends on their capacity to re-establish afferent and efferent connections with the host. In this review article, we give an overview of past and current efforts to restore damaged connectivity in the adult mammalian brain using implants of fetal neuroblasts or stem cell-derived neuronal precursors, with a focus on strategies aimed to repair damaged basal ganglia circuitry induced by lesions that mimic the pathology seen in humans affected by Parkinson’s or Huntington’s disease. Early work performed in rodents showed that neuroblasts obtained from striatal primordia or fetal ventral mesencephalon can become anatomically and functionally integrated into lesioned striatal and nigral circuitry, establish afferent and efferent connections with the lesioned host, and reverse the lesion-induced behavioral impairments. Recent progress in the generation of striatal and nigral progenitors from pluripotent stem cells have provided compelling evidence that they can survive and mature in the lesioned brain and re-establish afferent and efferent axonal connectivity with a remarkable degree of specificity. The studies of cell-based circuitry repair are now entering a new phase. The introduction of genetic and virus-based techniques for brain connectomics has opened entirely new possibilities for studies of graft-host integration and connectivity, and the access to more refined experimental techniques, such as chemo- and optogenetics, has provided new powerful tools to study the capacity of grafted neurons to impact the function of the host brain. Progress in this field will help to guide the efforts to develop therapeutic strategies for cell-based repair in Huntington’s and Parkinson’s disease and other neurodegenerative conditions involving damage to basal ganglia circuitry.
Collapse
Affiliation(s)
- Anders Björklund
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Wianny F, Vezoli J. Transplantation in the nonhuman primate MPTP model of Parkinson's disease: update and perspectives. Primate Biol 2017; 4:185-213. [PMID: 32110706 PMCID: PMC7041537 DOI: 10.5194/pb-4-185-2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022] Open
Abstract
In order to calibrate stem cell exploitation for cellular therapy in neurodegenerative diseases, fundamental and preclinical research in NHP (nonhuman primate) models is crucial. Indeed, it is consensually recognized that it is not possible to directly extrapolate results obtained in rodent models to human patients. A large diversity of neurological pathologies should benefit from cellular therapy based on neural differentiation of stem cells. In the context of this special issue of Primate Biology on NHP stem cells, we describe past and recent advances on cell replacement in the NHP model of Parkinson's disease (PD). From the different grafting procedures to the various cell types transplanted, we review here diverse approaches for cell-replacement therapy and their related therapeutic potential on behavior and function in the NHP model of PD.
Collapse
Affiliation(s)
- Florence Wianny
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Julien Vezoli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| |
Collapse
|
5
|
Soderstrom K, O'Malley J, Steece-Collier K, Kordower JH. Neural Repair Strategies for Parkinson's Disease: Insights from Primate Models. Cell Transplant 2017; 15:251-65. [PMID: 16719060 DOI: 10.3727/000000006783982025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nonhuman primate models of Parkinson's disease (PD) have been invaluable to our understanding of the human disease and in the advancement of novel therapies for its treatment. In this review, we attempt to give a brief overview of the animal models of PD currently used, with a more comprehensive focus on the advantages and disadvantages presented by their use in the nonhuman primate. In particular, discussion addresses the 6-hydroxydopamine (6-OHDA), 1-methyl-1,2,3,6-tetrahydopyridine (MPTP), rotenone, paraquat, and maneb parkinsonian models. Additionally, the role of primate PD models in the development of novel therapies, such as trophic factor delivery, grafting, and deep brain stimulation, are described. Finally, the contribution of primate PD models to our understanding of the etiology and pathology of human PD is discussed.
Collapse
Affiliation(s)
- Katherine Soderstrom
- Department of Neurological Science, Research Center for Brain Repair, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
6
|
Annett LE, Torres EM, Clarke DJ, Ishida Y, Barker RA, Ridley RM, Baker HF, Dunnett SB. Survival of Nigral Grafts within the Striatum of Marmosets with 6-Ohda Lesions Depends Critically on Donor Embryo Age. Cell Transplant 2017; 6:557-69. [PMID: 9440865 DOI: 10.1177/096368979700600606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The study examined the importance of embryonic donor age for the survival of nigral grafts in 6-OHDA–lesioned marmosets. The issue as to whether donor age is critical for the survival of nigral grafts in primates is controversial, because several early reports suggested that relatively old tissue could survive transplantation and produce functional benefits in monkeys, in contrast to the restrictive time dependence observed in rodents. Embryonic marmoset donors embryos of three different ages were employed: 1) E74 (Carnegie stage 18-19); 2) E83-84 (Carnegie stage 23+); 3) E92-93 (foetal period). The nigral neurons derived from the ventral mesencephalon in the two older donor age groups did not survive well when grafted to the striatum of adult marmosets with unilateral 6-OHDA lesions. Although a few tyrosine hydroxylase (TH+) neurons could be identified by immunohistochemistry at graft sites in all recipients in older donor age groups, the numbers of surviving neurons in these were small, on average typically less than 100 TH+ cells. These small grafts were not sufficient to affect amphetamine-induced rotation. In contrast, many more TH+ cells typically survived transplantation in the recipients; of graft tissue derived from the youngest donors and amphetamine-induced rotation was significantly reduced in this group alone. The time course and extent of the reduction in rotation was remarkably similar to that observed in previous marmoset nigral graft studies, confirming the utility of amphetamine-induced rotation as a sensitive and reliable indicator of nigral graft function in this species. Considering these results and other recent evidence from monkey to monkey, human to rat, and human to human graft studies, the survival of embryonic nigral tissues derived from primate donors transplanted into the striatum does appear to be critically dependent on the age of the donor tissue.
Collapse
Affiliation(s)
- L E Annett
- Department of Experimental Psychology, University of Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kirkeby A, Parmar M, Barker RA. Strategies for bringing stem cell-derived dopamine neurons to the clinic. PROGRESS IN BRAIN RESEARCH 2017; 230:165-190. [DOI: 10.1016/bs.pbr.2016.11.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Rylander Ottosson D, Lane E. Striatal Plasticity in L-DOPA- and Graft-Induced Dyskinesia; The Common Link? Front Cell Neurosci 2016; 10:16. [PMID: 26903804 PMCID: PMC4744851 DOI: 10.3389/fncel.2016.00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/15/2016] [Indexed: 12/31/2022] Open
Abstract
One of the major symptoms of the neurodegenerative condition Parkinson's disease (PD) is a slowness or loss of voluntary movement, yet frustratingly therapeutic strategies designed to restore movement can result in the development of excessive abnormal movements known as dyskinesia. These dyskinesias commonly develop as a result of pharmacotherapy in the form of L-DOPA administration, but have also been identified following deep brain stimulation (DBS) and intrastriatal cell transplantation. In the case of L-DOPA these movements can be treatment limiting, and whilst they are not long lasting or troubling following DBS, recognition of their development had a near devastating effect on the field of cell transplantation for PD.Understanding the relationship between these therapeutic approaches and the development of dyskinesia may improve our ability to restore function without disabling side effects. Interestingly, despite the fact that dopaminergic cell transplantation repairs many of the changes induced by the disease process and through L-DOPA treatment, there appears to be a relationship between the two. In rodent models of the disease, the severity of dyskinesia induced by L-DOPA prior to the transplantation procedure correlated with post-transplantation, graft-induced dyskinesia. A review of clinical data also suggested that the worse preoperational dyskinesia causes worsened graft-induced dyskinesia (GID). Understanding how these aberrant behaviors come about has been of keen interest to open up these therapeutic options more widely and one major underlying theory is the effects of these approaches on the plasticity of synapses within the basal ganglia. This review uniquely brings together developments in understanding the role of striatal synaptic plasticity in both L-DOPA and GID to guide and stimulate further investigations on the important striatal plasticity.
Collapse
Affiliation(s)
- Daniella Rylander Ottosson
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund UniversityLund, Sweden
| | - Emma Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff UniversityCardiff, UK
| |
Collapse
|
9
|
Merging DBS with viral vector or stem cell implantation: "hybrid" stereotactic surgery as an evolution in the surgical treatment of Parkinson's disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15051. [PMID: 26817024 PMCID: PMC4714520 DOI: 10.1038/mtm.2015.51] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder that is currently managed using a broad array of symptom-based strategies. However, targeting its molecular origins represents the potential to discover disease-modifying therapies. Deep brain stimulation (DBS), a highly successful treatment modality for PD symptoms, addresses errant electrophysiological signaling pathways in the basal ganglia. In contrast, ongoing clinical trials testing gene and cell replacement therapies propose to protect or restore neuronal-based physiologic dopamine transmission in the striatum. Given promising new platforms to enhance target localization—such as interventional MRI-guided stereotaxy—the opportunity now exists to create hybrid therapies that combine DBS with gene therapy and/or cell implantation. In this mini-review, we discuss approaches used for central nervous system biologic delivery in PD patients in previous trials and propose a new set of strategies based on novel molecular targets. A multifaceted approach, if successful, may not only contribute to our understanding of PD pathology but could introduce a new era of disease modification.
Collapse
|
10
|
Yun JW, Ahn JB, Kang BC. Modeling Parkinson's disease in the common marmoset (Callithrix jacchus): overview of models, methods, and animal care. Lab Anim Res 2015; 31:155-65. [PMID: 26755918 PMCID: PMC4707143 DOI: 10.5625/lar.2015.31.4.155] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/04/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is a small-bodied, popular New World monkey and is used widely in reproductive biology, neuroscience, and drug development, due to its comparative ease of handling, high reproductive efficiency, and its unique behavioral characters. In this review, we discuss the marmoset models in Parkinson's disease (PD), which is a neurological movement disorder primarily resulting from a degeneration of dopaminergic neurons with clinical features of tremor, rigidity, postural instability, and akinesia. The most common PD models involve the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine to study the pathogenesis and to evaluate novel therapies. Following the systemic or local administration of these neurotoxins, the marmosets with very severe Parkinson's symptoms are recommended to be placed in an intensive care unit with artificial feeding to increase survival rate. All procedures with MPTP should be conducted in a special room with enclosed cages under negative-pressure by trained researchers with personal protection. Behavioral tests are conducted to provide an external measure of the brain pathology. Along with several biomarkers, including α-synuclein and DJ-1, non-invasive neuroimaging techniques such as positron emission tomography and magnetic resonance imaging are used to evaluate the functional changes associated with PD. With the recent growing interest in potential and novel therapies such as stem cell and gene therapy for PD in Korea, the marmoset can be considered as a suitable non-human primate model in PD research to bridge the gap between rodent studies and clinical applications.
Collapse
Affiliation(s)
- Jun-Won Yun
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jae-Bum Ahn
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Designed Animal Research Center, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang-gun, Gangwon, Korea
| |
Collapse
|
11
|
Johnston TM, Fox SH. Symptomatic Models of Parkinson's Disease and L-DOPA-Induced Dyskinesia in Non-human Primates. Curr Top Behav Neurosci 2015; 22:221-35. [PMID: 25158623 DOI: 10.1007/7854_2014_352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Models of Parkinson's disease (PD) can be produced in several non-human primate (NHP) species by applying neurotoxic lesions to the nigrostriatal dopamine pathway. The most commonly used neurotoxin is MPTP, a compound accidentally discovered as a contaminant of street drugs. Compared to other neurotoxins, MPTP has the advantage of crossing the blood-brain barrier and can thus be administered systemically. MPTP-lesioned NHPs exhibit the main core clinical features of PD. When treated with L-DOPA, these NHP models develop involuntary movements resembling the phenomenology of human dyskinesias. In old-world NHP species (macaques, baboons), choreic and dystonic dyskinesias can be readily distinguished and quantified with specific rating scales. More recently, certain non-motor symptoms relevant to human PD have been described in L-DOPA-treated MPTP-NHPs, including a range of neuropsychiatric abnormalities and sleep disturbances. The main shortcomings of MPTP-NHP models consist in a lack of progression of the underlying neurodegenerative lesion, along with an inability to model the intracellular protein-inclusion pathology typical of PD. The strength of MPTP-NHP models lies in their face and predictive validity for symptomatic treatments of parkinsonian motor features. Indeed, these models have been instrumental to the development of several medical and surgical approaches that are currently applied to treat PD.
Collapse
Affiliation(s)
- Tom M Johnston
- Toronto Western Research Institute, University of Toronto, Toronto Western Hospital, 399, Bathurst St, Toronto, ON, M5T 2S8, Canada
| | | |
Collapse
|
12
|
Fox SH, Brotchie JM, Johnston TM. Primate Models of Complications Related to Parkinson Disease Treatment. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
13
|
Flügge G, Araya-Callis C, Garea-Rodriguez E, Stadelmann-Nessler C, Fuchs E. NDRG2 as a marker protein for brain astrocytes. Cell Tissue Res 2014; 357:31-41. [PMID: 24816982 PMCID: PMC4077251 DOI: 10.1007/s00441-014-1837-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/30/2014] [Indexed: 12/01/2022]
Abstract
The protein NDRG2 (N-myc downregulated gene 2) is expressed in astrocytes. We show here that NDRG2 is located in the cytosol of protoplasmic and fibrous astrocytes throughout the mammalian brain, including Bergmann glia as observed in mouse, rat, tree shrew, marmoset and human. NDRG2 immunoreactivity is detectable in the astrocytic cell bodies and excrescencies including fine distal processes. Glutamatergic and GABAergic nerve terminals are associated with NDRG2 immunopositive astrocytic processes. Müller glia in the retina displays no NDRG2 immunoreactivity. NDRG2 positive astrocytes are more abundant and more evenly distributed in the brain than GFAP (glial fibrillary acidic protein) immunoreactive cells. Some regions with very little GFAP such as the caudate nucleus show pronounced NDRG2 immunoreactivity. In white matter areas, NDRG2 is less strong than GFAP labeling. Most NDRG2 positive somata are immunoreactive for S100ß but not all S100ß cells express NDRG2. NDRG2 positive astrocytes do not express nestin and NG2 (chondroitin sulfate proteoglycan 4). The localization of NDRG2 overlaps only partially with that of aquaporin 4, the membrane-bound water channel that is concentrated in the astrocytic endfeet. Reactive astrocytes at a cortical lesion display very little NDRG2, which indicates that expression of the protein is reduced in reactive astrocytes. In conclusion, our data show that NDRG2 is a specific marker for a large population of mature, non-reactive brain astrocytes. Visualization of NDRG2 immunoreactive structures may serve as a reliable tool for quantitative studies on numbers of astrocytes in distinct brain regions and for high-resolution microscopy studies on distal astrocytic processes.
Collapse
Affiliation(s)
- Gabriele Flügge
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, 37077, Germany,
| | | | | | | | | |
Collapse
|
14
|
Rylander D, Bagetta V, Pendolino V, Zianni E, Grealish S, Gardoni F, Di Luca M, Calabresi P, Cenci MA, Picconi B. Region-specific restoration of striatal synaptic plasticity by dopamine grafts in experimental parkinsonism. Proc Natl Acad Sci U S A 2013; 110:E4375-84. [PMID: 24170862 PMCID: PMC3831970 DOI: 10.1073/pnas.1311187110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrastriatal transplantation of dopaminergic neurons can restore striatal dopamine levels and improve parkinsonian deficits, but the mechanisms underlying these effects are poorly understood. Here, we show that transplants of dopamine neurons partially restore activity-dependent synaptic plasticity in the host striatal neurons. We evaluated synaptic plasticity in regions distal or proximal to the transplant (i.e., dorsolateral and ventrolateral striatum) and compared the effects of dopamine- and serotonin-enriched grafts using a rat model of Parkinson disease. Naïve rats showed comparable intrinsic membrane properties in the two subregions but distinct patterns of long-term synaptic plasticity. The ventrolateral striatum showed long-term potentiation using the same protocol that elicited long-term depression in the dorsolateral striatum. The long-term potentiation was linked to higher expression of postsynaptic AMPA and N2B NMDA subunits (GluN2B) and was dependent on the activation of GluN2A and GluN2B subunits and the D1 dopamine receptor. In both regions, the synaptic plasticity was abolished after a severe dopamine depletion and could not be restored by grafted serotonergic neurons. Solely, dopamine-enriched grafts could restore the long-term potentiation and partially restore motor deficits in the rats. The restoration could only be seen close to the graft, in the ventrolateral striatum where the graft-derived reinnervation was denser, compared with the distal dorsolateral region. These data provide proof of concept that dopamine-enriched transplants are able to functionally integrate into the host brain and restore deficits in striatal synaptic plasticity after experimental parkinsonism. The region-specific restoration might impose limitations in symptomatic improvement following neural transplantation.
Collapse
Affiliation(s)
- Daniella Rylander
- Basal Ganglia Pathophysiological Unit, Lund University, BMC F11, 22184 Lund, Sweden
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Vincenza Bagetta
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Valentina Pendolino
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Elisa Zianni
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | - Shane Grealish
- Developmental and Regenerative Neurobiology, Lund University, BMC A11, 22184 Lund, Sweden; and
| | - Fabrizio Gardoni
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | - Monica Di Luca
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | - Paolo Calabresi
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
- Clinica Neurologica, Università degli studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia, Italy
| | - M. Angela Cenci
- Basal Ganglia Pathophysiological Unit, Lund University, BMC F11, 22184 Lund, Sweden
| | - Barbara Picconi
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| |
Collapse
|
15
|
Klein A, Sacrey LAR, Whishaw IQ, Dunnett SB. The use of rodent skilled reaching as a translational model for investigating brain damage and disease. Neurosci Biobehav Rev 2012; 36:1030-42. [PMID: 22227413 DOI: 10.1016/j.neubiorev.2011.12.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 11/26/2022]
Abstract
Neurological diseases, including Parkinson's disease, Huntington's disease, and brain damage caused by stroke, cause severe motor impairments. Deficits in hand use are one of the most debilitating motor symptoms and include impairments in body posture, forelimb movements, and finger shaping for manipulating objects. Hand movements can be formally studied using reaching tasks, including the skilled reaching task, or reach-to-eat task. For skilled reaching, a subject reaches for a small food item, grasps it with the fingers, and places it in the mouth for eating. The human movement and its associated deficits can be modeled by experimental lesions to the same systems in rodents which in turn provide an avenue for investigating treatments of human impairments. Skilled reaching movements are scored using three methods: (1) end point measures of attempts and success, (2) biometric measures, and (3) movement element rating scales derived from formal descriptions of movement. The striking similarities between human and rodent reaching movements allow the analysis of the reach-to-eat movement to serve as a powerful tool to generalize preclinical research to clinical conditions.
Collapse
Affiliation(s)
- Alexander Klein
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| | | | | | | |
Collapse
|
16
|
Skilled motor control for the preclinical assessment of functional deficits and recovery following nigral and striatal cell transplantation. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
17
|
Freed CR, Zhou W, Breeze RE. Dopamine cell transplantation for Parkinson's disease: the importance of controlled clinical trials. Neurotherapeutics 2011; 8:549-61. [PMID: 21997523 PMCID: PMC3250289 DOI: 10.1007/s13311-011-0082-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transplantation of human fetal dopamine neurons into the brain of Parkinson's disease patients started in the late 1980s, less than 10 years after experiments in rats showed that embryonic dopamine neurons from a narrow window of development are suitable for transplantation. For human transplantation, the critical stage of development is 6 to 8 weeks after conception. Because putamen is the basal ganglia structure most depleted of dopamine in Parkinson's disease and because it is the structure most closely mapped to the motor cortex, it has been the primary target for neurotransplantation. The double blind trial conducted at the University of Colorado, Columbia University, and North Shore University is the first controlled surgical trial performed in the field of neurosurgery. Results have shown that transplants of fetal dopamine neurons can survive transplantation without immunosuppression and without regard to the age of the patients. Transplants improved objective signs of Parkinson's disease to the best effects of L-DOPA seen preoperatively. Placebo surgery produced no clinical changes. In subjects in whom transplants replaced the need for L-DOPA, the implants replicated the preoperative effects of L-DOPA, including dyskinesias in susceptible patients. Our trial has provided the first controlled evidence that dopamine cell transplants can improve the clinical state of patients with Parkinson's disease.
Collapse
Affiliation(s)
- Curt R Freed
- University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
18
|
Fox SH, Brotchie JM. The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. PROGRESS IN BRAIN RESEARCH 2010; 184:133-57. [DOI: 10.1016/s0079-6123(10)84007-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Vitale A, Manciocco A, Alleva E. The 3R principle and the use of non-human primates in the study of neurodegenerative diseases: the case of Parkinson's disease. Neurosci Biobehav Rev 2008; 33:33-47. [PMID: 18773919 DOI: 10.1016/j.neubiorev.2008.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/11/2008] [Accepted: 08/11/2008] [Indexed: 12/28/2022]
Abstract
The aim of this paper is to offer an ethical perspective on the use of non-human primates in neurobiological studies, using the Parkinson's disease (PD) as an important case study. We refer, as theoretical framework, to the 3R principle, originally proposed by Russell and Burch [Russell, W.M.S., Burch, R.L., 1959. The Principles of Humane Experimental Technique. Universities Federation for Animal Welfare Wheathampstead, England (reprinted in 1992)]. Then, the use of non-human primates in the study of PD will be discussed in relation to the concepts of Replacement, Reduction, and Refinement. Replacement and Reduction result to be the more problematic concept to be applied, whereas Refinement offers relatively more opportunities of improvement. However, although in some cases the 3R principle shows its applicative limits, its value, as conceptual and inspirational tool remains extremely valuable. It suggests to the researchers a series of questions, both theoretical and methodological, which can have the results of improving the quality of life on the experimental models, the quality of the scientific data, and the public perception from the non-scientist community.
Collapse
Affiliation(s)
- Augusto Vitale
- Section of Behavioural Neuroscience, Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy.
| | | | | |
Collapse
|
20
|
Abstract
Human embryonic stem cells (hESCs) may serve as the most enduring source of transplantable cells for Parkinson's disease patients. Accumulating experience in the transplantation of fetal midbrain tissue or cells into Parkinson's disease patients has set the stage for hESC therapy, but has also opened new controversies on the value and appropriate design of cell therapy. hESCs can be directed to differentiate into nigral dopaminergic neurons with high efficiency. The clinical use of hESCs will depend on their growth in controlled conditions, on whether safety can be proven, and on improving the survival of hESC-derived dopaminergic neurons in the host brain.
Collapse
Affiliation(s)
- Tamir Ben-Hur
- Hadassah University Medical Center, Department of Neurology, Ein Kerem, PO Box 12,000, Jerusalem 91120, Israel
| |
Collapse
|
21
|
Eslamboli A. Marmoset monkey models of Parkinson's disease: which model, when and why? Brain Res Bull 2005; 68:140-9. [PMID: 16325013 DOI: 10.1016/j.brainresbull.2005.08.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 08/10/2005] [Accepted: 08/17/2005] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease, with clinical features of tremor, muscular rigidity and akinesia, occurring as a result of midbrain dopamine loss. The search for treatments has relied heavily on animal models of the disorder. The use of monkey models of PD plays a distinct role in the development and assessment of novel treatments. The common marmoset (Callithrix jacchus) is a popular New World monkey used in the search for new treatments. These monkeys are easy to handle and survive well in captivity. This review examines the advantages of using marmoset monkeys in PD research and examines the different models available with reference to their use in pre-clinical assessment for novel therapeutic treatments. The most common models involve the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine (6-OHDA). Recently, selective cerebral transgenic over-expression of alpha-synuclein has also been attempted in marmosets as a potential model for PD. Each model has its advantages. The MPTP-based model in marmosets resembles the disease with regards to the neuroanatomy of neurotransmitter loss; the unilateral application of 6-OHDA allows for the assessment of more complex sensorimotor deficits due to the presence of an intact 'control' side; the over-expression of alpha-synuclein in the midbrain results in the slow onset of behavioural symptoms allowing for a pre-symptomatic time window. The appropriateness of each of these marmoset models for the assessment of treatments depends on several factors including the experimental aim of the study and whether emphasis is placed on the analysis of behavioural deficits.
Collapse
Affiliation(s)
- Andisheh Eslamboli
- Department of Experimental Psychology, Cambridge University, Cambridge CB2 3EB, UK.
| |
Collapse
|
22
|
Abstract
The clinical studies with intrastriatal transplants of fetal mesencephalic tissue in Parkinson's disease (PD) patients have provided proof-of-principle for the cell replacement strategy in this disorder. The grafted dopaminergic neurons can reinnervate the denervated striatum, restore regulated dopamine (DA) release and movement-related frontal cortical activation, and give rise to significant symptomatic relief. In the most successful cases, patients have been able to withdraw L-dopa treatment after transplantation and resume an independent life. However, there are currently several problems linked to the use of fetal tissue: 1) lack of sufficient amounts of tissue for transplantation in a large number of patients, 2) variability of functional outcome with some patients showing major improvement and others modest if any clinical benefit, and 3) occurrence of troublesome dyskinesias in a significant proportion of patients after transplantation. Thus, neural transplantation is still at an experimental stage in PD. For the development of a clinically useful cell therapy, we need to define better criteria for patient selection and how graft placement should be optimized in each patient. We also need to explore in more detail the importance for functional outcome of the dissection and cellular composition of the graft tissue as well as of immunological mechanisms. Strategies to prevent the development of dyskinesias after grafting have to be developed. Finally, we need to generate large numbers of viable DA neurons in preparations that are standardized and quality controlled. The stem cell technology may provide a virtually unlimited source of DA neurons, but several scientific issues need to be addressed before stem cell-based therapies can be tested in PD patients.
Collapse
Affiliation(s)
- Olle Lindvall
- Wallenberg Neuroscience Center and Lund Strategic Center for Stem Cell Biology and Cell Therapy, BMC A11, SE-221 84 Lund, Sweden.
| | | |
Collapse
|
23
|
|
24
|
Hagell P, Brundin P. Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropathol Exp Neurol 2001; 60:741-52. [PMID: 11487048 DOI: 10.1093/jnen/60.8.741] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intrastriatal transplantation of embryonic dopaminergic neurons is currently explored as a restorative cell therapy for Parkinson disease (PD). Clinical results have varied, probably due to differences in transplantation methodology and patient selection. In this review, we assess clinical trials and autopsy findings in grafted PD patients and suggest that a minimum number of surviving dopaminergic neurons is required for a favorable outcome. Restoration of [18F]-fluorodopa uptake in the putamen to about 50% of the normal mean seems necessary for moderate to marked clinical benefit to occur. Some studies indicate that this may require mesencephalic tissue from 3-5 human embryos implanted into each hemisphere. The volume, density and pattern of fiber outgrowth and reinnervation, as well as functional integration and dopamine release. are postulated as additional important factors for an optimal clinical outcome. For neural transplantation to become a feasible therapeutic alternative in PD, graft survival must be increased and the need for multiple donors of human embryonic tissue substantially decreased or alternate sources of donor tissue developed. Donor cells derived from alternative sources should demonstrate features comparable to those associated with successful implantation of human embryonic tissue before clinical trials are considered.
Collapse
Affiliation(s)
- P Hagell
- Department of Clinical Neuroscience, University Hospital, Lund University, Sweden
| | | |
Collapse
|
25
|
Growth and functional efficacy of intrastriatal nigral transplants depend on the extent of nigrostriatal degeneration. J Neurosci 2001. [PMID: 11306640 DOI: 10.1523/jneurosci.21-08-02889.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies have shown that the functional efficacy of intrastriatal transplants of fetal dopamine (DA) neurons in the rat Parkinson model depends on their ability to establish a new functional innervation of the denervated striatum. Here we report that the survival, growth, and function of the grafted DA neurons greatly depend on the severity of the lesion of the host nigrostriatal system. Fiber outgrowth, and to a lesser extent also cell survival, were significantly reduced in animals in which part of the intrinsic DA system was left intact. Moreover, graft-induced functional recovery, as assessed in the stepping, paw-use, and apomorphine rotation tests, was obtained only in severely lesioned animals, i.e., in rats with >70% DA denervation of the host striatum. Functional recovery seen in these animals in which the 6-hydroxydopamine (6-OHDA) lesion was confined to the striatum was more pronounced than that previously obtained in rats with complete lesions of the mesencephalic DA system, indicating that spared portions of the host DA system, particularly those innervating nonstriatal forebrain areas, may be necessary for the grafts to exert their optimal functional effect. These data have implications for the optimal use of fetal nigral transplants in Parkinson patients in different stages of the disease.
Collapse
|
26
|
Abstract
The results of the first double-blind placebo-controlled trial using grafts of embryonic tissue to treat Parkinson's disease have aroused widespread interest and debate about the future of cell replacement therapies. What are the key issues that need to be resolved and the directions in which this technology is likely to develop?
Collapse
|
27
|
Lindvall O, Hagell P. Clinical observations after neural transplantation in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2001; 127:299-320. [PMID: 11142032 DOI: 10.1016/s0079-6123(00)27014-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- O Lindvall
- Section of Restorative Neurology, Wallenberg Neuroscience Center, University Hospital, S-221 85 Lund, Sweden.
| | | |
Collapse
|
28
|
Winkler C, Kirik D, Björklund A, Dunnett SB. Transplantation in the rat model of Parkinson's disease: ectopic versus homotopic graft placement. PROGRESS IN BRAIN RESEARCH 2001; 127:233-65. [PMID: 11142030 DOI: 10.1016/s0079-6123(00)27012-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- C Winkler
- Wallenberg Neuroscience Center, Division of Neurobiology, Lund University, Sölvegatan 17, S-223 62 Lund, Sweden
| | | | | | | |
Collapse
|
29
|
Ridley RM, Baker HF, Hodges H. Functional reconstruction of the hippocampus. PROGRESS IN BRAIN RESEARCH 2001; 127:431-59. [PMID: 11142040 DOI: 10.1016/s0079-6123(00)27021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- R M Ridley
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
| | | | | |
Collapse
|
30
|
Castilho RF, Hansson O, Brundin P. Improving the survival of grafted embryonic dopamine neurons in rodent models of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2001; 127:203-31. [PMID: 11142029 DOI: 10.1016/s0079-6123(00)27011-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- R F Castilho
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, Sölvegatan 17, S-223 62 Lund, Sweden
| | | | | |
Collapse
|
31
|
Bingaman KD, Bakay RA. The primate model of Parkinson's disease: its usefulness, limitations, and importance in directing future studies. PROGRESS IN BRAIN RESEARCH 2001; 127:267-97. [PMID: 11142031 DOI: 10.1016/s0079-6123(00)27013-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- K D Bingaman
- Department of Neurological Surgery, 1365-B Clifton Road NE, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
32
|
Palmer MR, Granholm AC, van Horne CG, Giardina KE, Freund RK, Moorhead JW, Gerhardt GA. Intranigral transplantation of solid tissue ventral mesencephalon or striatal grafts induces behavioral recovery in 6-OHDA-lesioned rats. Brain Res 2001; 890:86-99. [PMID: 11164771 DOI: 10.1016/s0006-8993(00)03084-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) is characterized by a degeneration of the dopamine (DA) pathway from the substantia nigra (SN) to the basal forebrain. Prior studies in unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats have primarily concentrated on the implantation of fetal ventral mesencephalon (VM) into the striatum in attempts to restore DA function in the target. We implanted solid blocks of fetal VM or fetal striatal tissue into the SN to investigate whether intra-nigral grafts would restore motor function in unilaterally 6-OHDA-lesioned rats. Intra-nigral fetal striatal and VM grafts elicited a significant and long-lasting reduction in apomorphine-induced rotational behavior. Lesioned animals with ectopic grafts or sham surgery as well as animals that received intra-nigral grafts of fetal cerebellar cortex showed no recovery of motor symmetry. Subsequent immunohistochemical studies demonstrated that VM grafts, but not cerebellar grafted tissue expressed tyrosine hydroxylase (TH)-positive cell bodies and were associated with the innervation by TH-positive fibers into the lesioned SN as well as adjacent brain areas. Striatal grafts were also associated with the expression of TH-positive cell bodies and fibers extending into the lesioned SN and an induction of TH-immunolabeling in endogenous SN cell bodies. This finding suggests that trophic influences of transplanted fetal striatal tissue can stimulate the re-expression of dopaminergic phenotype in SN neurons following a 6-OHDA lesion. Our data support the hypothesis that a dopaminergic re-innervation of the SN and surrounding tissue by a single solid tissue graft is sufficient to improve motor asymmetry in unilateral 6-OHDA-lesioned rats.
Collapse
Affiliation(s)
- M R Palmer
- Department of Pharmacology, School of Medicine, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Piccini P, Lindvall O, Bj�rklund A, Brundin P, Hagell P, Ceravolo R, Oertel W, Quinn N, Samuel M, Rehncrona S, Widner H, Brooks DJ. Delayed recovery of movement-related cortical function in Parkinson's disease after striatal dopaminergic grafts. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200011)48:5<689::aid-ana1>3.0.co;2-n] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Windle CP, Baker HF, Ridley RM, Oerke AK, Martin RD. Unrearable litters and prenatal reduction of litter size in the common marmoset (Callithrix jacchus). J Med Primatol 1999; 28:73-83. [PMID: 10431697 DOI: 10.1111/j.1600-0684.1999.tb00254.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is widely believed that common marmosets (Callithrx jacchus) typically give birth to twins under natural conditions. In captivity, however, births of triplets or even larger litters are common, although parents rarely succeed in rearing more than two offspring. The traditional interpretation is that captive conditions, notably the ready availability of food, have led to increased reproductive output, perhaps involving a higher ovulation rate. The present paper provides evidence, combined from ultrasound examinations between ovulation and birth and hysterotomies conducted during the late embryonic and early fetal phase, that the litter size can be progressively reduced during pregnancy without spontaneous abortion. There is an unusually long lag phase prior to the onset of embryonic growth in common marmosets; the fetal stage does not begin until day 80 of the 144-day pregnancy. Reduction in litter size occurs during embryonic stages (up to day 80), and continues into the fetal stages. These results indicate that the common marmoset is adapted for flexible modification of litter size between ovulation and birth. The high incidence of triplet births in captive colonies may therefore be an expression of an adapted natural developmental process under artificial circumstances.
Collapse
Affiliation(s)
- C P Windle
- MRC Comparative Cognition Team, Department of Experimental Psychology, Cambridge, UK
| | | | | | | | | |
Collapse
|
35
|
Starr PA, Wichmann T, van Horne C, Bakay RA. Intranigral transplantation of fetal substantia nigra allograft in the hemiparkinsonian rhesus monkey. Cell Transplant 1999; 8:37-45. [PMID: 10338274 DOI: 10.1177/096368979900800113] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Current clinical protocols for fetal cell transplantation for Parkinson's disease (PD) have focused on restoring dopamine in the striatum. However, there are now a number of human transplant recipients who have had robust innervation of the striatum by dopaminergic grafts (documented by positron emission tomography or by autopsy), but only a partial improvement in parkinsonian motor signs. Thus, there is a need for improved transplant strategies. In animal models of PD, there is recent evidence that restoring dopamine in the substantia nigra, instead of or in addition to the striatum, may be important to correct abnormal motor behavior. This pilot study examined the morphological features and behavioral effects of fetal dopaminergic neuronal allografts placed into the substantia nigra of three 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated hemiparkinsonian rhesus monkeys. We show that grafts can survive in host substantia nigra. Characteristics of the graft-host interface were variable. In one animal, reinnervation of host substantia nigra was observed, and this animal showed behavioral improvement in a reach-and-retrieval task.
Collapse
Affiliation(s)
- P A Starr
- Department of Neurological Surgery, University of California, San Francisco 94143, USA.
| | | | | | | |
Collapse
|
36
|
Henderson JM, Annett LE, Torres EM, Dunnett SB. Behavioural effects of subthalamic nucleus lesions in the hemiparkinsonian marmoset (Callithrix jacchus). Eur J Neurosci 1998; 10:689-98. [PMID: 9749730 DOI: 10.1046/j.1460-9568.1998.00077.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies in non-human primates support a role for the subthalamic nucleus in the expression of parkinsonian symptomatology, and it has been proposed that subthalamic lesions may provide a surgical treatment for the symptoms of Parkinson's disease in humans. We have applied a broad range of behavioural tests to characterize the effects of lesions of the subthalamic nucleus on parkinsonian symptoms in the unilateral 6-hydroxydopamine (6-OHDA) lesioned marmoset (Callithrix jacchus). Thirteen marmosets were trained on a battery of behavioural tasks that were conducted at regular intervals before and after surgery. All received unilateral 6-OHDA lesions to the medial forebrain bundle. Seven animals were then given an additional N-methyl-D-aspartate lesion of the ipsilateral subthalamic nucleus, whereas the remaining six animals received a variety of control or sham lesions to the nucleus. The 6-OHDA lesions induced a strong ipsilateral bias in head position; mild-moderate ipsilateral rotation spontaneously and after injection of saline or amphetamine; and contralateral rotation after injection of apomorphine. Hemineglect was evident as delayed initiation of reaches on the contralateral side on the staircase reaching task. Additional subthalamic lesions significantly reversed the bias in head position from ipsilateral to contralateral and decreased neglect as evidenced by improved latencies to initiate reaching on the contralateral side at the staircase. However, deficits in skilled movements persisted in the subthalamic nucleus lesion group in that they did not complete the staircase task any faster than the control group and remained impaired on another task which required reaching into tubes. These behavioural effects demonstrate that excitotoxic lesioning of the subthalamic nucleus can ameliorate some, but not all, parkinsonian-like deficits in the unilateral 6-OHDA lesioned marmoset.
Collapse
Affiliation(s)
- J M Henderson
- Department of Experimental Psychology and the MRC Cambridge Centre for Brain Repair, University of Cambridge, UK
| | | | | | | |
Collapse
|
37
|
Olanow CW, Kordower JH, Freeman TB. Fetal nigral transplantation as a therapy for Parkinson's disease. Trends Neurosci 1996; 19:102-9. [PMID: 9054056 DOI: 10.1016/s0166-2236(96)80038-5] [Citation(s) in RCA: 332] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fetal nigral grafts have been demonstrated to survive, secrete dopamine, form synaptic connections with host neurons, and reverse behavioral disturbances in experimental models of parkinsonism. These findings suggest that fetal nigral grafting may be a useful therapy for patients with Parkinson's disease (PD). Recent preliminary clinical trials of transplantation in PD have shown increased striatal fluorodopa uptake (measured using positron emission tomography) and clinical benefit in some patients. An autopsy study of one patient who had received fetal nigral transplants demonstrated robust graft survival and striatal reinnervation, with no evidence of host-derived sprouting or immune rejection. The development of a successful clinical transplantation program depends on a careful consideration of the transplantation variables and the related long-term risks and benefits to the patients.
Collapse
Affiliation(s)
- C W Olanow
- Dept. of Neurology, Mount Sinai School of Medicine, New York, USA
| | | | | |
Collapse
|