1
|
Wegrzyn K, Oliwa M, Nowacka M, Zabrocka E, Bury K, Purzycki P, Czaplewska P, Pipka J, Giraldo R, Konieczny I. Rep protein accommodates together dsDNA and ssDNA which enables a loop-back mechanism to plasmid DNA replication initiation. Nucleic Acids Res 2023; 51:10551-10567. [PMID: 37713613 PMCID: PMC10602881 DOI: 10.1093/nar/gkad740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
For DNA replication initiation in Bacteria, replication initiation proteins bind to double-stranded DNA (dsDNA) and interact with single-stranded DNA (ssDNA) at the replication origin. The structural-functional relationship of the nucleoprotein complex involving initiator proteins is still elusive and different models are proposed. In this work, based on crosslinking combined with mass spectrometry (MS), the analysis of mutant proteins and crystal structures, we defined amino acid residues essential for the interaction between plasmid Rep proteins, TrfA and RepE, and ssDNA. This interaction and Rep binding to dsDNA could not be provided in trans, and both are important for dsDNA melting at DNA unwinding element (DUE). We solved two crystal structures of RepE: one in a complex with ssDNA DUE, and another with both ssDNA DUE and dsDNA containing RepE-specific binding sites (iterons). The amino acid residues involved in interaction with ssDNA are located in the WH1 domain in stand β1, helices α1 and α2 and in the WH2 domain in loops preceding strands β1' and β2' and in these strands. It is on the opposite side compared to RepE dsDNA-recognition interface. Our data provide evidence for a loop-back mechanism through which the plasmid replication initiator molecule accommodates together dsDNA and ssDNA.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Monika Oliwa
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Marzena Nowacka
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Elżbieta Zabrocka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Bury
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Piotr Purzycki
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Justyna Pipka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Rafael Giraldo
- Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - Igor Konieczny
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
2
|
Kothapalli R, Ghirlando R, Khan ZA, Chatterjee S, Kedei N, Chattoraj D. The dimerization interface of initiator RctB governs chaperone and enhancer dependence of Vibrio cholerae chromosome 2 replication. Nucleic Acids Res 2022; 50:4529-4544. [PMID: 35390166 PMCID: PMC9071482 DOI: 10.1093/nar/gkac210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/01/2022] [Accepted: 03/20/2022] [Indexed: 11/13/2022] Open
Abstract
Protein function often requires remodeling of protein structure. In the well-studied iteron-containing plasmids, the initiator of replication has a dimerization interface that undergoes chaperone-mediated remodeling. This remodeling reduces dimerization and promotes DNA replication, since only monomers bind origin DNA. A structurally homologs interface exists in RctB, the replication initiator of Vibrio cholerae chromosome 2 (Chr2). Chaperones also promote Chr2 replication, although both monomers and dimers of RctB bind to origin, and chaperones increase the binding of both. Here we report how five changes in the dimerization interface of RctB affect the protein. The mutants are variously defective in dimerization, more active as initiator, and except in one case, unresponsive to chaperone (DnaJ). The results indicate that chaperones also reduce RctB dimerization and support the proposal that the paradoxical chaperone-promoted dimer binding likely represents sequential binding of monomers on DNA. RctB is also activated for replication initiation upon binding to a DNA site, crtS, and three of the mutants are also unresponsive to crtS. This suggests that crtS, like chaperones, reduces dimerization, but additional evidence suggests that the remodelling activities function independently. Involvement of two remodelers in reducing dimerization signifies the importance of dimerization in limiting Chr2 replication.
Collapse
Affiliation(s)
- Roopa Kothapalli
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Zaki Ali Khan
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Soniya Chatterjee
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTP, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Hall RJ, Whelan FJ, Cummins EA, Connor C, McNally A, McInerney JO. Gene-gene relationships in an Escherichia coli accessory genome are linked to function and mobility. Microb Genom 2021; 7:000650. [PMID: 34499026 PMCID: PMC8715431 DOI: 10.1099/mgen.0.000650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/10/2021] [Indexed: 12/31/2022] Open
Abstract
The pangenome contains all genes encoded by a species, with the core genome present in all strains and the accessory genome in only a subset. Coincident gene relationships are expected within the accessory genome, where the presence or absence of one gene is influenced by the presence or absence of another. Here, we analysed the accessory genome of an Escherichia coli pangenome consisting of 400 genomes from 20 sequence types to identify genes that display significant co-occurrence or avoidance patterns with one another. We present a complex network of genes that are either found together or that avoid one another more often than would be expected by chance, and show that these relationships vary by lineage. We demonstrate that genes co-occur by function, and that several highly connected gene relationships are linked to mobile genetic elements. We find that genes are more likely to co-occur with, rather than avoid, another gene in the accessory genome. This work furthers our understanding of the dynamic nature of prokaryote pangenomes and implicates both function and mobility as drivers of gene relationships.
Collapse
Affiliation(s)
- Rebecca J. Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Fiona J. Whelan
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Elizabeth A. Cummins
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Christopher Connor
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - James O. McInerney
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
4
|
Luo H, Gao F. DoriC 10.0: an updated database of replication origins in prokaryotic genomes including chromosomes and plasmids. Nucleic Acids Res 2020; 47:D74-D77. [PMID: 30364951 PMCID: PMC6323995 DOI: 10.1093/nar/gky1014] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022] Open
Abstract
DoriC, a database of replication origins, was initially created to present the bacterial oriCs predicted by Ori-Finder or determined by experiments in 2007. DoriC 5.0, an updated database of oriC regions in both bacterial and archaeal genomes, was published in the 2013 Nucleic Acids Research database issue. Now, the latest release DoriC 10, a large-scale update of replication origins in prokaryotic genomes including chromosomes and plasmids, has been presented with a completely redesigned user interface, which is freely available at http://tubic.org/doric/ and http://tubic.tju.edu.cn/doric/. In the current release, the database of DoriC has made significant improvements compared with version 5.0 as follows: (i) inclusion of oriCs on more bacterial chromosomes increased from 1633 to 7580; (ii) inclusion of oriCs on more archaeal chromosomes increased from 86 to 226; (iii) inclusion of 1209 plasmid replication origins retrieved from NCBI annotations or predicted by in silico analysis; (iv) inclusion of more replication origin elements on bacterial chromosomes including DnaA-trio motifs. Now, DoriC becomes the most complete and scalable database of replication origins in prokaryotic genomes, and facilitates the studies in large-scale oriC data mining, strand-biased analyses and replication origin predictions.
Collapse
Affiliation(s)
- Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
5
|
Bury K, Wegrzyn K, Konieczny I. Handcuffing reversal is facilitated by proteases and replication initiator monomers. Nucleic Acids Res 2017; 45:3953-3966. [PMID: 28335002 PMCID: PMC5397158 DOI: 10.1093/nar/gkx166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Specific nucleoprotein complexes are formed strictly to prevent over-initiation of DNA replication. An example of those is the so-called handcuff complex, in which two plasmid molecules are coupled together with plasmid-encoded replication initiation protein (Rep). In this work, we elucidate the mechanism of the handcuff complex disruption. In vitro tests, including dissociation progress analysis, demonstrate that the dimeric variants of plasmid RK2 replication initiation protein TrfA are involved in assembling the plasmid handcuff complex which, as we found, reveals high stability. Particular proteases, namely Lon and ClpAP, disrupt the handcuff by degrading TrfA, thus affecting plasmid stability. Moreover, our data demonstrate that TrfA monomers are able to dissociate handcuffed plasmid molecules. Those monomers displace TrfA molecules, which are involved in handcuff formation, and through interaction with the uncoupled plasmid replication origins they re-initiate DNA synthesis. We discuss the relevance of both Rep monomers and host proteases for plasmid maintenance under vegetative and stress conditions.
Collapse
Affiliation(s)
- Katarzyna Bury
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| |
Collapse
|
6
|
Wang J, Liu Q, Feng J, Lv JP, Xie SL. Effect of high-doses pyrogallol on oxidative damage, transcriptional responses and microcystins synthesis in Microcystis aeruginosa TY001 (Cyanobacteria). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134P1:273-279. [PMID: 27643987 DOI: 10.1016/j.ecoenv.2016.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/06/2016] [Accepted: 09/10/2016] [Indexed: 06/06/2023]
Abstract
Severe eutrophication and harmful cyanobacterial blooms of freshwater ecosystems is a persistent environmental topic in recent decades. Pyrogallol (polyphenol) was confirmed to exhibit one of the most intensive inhibitory effects on the Microcystis aeruginosa. In this study, the expression of genes, release of microcystins (MCs) and antioxidant system of pyrogallol on Microcystis aeruginosa TY001 were investigated. The results revealed that the expression of stress response genes (prx, ftsH, grpE and fabZ) and DNA repair genes (recA and gyrB) were up-regulated. Meanwhile, the antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activity, were increased, and the stress caused lipid peroxidation to occur and malondialdehyde (MDA) levels to change. Unexpectedly, the relative transcript abundance of microcystin synthesis genes (mcyB, mcyD and ntcA) and the contents of microcystins (MCs) significantly increased compared with the control in the culture medium. In conclusion, oxidative damage and DNA damage are the primary mechanisms for the allelopathic effect of pyrogallol on M. aeruginosa TY001.
Collapse
Affiliation(s)
- Jie Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Qi Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jun-Ping Lv
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shu-Lian Xie
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
7
|
Wegrzyn KE, Gross M, Uciechowska U, Konieczny I. Replisome Assembly at Bacterial Chromosomes and Iteron Plasmids. Front Mol Biosci 2016; 3:39. [PMID: 27563644 PMCID: PMC4980987 DOI: 10.3389/fmolb.2016.00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
The proper initiation and occurrence of DNA synthesis depends on the formation and rearrangements of nucleoprotein complexes within the origin of DNA replication. In this review article, we present the current knowledge on the molecular mechanism of replication complex assembly at the origin of bacterial chromosome and plasmid replicon containing direct repeats (iterons) within the origin sequence. We describe recent findings on chromosomal and plasmid replication initiators, DnaA and Rep proteins, respectively, and their sequence-specific interactions with double- and single-stranded DNA. Also, we discuss the current understanding of the activities of DnaA and Rep proteins required for replisome assembly that is fundamental to the duplication and stability of genetic information in bacterial cells.
Collapse
Affiliation(s)
- Katarzyna E Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Marta Gross
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Urszula Uciechowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| |
Collapse
|
8
|
Karlowicz A, Wegrzyn K, Dubiel A, Ropelewska M, Konieczny I. Proteolysis in plasmid DNA stable maintenance in bacterial cells. Plasmid 2016; 86:7-13. [PMID: 27252071 DOI: 10.1016/j.plasmid.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/12/2023]
Abstract
Plasmids, as extrachromosomal genetic elements, need to work out strategies that promote independent replication and stable maintenance in host bacterial cells. Their maintenance depends on constant formation and dissociation of nucleoprotein complexes formed on plasmid DNA. Plasmid replication initiation proteins (Rep) form specific complexes on direct repeats (iterons) localized within the plasmid replication origin. Formation of these complexes along with a strict control of Rep protein cellular concentration, quaternary structure, and activity, is essential for plasmid maintenance. Another important mechanism for maintenance of low-copy-number plasmids are the toxin-antitoxin (TA) post-segregational killing (psk) systems, which prevent plasmid loss from the bacterial cell population. In this mini review we discuss the importance of nucleoprotein complex processing by energy-dependent host proteases in plasmid DNA replication and plasmid type II toxin-antitoxin psk systems, and draw attention to the elusive role of DNA in this process.
Collapse
Affiliation(s)
- Anna Karlowicz
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Andrzej Dubiel
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Malgorzata Ropelewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
9
|
Abstract
Plasmids are autonomously replicating pieces of DNA. This article discusses theta plasmid replication, which is a class of circular plasmid replication that includes ColE1-like origins of replication popular with expression vectors. All modalities of theta plasmid replication initiate synthesis with the leading strand at a predetermined site and complete replication through recruitment of the host's replisome, which extends the leading strand continuously while synthesizing the lagging strand discontinuously. There are clear differences between different modalities of theta plasmid replication in mechanisms of DNA duplex melting and in priming of leading- and lagging-strand synthesis. In some replicons duplex melting depends on transcription, while other replicons rely on plasmid-encoded trans-acting proteins (Reps); primers for leading-strand synthesis can be generated through processing of a transcript or in other replicons by the action of host- or plasmid-encoded primases. None of these processes require DNA breaks. The frequency of replication initiation is tightly regulated to facilitate establishment in permissive hosts and to achieve a steady state. The last section of the article reviews how plasmid copy number is sensed and how this feedback modulates the frequency of replication.
Collapse
|
10
|
Abstract
Iteron-containing plasmids are model systems for studying the metabolism of extrachromosomal genetic elements in bacterial cells. Here we describe the current knowledge and understanding of the structure of iteron-containing replicons, the structure of the iteron plasmid encoded replication initiation proteins, and the molecular mechanisms for iteron plasmid DNA replication initiation. We also discuss the current understanding of control mechanisms affecting the plasmid copy number and how host chaperone proteins and proteases can affect plasmid maintenance in bacterial cells.
Collapse
|
11
|
Liu Y, Zhang J, Gao B. Cellular and transcriptional responses in Microcystis aeruginosa exposed to two antibiotic contaminants. MICROBIAL ECOLOGY 2015; 69:535-543. [PMID: 25342538 DOI: 10.1007/s00248-014-0515-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
The responses of Microcystis aeruginosa under exposure to spiramycin and amoxicillin were investigated on both cellular and genetic levels through a 7-day exposure test. Algal growth was inhibited by spiramycin while promoted by amoxicillin at test concentrations of 0.6-1.8 μg L(-1), indicating a higher toxicity of spiramycin than amoxicillin. During the whole exposure period, the chlorophyll a content and expression levels of psbA, psaB, and rbcL were significantly inhibited by spiramycin at test concentrations of 1.2 and 1.8 μg L(-1) (p < 0.05) and stimulated by 0.6-1.8 μg L(-1) of amoxicillin (p < 0.05), with respective decreases of up to 26, 75, 72, and 82% compared to the control and respective increases of 20, 70, 135, and 55%. During the 4 to 7 days of exposure, the microcystin-LR content and expression levels of mcyB and grpE were reduced by up to 66, 47, and 72% in spiramycin-treated algal cells, respectively, and stimulated by up to 1.3-, 1.4-, and 1.5-folds in amoxicillin-treated algal cells, respectively. Elevated recA expression was only observed in 1.2 and 1.8 μg L(-1) of spiramycin-treated algal cells, indicating severe DNA damage due to the high toxicity. Target antibiotics were suspected to regulate the growth and microcystin-production in M. aeruginosa via the photosynthesis system.
Collapse
Affiliation(s)
- Ying Liu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, People's Republic of China,
| | | | | |
Collapse
|
12
|
Jonas K, Liu J, Chien P, Laub MT. Proteotoxic stress induces a cell-cycle arrest by stimulating Lon to degrade the replication initiator DnaA. Cell 2013; 154:623-36. [PMID: 23911325 DOI: 10.1016/j.cell.2013.06.034] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/15/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
The decision to initiate DNA replication is a critical step in the cell cycle of all organisms. Cells often delay replication in the face of stressful conditions, but the underlying mechanisms remain incompletely defined. Here, we demonstrate in Caulobacter crescentus that proteotoxic stress induces a cell-cycle arrest by triggering the degradation of DnaA, the conserved replication initiator. A depletion of available Hsp70 chaperone, DnaK, either through genetic manipulation or heat shock, induces synthesis of the Lon protease, which can directly degrade DnaA. Unexpectedly, we find that unfolded proteins, which accumulate following a loss of DnaK, also allosterically activate Lon to degrade DnaA, thereby ensuring a cell-cycle arrest. Our work reveals a mechanism for regulating DNA replication under adverse growth conditions. Additionally, our data indicate that unfolded proteins can actively and directly alter substrate recognition by cellular proteases.
Collapse
Affiliation(s)
- Kristina Jonas
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
13
|
Cuéllar J, Perales-Calvo J, Muga A, Valpuesta JM, Moro F. Structural insights into the chaperone activity of the 40-kDa heat shock protein DnaJ: binding and remodeling of a native substrate. J Biol Chem 2013; 288:15065-74. [PMID: 23580641 DOI: 10.1074/jbc.m112.430595] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp40 chaperones bind and transfer substrate proteins to Hsp70s and regulate their ATPase activity. The interaction of Hsp40s with native proteins modifies their structure and function. A good model for this function is DnaJ, the bacterial Hsp40 that interacts with RepE, the repressor/activator of plasmid F replication, and together with DnaK regulates its function. We characterize here the structure of the DnaJ-RepE complex by electron microscopy, the first described structure of a complex between an Hsp40 and a client protein. The comparison of the complexes of DnaJ with two RepE mutants reveals an intrinsic plasticity of the DnaJ dimer that allows the chaperone to adapt to different substrates. We also show that DnaJ induces conformational changes in dimeric RepE, which increase the intermonomeric distance and remodel both RepE domains enhancing its affinity for DNA.
Collapse
Affiliation(s)
- Jorge Cuéllar
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
14
|
Yong HT, Yamamoto N, Takeuchi R, Hsieh YJ, Conrad TM, Datsenko KA, Nakayashiki T, Wanner BL, Mori H. Development of a system for discovery of genetic interactions for essential genes in Escherichia coli K-12. Genes Genet Syst 2013; 88:233-40. [DOI: 10.1266/ggs.88.233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Han Tek Yong
- Graduate School of Biological Science, Nara Institute of Science and Technology
| | - Natsuko Yamamoto
- Graduate School of Biological Science, Nara Institute of Science and Technology
| | - Rikiya Takeuchi
- Graduate School of Biological Science, Nara Institute of Science and Technology
| | - Yi-Ju Hsieh
- Department of Biological Sciences, Purdue University
| | - Tom M. Conrad
- Graduate School of Biological Science, Nara Institute of Science and Technology
| | | | - Toru Nakayashiki
- Graduate School of Biological Science, Nara Institute of Science and Technology
| | | | - Hirotada Mori
- Graduate School of Biological Science, Nara Institute of Science and Technology
| |
Collapse
|
15
|
Champ S, Puvirajesinghe TM, Perrody E, Menouni R, Genevaux P, Ansaldi M. Chaperone-assisted excisive recombination, a solitary role for DnaJ (Hsp40) chaperone in lysogeny escape. J Biol Chem 2011; 286:38876-85. [PMID: 21908845 DOI: 10.1074/jbc.m111.281865] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Temperate bacteriophage lytic development is intrinsically related to the stress response in particular at the DNA replication and virion maturation steps. Alternatively, temperate phages become lysogenic and integrate their genome into the host chromosome. Under stressful conditions, the prophage resumes a lytic development program, and the phage DNA is excised before being replicated. The KplE1 defective prophage of Escherichia coli K12 constitutes a model system because it is fully competent for integrative as well as excisive recombination and presents an atypical recombination module, which is conserved in various phage genomes. In this work, we identified the host-encoded stress-responsive molecular chaperone DnaJ (Hsp40) as an active participant in KplE1 prophage excision. We first show that the recombination directionality factor TorI of KplE1 specifically interacts with DnaJ. In addition, we found that DnaJ dramatically enhances both TorI binding to its DNA target and excisive recombination in vitro. Remarkably, such stimulatory effect by DnaJ was performed independently of its DnaK chaperone partner and did not require a functional DnaJ J-domain. Taken together, our results underline a novel and unsuspected functional interaction between the generic host stress-regulated chaperone and temperate bacteriophage lysogenic development.
Collapse
Affiliation(s)
- Stéphanie Champ
- Laboratoire de Chimie Bactérienne CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
16
|
Pierechod M, Nowak A, Saari A, Purta E, Bujnicki JM, Konieczny I. Conformation of a plasmid replication initiator protein affects its proteolysis by ClpXP system. Protein Sci 2009; 18:637-49. [PMID: 19241373 DOI: 10.1002/pro.68] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins from the Rep family of DNA replication initiators exist mainly as dimers, but only monomers can initiate DNA replication by interaction with the replication origin (ori). In this study, we investigated both the activation (monomerization) and the degradation of the broad-host-range plasmid RK2 replication initiation protein TrfA, which we found to be a member of a class of DNA replication initiators containing winged helix (WH) domains. Our in vivo and in vitro experiments demonstrated that the ClpX-dependent activation of TrfA leading to replicationally active protein monomers and mutations affecting TrfA dimer formation, result in the inhibition of TrfA protein degradation by the ClpXP proteolytic system. These data revealed that the TrfA monomers and dimers are degraded at substantially different rates. Our data also show that the plasmid replication initiator activity and stability in E. coli cells are affected by ClpXP system only when the protein sustains dimeric form.
Collapse
Affiliation(s)
- Marcin Pierechod
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | | | | | | | |
Collapse
|
17
|
Replication initiator DnaA of Escherichia coli changes its assembly form on the replication origin during the cell cycle. J Bacteriol 2009; 191:4807-14. [PMID: 19502409 DOI: 10.1128/jb.00435-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DnaA is a replication initiator protein that is conserved among bacteria. It plays a central role in the initiation of DNA replication. In order to monitor its behavior in living Escherichia coli cells, a nonessential portion of the protein was replaced by a fluorescent protein. Such a strain grew normally, and flow cytometry data suggested that the chimeric protein has no substantial loss of the initiator activity. The initiator was distributed all over the nucleoid. Furthermore, a majority of the cells exhibited certain distinct foci that emitted bright fluorescence. These foci colocalized with the replication origin (oriC) region and were brightest during the period spanning the initiation event. In cells that had undergone the initiation, the foci were enriched in less intense ones. In addition, a significant portion of the oriC regions at this cell cycle stage had no colocalized DnaA-enhanced yellow fluorescent protein (EYFP) focus point. It was difficult to distinguish the initiator titration locus (datA) from the oriC region. However, involvement of datA in the initiation control was suggested from the observation that, in DeltadatA cells, DnaA-EYFP maximally colocalized with the oriC region earlier in the cell cycle than it did in wild-type cells and oriC concentration was increased.
Collapse
|
18
|
Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 2008; 33:341-65. [PMID: 11101008 PMCID: PMC6496586 DOI: 10.1046/j.1365-2184.2000.00189.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chaperones/heat shock proteins (HSPs) of the HSP90 and HSP70 families show elevated levels in proliferating mammalian cells and a cell cycle-dependent expression. They transiently associate with key molecules of the cell cycle control system such as Cdk4, Wee-1, pRb, p53, p27/Kip1 and are involved in the nuclear localization of regulatory proteins. They also associate with viral oncoproteins such as SV40 super T, large T and small t antigen, polyoma large and middle S antigen and EpsteinBarr virus nuclear antigen. This association is based on a J-domain in the viral proteins and may assist their targeting to the pRb/E2F complex. Small HSPs and their state of phosphorylation and oligomerization also seem to be involved in proliferation and differentiation. Chaperones/HSPs thus play important roles within cell cycle processes. Their exact functioning, however, is still a matter of discussion. HSP90 in particular, but also HSP70 and other chaperones associate with proteins of the mitogen-activated signal cascade, particularly with the Src kinase, with tyrosine receptor kinases, with Raf and the MAP-kinase activating kinase (MEK). This apparently serves the folding and translocation of these proteins, but possibly also the formation of large immobilized complexes of signal transducing molecules (scaffolding function).
Collapse
Affiliation(s)
- K Helmbrecht
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, Germany
| | | | | |
Collapse
|
19
|
Nakamura A, Wada C, Miki K. Structural basis for regulation of bifunctional roles in replication initiator protein. Proc Natl Acad Sci U S A 2007; 104:18484-9. [PMID: 18000058 PMCID: PMC2141803 DOI: 10.1073/pnas.0705623104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Indexed: 11/18/2022] Open
Abstract
DNA replication initiator protein RepE stringently regulates F plasmid replication by its two distinct molecular association states. A predominant dimer functions as an autogenous repressor, whereas monomers act as replication initiators, and the dimer requires actions of the DnaK molecular chaperone system for monomerization. The structure of the monomeric form is known, whereas the dimeric structure and structural details of the dimer-to-monomer conversion have been unclear. Here we present the crystal structure of the RepE dimer in complex with the repE operator DNA. The dimerization interface is mainly formed by intermolecular beta-sheets with several key interactions of charged residues. The conformations of the internal N- and C-terminal domains are conserved between the dimer and monomer, whereas the relative domain orientations are strikingly different, allowing for an efficient oligomeric transition of dual-functional RepE. This domain relocation accompanies secondary structural changes in the linker connecting the two domains, and the linker is included in plausible DnaK/DnaJ-binding regions. These findings suggest an activation mechanism for F plasmid replication by RepE monomerization, which is induced and mediated by the DnaK system.
Collapse
Affiliation(s)
- Akira Nakamura
- *Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Chieko Wada
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8315, Japan
| | - Kunio Miki
- *Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center at Harima Institute, Koto 1-1-1, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
20
|
Nakamura A, Wada C, Miki K. Expression and purification of F-plasmid RepE and preliminary X-ray crystallographic study of its complex with operator DNA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:346-9. [PMID: 17401213 PMCID: PMC2330221 DOI: 10.1107/s1744309107012894] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 03/19/2007] [Indexed: 11/10/2022]
Abstract
The replication initiator factor RepE of the F plasmid in Escherichia coli is an essential protein that stringently regulates the F-plasmid copy number. The RepE protein has a dual function: its monomer functions as a replication initiator, while its dimer acts as a transcriptional repressor of the repE gene. The wild-type dimeric RepE protein was expressed as an N-terminal histidine-tagged protein, purified under native conditions with a high salt concentration and crystallized in complex with the repE operator DNA using the sitting-drop vapour-diffusion technique. The crystals diffracted to a resolution of 3.14 A after the application of dehydration and crystal annealing and belong to space group P2(1), with unit-cell parameters a = 60.73, b = 99.32, c = 95.00 A, beta = 108.55 degrees.
Collapse
Affiliation(s)
- Akira Nakamura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Chieko Wada
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8315, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center at Harima Institute, Koto 1-1-1, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
21
|
Zzaman S, Bastia D. Oligomeric initiator protein-mediated DNA looping negatively regulates plasmid replication in vitro by preventing origin melting. Mol Cell 2006; 20:833-43. [PMID: 16364910 DOI: 10.1016/j.molcel.2005.10.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 09/28/2005] [Accepted: 10/27/2005] [Indexed: 10/25/2022]
Abstract
Although DNA looping between the initiator binding sites (iterons) of the replication origin (ori) of a plasmid and the iterons located in a cis-acting control sequence called inc has been postulated to promote negative control of plasmid DNA replication, not only was definitive evidence for such looping lacking, but also the detailed molecular mechanism of this control had not been elucidated. Here, we present direct evidence showing that both the monomeric and the dimeric forms of the RepE initiator protein of F factor together promote pairing of incC-oriF sites by DNA looping. By using a reconstituted replication system consisting of 26 purified proteins, we show further that the DNA loop formation negatively regulates plasmid replication by inhibiting the formation of an open complex at the replication origin, thus elucidating a key step of replication control.
Collapse
Affiliation(s)
- Shamsu Zzaman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, 29425, USA
| | | |
Collapse
|
22
|
Zhong Z, Helinski D, Toukdarian A. Plasmid host-range: restrictions to F replication in Pseudomonas. Plasmid 2005; 54:48-56. [PMID: 15907538 DOI: 10.1016/j.plasmid.2004.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 11/02/2004] [Accepted: 11/05/2004] [Indexed: 11/29/2022]
Abstract
Host-range, a fundamental property of a bacterial plasmid, is primarily determined by the plasmid replication system. To investigate the basis of the restricted host-range of the well-studied F-plasmid of Escherichia coli, we characterized in vitro the interactions of the host DnaA initiation protein and DnaB helicase from Pseudomonas aeruginosa and Pseudomonas putida with the replication origin, oriS, and initiation protein, RepE, of the RepFIA replicon. The results presented here show that a pre-priming complex can form at the F-origin with the replication proteins from the non-native hosts in the presence of RepE. However, RepE cannot form a stable complex with DnaB of P. aeruginosa or P. putida but does stably interact with E. coli DnaB. This unstable association may affect the ability of F to replicate in Pseudomonas. In addition, replication studies in vivo suggest that inefficient expression of the RepE initiation protein from its native promoter in Pseudomonas is a factor in restricting its host-range. This, however, is not the only barrier to F replication, as mini-F derivatives with an alternative promoter for RepE expression do not replicate in P. putida and are not stably maintained in P. aeruginosa.
Collapse
Affiliation(s)
- Zhenping Zhong
- Division of Biological Sciences and Center for Molecular Genetics, University of California San Diego, La Jolla, CA 92093-0322, USA
| | | | | |
Collapse
|
23
|
Gur E, Biran D, Shechter N, Genevaux P, Georgopoulos C, Ron EZ. The Escherichia coli DjlA and CbpA proteins can substitute for DnaJ in DnaK-mediated protein disaggregation. J Bacteriol 2004; 186:7236-42. [PMID: 15489435 PMCID: PMC523209 DOI: 10.1128/jb.186.21.7236-7242.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DnaJ (Hsp40) protein of Escherichia coli serves as a cochaperone of DnaK (Hsp70), whose activity is involved in protein folding, protein targeting for degradation, and rescue of proteins from aggregates. Two other E. coli proteins, CbpA and DjlA, which exhibit homology with DnaJ, are known to interact with DnaK and to stimulate its chaperone activity. Although it has been shown that in dnaJ mutants both CbpA and DjlA are essential for growth at temperatures above 37 degrees C, their in vivo role is poorly understood. Here we show that in a dnaJ mutant both CbpA and DjlA are required for efficient protein dissaggregation at 42 degrees C.
Collapse
Affiliation(s)
- Eyal Gur
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
24
|
Zzaman S, Reddy JM, Bastia D. The DnaK-DnaJ-GrpE chaperone system activates inert wild type pi initiator protein of R6K into a form active in replication initiation. J Biol Chem 2004; 279:50886-94. [PMID: 15485812 DOI: 10.1074/jbc.m407531200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasmid R6K is an interesting model system for investigating initiation of DNA replication, not only near the primary binding sites of the initiator protein pi but also at a distance, caused by pi -mediated DNA looping. An important milestone in the mechanistic analysis of this replicon was the development of a reconstituted replication system consisting of 22 different highly purified proteins (Abhyankar, M. A., Zzaman, S., and Bastia, D. (2003) J. Biol. Chem. 278, 45476-45484). Although the in vitro reconstituted system promotes ori gamma-specific initiation of replication by a mutant form of the initiator called pi*, the wild type (WT) pi is functionally inert in this system. Here we show that the chaperone DnaK along with its co-chaperone DnaJ and the nucleotide exchange factor GrpE were needed to activate WT pi and caused it to initiate replication in vitro at the correct origin. We show further that the reaction was relatively chaperone-specific and that other chaperones, such as ClpB and ClpX, were incapable of activating WT pi. The molecular mechanism of activation appeared to be a chaperone-catalyzed facilitation of dimeric inert WT pi into iteron-bound monomers. Protein-protein interaction analysis by enzyme-linked immunosorbent assay revealed that, in the absence of ATP, DnaJ directly interacted with pi but its binary interactions with DnaK and GrpE and with ClpB and ClpX were at background levels, suggesting that pi is recruited by protein-protein interaction with DnaJ and then fed into the DnaK chaperone machine to promote initiator activation.
Collapse
Affiliation(s)
- Shamsu Zzaman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
25
|
Mayer MP. Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 2004; 153:1-46. [PMID: 15243813 DOI: 10.1007/s10254-004-0025-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Virus proliferation depends on the successful recruitment of host cellular components for their own replication, protein synthesis, and virion assembly. In the course of virus particle production a large number of proteins are synthesized in a relatively short time, whereby protein folding can become a limiting step. Most viruses therefore need cellular chaperones during their life cycle. In addition to their own protein folding problems viruses need to interfere with cellular processes such as signal transduction, cell cycle regulation and induction of apoptosis in order to create a favorable environment for their proliferation and to avoid premature cell death. Chaperones are involved in the control of these cellular processes and some viruses reprogram their host cell by interacting with them. Hsp70 chaperones, as central components of the cellular chaperone network, are frequently recruited by viruses. This review focuses on the function of Hsp70 chaperones at the different stages of the viral life cycle emphasizing mechanistic aspects.
Collapse
Affiliation(s)
- M P Mayer
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|
26
|
Nakamura A, Komori H, Kobayashi G, Kita A, Wada C, Miki K. The N-terminal domain of the replication initiator protein RepE is a dimerization domain forming a stable dimer. Biochem Biophys Res Commun 2004; 315:10-5. [PMID: 15013418 DOI: 10.1016/j.bbrc.2004.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Indexed: 11/19/2022]
Abstract
The initiator protein RepE of the mini-F plasmid in Escherichia coli plays an essential role in DNA replication, which is regulated by the molecular chaperone-dependent oligomeric state (monomer or dimer). Crosslinking, ultracentrifugation, and gel filtration analyses showed that the solely expressed N-terminal domain (residues 1-144 or 1-152) exists in the dimeric state as in the wild-type RepE protein. This result indicates that the N-terminal domain functions as a dimerization domain of RepE and might be important for the interaction with the molecular chaperones. The N-terminal domain dimer has been crystallized in order to obtain structural insight into the regulation of the monomer/dimer conversion of RepE.
Collapse
Affiliation(s)
- Akira Nakamura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Zzaman S, Abhyankar MM, Bastia D. Reconstitution of F factor DNA replication in vitro with purified proteins. J Biol Chem 2004; 279:17404-10. [PMID: 14973139 DOI: 10.1074/jbc.m400021200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Jacob, Brenner, and Cuzin pioneered the development of the F plasmid as a model system to study replication control, and these investigations led to the development of the "replicon model" (Jacob, F., Brenner, S., and Cuzin, F. (1964) Cold Spring Harbor Symp. Quant. Biol. 28, 329-348). To elucidate further the mechanism of initiation of replication of this plasmid and its control, we have reconstituted its replication in vitro with 21 purified host-encoded proteins and the plasmid-encoded initiator RepE. The replication in vitro was specifically initiated at the F ori (oriV) and required both the bacterial initiator protein DnaA and the plasmid-encoded initiator RepE. The wild type dimeric RepE was inactive in catalyzing replication, whereas a monomeric mutant form called RepE(*) (R118P) was capable of catalyzing vigorous replication. The replication topology was mostly of the Cairns form, and the fork movement was unidirectional and mostly from right to left. The replication was dependent on the HU protein, and the structurally and functionally related DNA bending protein IHF could not efficiently substitute for HU. The priming was dependent on DnaG primase. Many of the characteristics of the in vitro replication closely mimicked those of in vivo replication. We believe that the in vitro system should be very useful in unraveling the mechanism of replication initiation and its control.
Collapse
Affiliation(s)
- S Zzaman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
28
|
Sharma S, Sathyanarayana BK, Bird JG, Hoskins JR, Lee B, Wickner S. Plasmid P1 RepA Is Homologous to the F Plasmid RepE Class of Initiators. J Biol Chem 2004; 279:6027-34. [PMID: 14634015 DOI: 10.1074/jbc.m310917200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication of plasmid P1 requires a plasmid-encoded origin DNA-binding protein, RepA. RepA is an inactive dimer and is converted by molecular chaperones into an active monomer that binds RepA binding sites. Although the sequence of RepA is not homologous to that of F plasmid RepE, we found by using fold-recognition programs that RepA shares structural homology with RepE and built a model based on the RepE crystal structure. We constructed mutants in the two predicted DNA binding domains to test the model. As expected, the mutants were defective in P1 DNA binding. The model predicted that RepA binds the first half of the binding site through interactions with the C-terminal DNA binding domain and the second half through interactions with the N-terminal domain. The experiments supported the prediction. The model was further supported by the observation that mutants defective in dimerization map to the predicted subunit interface region, based on the crystal structure of pPS10 RepA, a RepE family member. These results suggest P1 RepA is structurally homologous to plasmid initiators, including those of F, R6K, pSC101, pCU1, pPS10, pFA3, pGSH500, Rts1, RepHI1B, RepFIB, and RSF1010.
Collapse
Affiliation(s)
- Suveena Sharma
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
29
|
Díaz-López T, Lages-Gonzalo M, Serrano-López A, Alfonso C, Rivas G, Díaz-Orejas R, Giraldo R. Structural changes in RepA, a plasmid replication initiator, upon binding to origin DNA. J Biol Chem 2003; 278:18606-16. [PMID: 12637554 DOI: 10.1074/jbc.m212024200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RepA protein is the DNA replication initiator of the Pseudomonas plasmid pPS10. RepA dimers bind to an inversely repeated operator sequence in repA promoter, thus repressing its own synthesis, whereas monomers bind to four directly repeated sequences (iterons) to initiate DNA replication. We had proposed previously that RepA is composed of two winged-helix (WH) domains, a structural unit also present in eukaryotic and archaeal initiators. To bind to the whole iteron sequence through both domains, RepA should couple monomerization to a conformational change in the N-terminal WH, which includes a leucine zipper-like sequence motif. We show for the first time that, by itself, binding to iteron DNA in vitro dissociates RepA dimers into monomers and alters RepA conformation, suggesting an allosteric effect. Furthermore, we also show that similar changes in RepA are promoted by mutations that substitute two Leu residues of the putative leucine zipper by Ala, destabilizing the hydrophobic core of the first WH. We propose that this mutant (RepA-2L2A) resembles a transient folding intermediate in the pathway leading to active monomers. These findings, together with the known activation of other Rep-type proteins by chaperones, are relevant to understand the molecular basis of plasmid DNA replication initiation.
Collapse
Affiliation(s)
- Teresa Díaz-López
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), C/Velázquez, 144, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Giraldo R. Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives. FEMS Microbiol Rev 2003; 26:533-54. [PMID: 12586394 DOI: 10.1111/j.1574-6976.2003.tb00629.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although DNA replication is the universal process for the transmission of genetic information in all living organisms, until very recently evidence was lacking for a related structure and function in the proteins (initiators) that trigger replication in the three 'Life Domains' (Bacteria, Archaea and Eukarya). In this article new data concerning the presence of common features in the initiators of chromosomal replication in bacteria, archaea and eukaryotes are reviewed. Initiators are discussed in the light of: (i) The structure and function of their conserved ATPases Associated with various cellular Activities (AAA+) and winged-helix domains. (ii) The nature of the macromolecular assemblies that they constitute at the replication origins. (iii) Their possible phylogenetic relationship, attempting to sketch the essentials of a hypothetical DNA replication initiator in the micro-organism proposed to be the ancestor of all living cells.
Collapse
Affiliation(s)
- Rafael Giraldo
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas (CSIC), C/Velázquez 144, 28006 Madrid, Spain.
| |
Collapse
|
31
|
Gelinas AD, Langsetmo K, Toth J, Bethoney KA, Stafford WF, Harrison CJ. A structure-based interpretation of E.coli GrpE thermodynamic properties. J Mol Biol 2002; 323:131-42. [PMID: 12368105 DOI: 10.1016/s0022-2836(02)00915-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
GrpE is the nucleotide exchange factor for the Escherichia coli molecular chaperone DnaK, the prokaryotic homologue of Hsp70. Thermodynamic properties of GrpE structural domains were characterized by examining a number of structural and point mutants using circular dichroism, differential scanning calorimetry and analytical ultracentrifugation. These structural domains are the long paired N-terminal helices, the central four-helix bundle, and the C-terminal compact beta-domains. We show that the central four-helix bundle (t(m) approximately 75 degrees C) provides a stable platform for the association of the long paired N-terminal helices (t(m) approximately 50 degrees C), which can then function as a temperature sensor. The stability of the N-terminal helices is linked to the presence of the C-terminal compact beta-domains of GrpE, providing a potential mechanism for coupling of DnaK-binding activity of GrpE with temperature. On the basis of our thermodynamic analysis of E.coli GrpE, we present a structure-based model for the melting properties of the nucleotide exchange factor, wherein the long paired helices function as a molecular thermocouple.
Collapse
Affiliation(s)
- Amy D Gelinas
- Boston Biomedical Research Institute, 64 Grove St., Watertown, MA 02472, USA
| | | | | | | | | | | |
Collapse
|
32
|
Genevaux P, Schwager F, Georgopoulos C, Kelley WL. The djlA gene acts synergistically with dnaJ in promoting Escherichia coli growth. J Bacteriol 2001; 183:5747-50. [PMID: 11544239 PMCID: PMC95468 DOI: 10.1128/jb.183.19.5747-5750.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DnaK chaperone of Escherichia coli is known to interact with the J domains of DnaJ, CbpA, and DjlA. By constructing multiple mutants, we found that the djlA gene was essential for bacterial growth above 37 degrees C in the absence of dnaJ. This essentiality depended upon the J domain of DjlA but not upon the normal membrane location of DjlA.
Collapse
Affiliation(s)
- P Genevaux
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, 1211 Genève 4, Switzerland.
| | | | | | | |
Collapse
|
33
|
Nimura K, Takahashi H, Yoshikawa H. Characterization of the dnaK multigene family in the Cyanobacterium Synechococcus sp. strain PCC7942. J Bacteriol 2001; 183:1320-8. [PMID: 11157945 PMCID: PMC95006 DOI: 10.1128/jb.183.4.1320-1328.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyanobacterium Synechococcus sp. strain PCC7942 has three dnaK homologues (dnaK1, dnaK2, and dnaK3), and a gene disruption experiment was carried out for each dnaK gene by inserting an antibiotic resistance marker. Our findings revealed that DnaK1 was not essential for normal growth, whereas DnaK2 and DnaK3 were essential. We also examined the effect of heat shock on the levels of these three DnaK and GroEL proteins and found a varied response to heat shock, with levels depending on each protein. The DnaK2 and GroEL proteins exhibited a typical heat shock response, that is, their synthesis increased upon temperature upshift. In contrast, the synthesis of DnaK1 and DnaK3 did not respond to heat shock; in fact, the level of DnaK1 protein decreased. We also analyzed the effect of overproduction of each DnaK protein in Escherichia coli cells using an inducible expression system. Overproduction of DnaK1 or DnaK2 resulted in defects in cell septation and formation of cell filaments. On the other hand, overproduction of DnaK3 did not result in filamentous cells; rather a swollen and twisted cell morphology was observed. When expressed in an E. coli dnaK756 mutant, dnaK2 could suppress the growth deficiency at the nonpermissive temperature, while dnaK1 and dnaK3 could not suppress this phenotype. On the contrary, overproduction of DnaK1 or DnaK3 resulted in growth inhibition at the permissive temperature. These results suggest that different types of Hsp70 in the same cellular compartment have specific functions in the cell.
Collapse
Affiliation(s)
- K Nimura
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | |
Collapse
|
34
|
Abstract
Studies on the involvement of chaperone proteins in DNA replication have been limited to a few replication systems, belonging primarily to the prokaryotic world. The insights gained from these studies have substantially contributed to our understanding of the eukaryotic DNA replication process as well. The finding that molecular chaperones can activate some initiation proteins before DNA synthesis has led to the more general suggestion that molecular chaperones can influence the DNA-binding activity of many proteins, including transcriptional factors involved in cell regulatory systems. The DnaK/DnaJ/GrpE molecular chaperone system became a paradigm of our understanding of fundamental processes, such as protein folding, translocation, selective proteolysis and autoregulation of the heat-shock response. Studies on the Clp ATPase family of molecular chaperones will help to define the nature of signals involved in chaperone-dependent proteins' refolding and the degradation of misfolded proteins.
Collapse
Affiliation(s)
- I Konieczny
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki, Poland
| | | |
Collapse
|
35
|
Filutowicz M, Rakowski SA. Regulatory implications of protein assemblies at the gamma origin of plasmid R6K - a review. Gene 1998; 223:195-204. [PMID: 9858731 DOI: 10.1016/s0378-1119(98)00367-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recognition of the replication origin (ori) by initiator protein is a recurring theme for the regulated initiation of DNA replication in diverse biological systems. The objective of the work reviewed here is to understand the initiation process focusing specifically on the gamma-ori of the antibiotic-resistance plasmid R6K. The control of gamma-ori copy number is determined by both plasmid-encoded and host-encoded factors. The two central regulatory elements of the plasmid are a multifunctional initiator protein pi, and sequence-related DNA target sites, the inverted half-repeats (IRs) and the direct repeats (DRs). The replication activator and inhibitor activities of pi seem to be at least partially distributed between two naturally occurring pi polypeptides (designated by their molecular weights pi35.0 and pi30.5). Regulatory variants of pi with altered states of oligomerization in nucleoprotein complexes with DRs and IRs have been isolated. The properties of these mutants laid the foundation for our model of pi protein activity which proposes that different protein surfaces are required for the formation of functionally distinct complexes of pi with DRs and IRs. These mutants also suggest that pi polypeptides have a modular structure; the C-terminus contains the DNA-binding domain while the N-terminus controls protein oligomerization. Additionally, pi35.0 binds to a novel DNA sequence in the A+T-rich segment of gamma-ori. This binding site is at or near the site from which synthesis of the leading strand begins.
Collapse
Affiliation(s)
- M Filutowicz
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706,
| | | |
Collapse
|
36
|
Tatsuta T, Tomoyasu T, Bukau B, Kitagawa M, Mori H, Karata K, Ogura T. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Mol Microbiol 1998; 30:583-93. [PMID: 9822823 DOI: 10.1046/j.1365-2958.1998.01091.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heat shock response of Escherichia coli is regulated by the cellular level and the activity of sigma32, an alternative sigma factor for heat shock promoters. FtsH, a membrane-bound AAA-type metalloprotease, degrades sigma32 and has a central role in the control of the sigma32 level. The ftsH null mutant was isolated, and establishment of the DeltaftsH mutant allowed us to investigate control mechanisms of the stability and the activity of sigma32 separately in vivo. Loss of the FtsH function caused marked stabilization and consequent accumulation of sigma32 ( approximately 20-fold of the wild type), leading to the impaired downregulation of the level of sigma32. Surprisingly, however, DeltaftsH cells express heat shock proteins only two- to threefold higher than wild-type cells, and they also show almost normal heat shock response upon temperature upshift. These results indicate the presence of a control mechanism that downregulates the activity of sigma32 when it is accumulated. Overproduction of DnaK/J reduces the activity of sigma32 in DeltaftsH cells without any detectable changes in the level of sigma32, indicating that the DnaK chaperone system is responsible for the activity control of sigma32 in vivo. In addition, CbpA, an analogue of DnaJ, was demonstrated to have overlapping functions with DnaJ in both the activity and the stability control of sigma32.
Collapse
Affiliation(s)
- T Tatsuta
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto 862-0976, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Giraldo R, Andreu JM, Díaz-Orejas R. Protein domains and conformational changes in the activation of RepA, a DNA replication initiator. EMBO J 1998; 17:4511-26. [PMID: 9687517 PMCID: PMC1170782 DOI: 10.1093/emboj/17.15.4511] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RepA is the DNA replication initiator protein of the Pseudomonas plasmid pPS10. RepA has a dual function: as a dimer, it binds to an inversely-repeated sequence acting as a repressor of its own synthesis; as a monomer, RepA binds to four directly-repeated sequences to constitute a specialized nucleoprotein complex responsible for the initiation of DNA replication. We have previously shown that a Leucine Zipper-like motif (LZ) at the N-terminus of RepA is responsible for protein dimerization. In this paper we characterize the existence in RepA of two protein globular domains C-terminal to the LZ. We propose that dissociation of RepA dimers into monomers results in a conformational change from a compact arrangement of both domains, competent for binding to the operator, to an extended species that is suited for iteron binding. This model establishes the structural basis for the activation of DNA replication initiators in plasmids from Gram-negative bacteria.
Collapse
Affiliation(s)
- R Giraldo
- Departmento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | |
Collapse
|
38
|
Konkel ME, Kim BJ, Klena JD, Young CR, Ziprin R. Characterization of the thermal stress response of Campylobacter jejuni. Infect Immun 1998; 66:3666-72. [PMID: 9673247 PMCID: PMC108400 DOI: 10.1128/iai.66.8.3666-3672.1998] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/1998] [Accepted: 06/01/1998] [Indexed: 02/08/2023] Open
Abstract
Campylobacter jejuni, a microaerophilic, gram-negative bacterium, is a common cause of gastrointestinal disease in humans. Heat shock proteins are a group of highly conserved, coregulated proteins that play important roles in enabling organisms to cope with physiological stresses. The primary aim of this study was to characterize the heat shock response of C. jejuni. Twenty-four proteins were preferentially synthesized by C. jejuni immediately following heat shock. Upon immunoscreening of Escherichia coli transformants harboring a Campylobacter genomic DNA library, one recombinant plasmid that encoded a heat shock protein was isolated. The recombinant plasmid, designated pMEK20, contained an open reading frame of 1,119 bp that was capable of encoding a protein of 372 amino acids with a calculated molecular mass of 41,436 Da. The deduced amino acid sequence of the open reading frame shared similarity with that of DnaJ, which belongs to the Hsp-40 family of molecular chaperones, from a number of bacteria. An E. coli dnaJ mutant was successfully complemented with the pMEK20 recombinant plasmid, as judged by the ability of bacteriophage lambda to form plaques, indicating that the C. jejuni gene encoding the 41-kDa protein is a functional homolog of the dnaJ gene from E. coli. The ability of each of two C. jejuni dnaJ mutants to form colonies at 46 degreesC was severely retarded, indicating that DnaJ plays an important role in C. jejuni thermotolerance. Experiments revealed that a C. jejuni DnaJ mutant was unable to colonize newly hatched Leghorn chickens, suggesting that heat shock proteins play a role in vivo.
Collapse
Affiliation(s)
- M E Konkel
- Department of Microbiology, Washington State University, Pullman, Washington 99164-4233, USA.
| | | | | | | | | |
Collapse
|
39
|
Konieczny I, Helinski DR. The replication initiation protein of the broad-host-range plasmid RK2 is activated by the ClpX chaperone. Proc Natl Acad Sci U S A 1997; 94:14378-82. [PMID: 9405620 PMCID: PMC24985 DOI: 10.1073/pnas.94.26.14378] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/1997] [Indexed: 02/05/2023] Open
Abstract
Initiation and control of replication of the broad-host-range plasmid RK2 requires two plasmid-encoded elements, the replication origin (oriV) and the initiation protein TrfA. Purified TrfA is largely in the form of a dimer; however, only the monomeric form of the protein can bind specifically to the direct repeats (iterons) at the RK2 origin. The largely dimeric form of wild-type TrfA is inactive in the initiation of replication of RK2 in an in vitro replication system reconstituted from purified components. However, preincubation of the TrfA protein with the ClpX molecular chaperone isolated from Escherichia coli activates the initiator protein for replication in the purified system. We further observed that ClpX, in an ATP-dependent reaction, greatly increases the proportion of TrfA monomers and, therefore, the ability of this protein to bind to iterons localized within RK2 origin. Finally, a copy-up mutant of the TrfA protein which is largely in the monomer form is active in the reconstituted in vitro replication system, and its activity is not affected by ClpX.
Collapse
Affiliation(s)
- I Konieczny
- Department of Biology, Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0634, USA
| | | |
Collapse
|
40
|
Matsunaga F, Ishiai M, Kobayashi G, Uga H, Yura T, Wada C. The central region of RepE initiator protein of mini-F plasmid plays a crucial role in dimerization required for negative replication control. J Mol Biol 1997; 274:27-38. [PMID: 9398513 DOI: 10.1006/jmbi.1997.1373] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The RepE protein (251 residues, 29 kDa) of mini-F plasmid, mostly found as dimers, plays a key role in mini-F replication. Whereas monomers bind to the origin to initiate replication, dimers bind to the repE operator to repress its own transcription. Among the host factors required for mini-F replication, a set of molecular chaperones (DnaK, DnaJ and GrpE) is thought to facilitate monomerization of RepE dimers. To further understand the structural basis of functional differentiation between the two forms of RepE, we examined the region(s) critical for dimerization by isolation and characterization of RepE mutants that were defective in autogenous repressor function. Such mutations were isolated from two separate regions of RepE, the central region (residues 111 to 161) and the C-terminal region (residues 195 to 208). The central region overlapped the region where the chaperone-independent copy-up mutations were previously isolated (residues 93 to 135). Likewise the mini-F mutant plasmids, carrying the mutations in the central region, could replicate in a dnaK null mutant host. One of them, S111P (111th serine changed to proline), showed a very high origin-binding activity vis-à-vis a severely reduced operator-binding activity, much like the RepE54 (R118P) mutant previously shown to form only monomers. Gel filtration and chemical crosslinking studies with purified RepE revealed that S111P primarily formed monomers, whereas other mutant proteins formed mostly dimers. On the other hand, analysis of deletion mutants revealed that the N-terminal 42 and the C-terminal 57 residues were dispensable for dimerization. Thus, the region spanning residues 93 to 161 of RepE (including Ser111 and Arg118) appeared to be primarily involved in dimerization, contributing to the negative regulation of plasmid replication.
Collapse
Affiliation(s)
- F Matsunaga
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Chattoraj DK, Schneider TD. Replication control of plasmid P1 and its host chromosome: the common ground. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:145-86. [PMID: 9175433 DOI: 10.1016/s0079-6603(08)60280-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- D K Chattoraj
- Laboratory of Biochemistry NCI, NIH Bethesda, Maryland 20892, USA
| | | |
Collapse
|
42
|
Ogata Y, Mizushima T, Kataoka K, Kita K, Miki T, Sekimizu K. DnaK heat shock protein of Escherichia coli maintains the negative supercoiling of DNA against thermal stress. J Biol Chem 1996; 271:29407-14. [PMID: 8910606 DOI: 10.1074/jbc.271.46.29407] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Plasmid DNA in exponentially growing Escherichia coli immediately relaxes after heat shock, and the relaxed state of DNA rapidly reverts to the original state with exposure to conditions of heat shock. We have now obtained genetic and biochemical evidence indicating that DnaK heat shock protein of E. coli, a prokaryotic homologue of hsp70, is involved in this re-supercoiling of DNA. As re-supercoiling of DNA did not occur in an rpoH amber mutant, it seems likely that heat shock proteins are required for this reaction. Plasmid DNA in a dnaK deletion mutant relaxed excessively after temperature shift-up, and the re-supercoiling of DNA was not observed. DNAs incubated with a crude cell extract prepared from the dnaK mutant were more relaxed than seen with the extract from its isogenic wild-type strain, and the addition of purified DnaK protein to the mutant extract led to an increase in the negative supercoiling of DNA. Moreover, reaction products of purified DNA gyrase more negatively supercoiled in the presence of DnaK protein. Based on these results, we propose that DnaK protein plays a role in maintaining the negative supercoiling of DNA against thermal stress.
Collapse
Affiliation(s)
- Y Ogata
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-82, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Wild J, Rossmeissl P, Walter WA, Gross CA. Involvement of the DnaK-DnaJ-GrpE chaperone team in protein secretion in Escherichia coli. J Bacteriol 1996; 178:3608-13. [PMID: 8655561 PMCID: PMC178133 DOI: 10.1128/jb.178.12.3608-3613.1996] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We used depletion studies designed to further investigate the role of the DnaK, DnaJ, and GrpE heat shock proteins in the SecB-dependent and SecB-independent secretion pathways. Our previous finding that SecB-deficient strains containing the grpE280 mutation were still secretion proficient raised the possibility that GrpE was not involved in this secretory pathway. Using depletion studies, we now demonstrate a requirement for GrpE in this pathway. In addition, depletion studies demonstrate that while DnaK, DnaJ, and GrpE are involved in the secretion of the SecB-independent proteins (alkaline phosphatase, ribose-binding protein, and beta-lactamase), they are not the primary chaperones in this process.
Collapse
Affiliation(s)
- J Wild
- Department of Bacteriology, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|
44
|
Shiozawa T, Ueguchi C, Mizuno T. The rpoD gene functions as a multicopy suppressor for mutations in the chaperones, CbpA, DnaJ and DnaK, in Escherichia coli. FEMS Microbiol Lett 1996; 138:245-50. [PMID: 9026454 DOI: 10.1111/j.1574-6968.1996.tb08165.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The CbpA protein is an analog of the DnaJ molecular chaperone of Escherichia coli. The dnaJ- cbpA- double-null mutant exhibits severe defects in cell growth, namely, a very narrow temperature range for growth. To gain insight into the functions of CbpA as well as DnaJ, we isolated a multicopy suppressor gene that permits this dnaJ- cbpA- mutant to grow normally at low temperatures. The suppressor gene was identified as rpoD, the gene that encodes the major sigma 70. The biological implications of this finding are examined and discussed.
Collapse
Affiliation(s)
- T Shiozawa
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | |
Collapse
|
45
|
Pak M, Wickner SH. Pathways of protein remodeling by Escherichia coli molecular chaperones. GENETIC ENGINEERING 1996; 18:203-17. [PMID: 8785122 DOI: 10.1007/978-1-4899-1766-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M Pak
- Laboratory of Molecular Biology, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
46
|
Kamath-Loeb AS, Lu CZ, Suh WC, Lonetto MA, Gross CA. Analysis of three DnaK mutant proteins suggests that progression through the ATPase cycle requires conformational changes. J Biol Chem 1995; 270:30051-9. [PMID: 8530409 DOI: 10.1074/jbc.270.50.30051] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
DnaK, the bacterial homolog of the eukaryotic hsp70 proteins, is an ATP-dependent chaperone whose basal ATPase is stimulated by synthetic peptides and its cohort heat shock proteins, DnaJ and GrpE. We have used three mutant DnaK proteins, E171K, D201N, and A174T (corresponding to Glu175, Asp206, and Ala179, respectively, in bovine heat stable cognate 70) to probe the ATPase cycle. All of the mutant proteins exhibit some alteration in basal ATP hydrolysis. However, they all exhibit more severe defects in the regulated activities. D201N and E171K are completely defective in all regulated activities of the protein and also in making the conformational change exhibited by the wt protein upon binding ATP. We suggest that the inability of D201N and E171K to achieve the ATP activated conformation prevents both stimulation by all effectors and the ATP-mediated release of GrpE. In contrast, the defect of A174T is much more specific. It exhibits normal binding and release of GrpE and normal stimulation of ATPase activity by DnaJ. However, it is defective in the synergistic activation of its ATPase by DnaJ and GrpE. We suggest that this mutant protein is specifically defective in a DnaJ/GrpE mediated conformational change in DnaK necessary for the synergistic action of DnaJ+GrpE.
Collapse
Affiliation(s)
- A S Kamath-Loeb
- Department of Microbiology, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
47
|
Ueguchi C, Shiozawa T, Kakeda M, Yamada H, Mizuno T. A study of the double mutation of dnaJ and cbpA, whose gene products function as molecular chaperones in Escherichia coli. J Bacteriol 1995; 177:3894-6. [PMID: 7601860 PMCID: PMC177114 DOI: 10.1128/jb.177.13.3894-3896.1995] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The CbpA protein is an analog of the DnaJ molecular chaperone of Escherichia coli. To gain insight into the function of CbpA, we examined the nature of a cbpA null mutation with special reference to those of dnaK and dnaJ null mutations. In particular, the cbpA dnaJ double-null mutant was found to exhibit severe defects in cell growth, namely, a very narrow temperature range for growth, a defect in cell division, and susceptibility to killing by carbon starvation. These phenotypes are very similar to those reported for dnaK null mutants but not to those of dnaJ null mutants. Our results are best interpreted by assuming that CbpA is capable of compensating for DnaJ for cell growth and thus that the function(s) of CbpA is closely related to that of DnaJ.
Collapse
Affiliation(s)
- C Ueguchi
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | | | | | |
Collapse
|
48
|
Tabuchi A, Ohnishi M, Hayashi T, Terawaki Y. Analysis of functional domains of Rts1 RepA by means of a series of hybrid proteins with P1 RepA. J Bacteriol 1995; 177:4028-35. [PMID: 7608076 PMCID: PMC177133 DOI: 10.1128/jb.177.14.4028-4035.1995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The RepA protein of the plasmid Rts1, consisting of 288 amino acids, is a trans-acting protein essential for initiation of plasmid replication. To study the functional domains of RepA, hybrid proteins of Rts1 RepA with the RepA initiator protein of plasmid P1 were constructed such that the N-terminal portion was from Rts1 RepA and the C-terminal portion was from P1 RepA. Six hybrid proteins were examined for function. The N-terminal region of Rts1 RepA between amino acid residues 113 and 129 was found to be important for Rts1 ori binding in vitro. For activation of the origin in vivo, an Rts1 RepA subregion between residues 177 and 206 as well as the DNA binding domain was required. None of the hybrid initiator proteins activated the P1 origin. Both in vivo and in vitro studies showed, in addition, that a C-terminal portion of Rts1 RepA was required along with the DNA binding and ori activating domains to achieve autorepression, suggesting that the C-terminal region of Rts1 RepA is involved in dimer formation. A hybrid protein consisting of the N-terminal 145 amino acids of Rts1 and the C-terminal 142 amino acids from P1 showed strong interference with both Rts1 and P1 replication, whereas other hybrid proteins showed no or little effect on P1 replication.
Collapse
Affiliation(s)
- A Tabuchi
- Department of Bacteriology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | |
Collapse
|
49
|
Matsunaga F, Kawasaki Y, Ishiai M, Nishikawa K, Yura T, Wada C. DNA-binding domain of the RepE initiator protein of mini-F plasmid: involvement of the carboxyl-terminal region. J Bacteriol 1995; 177:1994-2001. [PMID: 7721691 PMCID: PMC176841 DOI: 10.1128/jb.177.8.1994-2001.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The RepE initiator protein (251 residues) is essential for mini-F replication in Escherichia coli and exhibits two major functions: initiation of DNA replication from ori2 and autogenous repression of repE transcription. Whereas the initiation is mediated by RepE monomers that bind to the ori2 iterons (direct repeats), the autogenous repression is mediated by dimers that bind to the repE operator, which contains an inverted repeat sequence related to the iterons. We now report that the binding of RepE to these DNA sites is primarily determined by the C-terminal region of this protein. The mutant RepE proteins lacking either the N-terminal 33 (or more) residues or the C-terminal 7 (or more) residues were first shown to be defective in binding to both the ori2 and the operator DNAs. However, direct screening and analysis of mutant RepEs which are specifically affected in binding to the ori2 iterons revealed that the mutations (mostly amino acid substitutions) occur exclusively in the C-terminal region (residues 168 to 242). These mutant proteins exhibited reduced binding to ori2 and no detectable binding to the operator. Thus, whereas truncation of either end of RepE can destroy the DNA-binding activities, the C-terminal region appears to represent a primary DNA-binding domain of RepE for both ori2 and the operator. Analogous DNA-binding domains seem to be conserved among the initiator proteins of certain related plasmids.
Collapse
Affiliation(s)
- F Matsunaga
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Liu Y, Haggård-Ljungquist E. Studies of bacteriophage P2 DNA replication: localization of the cleavage site of the A protein. Nucleic Acids Res 1994; 22:5204-10. [PMID: 7816607 PMCID: PMC332061 DOI: 10.1093/nar/22.24.5204] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bacteriophage P2 replicates via a modified rolling circle-type of mechanism, where the P2 A protein acts as an initiator of the replication by inducing a single-stranded cut at the origin of replication (ori). The exact location of the cut induced by the A protein in vivo is determined in this report by: (i) restriction analysis; (ii) DNA sequence analysis; and (iii) primer extensions. It is located 89.2% from the left end of the P2 genome, which is within the coding part of the A gene, in a region devoid of secondary structures. The A gene has been cloned into an expression vector, and the A protein has been purified. The purified A protein does not bind to double-stranded ori containing DNA, but it cleaves single-stranded ori containing DNA, which indicates that a special DNA structure and/or protein is required to make the ori accessible for the A protein.
Collapse
Affiliation(s)
- Y Liu
- Department of Genetics, Stockholm University, Sweden
| | | |
Collapse
|