1
|
Wei J, Yao C, Zhu Z, Gao Z, Yang G, Pan Y. Nitrate reductase is required for sclerotial development and virulence of Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2023; 14:1096831. [PMID: 37342142 PMCID: PMC10277653 DOI: 10.3389/fpls.2023.1096831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/02/2023] [Indexed: 06/22/2023]
Abstract
Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot (SSR) on more than 450 plant species, is a notorious fungal pathogen. Nitrate reductase (NR) is required for nitrate assimilation that mediates the reduction of nitrate to nitrite and is the major enzymatic source for NO production in fungi. To explore the possible effects of nitrate reductase SsNR on the development, stress response, and virulence of S. sclerotiorum, RNA interference (RNAi) of SsNR was performed. The results showed that SsNR-silenced mutants showed abnormity in mycelia growth, sclerotia formation, infection cushion formation, reduced virulence on rapeseed and soybean with decreased oxalic acid production. Furthermore SsNR-silenced mutants are more sensitive to abiotic stresses such as Congo Red, SDS, H2O2, and NaCl. Importantly, the expression levels of pathogenicity-related genes SsGgt1, SsSac1, and SsSmk3 are down-regulated in SsNR-silenced mutants, while SsCyp is up-regulated. In summary, phenotypic changes in the gene silenced mutants indicate that SsNR plays important roles in the mycelia growth, sclerotia development, stress response and fungal virulence of S. sclerotiorum.
Collapse
Affiliation(s)
- Junjun Wei
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chuanchun Yao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zonghe Zhu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhimou Gao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yuemin Pan
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Kalimuthu P, Kruse T, Bernhardt PV. Deconstructing the electron transfer chain in a complex molybdoenzyme: Assimilatory nitrate reductase from Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148358. [PMID: 33359308 DOI: 10.1016/j.bbabio.2020.148358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Nitrate reductase (NR) from the fungus Neurospora crassa is a complex homodimeric metallo-flavoenzyme, where each protomer contains three distinct domains; the catalytically active terminal molybdopterin cofactor, a central heme-containing domain, and an FAD domain which binds with the natural electron donor NADPH. Here, we demonstrate the catalytic voltammetry of variants of N. crassa NRs on a modified Au electrode with the electrochemically reduced forms of benzyl viologen (BV2+) and anthraquinone sulfonate (AQS-) acting as artificial electron donors. The biopolymer chitosan used to entrap NR on the electrode non-covalently and the enzyme film was both stable and highly active. Electrochemistry was conducted on two distinct forms; one lacking the FAD cofactor and the other lacking both the FAD and heme cofactors. While both enzymes showed catalytic nitrate reductase activity, removal of the heme cofactor resulted in a more significant effect on the rate of nitrate reduction. Electrochemical simulation was carried out to enable kinetic characterisation of both the NR:nitrate and NR:mediator reactions.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Tobias Kruse
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
3
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
4
|
Ringel P, Krausze J, van den Heuvel J, Curth U, Pierik AJ, Herzog S, Mendel RR, Kruse T. Biochemical characterization of molybdenum cofactor-free nitrate reductase from Neurospora crassa. J Biol Chem 2013; 288:14657-14671. [PMID: 23539622 DOI: 10.1074/jbc.m113.457960] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nitrate reductase (NR) is a complex molybdenum cofactor (Moco)-dependent homodimeric metalloenzyme that is vitally important for autotrophic organism as it catalyzes the first and rate-limiting step of nitrate assimilation. Beside Moco, eukaryotic NR also binds FAD and heme as additional redox active cofactors, and these are involved in electron transfer from NAD(P)H to the enzyme molybdenum center where reduction of nitrate to nitrite takes place. We report the first biochemical characterization of a Moco-free eukaryotic NR from the fungus Neurospora crassa, documenting that Moco is necessary and sufficient to induce dimer formation. The molybdenum center of NR reconstituted in vitro from apo-NR and Moco showed an EPR spectrum identical to holo-NR. Analysis of mutants unable to bind heme or FAD revealed that insertion of Moco into NR occurs independent from the insertion of any other NR redox cofactor. Furthermore, we showed that at least in vitro the active site formation of NR is an autonomous process.
Collapse
Affiliation(s)
- Phillip Ringel
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Joern Krausze
- Department of Molecular Structural Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Joop van den Heuvel
- Department of Molecular Structural Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Antonio J Pierik
- Core Facility for Protein Spectroscopy, Institute of Cytobiology and Cytopathology, Phillips University, 35032 Marburg, Germany
| | - Stephanie Herzog
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Ralf R Mendel
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany.
| | - Tobias Kruse
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| |
Collapse
|
5
|
Nogueira GB, Queiroz MV, Ribeiro RA, Araújo EF. Structural and functional characterization of the Colletotrichum lindemuthianum nit1 gene, which encodes a nitrate eductase enzyme. GENETICS AND MOLECULAR RESEARCH 2013; 12:420-33. [PMID: 23420367 DOI: 10.4238/2013.february.8.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Colletotrichum lindemuthianum is the causal agent of plant bean anthracnose, one of the most important diseases affecting the common bean. We investigated the structure and expression of the nit1 gene (nitrate reductase) of C. lindemuthianum. The nit1 gene open reading frame contains 2787 bp, interrupted by a single 69-bp intron. The predicted protein has 905 amino acids; it shows high identity with the nitrate reductase of C. higginsianum (79%) and C. graminicola (73%). Expression of nit1 in C. lindemuthianum was evaluated in mycelia grown on different nitrogen sources under conditions of activation and repression. The gene was expressed after 15 min of induction with nitrate, reaching maximum expression at 360 min. The transcription was repressed in mycelia grown in media enriched with ammonia, urea or glutamine. Twenty nit1⁻ mutants were obtained in a medium treated with chlorate. Ten of these mutants were characterized by DNA hybridization, which identified point mutations, a deletion and an insertion. These rearrangements in the nit1 gene in the different mutants may have occurred through activity of transposable elements.
Collapse
Affiliation(s)
- G B Nogueira
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | | | | | | |
Collapse
|
6
|
Amey RC, Athey-Pollard A, Mills PR, Foster GD, Bailey A. Investigations into the taxonomy of the mushroom pathogen Verticillium fungicola and its relatives based on sequence analysis of nitrate reductase and ITS regions. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707060161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Divon HH, Ziv C, Davydov O, Yarden O, Fluhr R. The global nitrogen regulator, FNR1, regulates fungal nutrition-genes and fitness during Fusarium oxysporum pathogenesis. MOLECULAR PLANT PATHOLOGY 2006; 7:485-97. [PMID: 20507463 DOI: 10.1111/j.1364-3703.2006.00354.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
SUMMARY Fusarium oxysporum is a soil-borne pathogen that infects plants through the roots and uses the vascular system for host ingress. Specialized for this route of infection, F. oxysporum is able to adapt to the scarce nutrient environment in the xylem vessels. Here we report the cloning of the F. oxysporum global nitrogen regulator, Fnr1, and show that it is one of the determinants for fungal fitness during in planta growth. The Fnr1 gene has a single conserved GATA-type zinc finger domain and is 96% and 48% identical to AREA-GF from Gibberella fujikuroi, and NIT2 from Neurospora crassa, respectively. Fnr1 cDNA, expressed under a constitutive promoter, was able to complement functionally an N. crassa nit-2(RIP) mutant, restoring the ability of the mutant to utilize nitrate. Fnr1 disruption mutants showed high tolerance to chlorate and reduced ability to utilize several secondary nitrogen sources such as amino acids, hypoxanthine and uric acid, whereas growth on favourable nitrogen sources was not affected. Fnr1 disruption also abolished in vitro expression of nutrition genes, normally induced during the early phase of infection. In an infection assay on tomato seedlings, infection rate of disruption mutants was significantly delayed in comparison with the parental strain. Our results indicate that FNR1 mediates adaptation to nitrogen-poor conditions in planta through the regulation of secondary nitrogen acquisition, and as such acts as a determinant for fungal fitness during infection.
Collapse
Affiliation(s)
- Hege Hvattum Divon
- Department of Plant Science, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | |
Collapse
|
8
|
Christensen MK, Falkeid G, Loros JJ, Dunlap JC, Lillo C, Ruoff P. A nitrate-induced frq-less oscillator in Neurospora crassa. J Biol Rhythms 2005; 19:280-6. [PMID: 15245647 DOI: 10.1177/0748730404265532] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
When nitrate is the only nitrogen source, Neurospora crassa's nitrate reductase (NR) shows endogenous oscillations in its nitrate reductase activity (NRA) on a circadian time scale. These NRA oscillations can be observed in darkness or continuous light conditions and also in a frq(9) mutant in which no functional FRQ protein is formed. Even in a white-collar-1 knockout mutant, NRA oscillations have been observed, although with a highly reduced amplitude. This indicates that the NRA oscillations are not a simple output rhythm of the white-collar-driven frq oscillator but may be generated by another oscillator that contains the nit-3 autoregulatory negative feedback loop as a part. In this negative feedback loop, a product in the reaction chain catalyzed by nitrate reductase, probably glutamine, induces repression of the nitrate reductase gene and thus downregulates its own production. This is the first example of an endogenous, nutritionally induced daily rhythm with known molecular components that is observed in the absence of an intact FRQ protein.
Collapse
|
9
|
Pereira JF, de Queiroz MV, Lopes FJF, Rocha RB, Daboussi MJ, de Araújo EF. Characterization, regulation, and phylogenetic analyses of thePenicillium griseoroseumnitrate reductase gene and its use as selection marker for homologous transformation. Can J Microbiol 2004; 50:891-900. [PMID: 15644906 DOI: 10.1139/w04-081] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Penicillium griseoroseum has been studied because of its efficient pectinases production. In this work, the Penicillium griseoroseum nitrate reductase gene was characterized, transcriptionaly analyzed in different nitrogen sources, and used to create a phylogenetic tree and to develop a homologous transformation system. The regulatory region contained consensus signals involved in nitrogen metabolism and the structural region was possibly interrupted by 6 introns coding for a deduced protein with 864 amino acids. RT–PCR analysis revealed high amounts of niaD transcript in the presence of nitrate. Transcription was repressed by ammonium, urea, and glutamine showing an efficient turnover of the niaD mRNA. Phylogenetics analysis showed distinct groups clearly separated in accordance with the classical taxonomy. A mutant with a 122-bp deletion was used in homologous transformation experiments and showed a transformation frequency of 14 transformants/µg DNA. All analyzed transformants showed that both single- and double-crossover recombination occurred at the niaD locus. The establishment of this homologous transformation system is an essential step for the improvement of pectinase production in Penicillium griseoroseum.Key words: nitrate reductase, nitrogen metabolism, Penicillium griseoroseum, phylogenetic analysis, homologous transformation.
Collapse
Affiliation(s)
- Jorge Fernando Pereira
- Departamento de Microbiologia/BIOAGRO, Universidade Federal de Viçosa, 36.570-000 Viçosa-MG, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Mo X, Marzluf GA. Cooperative action of the NIT2 and NIT4 transcription factors upon gene expression in Neurospora crassa. Curr Genet 2003; 42:260-7. [PMID: 12589465 DOI: 10.1007/s00294-002-0362-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2002] [Revised: 11/26/2002] [Accepted: 11/27/2002] [Indexed: 10/25/2022]
Abstract
In Neurospora crassa, the nit-3 gene, which encodes nitrate reductase, an enzyme required for the utilization of inorganic nitrate, is subject to a high degree of genetic and metabolic regulation as a member of the nitrogen control circuit. The nit-3 gene promoter contains binding sites for a globally acting protein NIT2 and a pathway-specific protein NIT4. Expression of the nit-3 gene absolutely requires both the NIT2 and NIT4 transcription factors and only occurs under conditions of nitrogen source derepression and nitrate induction. In the sulfur control circuit, the cys-14 gene encodes sulfate permease II, which facilitates the assimilation of sulfate. Expression of cys-14 is strongly regulated by only a single positive-acting factor, CYS3. It was of interest to determine whether NIT2 or NIT4 alone was capable of turning on the expression of cys-14, since this structural gene is normally controlled by only one regulatory protein. NIT2- and/or NIT4-binding elements were introduced into the promoter of a wild-type cys-14 gene and these constructs were transformed into a cys-13(-) cys-14(-) mutant strain and into a nit-2(-) mutant host. We examined whether any of these cys-14 genes in these transformants could now be controlled as a nitrogen-regulated gene. Sulfate permease assays revealed that both NIT2 and NIT4 were required for cys-14 expression upon nitrate induction, while neither alone activated any detectable cys-14 expression. We thus conclude that neither NIT2 nor NIT4 is capable alone of activating gene expression in this context, but together they can cooperate to elicit strong activation.
Collapse
Affiliation(s)
- Xiaokui Mo
- Department of Biochemistry, Ohio State Biochemistry Program, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
11
|
Elmore CL, Porter TD. Modification of the nucleotide cofactor-binding site of cytochrome P-450 reductase to enhance turnover with NADH in Vivo. J Biol Chem 2002; 277:48960-4. [PMID: 12381719 DOI: 10.1074/jbc.m210173200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADPH-cytochrome P-450 reductase is the electron transfer partner for the cytochromes P-450, heme oxygenase, and squalene monooxygenase and is a component of the nitric-oxide synthases and methionine-synthase reductase. P-450 reductase shows very high selectivity for NADPH and uses NADH only poorly. Substitution of tryptophan 677 with alanine has been shown to yield a 3-fold increase in turnover with NADH, but profound inhibition by NADP(+) makes the enzyme unsuitable for in vivo applications. In the present study site-directed mutagenesis of amino acids in the 2'-phosphate-binding site of the NADPH domain, coupled with the W677A substitution, was used to generate a reductase that was able to use NADH efficiently without inhibition by NADP(+). Of 11 single, double, and triple mutant proteins, two (R597M/W677A and R597M/K602W/W677A) showed up to a 500-fold increase in catalytic efficiency (k(cat)/K(m)) with NADH. Inhibition by NADP(+) was reduced by up to 4 orders of magnitude relative to the W677A protein and was equal to or less than that of the wild-type reductase. Both proteins were 2-3-fold more active than wild-type reductase with NADH in reconstitution assays with cytochrome P-450 1A2 and with squalene monooxygenase. In a recombinant cytochrome P-450 2E1 Ames bacterial mutagenicity assay, the R597M/W677A protein increased the sensitivity to dimethylnitrosamine by approximately 2-fold, suggesting that the ability to use NADH afforded a significant advantage in this in vivo assay.
Collapse
Affiliation(s)
- C Lee Elmore
- Graduate Center for Toxicology, University of Kentucky, Lexington 40536-0305, USA
| | | |
Collapse
|
12
|
Daboussi MJ, Davière JM, Graziani S, Langin T. Evolution of the Fot1 transposons in the genus Fusarium: discontinuous distribution and epigenetic inactivation. Mol Biol Evol 2002; 19:510-20. [PMID: 11919292 DOI: 10.1093/oxfordjournals.molbev.a004106] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To understand the evolution of Fot1, a member of the pogo family widely dispersed in ascomycetes, we have performed a phylogenetic survey across the genus Fusarium divided into six sections. The taxonomic distribution of Fot1 is not homogeneous but patchy; it is prevalent in the Fusarium oxysporum complex, absent in closely related sections, and found in five species from the most distant section Martiella. Multiple copies of Fot1 were sequenced from each strain in which the element occurs. In three species, the Fot1 nucleotide sequence is 98% identical to that from F. oxysporum (Fox), whereas nucleotide divergence for host genes is markedly higher: 11% for partial nuclear 28S rDNA and up to 30% for the gene encoding nitrate reductase (nia). In two species, sequence divergence of Fot1-related elements relative to Fox ranged from 7% to 23% (16% average). Most of the sequence differences (82%) were C-to-T and G-to-A transitions. These mutations are distributed throughout the Fot1 sequences, although they tend to be concentrated in the middle portion of the elements. Analysis of the local sequence context of transitions revealed a hierarchy of site preferences. These characteristics are typical of the repeat-induced point mutation process, first discovered in Neurospora crassa. The spotty distribution of Fot1 elements among species together with the high degree of similarity between Fot1 sequences present in distant species strongly suggests a case of horizontal transfer.
Collapse
Affiliation(s)
- Marie-Josée Daboussi
- Institut de Génétique et Microbiologie, Bât 400, Université Paris-Sud, 91405 Orsay, France.
| | | | | | | |
Collapse
|
13
|
Clustered metabolic pathway genes in filamentous fungi. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1874-5334(01)80009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
KIMURA T, MAKINO T, ABURATANI T, KARITA S, SAKKA K, OHMIYA K. Analysis of the Promoter Activity of the Taka-Amylase Gene and the Phosphoglycerate Kinase Gene in a Shoyu-koji Mold Aspergillus oryzae KBN616. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2000. [DOI: 10.3136/fstr.6.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Marathe S, Yu YG, Turner GE, Palmier C, Weiss RL. Multiple forms of arginase are differentially expressed from a single locus in Neurospora crassa. J Biol Chem 1998; 273:29776-85. [PMID: 9792692 DOI: 10.1074/jbc.273.45.29776] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Neurospora crassa catabolic enzyme, arginase (L-arginine amidinohydrolase, EC 3.5.3.1), exists in multiple forms. Multiple forms of arginase are found in many vertebrates, but this is the only reported example in a microbial organism. The two major forms are structurally similar with subunit sizes of 36 and 41 kDa, respectively. The larger form is produced by mycelia growing in arginine-supplemented medium. Both forms are localized in the cytosol. The structural gene for arginase, aga, has been cloned and sequenced; it contains a 358-codon open reading frame with three in-frame ATGs at the amino terminus. Mutagenesis of these ATGs revealed that the first ATG initiates the 41-kDa protein and the third ATG initiates the 36-kDa protein. Mutation of the second ATG has no effect on translation. Northern analysis demonstrated that a 1.4-kilobase (kb) transcript is synthesized in minimal medium and both a 1.4- and 1.7-kb transcript are produced in arginine-supplemented medium. Primer extension identified the 5' ends of each transcript and demonstrated that the first and third ATG of the open reading frame are the initial AUGs of the 1.7- and 1. 4-kb mRNA, respectively. The results suggest that a basal promoter produces the 1.4-kb transcript and an arginine "activated" promoter is responsible for the 1.7-kb transcript. Tandem promoters are rare in eukaryotic organisms, and they often regulate developmental or tissue-specific gene expression. The possibility that arginase has a role in differentiation in N. crassa is being investigated.
Collapse
Affiliation(s)
- S Marathe
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
16
|
Avila J, González C, Brito N, Siverio JM. Clustering of the YNA1 gene encoding a Zn(II)2Cys6 transcriptional factor in the yeast Hansenula polymorpha with the nitrate assimilation genes YNT1, YNI1 and YNR1, and its involvement in their transcriptional activation. Biochem J 1998; 335 ( Pt 3):647-52. [PMID: 9794807 PMCID: PMC1219828 DOI: 10.1042/bj3350647] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The genes encoding the nitrate transporter (YNT1), nitrite reductase (YNI1) and nitrate reductase (YNR1) are clustered in the yeast Hansenula polymorpha. In addition, DNA sequencing of the region containing these genes demonstrated that a new open reading frame called YNA1 (yeast nitrate assimilation) was located between YNR1 and YNI1. The YNA1 gene encodes a protein of 529 residues belonging to the family of Zn(II)2Cys6 fungal transcriptional factors, and has the highest similarity to the transcriptional factors encoded by nirA, and to a smaller extent to nit-4, involved in the nitrate induction of the gene involved in the assimilation of this compound in filamentous fungi. Northern blot analysis showed the presence of the YNA1 transcript in cells incubated in nitrate, nitrate plus ammonium, ammonium, and nitrogen-free media, with a decrease in its levels in those cells incubated in ammonium. In nitrate the strain Deltayna1::URA3, with a disrupted YNA1 gene, neither grew nor expressed the genes YNT1, YNI1 and YNR1. In the gene cluster YNT1-YNI1-YNA1-YNR1, the four genes were transcribed independently in the YNT1-->YNR1 direction and the transcription start sites were determined by primer extension.
Collapse
Affiliation(s)
- J Avila
- Departamento de Bioqu approximately ímica y Biolog approximately ía Molecular, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Canarias, Spain
| | | | | | | |
Collapse
|
17
|
Kaldorf M, Schmelzer E, Bothe H. Expression of maize and fungal nitrate reductase genes in arbuscular mycorrhiza. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:439-48. [PMID: 9612942 DOI: 10.1094/mpmi.1998.11.6.439] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The role of arbuscular mycorrhizal (AM) fungi in assisting their host plant in nitrate assimilation was studied. With polymerase chain reaction technology, part of the gene coding for the nitrate reductase (NR) apoprotein from either the AM fungus Glomus intraradices or from maize was specifically amplified and subsequently cloned and sequenced. Northern (RNA) blot analysis with these probes indicated that the mRNA level of the maize gene was lower in roots and shoots of mycorrhizal plants than in noncolonized controls, whereas the fungal gene was transcribed in roots of AM plants. The specific NR activity of leaves was significantly lower in AM-colonized maize than in the controls. Nitrite formation catalyzed by NR was mainly NADPH-dependent in roots of AM-colonized plants but not in those of the controls, which is consistent with the fact that NRs of fungi preferentially utilize NADPH as reductant. The fungal NR mRNA was detected in arbuscules but not in vesicles by in situ RNA hybridization experiments. This appears to be the first demonstration of differential formation of transcripts of a gene coding for the same function in both symbiotic partners.
Collapse
Affiliation(s)
- M Kaldorf
- Botanisches Institut, Universität zu Köln, Germany
| | | | | |
Collapse
|
18
|
Haas H, Marx F, Graessle S, Stöffler G. Sequence analysis and expression of the Penicillium chrysogenum nitrate reductase encoding gene (niaD). BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1309:81-4. [PMID: 8950182 DOI: 10.1016/s0167-4781(96)00150-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The nitrate reductase gene (niaD) of the filamentous fungus Penicillium chrysogenum encodes a protein of 864 amino acids. The derived protein sequence shows 78% and 72% sequence identity to the corresponding Aspergillus niger and A. nidulans proteins, respectively. The coding region of the Penicillium gene is interrupted by six small introns, as deduced by comparison with the niaD sequences of A. niger and A. nidulans, whereby the positions of the introns are perfectly conserved between these three fungal genes. Northern blot analysis indicated a 2.8 kb transcript and showed that expression of this gene is controlled at the level of mRNA accumulation depending on both induction by nitrate and nitrogen metabolite derepression. Induction of transcription of niaD was found to be paralleled by expression of the major nitrogen regulatory gene nre.
Collapse
Affiliation(s)
- H Haas
- Institut für Mikrobiologie (Medizinische Fakultät), Universität Innsbruck, Austria.
| | | | | | | |
Collapse
|
19
|
Alex LA, Borkovich KA, Simon MI. Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase. Proc Natl Acad Sci U S A 1996; 93:3416-21. [PMID: 8622950 PMCID: PMC39623 DOI: 10.1073/pnas.93.8.3416] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two-component signal transduction systems are most often found in prokaryotic organisms where they are responsible for mediating the cellular responses to many environmental stimuli. These systems are composed of an autophosphorylating histidine kinase and a response regulator. We have found evidence for the existence of two-component histidine kinases in the eukaryotic filamentous fungus Neurospora crassa based on screening with degenerate primers to conserved regions of these signaling proteins. Subsequent cloning and sequencing of one member of this newly discovered group, nik-1+, shows that the predicted protein sequence shares homology with both the kinase and response regulator modules of two-component signaling proteins. In addition, the N-terminal region of the protein has a novel repeating 90-amino acid motif. Deletion of the nik-1+ gene in N. crassa results in an organism that displays aberrant hyphal structure, which is enhanced under conditions of high osmostress. Increased osmotic pressure during growth on solid medium leads to restricted colonial growth, loss of aerial hyphae formation, and no subsequent conidiophore development. This finding may have implications for mechanisms of fungal colonization and pathogenicity.
Collapse
Affiliation(s)
- L A Alex
- Division of Biology, California Institute of Technology, Pasadena, 91125, USA
| | | | | |
Collapse
|
20
|
Tudzynski B, Mende K, Weltring KM, Kinghorn JR, Unkles SE. The Gibberella fujikuroi niaD gene encoding nitrate reductase: isolation, sequence, homologous transformation and electrophoretic karyotype location. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 3):533-539. [PMID: 8868428 DOI: 10.1099/13500872-142-3-533] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Gibberella fujikuroi niaD gene, encoding nitrate reductase, has been isolated and used to develop an efficient homologous transformation system. A cosmid vector designated pGFniaD was generated based on niaD selection and shown to give comparable transformation efficiencies. Using pGFniaD, a genomic library was prepared and used for genetic transformations, giving frequencies of up to 200 transformants per microgram DNA. Of 15 transformants analysed by Southern blots, six showed homologous integration whilst the remaining nine integrated at heterologous sites, indicating that the vector may be used reliably for both types of integration. The system therefore may be used both for self-cloning of gibberellin biosynthetic genes on the basis of complementation of defective mutants, and also for gene disruption experiments. Electrophoretic karyotype determination suggested at least 11 chromosomes ranging from 2 to 6 Mb, the total genome size being at least 37 Mb. The niaD gene was assigned to chromosome V by Southern blot analysis. The niaD gene is interrupted by one intron, and remarkably the promoter sequence, but not the 3' untranslated sequence, is highly homologous to that of the corresponding Fusarium oxysporum gene. This situation appears to be unique with respect to the promoter regions of corresponding genes in related species of filamentous fungi.
Collapse
Affiliation(s)
- Bettina Tudzynski
- Institut Fur Botanik und Botanischer Garten, Westfalische Wihelms-Universitat, D-48149 Munster, Germany
| | - Katrin Mende
- Institut Fur Botanik und Botanischer Garten, Westfalische Wihelms-Universitat, D-48149 Munster, Germany
| | - Klaus-Michael Weltring
- Institut Fur Botanik und Botanischer Garten, Westfalische Wihelms-Universitat, D-48149 Munster, Germany
| | - James R Kinghorn
- Plant Science Laboratory, Sir Harold Mitchell Building, School of Biological and Medical Sciences, University of St Andrews, Fife KY16 9TH, UK
| | - Shiela E Unkles
- Plant Science Laboratory, Sir Harold Mitchell Building, School of Biological and Medical Sciences, University of St Andrews, Fife KY16 9TH, UK
| |
Collapse
|
21
|
|
22
|
González C, Brito N, Marzluf GA. Functional analysis by site-directed mutagenesis of individual amino acid residues in the flavin domain of Neurospora crassa nitrate reductase. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:456-64. [PMID: 8552051 DOI: 10.1007/bf00287108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitrate reductase of Neurospora crassa is a complex multi-redox protein composed of two identical subunits, each of which contains three distinct domains, an amino-terminal domain that contains a molybdopterin cofactor, a central heme-containing domain, and a carboxy-terminal domain which binds a flavin and a pyridine nucleotide cofactor. The flavin domain of nitrate reductase appears to have structural and functional similarity to ferredoxin NADPH reductase (FNR). Using the crystal structure of FNR and amino acid identities in numerous nitrate reductases as guides, site-directed mutagenesis was used to replace specific amino acids suspected to be involved in the binding of the flavin or pyridine nucleotide cofactors and thus important for the catalytic function of the flavin domain. Each mutant flavin domain protein was expressed in Escherichia coli and analyzed for NADPH: ferricyanide reductase activity. The effect of each amino acid substitution upon the activity of the complete nitrate reductase reaction was also examined by transforming each manipulated gene into a nit-3- null mutant of N. crassa. Our results identify amino acid residues which are critical for function of the flavin domain of nitrate reductase and appear to be important for the binding of the flavin or the pyridine nucleotide cofactors.
Collapse
Affiliation(s)
- C González
- Department of Biochemistry, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
23
|
Punt PJ, Strauss J, Smit R, Kinghorn JR, van den Hondel CA, Scazzocchio C. The intergenic region between the divergently transcribed niiA and niaD genes of Aspergillus nidulans contains multiple NirA binding sites which act bidirectionally. Mol Cell Biol 1995; 15:5688-99. [PMID: 7565720 PMCID: PMC230819 DOI: 10.1128/mcb.15.10.5688] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The niaD and niiA genes of Aspergillus nidulans, which code, respectively, for nitrate and nitrite reductases, are divergently transcribed, and their ATGs are separated by 1,200 bp. The genes are under the control of the positively acting NirA transcription factor, which mediates nitrate induction. The DNA binding domain of NirA was expressed as a fusion protein with the glutathione S-transferase of Schistosoma japonicum. Gel shift and footprint experiments have shown that in the intergenic region there are four binding sites for the NirA transcription factor. These sites can be represented by the nonpalindromic consensus 5'CTCCGHGG3'. Making use of a bidirectional expression vector, we have analyzed the role of each of the sites in niaD and niiA expression. The sites were numbered from the niiA side. It appeared that site 1 is necessary for the inducibility of niiA only, while sites 2, 3, and to a lesser extent 4 (which is nearer to and strongly affects niaD) act bidirectionally. The results also suggest that of the 10 binding sites for the AreA protein, which mediates nitrogen metabolite repression, those which are centrally located are physiologically important. The insertion of an unrelated upstream activating sequence into the intergenic region strongly affected the expression of both genes, irrespective of the orientation in which the element was inserted.
Collapse
Affiliation(s)
- P J Punt
- Department of Molecular Genetics and Gene Technology, TNO Nutrition and Food Research Institute, Rijswijk, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Haas H, Marzluf GA. NRE, the major nitrogen regulatory protein of Penicillium chrysogenum, binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr Genet 1995; 28:177-83. [PMID: 8590470 DOI: 10.1007/bf00315785] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
NRE, the nitrogen regulatory protein of Penicillium chrysogenum, contains a single Cys2/Cys2-type zinc-finger motif followed immediately by a highly basic region. The zinc-finger domain was expressed to Escherichia coli as a fusion protein with beta-galactosidase. In order to test the putative DNA-binding ability of NRE, the intergenic promoter region of the nitrate reductase/nitrite reductase gene cluster (niiA-niaD) of Penicillium was sequenced. Our results show that NRE is a DNA-binding protein and binds to the intergenic promoter regions of the P. chrysogenum niiA-niaD and acvA-pcbC gene cluster, encoding the first two enzymes in penicillin biosynthesis. Three of the four high-affinity NRE-binding sites contained two GATA core elements. In one of the recognition sites for NRE, one GATA motif was replaced by GATT. The two GATA elements showed all possible orientations, head-to-head, head-to-tail and tail-to-tail, and were separated by between 4 and 27 bp. Missing-contact analysis showed that all three purines in both of the GATA core sequences and the single adenine residue in each of the complementary TATC sequences were involved in the binding of NRE. Moreover, loss of purines in the flanking regions of the GATA elements also affect binding of NRE, as their loss causes reduced affinity.
Collapse
Affiliation(s)
- H Haas
- Department of Biochemistry, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
25
|
Avila J, Pérez MD, Brito N, González C, Siverio JM. Cloning and disruption of the YNR1 gene encoding the nitrate reductase apoenzyme of the yeast Hansenula polymorpha. FEBS Lett 1995; 366:137-42. [PMID: 7789531 DOI: 10.1016/0014-5793(95)00511-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nitrate reductase gene (YNR1) from the yeast H. polymorpha was isolated from a lambda EMBL3 genomic DNA library. As probe a 350 bp DNA fragment synthesized by PCR from H. polymorpha cDNA was used. By DNA sequencing an ORF of 2,577 bp was found. The predicted protein has 859 amino acids and presents high identity with nitrate reductases from other organisms. Chromosomal disruption of YNR1 causes inability to grow in nitrate. Northern blot analysis showed that YNR1 expression is induced by nitrate and repressed by ammonium.
Collapse
Affiliation(s)
- J Avila
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, Tenerife, Canarias, Spain
| | | | | | | | | |
Collapse
|
26
|
Garrett RM, Bellissimo DB, Rajagopalan KV. Molecular cloning of human liver sulfite oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1262:147-9. [PMID: 7599189 DOI: 10.1016/0167-4781(95)00068-r] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A 2.4 kilobase cDNA clone of human sulfite oxidase was isolated from a human liver cDNA library in lambda gt10. Comparison of three sulfite oxidase sequences to several plant and fungal nitrate reductase sequences reveals a single conserved cysteine with highly conserved flanking sequences. The conserved cysteine is postulated to be a ligand of molybdenum in sulfite oxidase and nitrate reductase.
Collapse
Affiliation(s)
- R M Garrett
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
27
|
Fu YH, Feng B, Evans S, Marzluf GA. Sequence-specific DNA binding by NIT4, the pathway-specific regulatory protein that mediates nitrate induction in Neurospora. Mol Microbiol 1995; 15:935-42. [PMID: 7596294 DOI: 10.1111/j.1365-2958.1995.tb02362.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The expression of the structural genes nit-3 and nit-6, which encode the nitrate assimilatory enzymes nitrate reductase and nitrite reductase, respectively, is highly regulated by the global-acting NIT2 regulatory protein. These structural genes are also controlled by nitrogen catabolite repression and by specific induction via nitrate. A pathway-specific regulatory protein, NIT4, appears to mediate nitrate induction of nit-3 and of nit-6. The NIT4 protein, composed of 1090 amino acids, contains a putative GAL4-like Cys-6 zinc cluster DNA-binding motif, which is joined by a short segment to a stretch of amino acids that appear to constitute a coiled-coil dimerization domain. Chemical crosslinking studies demonstrated that a truncated form of NIT4 forms homodimers. Mobility-shift and DNA-footprinting experiments have identified two NIT4-binding sites of significantly different strengths in the promoter region of the nit-3 gene. The stronger binding site contains a symmetrical octameric sequence, TCCGCGGA, whereas the weaker site has a related sequence. Sequences related to this palindromic element can be found upstream of the nit-6 gene.
Collapse
Affiliation(s)
- Y H Fu
- Department of Biochemistry, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
28
|
Pieterse CM, van't Klooster J, van den Berg-Velthuis GC, Govers F. NiaA, the structural nitrate reductase gene of Phytophthora infestans: isolation, characterization and expression analysis in Aspergillus nidulans. Curr Genet 1995; 27:359-66. [PMID: 7614559 DOI: 10.1007/bf00352105] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nitrate reductase (NR) gene niaA of the oomycete Phytophthora infestans was selected from a gene library by heterologous hybridization. NiaA occurs as a single-copy gene ant its expression is regulated by the nitrogen source. The nucleotide sequence of niaA was determined and comparison of the deduced amino-acid sequence of 902 residues with NRs of higher fungi and plants revealed a significant homology, particularly within the three cofactor-binding domains for molybdenum, heme and FAD. The P. infestans niaA gene was used as a model gene to test whether oomycete genes are functional in the ascomycete Aspergillus nidulans, a fungus which is highly accessible for molecular genetic studies. The complete niaA gene was stably integrated into the genome of a nia- deletion mutant of A. nidulans. However, transformants containing one or more copies of the niaA gene were not able to complement the nia- mutant. This suggests that there is no functional expression of the introduced niaA gene in A. nidulans. In addition, the activity of two other oomycete gene promoters was analyzed in a transient expression assay. Plasmids containing chimaeric genes with the promoter of the P. infestans ubiquitin gene ubi3R, or the Bremia lactucae ham34 gene, fused to the coding sequence of the Escherichia coli beta-glucuronidase (GUS) reporter gene, were transferred to A. nidulans protoplasts. No significant GUS activity was detectable indicating that the ubi3R and ham34 promoters are not active in A. nidulans. Apparently, the regulatory sequences which are sufficient for gene activation in oomycetes are not functional in the ascomycete A. nidulans.
Collapse
Affiliation(s)
- C M Pieterse
- Department of Phytopathology, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|
29
|
Glatigny A, Scazzocchio C. Cloning and molecular characterization of hxA, the gene coding for the xanthine dehydrogenase (purine hydroxylase I) of Aspergillus nidulans. J Biol Chem 1995; 270:3534-50. [PMID: 7876088 DOI: 10.1074/jbc.270.8.3534] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have cloned and sequenced the hxA gene coding for the xanthine dehydrogenase (purine hydroxylase I) of Aspergillus nidulans. The gene codes for a polypeptide of 1363 amino acids. The sequencing of a nonsense mutation, hxA5, proves formally that the clones isolated correspond to the hxA gene. The gene sequence is interrupted by three introns. Similarity searches reveal two iron-sulfur centers and a NAD/FAD-binding domain and have enabled a consensus sequence to be determined for the molybdenum cofactor-binding domain. The A. nidulans sequence is a useful outclass for the other known sequences, which are all from metazoans. In particular, it gives added significance to the missense mutations sequenced in Drosophila melanogaster and leads to the conclusion that while one of the recently sequenced human genes codes for a xanthine dehydrogenase, the other one must code for a different molybdenum-containing hydroxylase, possibly an aldehyde oxidase. The transcription of the hxA gene is induced by the uric acid analogue 2-thiouric acid and repressed by ammonium. Induction necessitates the product of the uaY regulatory gene.
Collapse
Affiliation(s)
- A Glatigny
- Institut de Génétique et Microbiologie, Unité Associtée au CNRS 1354, Université Paris-Sud, Centre d'Orsay, France
| | | |
Collapse
|
30
|
Haas H, Bauer B, Redl B, Stöffler G, Marzluf GA. Molecular cloning and analysis of nre, the major nitrogen regulatory gene of Penicillium chrysogenum. Curr Genet 1995; 27:150-8. [PMID: 7788718 DOI: 10.1007/bf00313429] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have isolated the Penicillium chrysogenum nre gene which is homologous to the major nitrogen regulatory genes areA from Aspergillus nidulans and nit-2 from Neurospora crassa. Overall, nre shows 60% identity to areA and 30% identity to nit-2 at the amino-acid level. The gene encodes a protein of 835 amino-acid residues and contains a single Cys2/Cys2-type zinc finger with an adjacent basic region and a putative acidic activation region. In the DNA-binding domain, 98% of the amino-acid residues are identical in nre, areA and nit-2. The nre gene has been shown to be functional in N. crassa by heterologous complementation of a nit-2 mutant. Growth tests indicated that transformants could utilize nitrate, amino-acids, purines and amides as sole nitrogen sources. Nitrate reductase activity assays performed with transformants demonstrated that nitrogen control was completely normal. Complementation of N. crassa nit-2 mutants with 5'-deletion clones of nre suggests the possible presence of an internal promoter within the coding region. Northern analysis and ribonuclease protection assays of total cellular RNA indicated that nre encodes a 3.2-kb transcript which is reduced in content under conditions of nitrogen repression.
Collapse
Affiliation(s)
- H Haas
- Department of Biochemistry, Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- H Ninnemann
- Institut für Chemische Pflanzenphysiologie/Pflanzenbiochemie, Universität Tübingen, Germany
| |
Collapse
|
32
|
Lu G, Campbell WH, Schneider G, Lindqvist Y. Crystal structure of the FAD-containing fragment of corn nitrate reductase at 2.5 A resolution: relationship to other flavoprotein reductases. Structure 1994; 2:809-21. [PMID: 7812715 DOI: 10.1016/s0969-2126(94)00082-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND In the biological assimilation of nitrate in plants and microorganisms, nitrate is reduced to ammonium by transfer of eight electrons in a two-step process. The first step of the pathway, the reduction of nitrate to nitrite, is catalyzed by nitrate reductase, a multi-redox cofactor enzyme which belongs to the class of flavoprotein pyridine nucleotide cytochrome reductases. The enzyme can be divided into three functional fragments that bind the cofactors molybdopterin, heme-iron and flavin adenine dinucleotide (FAD)/nicotinamide adenine dinucleotide (NADH). RESULTS Here we describe the crystal structure of the recombinant cytochrome b reductase fragment of corn nitrate reductase, in complex with the cofactor FAD, determined to 2.5 A resolution. This catalytically competent fragment of nitrate reductase consists of two domains, the amino-terminal lobe, which binds FAD, and the carboxy-terminal lobe, which presumably binds NADH, connected by a linker region. CONCLUSIONS Nitrate reductase belongs to the class of flavoprotein pyridine nucleotide cytochrome reductases, a subgroup in the family of ferredoxin reductase-like flavoproteins. Comparison with other members of this family reveals that large structural differences are found in the relative orientation of the cofactor binding lobes. This indicates that conformational changes might be important for biological function.
Collapse
Affiliation(s)
- G Lu
- Department of Molecular Biology, Swedish University of Agricultural Science, Biomedical Center, Uppsala
| | | | | | | |
Collapse
|
33
|
Williams RS, Davis MA, Howlett BJ. Nitrate reductase of the ascomycetous fungus, Leptosphaeria maculans: gene sequence and chromosomal location. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:1-8. [PMID: 8041355 DOI: 10.1007/bf00280180] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nitrate reductase (niaD) gene was isolated from the phytopathogenic loculoascomycete Leptosphaeria maculans by screening a genomic DNA library with the Aspergillus nidulans niaD gene. The L. maculans niaD gene is the first protein-encoding gene characterised from this fungus. It encodes a predicted protein of 893 amino acids and contains four putative introns at positions in the gene equivalent to those of four of the six introns in the A. nidulans niaD gene. Mutants defective in niaD and molybdenum cofactor gene(s) of L. maculans have been isolated. Transformation of a L. maculans niaD mutant with a 3.8 kb SacII fragment containing the L. maculans niaD gene restored wild-type growth on nitrate as a sole nitrogen source. The niaD gene is present as a single copy on a chromosome which ranges in size from 2.6 to 2.8 Mb between the different L. maculans isolates examined.
Collapse
Affiliation(s)
- R S Williams
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Vic., Australia
| | | | | |
Collapse
|
34
|
Cannons AC, Pendleton LC. Possible role for mRNA stability in the ammonium-controlled regulation of nitrate reductase expression. Biochem J 1994; 297 ( Pt 3):561-5. [PMID: 8110194 PMCID: PMC1137870 DOI: 10.1042/bj2970561] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ammonium, or a metabolite of ammonium, represses the expression of nitrate reductase (NR) in Chlorella vulgaris. The removal of ammonium and addition of nitrate (induction) resulted in a rapid (20 min) peaked synthesis of NR mRNA. Nitrate reductase protein and activity increased at a much lower rate, reaching their maxima by 8 h. Ammonium added to nitrate-grown cells resulted in a dramatic decrease in NR mRNA from a steady-state level to undetectable levels within 15 min of ammonium addition. Nitrate reductase activity and protein levels decreased to 20% and 40% of initial levels respectively over 8 h. The half-life for NR mRNA under these conditions was estimated to be less than 5 min, compared with 120 min for NR protein. Such rapid decreases in NR mRNA suggested a degradation and/or cessation in NR mRNA transcription. No apparent difference in NR mRNA-specific RNAase activity of crude cell extracts (NR-induced or repressed) was observed. However, a significant difference in the susceptibility to degradation of NR mRNA from long-term nitrate-grown cells compared with the NR mRNA isolated from short-term induced cells (20 min in nitrate) was observed. NR mRNA isolated from long-term-nitrate-grown cells was completely degraded by RNAases in cell extracts under conditions in which the NR mRNA isolated from short-term induced cells was resistant to degradation. These results suggest that mRNA stability may be an important factor in the metabolic regulation of assimilatory nitrate reductase in Chlorella.
Collapse
Affiliation(s)
- A C Cannons
- USF College of Medicine, Department of Biochemistry and Molecular Biology, Tampa, FL 33612
| | | |
Collapse
|
35
|
Molecular cloning of rat liver sulfite oxidase. Expression of a eukaryotic Mo-pterin-containing enzyme in Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42345-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Li Q, Jarai G, Yaghmai B, Marzluf GA. The leu-1 gene of Neurospora crassa: nucleotide and deduced amino acid sequence comparisons. Gene 1993; 136:301-5. [PMID: 8294021 DOI: 10.1016/0378-1119(93)90484-k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Neurospora crassa leu-1 gene encodes beta-isopropylmalate dehydrogenase (IPMDH; EC 1.1.1.85), an enzyme in the leucine biosynthetic pathway. We determined the nucleotide sequence of the entire leu-1 gene and of four independent cDNA clones. By comparing the genomic and cDNA sequences, four introns were identified in the 5' portion of the gene and a single open reading frame was established. One of the introns is located within the 5'-noncoding region of the transcript. The deduced amino acid sequence encoded by leu-1 was aligned with that of the homologous yeast enzyme and extensive sequence identity was uncovered. The lesion present in a conventional leu-1 mutant was identified as the insertion of a single base pair.
Collapse
Affiliation(s)
- Q Li
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
37
|
Brito N, Gonzalez C, Marzluf GA. Hypersensitive sites in the 5' promoter region of nit-3, a highly regulated structural gene of Neurospora crassa. J Bacteriol 1993; 175:6755-9. [PMID: 8226616 PMCID: PMC206797 DOI: 10.1128/jb.175.21.6755-6759.1993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The nit-3 gene of the filamentous fungus Neurospora crassa encodes nitrate reductase, the enzyme which catalyzes the first step in nitrate assimilation. The nit-3 gene is subject to a high degree of regulation by metabolic inducers and repressors, and its expression requires two distinct trans-acting regulatory proteins. Hypersensitive sites in the 5' DNA sequence upstream of the nit-3 gene were mapped with the use of three different nucleases as molecular probes. Six hypersensitive sites, three of which are very strong, were detected at essentially identical positions by all three nucleases. The hypersensitive sites appear to develop in a constitutive fashion and are present under conditions in which the nit-3 structural gene is expressed but also when this gene is inactive, although these sites are considerably less prominent in cells subjected to nitrogen catabolite repression. The presence of the hypersensitive sites appears to depend upon both the positively acting NIT2 and the positively acting NIT4 regulatory proteins, which might play a role in positioning of chromatin protein.
Collapse
Affiliation(s)
- N Brito
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
38
|
Hipkin CR, Kau DA, Cannons AC. Evidence that the glutamine-stimulated loss of nitrate reductase protein from the yeast Candida nitratophila is not the result of inducer exclusion. Biochem J 1993; 295 ( Pt 2):611-5. [PMID: 8240265 PMCID: PMC1134925 DOI: 10.1042/bj2950611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Synthesis of nitrate reductase protein and increases in nitrate reductase activity occurred in cultures of the yeast Candida nitratophila when they were incubated in medium containing ammonium nitrate. Similar treatment with glutamine plus nitrate resulted in little increase in nitrate reductase activity, in cultures grown previously with reduced nitrogen compounds, and decreases in enzyme activity, in cultures adapted to nitrate. Labelling studies conducted in vivo revealed a rapid cessation of de novo nitrate reductase synthesis when glutamine was supplied to nitrate-adapted cultures in the presence of nitrate. Intracellular glutamine concentrations increased rapidly under these conditions and these cultures exhibited high glutamine: glutamate ratios. As nitrate was taken up in the presence of glutamine in these experiments, it is concluded that the glutamine-stimulated inhibition of nitrate reductase synthesis is a consequence of repression and rapid turnover of nitrate reductase mRNA and not inducer (nitrate) exclusion.
Collapse
Affiliation(s)
- C R Hipkin
- Biochemistry Research Group, School of Biological Sciences, University of Wales, Swansea, U.K
| | | | | |
Collapse
|
39
|
Taylor WR, Jones DT, Segal AW. A structural model for the nucleotide binding domains of the flavocytochrome b-245 beta-chain. Protein Sci 1993; 2:1675-85. [PMID: 8251942 PMCID: PMC2142254 DOI: 10.1002/pro.5560021013] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
NADPH is a system in phagocytic cells that generates O2- and hydrogen peroxide in the endocytic vacuole, both of which are important for killing of the engulfed microbe. Dysfunction of this oxidase results in the syndrome of chronic granulomatous disease, characterized by a profound predisposition to bacterial and fungal infections. A flavocytochrome b is the site of most of the mutations causing this syndrome. The FAD and NADPH binding sites have been located on the beta subunit of this molecule, the C-terminal half of which showed weak sequence similarity to other reductases, including the ferredoxin-NADP reductase (FNR) of known structure. This enabled us to build a model of the nucleotide binding domains of the flavocytochrome using this structure as a template. The model was built initially using a novel automatic modeling method based on distance-matrix projection and then refined using energy minimization with appropriate side-chain torsional constraints. The resulting model rationalized much of the observed sequence conservation and identified a large insertion as a potential regulatory domain. It confirms the inclusion of the neutrophil flavocytochrome b-245 (Cb-245) as a member of the FNR family of reductases and strongly supports its function as the proximal electron transporting component of the NADPH oxidase.
Collapse
Affiliation(s)
- W R Taylor
- Laboratory of Mathematical Biology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | | |
Collapse
|
40
|
Diolez A, Langin T, Gerlinger C, Brygoo Y, Daboussi MJ. The nia gene of Fusarium oxysporum: isolation, sequence and development of a homologous transformation system. Gene 1993; 131:61-7. [PMID: 8370541 DOI: 10.1016/0378-1119(93)90669-t] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Fusarium oxysporum gene nia, encoding nitrate reductase (NR), was isolated from a cosmid library by direct complementation of an F. oxysporum nia- mutant. The gene specifies a protein of 905 amino acids and contains a 57-bp intron. Comparison of the deduced aa sequence with NR of other fungi revealed a high degree of similarity and conservation in the intron position. The cloned nia made it possible to develop the first homologous transformation system for this fungus. Transformation frequencies of up to 600 transformants per microgram of DNA were achieved. Gene replacement, single-copy homologous integrations and integrations at non-homologous sites were observed. Direct comparison between plasmids and cosmids carrying the same gene showed a higher frequency of targeted transformation using cosmid vectors. Gene replacement events were observed in about 50% of the transformants analysed with each type of vector used. This high frequency of substitution offers new applications for the transformation system in F. oxysporum.
Collapse
Affiliation(s)
- A Diolez
- Institut de Génétique et Microbiologie, Unité associée au CNRS 1354, Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
41
|
Feng B, Xiao X, Marzluf GA. Recognition of specific nucleotide bases and cooperative DNA binding by the trans-acting nitrogen regulatory protein NIT2 of Neurospora crassa. Nucleic Acids Res 1993; 21:3989-96. [PMID: 8396761 PMCID: PMC309984 DOI: 10.1093/nar/21.17.3989] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The NIT2 nitrogen regulatory protein of Neurospora is a DNA binding protein which contains a single Cys2/Cys2 type finger motif followed immediately by a highly basic region. Several different approaches were employed to identify nucleotides which appear to be in contact with NIT2 in the DNA-protein complex. Methylation interference and missing contact analyses with the promoter DNA fragment of the L-amino acid oxidase gene showed that all three purines in both of two GATA core sequences and the single adenine residue in each of the complementary TATC sequences were in intimate contact with NIT2. Modification or loss of the three purine residues located between the two GATA core sequences also significantly reduced NIT2 binding, whereas alteration of purines which flank the binding element showed only minor effects. Chemical modification of all six thymine bases in the two GATA and TATC complement core sequences also strongly affected NIT2 binding. High affinity NIT2 binding sites appear to contain at least two GATA core sequences, with single GATA sequences acting only as weak binding sites. Mobility shift experiments with the DNA fragment upstream of nit-3, the structural gene for nitrate reductase, revealed two DNA-NIT2 protein complexes. In complex I, which is formed first, NIT2 was bound to a pair of GATA sites located at -180. In complex II, the paired GATA sites at -180 plus a single GATA site at -290 were all occupied by NIT2. A DNA fragment containing only the single -290 GATA element bound NIT2 very weakly. The affinity of this single GATA for NIT2 was ten to twenty times greater when it was situated on the same DNA fragment with the distant paired GATA elements than when alone.
Collapse
Affiliation(s)
- B Feng
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
42
|
Okamoto PM, Marzluf GA. Nitrate reductase of Neurospora crassa: the functional role of individual amino acids in the heme domain as examined by site-directed mutagenesis. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:221-30. [PMID: 8355655 DOI: 10.1007/bf00277060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The enzyme nitrate reductase, which catalyzes the reduction of nitrate to nitrite, is a multi-redox center homodimeric protein. Each polypeptide subunit is approximately 100 kDa in size and contains three separate domains, one each for a flavin, a heme-iron, and a molybdopterin cofactor. The heme-iron domain of nitrate reductase has homology with the simple redox protein, cytochrome b5, whose crystal structure was used to predict a three-dimensional structure for the heme domain. Two histidine residues have been identified that appear to coordinate the iron of the heme moiety, while other residues may be important in the folding or the function of the heme pocket. Site-directed mutagenesis was employed to obtain mutants that encode nitrate reductase derivatives with eight different single amino acid substitutions within the heme domain, including the two central histidine residues. Replacement of one of these histidines by alanine resulted in a completely nonfunctional enzyme whereas replacement of the other histidine resulted in a stable and functional enzyme with a lower affinity for heme. Certain amino acid substitutions appeared to cause a rapid turnover of the heme domain, whereas other substitutions were tolerated and yielded a stable and fully active enzyme. Three different single amino acid replacements within the heme domain led to a dramatic change in regulation of nitrate reductase synthesis, with significant expression of the enzyme even in the absence of nitrate induction.
Collapse
Affiliation(s)
- P M Okamoto
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | |
Collapse
|
43
|
Salanoubat M, Bui Dang Ha D. Analysis of the petunia nitrate reductase apoenzyme-encoding gene: a first step for sequence modification analysis. Gene 1993; 128:147-54. [PMID: 8514183 DOI: 10.1016/0378-1119(93)90557-j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this paper, we describe the gene (nia) coding for the apoenzyme of the nitrate reductase (NR) of petunia. A full-size genomic clone was isolated from a genomic library, using the tobacco nia2 cDNA as a probe, and sequenced. The open reading frame is interrupted by three introns and encodes a protein of 909 amino acids which reveals between 92% and 68% identity to the NADH NR apoenzyme from other higher plants. Southern analyses indicated that the NR apoenzyme is encoded by a single-copy gene, although another region homologous to part of nia was also identified. The analysis of the steady-state level of nia mRNA showed that the petunia nia is regulated by the nitrogen source and is under the control of the circadian rhythm.
Collapse
Affiliation(s)
- M Salanoubat
- Laboratoire de Génétique Végétale, Université Paris-Sud, CNRS, Orsay, France
| | | |
Collapse
|
44
|
Wilkinson JQ, Crawford NM. Identification and characterization of a chlorate-resistant mutant of Arabidopsis thaliana with mutations in both nitrate reductase structural genes NIA1 and NIA2. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:289-97. [PMID: 8510658 DOI: 10.1007/bf00281630] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mutant plants defective in the assimilation of nitrate can be selected by their resistance to the herbicide chlorate. In Arabidopsis thaliana, mutations at any one of nine distinct loci confer chlorate resistance. Only one of the CHL genes, CHL3, has been shown genetically to be a nitrate reductase (NR) structural gene (NIA2) even though two NR genes (NIA1 and NIA2) have been cloned from the Arabidopsis genome. Plants in which the NIA2 gene has been deleted retain only 10% of the wild-type shoot NR activity and grow normally with nitrate as the sole nitrogen source. Using mutagenized seeds from the NIA2 deletion mutant and a modified chlorate selection protocol, we have identified the first mutation in the NIA1 NR structural gene. nia1, nia2 double mutants have only 0.5% of wild-type shoot NR activity and display very poor growth on media with nitrate as the only form of nitrogen. The nia1-1 mutation is a single nucleotide substitution that converts an alanine to a threonine in a highly conserved region of the molybdenum cofactor-binding domain of the NR protein. These results show that the NIA1 gene encodes a functional NR protein that contributes to the assimilation of nitrate in Arabidopsis.
Collapse
Affiliation(s)
- J Q Wilkinson
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | |
Collapse
|
45
|
Okamoto PM, Garrett RH, Marzluf GA. Molecular characterization of conventional and new repeat-induced mutants of nit-3, the structural gene that encodes nitrate reductase in Neurospora crassa. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:81-90. [PMID: 8479443 DOI: 10.1007/bf00279534] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitrate reductase of Neurospora crassa is a dimeric protein composed of two identical subunits, each possessing three separate domains, with flavin, heme, and molybdenum-containing cofactors. A number of mutants of nit-3, the structural gene that encodes Neurospora nitrate reductase, have been characterized at the molecular level. Amber nonsense mutants of nit-3 were found to possess a truncated protein detected by a specific antibody, whereas Ssu-1-suppressed nonsense mutants showed restoration of the wild-type, full-length nitrate reductase monomer. The mutants show constitutive expression of the truncated nitrate reductase protein; however normal control, which requires nitrate induction, was restored in the suppressed mutant strains. Three conventional nit-3 mutants were isolated by the polymerase chain reaction and sequenced; two of these mutants were due to the deletion of a single base in the coding region for the flavin domain, the third mutant was a nonsense mutation within the amino-terminal molybdenum-containing domain. Homologous recombination was shown to occur when a deleted nit-3 gene was introduced by transformation into a host strain with a single point mutation in the resident nit-3 gene. New, severely damaged, null nit-3 mutants were created by repeat-induced point mutation and demonstrated to be useful as host strains for transformation experiments.
Collapse
Affiliation(s)
- P M Okamoto
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
46
|
Exley GE, Colandene JD, Garrett RH. Molecular cloning, characterization, and nucleotide sequence of nit-6, the structural gene for nitrite reductase in Neurospora crassa. J Bacteriol 1993; 175:2379-92. [PMID: 8096840 PMCID: PMC204527 DOI: 10.1128/jb.175.8.2379-2392.1993] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Neurospora crassa assimilatory nitrite reductase structural gene, nit-6, has been isolated. A cDNA library was constructed from poly(A)+ RNA isolated from Neurospora mycelia in which nitrate assimilation had been induced. This cDNA was ligated into lambda ZAP II (Stratagene) and amplified. This library was then screened with a polyclonal antibody specific for nitrite reductase. A total of six positive clones were identified. Three of the six clones were found to be identical via restriction digests, restriction fragment length polymorphism mapping, Southern hybridization, and some preliminary sequencing. One of these cDNA clones (pNiR-3) was used as a probe in Northern assays and was found to hybridize to a 3.5-kb poly(A)+ RNA whose expression is nitrate inducible and glutamine repressible in wild-type mycelia. pNiR-3 was used to probe an N. crassa genomic DNA library in phage lambda J1, and many positive clones were isolated. When five of these clones were tested for their ability to transform nit-6 mutants, one clone consistently generated many wild-type transformants. The nit-6 gene has been subcloned to generate pnit-6. The nit-6 gene has been sequenced and mapped; its deduced amino acid sequence exhibits considerable levels of homology to the sequences of Aspergillus sp. and Escherichia coli nitrite reductases. Several pnit-6 transformants have been propagated as homokaryons. These strains have been assayed for the presence of multiple copies of the nit-6 gene, as well as nitrite reductase activity.
Collapse
Affiliation(s)
- G E Exley
- Department of Biology, University of Virginia, Charlottesville 22903-2477
| | | | | |
Collapse
|
47
|
Gruber H, Goetinck SD, Kirk DL, Schmitt R. The nitrate reductase-encoding gene of Volvox carteri: map location, sequence and induction kinetics. Gene 1992; 120:75-83. [PMID: 1398126 DOI: 10.1016/0378-1119(92)90011-d] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The nitrate reductase (NR) structural gene (nitA) of Volvox carteri has been cloned and characterized. There is a single copy of this gene in the genome, and RFLP (restriction-fragment length polymorphism) analysis assigns it to the previously defined nitA/chlR locus on linkage group IX, 20-30 cM from the two beta-tubulin-encoding loci. Determination of the 5871-nt sequence of the coding region of genomic clones, and comparisons to a cDNA sequence, revealed ten introns and eleven exons that encode a 864-aa polypeptide. Detailed comparisons with higher-plant and fungal NRs indicate that, whereas the aa sequence is strongly conserved within functional domains for the flavin adenine dinucleotide-, heme- and molybdenum-pterin cofactor-binding sites, substantial differences in the aa sequence occur in the N-terminal end and the two inter-domain regions. Two potential transcription start points 439 and 452 nt upstream from the start codon and a polyadenylation signal 355 nt downstream from the stop codon have been identified by primer-extension analysis and cDNA sequencing, respectively. Accumulation of the nitA transcript is both induced by nitrate and repressed by ammonium and urea: after the organism is transferred from ammonium to nitrate as the nitrogen source, a 3.6-kb NR transcript is readily detectable on Northern blots by 10 min, reaches maximum abundance by 30 min, and then rapidly declines to an intermediate level that is subsequently maintained. Substantial induction by nitrate is observed at the end of the dark portion of the daily light/dark cycle, but the inductive response peaks in the first hour of the light period.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Gruber
- Lehrstuhl für Genetik, Universität Regensburg, Germany
| | | | | | | |
Collapse
|
48
|
Yuan GF, Marzluf GA. Transformants of Neurospora crassa with the nit-4 nitrogen regulatory gene: copy number, growth rate and enzyme activity. Curr Genet 1992; 22:205-11. [PMID: 1388109 DOI: 10.1007/bf00351727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
nit-4 is a pathway-specific regulatory gene which controls nitrate assimilation in Neurospora crassa, and appears to mediate nitrate induction of nitrate and nitrite reductase. The NIT4 protein consists of 1090 amino-acid residues and possesses a single GAL4-like putative DNA-binding domain plus acidic, glutamine-rich, and polyglutamine regions. Several mutants with amino-acid substitutions in the putative DNA-binding domain and a nit-4 deletion mutant, which encodes a truncated NIT4 protein lacking the polyglutamine region, are functional, i.e., they are capable of transforming a nit-4 mutant strain. However, transformants obtained with most of these nit-4 mutant genes possess a markedly reduced level of nitrate reductase and grow only slowly on nitrate, emphasizing the need to examine quantitatively the affects of in vitro-manipulated genes. The possibility that some mutant genes could yield transformants only if multiple copies were integrated was examined. The presence of multiple copies of wild-type or mutant nit-4 genes did not generally lead to increased enzyme activity or growth rate, but instead frequently appeared to be detrimental to nit-4 function. A hybrid nit-4-nirA gene transforms nit-4 mutants but only allows slow growth on nitrate and has a very low level of nitrate reductase.
Collapse
Affiliation(s)
- G F Yuan
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | |
Collapse
|
49
|
Sumimoto H, Sakamoto N, Nozaki M, Sakaki Y, Takeshige K, Minakami S. Cytochrome b558, a component of the phagocyte NADPH oxidase, is a flavoprotein. Biochem Biophys Res Commun 1992; 186:1368-75. [PMID: 1324665 DOI: 10.1016/s0006-291x(05)81557-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cytochrome b558 is the only membrane component of the phagocyte O2(-)-producing NADPH oxidase. The O2- production by the oxidase reconstituted in vitro with the crude membrane fraction is enhanced several-fold by addition of FAD, whereas that with the partially purified cytochrome is completely dependent on exogenous FAD, suggesting that FAD acts through the membrane component, cytochrome b558. The alignments of the amino acid sequence of the large subunit of the cytochrome (gp91-phox) with those of previously characterized flavoproteins reveal that the middle and C-terminal portions of gp91-phox are likely to be FAD- and NADPH-binding domains, respectively. Cytochrome b558, thus, appears to be a flavoprotein with an NADPH-binding site, of the NADPH oxidase.
Collapse
Affiliation(s)
- H Sumimoto
- Department of Biochemistry, Kyushu University School of Medicine, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
50
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1992; 20:1173-9. [PMID: 1549508 PMCID: PMC312152 DOI: 10.1093/nar/20.5.1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|