1
|
Parker LE, Papanicolaou KN, Zalesak-Kravec S, Weinberger EM, Kane MA, Foster DB. Retinoic acid signaling and metabolism in heart failure. Am J Physiol Heart Circ Physiol 2025; 328:H792-H813. [PMID: 39933792 DOI: 10.1152/ajpheart.00871.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/24/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Nearly 70 years after studies first showed that the offspring of vitamin A (retinol, ROL)-deficient rats exhibit structural cardiac defects and over 20 years since the role of vitamin A's potent bioactive metabolite hormone, all-trans retinoic acid (ATRA), was elucidated in embryonic cardiac development, the role of the vitamin A metabolites, or retinoids, in adult heart physiology and heart and vascular disease, remains poorly understood. Studies have shown that low serum levels of retinoic acid correlate with higher all-cause and cardiovascular mortality, though the relationship between circulating retinol and ATRA levels, cardiac tissue ATRA levels, and intracellular cardiac ATRA signaling in the context of heart and vascular disease has only begun to be addressed. We have recently shown that patients with idiopathic dilated cardiomyopathy show a nearly 40% decline of in situ cardiac ATRA levels, despite adequate local stores of retinol. Moreover, we and others have shown that the administration of ATRA forestalls the development of heart failure (HF) in rodent models. In this review, we summarize key facets of retinoid metabolism and signaling and discuss mechanisms by which impaired ATRA signaling contributes to several HF hallmarks including hypertrophy, contractile dysfunction, poor calcium handling, redox imbalance, and fibrosis. We highlight unresolved issues in cardiac ATRA metabolism whose pursuit will help refine therapeutic strategies aimed at restoring ATRA homeostasis.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Kyriakos N Papanicolaou
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | | | - Eva M Weinberger
- School of Medicine, Imperial College London, London, United Kingdom
| | - Maureen A Kane
- School of Pharmacy, University of Maryland, Baltimore, Maryland, United States
| | - D Brian Foster
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
2
|
Seida M, Ogami K, Yoshino S, Suzuki HI. Fine Regulation of MicroRNAs in Gene Regulatory Networks and Pathophysiology. Int J Mol Sci 2025; 26:2861. [PMID: 40243428 PMCID: PMC11988966 DOI: 10.3390/ijms26072861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
MicroRNAs (miRNAs) are ~22-nucleotide small non-coding RNAs that play critical roles in gene regulation. The discovery of miRNAs in Caenorhabditis elegans in 1993 by the research groups of Victor Ambros and Gary Ruvkun opened a new era in RNA research. Typically, miRNAs act as negative regulators of gene expression by binding to complementary sequences within the 3' untranslated regions of their target mRNAs. This interaction results in translational repression and/or target destabilization. The expression levels and activities of miRNAs are fine-tuned by multiple factors, including the miRNA biogenesis pathway, variability in target recognition, super-enhancers, post-transcriptional modifications, and target-directed miRNA degradation. Together, these factors form complex mechanisms that govern gene regulation and underlie several pathological conditions, including Argonaute syndrome, genetic diseases driven by super-enhancer-associated miRNAs, and miRNA-deadenylation-associated bone marrow failure syndromes. In addition, as miRNA genes have evolved rapidly in vertebrates, miRNA regulation in the brain is characterized by several unique features. In this review, we summarize recent insights into the role of miRNAs in human diseases, focusing on miRNA biogenesis; regulatory mechanisms, such as super-enhancers; and the impact of post-transcriptional modifications. By exploring these mechanisms, we highlight the intricate and multifaceted roles of miRNAs in health and disease.
Collapse
Affiliation(s)
- Mayu Seida
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Koichi Ogami
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Seiko Yoshino
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya 464-8601, Japan
- Inamori Research Institute for Science (InaRIS), Kyoto 600-8411, Japan
| |
Collapse
|
3
|
Karali Z, Karali Y, Cekic S, Altinok B, Bodur M, Bostanci M, Kilic SS. Neurocognitive Evaluation of Patients With DiGeorge Syndrome. Pediatr Neurol 2025; 162:40-46. [PMID: 39536594 DOI: 10.1016/j.pediatrneurol.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND DiGeorge syndrome (DGS), the most common microdeletion syndrome, affects multiple organs, including the heart, the nervous system, and the immune system. In this study, we aimed to evaluate the clinical, laboratory, brain magnetic resonance imaging (MRI), and neurocognitive findings of our patients with DGS. METHODS Clinical and laboratory data of 52 patients with DGS between June 2000 and March 2022 were evaluated retrospectively. Brain MRI and neuropsychologic tests were performed to assess the neurocognitive status of the patients. RESULTS Fifty-two patients (28 males and 24 females) were included in our study. Fifteen of them died during the follow-up. All 37 patients who are alive had partial DGS. The median age of patients was 10 years and 7 months, and the median age at diagnosis was 5 years and 4 months. Bilateral conduction deceleration in the anterior visual pathways in six (20%) of 30 patients was determined by the visual evoked potentials. The auditory brainstem evoked potential test showed sensorineural hearing loss in 11 of 30 (36.6%) patients. Brain MRI disclosed brain parenchymal abnormalities in 18 of 25 (72%) patients. Impairments in executive functions, expressive language, and verbal memory were noted in 18 patients who were neuropsychologically assessed. CONCLUSIONS It is important to keep in mind that patients with DGS may be accompanied by neurocognitive findings. Awareness of the potential for underlying psychiatric and neurodevelopment disorders is key to anticipatory guidance, optimization of therapies, and maximizing life quality.
Collapse
Affiliation(s)
- Zuhal Karali
- Division of Pediatric Immunology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Yasin Karali
- Division of Pediatric Immunology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Sukru Cekic
- Division of Pediatric Immunology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Berfin Altinok
- Division of Pediatric Immunology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Muhittin Bodur
- Division of Pediatric Neurology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Mustafa Bostanci
- Division of Pediatric Neurology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Sara S Kilic
- Division of Pediatric Immunology, Uludag University Faculty of Medicine, Bursa, Turkey.
| |
Collapse
|
4
|
Jafar B, Alemayehu H, Bhat R, Zayek M. Multiple Intestinal Anomalies in a Newborn with 22q11.2 Microdeletion Syndrome: A Case Report and Literature Review. J Pediatr Genet 2024; 13:237-244. [PMID: 39086451 PMCID: PMC11288709 DOI: 10.1055/s-0042-1750748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 05/11/2022] [Indexed: 10/16/2022]
Abstract
Although 40 years have passed since the first case of DiGeorge's syndrome was described, and the knowledge about this disorder has steadily increased since that time, 22q11.2 deletion syndrome (DS) remains a challenging diagnosis because its clinical presentation varies widely. We describe an infant with 22q11.2 DS who presented with annular pancreas, anorectal malformation, Morgagni-type congenital diaphragmatic hernia, and ventricular septal defect. This constellation of anomalies has never been described in DiGeorge's syndrome. Here, we provide a case presentation and a thorough review of the literature.
Collapse
Affiliation(s)
- Bedour Jafar
- Department of Pediatrics, University of South Alabama, Mobile, Alabama, United States
| | - Hanna Alemayehu
- Division of Pediatric Surgery, Department of Surgery, University of South Alabama, Mobile, Alabama, United States
| | - Ramachandra Bhat
- Division of Neonatology, Department of Pediatrics, Louisiana State University Health Science Center, Shreveport, Louisiana, United States
| | - Michael Zayek
- Division of Neonatology, Department of Pediatrics, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
5
|
Pidaparti M, Geddes GC, Durbin MD. Clinical Genetic and Genomic Testing in Congenital Heart Disease and Cardiomyopathy. J Clin Med 2024; 13:2544. [PMID: 38731073 PMCID: PMC11084871 DOI: 10.3390/jcm13092544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Congenital heart disease (CHD) and cardiomyopathies are the leading cause of morbidity and mortality worldwide. These conditions are often caused by genetic factors, and recent research has shown that genetic and genomic testing can provide valuable information for patient care. By identifying genetic causes, healthcare providers can screen for other related health conditions, offer early interventions, estimate prognosis, select appropriate treatments, and assess the risk for family members. Genetic and genomic testing is now the standard of care in patients with CHD and cardiomyopathy. However, rapid advances in technology and greater availability of testing options have led to changes in recommendations for the most appropriate testing method. Several recent studies have investigated the utility of genetic testing in this changing landscape. This review summarizes the literature surrounding the clinical utility of genetic evaluation in patients with CHD and cardiomyopathy.
Collapse
Affiliation(s)
- Mahati Pidaparti
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Gabrielle C. Geddes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Matthew D. Durbin
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Herman B Wells Center for Pediatric Research, 1044 W. Walnut, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Restivo A, di Gioia C, Marino B, Putotto C. Transpositions of the great arteries versus aortic dextropositions. A review of some embryogenetic and morphological aspects. Anat Rec (Hoboken) 2023; 306:502-514. [PMID: 36426596 DOI: 10.1002/ar.25129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
Abstract
This review examines and discusses the morphology and embryology of two main groups of conotruncal cardiac malformations: (a) transposition of the great arteries (complete transposition and incomplete/partial transposition namely double outlet right ventricle), and (b) aortic dextroposition defects (tetralogy of Fallot and Eisenmenger malformation). In both groups, persistent truncus arteriosus was included because maldevelopment of the neural crest cell supply to the outflow tract, contributing to the production of the persistent truncus arteriosus, is shared by both groups of malformations. The potentially important role of the proximal conal cushions in the rotatory sequence of the conotruncus is emphasized. Most importantly, this study emphasizes the differentiation between the double-outlet right ventricle, which is a partial or incomplete transposition of the great arteries, and the Eisenmenger malformation, which is an aortic dextroposition. Special emphasis is also given to the leftward shift of the conoventricular junction, which covers an important morphogenetic role in both aortic dextropositions and transposition defects as well as in normal development, and whose molecular genetic regulation seems to remain unclear at present. Emphasis is placed on the distinct and overlapping roles of Tbx1 and Pitx2 transcription factors in modulating the development of the cardiac outflow tract.
Collapse
Affiliation(s)
- Angelo Restivo
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy.,Museum of Pathological Anatomy, Sapienza University of Rome, Rome, Italy
| | - Cira di Gioia
- Museum of Pathological Anatomy, Sapienza University of Rome, Rome, Italy.,Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Bruno Marino
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| | - Carolina Putotto
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Evans WN, Acherman RJ, Restrepo H. Aortic Arch Laterality in Chromosome 22q11.2 Deletion Syndrome: Male-Female Difference. Clin Pediatr (Phila) 2022; 62:345-348. [PMID: 36214167 DOI: 10.1177/00099228221127730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We reviewed patients with chromosome 22q11.2 deletion syndrome. We analyzed cardiovascular findings in patients with confirmed chromosome 22q11.2 deletion syndrome live-born in Nevada between March 2007 and September 2020. We identified 60 patients. Of the 60 patients, 32 (53%) were female. Of the 60, 48 (80%) had a conotruncal abnormality (including isolated vascular rings): 23 of 32 (72%) for females versus 25 of 28 (89%) for males, P = .41. However, 11 (34%) of 32 females had a right aortic arch; whereas, 21 (75%) of 28 males had a right aortic arch, P = .007. In conclusion, in our patient cohort, we found conotruncal malformations were common. However, we noted males were statistically more likely to have a right aortic arch than females. To the best of our knowledge, this male-female aortic arch laterality difference in patients with chromosome 22q11.2 deletion syndrome has not been previously noted.
Collapse
Affiliation(s)
- William N Evans
- Children's Heart Center Nevada, Las Vegas, NV, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Ruben J Acherman
- Children's Heart Center Nevada, Las Vegas, NV, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Humberto Restrepo
- Children's Heart Center Nevada, Las Vegas, NV, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
8
|
Chitty-Lopez M, Duff C, Vaughn G, Trotter J, Monforte H, Lindsay D, Haddad E, Keller MD, Oshrine BR, Leiding JW. Case Report: Unmanipulated Matched Sibling Donor Hematopoietic Cell Transplantation In TBX1 Congenital Athymia: A Lifesaving Therapeutic Approach When Facing a Systemic Viral Infection. Front Immunol 2022; 12:721917. [PMID: 35095830 PMCID: PMC8794793 DOI: 10.3389/fimmu.2021.721917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Congenital athymia can present with severe T cell lymphopenia (TCL) in the newborn period, which can be detected by decreased T cell receptor excision circles (TRECs) on newborn screening (NBS). The most common thymic stromal defect causing selective TCL is 22q11.2 deletion syndrome (22q11.2DS). T-box transcription factor 1 (TBX1), present on chromosome 22, is responsible for thymic epithelial development. Single variants in TBX1 causing haploinsufficiency cause a clinical syndrome that mimics 22q11.2DS. Definitive therapy for congenital athymia is allogeneic thymic transplantation. However, universal availability of such therapy is limited. We present a patient with early diagnosis of congenital athymia due to TBX1 haploinsufficiency. While evaluating for thymic transplantation, she developed Omenn Syndrome (OS) and life-threatening adenoviremia. Despite treatment with anti-virals and cytotoxic T lymphocytes (CTLs), life threatening adenoviremia persisted. Given the imminent need for rapid establishment of T cell immunity and viral clearance, the patient underwent an unmanipulated matched sibling donor (MSD) hematopoietic cell transplant (HCT), ultimately achieving post-thymic donor-derived engraftment, viral clearance, and immune reconstitution. This case illustrates that because of the slower immune recovery that occurs following thymus transplantation and the restricted availability of thymus transplantation globally, clinicians may consider CTL therapy and HCT to treat congenital athymia patients with severe infections.
Collapse
Affiliation(s)
- Maria Chitty-Lopez
- Division of Pediatric Allergy and Immunology, University of South Florida, Tampa, FL, United States
| | - Carla Duff
- Division of Pediatric Allergy and Immunology, University of South Florida, Tampa, FL, United States
| | - Gretchen Vaughn
- Center for Cell and Gene Therapy for Non-Malignant Conditions, Cancer and Blood Disorders Institute at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Jessica Trotter
- Division of Pediatric Allergy and Immunology, University of South Florida, Tampa, FL, United States
| | - Hector Monforte
- Department of Pathology, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
- Division of Allergy and Immunology, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - David Lindsay
- Division of Allergy and Immunology, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Division of Immuno-Allergy and Rheumatology, The Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Elie Haddad
- Division of Immuno-Allergy and Rheumatology, The Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Division of Allergy and Immunology, Children’s National Hospital, Washington, DC, United States
| | - Michael D. Keller
- Division of Allergy and Immunology, Children’s National Hospital, Washington, DC, United States
| | - Benjamin R. Oshrine
- Center for Cell and Gene Therapy for Non-Malignant Conditions, Cancer and Blood Disorders Institute at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Jennifer W. Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
- Infectious Diseases and Immunology Division. Arnold Palmer Hospital for Children, Orlando, FL, United States
| |
Collapse
|
9
|
Abstract
The application of next-generation sequencing to study congenital heart disease (CHD) is increasingly providing new insights into the causes and mechanisms of this prevalent birth anomaly. Whole-exome sequencing analysis identifies damaging gene variants altering single or contiguous nucleotides that are assigned pathogenicity based on statistical analyses of families and cohorts with CHD, high expression in the developing heart and depletion of damaging protein-coding variants in the general population. Gene classes fulfilling these criteria are enriched in patients with CHD and extracardiac abnormalities, evidencing shared pathways in organogenesis. Developmental single-cell transcriptomic data demonstrate the expression of CHD-associated genes in particular cell lineages, and emerging insights indicate that genetic variants perturb multicellular interactions that are crucial for cardiogenesis. Whole-genome sequencing analyses extend these observations, identifying non-coding variants that influence the expression of genes associated with CHD and contribute to the estimated ~55% of unexplained cases of CHD. These approaches combined with the assessment of common and mosaic genetic variants have provided a more complete knowledge of the causes and mechanisms of CHD. Such advances provide knowledge to inform the clinical care of patients with CHD or other birth defects and deepen our understanding of the complexity of human development. In this Review, we highlight known and candidate CHD-associated human genes and discuss how the integration of advances in developmental biology research can provide new insights into the genetic contributions to CHD.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Daniel Quiat
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
10
|
Liu Y, Freeborn J, Armbrister SA, Tran DQ, Rhoads JM. Treg-associated monogenic autoimmune disorders and gut microbial dysbiosis. Pediatr Res 2022; 91:35-43. [PMID: 33731809 PMCID: PMC8446091 DOI: 10.1038/s41390-021-01445-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 01/31/2023]
Abstract
Primary immunodeficiency diseases (PIDs) caused by a single-gene defect generally are referred to as monogenic autoimmune disorders. For example, mutations in the transcription factor autoimmune regulator (AIRE) result in a condition called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy; while mutations in forkhead box P3 lead to regulatory T cell (Treg)-deficiency-induced multiorgan inflammation, which in humans is called "immune dysregulation, polyendocrinopathy, enteropathy with X-linked inheritance" (or IPEX syndrome). Previous studies concluded that monogenic diseases are insensitive to commensal microbial regulation because they develop even in germ-free (GF) animals, a conclusion that has limited the number of studies determining the role of microbiota in monogenic PIDs. However, emerging evidence shows that although the onset of the disease is independent of the microbiota, several monogenic PIDs vary in severity in association with the microbiome. In this review, we focus on monogenic PIDs associated with Treg deficiency/dysfunction, summarizing the gut microbial dysbiosis that has been shown to be linked to these diseases. From limited studies, we have gleaned several mechanistic insights that may prove to be of therapeutic importance in the early stages of life. IMPACT: This review paper serves to refute the concept that monogenic PIDs are not linked to the microbiome. The onset of monogenic PIDs is independent of microbiota; single-gene mutations such as AIRE or Foxp3 that affect central or peripheral immune tolerance produce monogenic diseases even in a GF environment. However, the severity and outcome of PIDs are markedly impacted by the microbial composition. We suggest that future research for these conditions may focus on targeting the microbiome.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Jasmin Freeborn
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shabba A Armbrister
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dat Q Tran
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jon Marc Rhoads
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
11
|
Nissan E, Katz U, Levy-Shraga Y, Frizinsky S, Carmel E, Gothelf D, Somech R. Clinical Features in a Large Cohort of Patients With 22q11.2 Deletion Syndrome. J Pediatr 2021; 238:215-220.e5. [PMID: 34284033 DOI: 10.1016/j.jpeds.2021.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To evaluate various clinical aspects, specifically regarding immune status, in a large cohort of patients with DiGeorge syndrome. STUDY DESIGN Data were collected for 98 patients with DiGeorge syndrome treated at a tertiary medical center. This included general information, laboratory results, and clinical features. RESULTS The median age at diagnosis was 2.0 years (range, 0.0-36.5 years). The most common symptoms that led to diagnosis were congenital heart defect, speech delay, palate anomalies, and developmental delay. Common clinical features included recurrent infections (76 patients), congenital heart diseases (61 patients), and otorhinolaryngology disorders (61 patients). Twenty patients had anemia; the incidence was relatively high among patients aged 6-59 months. Thrombocytopenia was present in 20 patients. Recurrent chest infections were significantly higher in patients with T cell and T cell subset deficiencies. Decreased T cell receptor excision circles were more common with increasing age (P < .001). Of the 27 patients hospitalized due to infection, pneumonia was a leading cause in 13. CONCLUSIONS Awareness of DiGeorge syndrome's typical and uncommon characteristics is important to improve diagnosis, treatment, surveillance, and follow-up.
Collapse
Affiliation(s)
- Ella Nissan
- Pediatric Department A and Immunology Service, Edmond and Lily Safra Children's Hospital, Jeffrey Modell Foundation Center, Tel Hashomer, Israel; Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Uriel Katz
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Edmond Safra International Congenital Heart Center, Edmond and Lily Safra Children's Hospital, Ramat Gan, Israel
| | - Yael Levy-Shraga
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Endocrinology Unit, Edmond and Lily Safra Children's Hospital, Ramat Gan, Israel
| | - Shirly Frizinsky
- Pediatric Department A and Immunology Service, Edmond and Lily Safra Children's Hospital, Jeffrey Modell Foundation Center, Tel Hashomer, Israel; Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eldar Carmel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Otorhinolaryngology Head and Neck Surgery Department, Edmond and Lily Safra Children's Hospital, Ramat Gan, Israel
| | - Doron Gothelf
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Child and Adolescent Psychiatry Division, Edmond and Lily Safra Children's Hospital, Ramat Gan, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Raz Somech
- Pediatric Department A and Immunology Service, Edmond and Lily Safra Children's Hospital, Jeffrey Modell Foundation Center, Tel Hashomer, Israel; Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Diz OM, Toro R, Cesar S, Gomez O, Sarquella-Brugada G, Campuzano O. Personalized Genetic Diagnosis of Congenital Heart Defects in Newborns. J Pers Med 2021; 11:562. [PMID: 34208491 PMCID: PMC8235407 DOI: 10.3390/jpm11060562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 12/26/2022] Open
Abstract
Congenital heart disease is a group of pathologies characterized by structural malformations of the heart or great vessels. These alterations occur during the embryonic period and are the most frequently observed severe congenital malformations, the main cause of neonatal mortality due to malformation, and the second most frequent congenital malformations overall after malformations of the central nervous system. The severity of different types of congenital heart disease varies depending on the combination of associated anatomical defects. The causes of these malformations are usually considered multifactorial, but genetic variants play a key role. Currently, use of high-throughput genetic technologies allows identification of pathogenic aneuploidies, deletions/duplications of large segments, as well as rare single nucleotide variants. The high incidence of congenital heart disease as well as the associated complications makes it necessary to establish a diagnosis as early as possible to adopt the most appropriate measures in a personalized approach. In this review, we provide an exhaustive update of the genetic bases of the most frequent congenital heart diseases as well as other syndromes associated with congenital heart defects, and how genetic data can be translated to clinical practice in a personalized approach.
Collapse
Affiliation(s)
- Olga María Diz
- UGC Laboratorios, Hospital Universitario Puerta del Mar, 11009 Cadiz, Spain;
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08950 Barcelona, Spain
| | - Rocio Toro
- Medicine Department, School of Medicine, Cádiz University, 11519 Cadiz, Spain;
| | - Sergi Cesar
- Arrhythmia, Inherited Cardiac Diseases and Sudden Death Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain;
| | - Olga Gomez
- Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08950 Barcelona, Spain;
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), 28029 Madrid, Spain
| | - Georgia Sarquella-Brugada
- Arrhythmia, Inherited Cardiac Diseases and Sudden Death Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain;
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Oscar Campuzano
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08950 Barcelona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBER-CV), 28029 Madrid, Spain
| |
Collapse
|
13
|
Hilger AC, Dworschak GC, Reutter HM. Lessons Learned from CNV Analysis of Major Birth Defects. Int J Mol Sci 2020; 21:ijms21218247. [PMID: 33153233 PMCID: PMC7663563 DOI: 10.3390/ijms21218247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022] Open
Abstract
The treatment of major birth defects are key concerns for child health. Hitherto, for the majority of birth defects, the underlying cause remains unknown, likely to be heterogeneous. The implicated mortality and/or reduced fecundity in major birth defects suggest a significant fraction of mutational de novo events among the affected individuals. With the advent of systematic array-based molecular karyotyping, larger cohorts of affected individuals have been screened over the past decade. This review discusses the identification of disease-causing copy-number variations (CNVs) among individuals with different congenital malformations. It highlights the differences in findings depending on the respective congenital malformation. It looks at the differences in findings of CNV analysis in non-isolated complex congenital malformations, associated with central nervous system malformations or intellectual disabilities, compared to isolated single organ-system malformations. We propose that the more complex an organ system is, and the more genes involved during embryonic development, the more likely it is that mutational de novo events, comprising CNVs, will confer to the expression of birth defects of this organ system.
Collapse
Affiliation(s)
- Alina Christine Hilger
- Department of Pediatrics, Children’s Hospital Medical Center, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany
- Institute for Anatomy and Cell Biology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- Correspondence: (A.C.H.); (G.C.D.); (H.M.R.); Tel.: +49-228-6885-419 (A.C.H. & G.C.D. & H.M.R.)
| | - Gabriel Clemens Dworschak
- Department of Pediatrics, Children’s Hospital Medical Center, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany
- Institute for Anatomy and Cell Biology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- Correspondence: (A.C.H.); (G.C.D.); (H.M.R.); Tel.: +49-228-6885-419 (A.C.H. & G.C.D. & H.M.R.)
| | - Heiko Martin Reutter
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital Medical Center, University Hospital Bonn, 53127 Bonn, Germany
- Correspondence: (A.C.H.); (G.C.D.); (H.M.R.); Tel.: +49-228-6885-419 (A.C.H. & G.C.D. & H.M.R.)
| |
Collapse
|
14
|
Marcovecchio GE, Bortolomai I, Ferrua F, Fontana E, Imberti L, Conforti E, Amodio D, Bergante S, Macchiarulo G, D'Oria V, Conti F, Di Cesare S, Fousteri G, Carotti A, Giamberti A, Poliani PL, Notarangelo LD, Cancrini C, Villa A, Bosticardo M. Thymic Epithelium Abnormalities in DiGeorge and Down Syndrome Patients Contribute to Dysregulation in T Cell Development. Front Immunol 2019; 10:447. [PMID: 30949166 PMCID: PMC6436073 DOI: 10.3389/fimmu.2019.00447] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/19/2019] [Indexed: 01/22/2023] Open
Abstract
The thymus plays a fundamental role in establishing and maintaining central and peripheral tolerance and defects in thymic architecture or AIRE expression result in the development of autoreactive lymphocytes. Patients with partial DiGeorge Syndrome (pDGS) and Down Syndrome (DS) present alterations in size and architecture of the thymus and higher risk to develop autoimmunity. We sought to evaluate thymic architecture and thymocyte development in DGS and DS patients and to determine the extent to which thymic defects result in immune dysregulation and T cell homeostasis perturbation in these patients. Thymi from pediatric patients and age-matched controls were obtained to evaluate cortex and medullary compartments, AIRE expression and thymocyte development. In the same patients we also characterized immunophenotype of peripheral T cells. Phenotypic and functional characterization of thymic and peripheral regulatory T (Treg) cells was finally assessed. Histologic analysis revealed peculiar alterations in thymic medulla size and maturation in DGS and DS patients. Perturbed distribution of thymocytes and altered thymic output was also observed. DGS patients showed lower mature CD4+ and CD8+ T cell frequency, associated with reduced proportion and function of Tregs both in thymus and peripheral blood. DS patients showed increased frequency of single positive (SP) thymocytes and thymic Treg cells. However, Tregs isolated both from thymus and peripheral blood of DS patients showed reduced suppressive ability. Our results provide novel insights on thymic defects associated with DGS and DS and their impact on peripheral immune dysregulation. Indeed, thymic abnormalities and defect in thymocyte development, in particular in Treg cell number and function could contribute in the pathogenesis of the immunodysregulation present in pDGS and in DS patients.
Collapse
Affiliation(s)
- Genni Enza Marcovecchio
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ileana Bortolomai
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,The Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Francesca Ferrua
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- The Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luisa Imberti
- Laboratorio CREA (Centro di Ricerca Emato-oncologica AIL), ASST Spedali Civili of Brescia, Brescia, Italy
| | - Erika Conforti
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, Milan, Italy
| | - Donato Amodio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sonia Bergante
- Laboratory of Stem Cells for Tissue Engineering, Istituto di Ricovero e Cura a Carattere Scientifico, Policlinico San Donato, Milan, Italy
| | - Giulia Macchiarulo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Veronica D'Oria
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, Milan, Italy
| | - Francesca Conti
- University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Di Cesare
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Georgia Fousteri
- Division of Immunology Transplantation and Infectious Diseases, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adriano Carotti
- Department of Pediatric Cardiac Surgery, IRCCS Bambino Gesú Children's Hospital, Rome, Italy
| | - Alessandro Giamberti
- Department of Congenital Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, IDGS, DIR, NIAID, NIH, Bethesda, MD, United States
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Villa
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,The Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Marita Bosticardo
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Laboratory of Clinical Immunology and Microbiology, IDGS, DIR, NIAID, NIH, Bethesda, MD, United States
| |
Collapse
|
15
|
Amaya-Uribe L, Rojas M, Azizi G, Anaya JM, Gershwin ME. Primary immunodeficiency and autoimmunity: A comprehensive review. J Autoimmun 2019; 99:52-72. [PMID: 30795880 DOI: 10.1016/j.jaut.2019.01.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023]
Abstract
The primary immunodeficiency diseases (PIDs) include many genetic disorders that affect different components of the innate and adaptive responses. The number of distinct genetic PIDs has increased exponentially with improved methods of detection and advanced laboratory methodology. Patients with PIDs have an increased susceptibility to infectious diseases and non-infectious complications including allergies, malignancies and autoimmune diseases (ADs), the latter being the first manifestation of PIDs in several cases. There are two types of PIDS. Monogenic immunodeficiencies due to mutations in genes involved in immunological tolerance that increase the predisposition to develop autoimmunity including polyautoimmunity, and polygenic immunodeficiencies characterized by a heterogeneous clinical presentation that can be explained by a complex pathophysiology and which may have a multifactorial etiology. The high prevalence of ADs in PIDs demonstrates the intricate relationships between the mechanisms of these two conditions. Defects in central and peripheral tolerance, including mutations in AIRE and T regulatory cells respectively, are thought to be crucial in the development of ADs in these patients. In fact, pathology that leads to PID often also impacts the Treg/Th17 balance that may ease the appearance of a proinflammatory environment, increasing the odds for the development of autoimmunity. Furthermore, the influence of chronic and recurrent infections through molecular mimicry, bystander activation and super antigens activation are supposed to be pivotal for the development of autoimmunity. These multiple mechanisms are associated with diverse clinical subphenotypes that hinders an accurate diagnosis in clinical settings, and in some cases, may delay the selection of suitable pharmacological therapies. Herein, a comprehensively appraisal of the common mechanisms among these conditions, together with clinical pearls for treatment and diagnosis is presented.
Collapse
Affiliation(s)
- Laura Amaya-Uribe
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Doctoral Program in Biomedical Sciences, Universidad Del Rosario, Bogota, Colombia
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, USA.
| |
Collapse
|
16
|
McDonald-McGinn DM. 22q11.2 deletion syndrome: A tiny piece leading to a big picture. Am J Med Genet A 2018; 176:2055-2057. [PMID: 30380195 PMCID: PMC6472263 DOI: 10.1002/ajmg.a.40653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Donna M. McDonald-McGinn
- 22q and You Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Clinical Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Section of Genetic Counseling, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Campbell IM, Sheppard SE, Crowley TB, McGinn DE, Bailey A, McGinn MJ, Unolt M, Homans JF, Chen EY, Salmons HI, Gaynor JW, Goldmuntz E, Jackson OA, Katz LE, Mascarenhas MR, Deeney VFX, Castelein RM, Zu KB, Elden L, Kallish S, Kolon TF, Hopkins SE, Chadehumbe MA, Lambert MP, Forbes BJ, Moldenhauer JS, Schindewolf EM, Solot CB, Moss EM, Gur RE, Sullivan KE, Emanuel BS, Zackai EH, McDonald-McGinn DM. What is new with 22q? An update from the 22q and You Center at the Children's Hospital of Philadelphia. Am J Med Genet A 2018; 176:2058-2069. [PMID: 30380191 PMCID: PMC6501214 DOI: 10.1002/ajmg.a.40637] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022]
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a disorder caused by recurrent, chromosome-specific, low copy repeat (LCR)-mediated copy-number losses of chromosome 22q11. The Children's Hospital of Philadelphia has been involved in the clinical care of individuals with what is now known as 22q11.2DS since our initial report of the association with DiGeorge syndrome in 1982. We reviewed the medical records on our continuously growing longitudinal cohort of 1,421 patients with molecularly confirmed 22q11.2DS from 1992 to 2018. Most individuals are Caucasian and older than 8 years. The mean age at diagnosis was 3.9 years. The majority of patients (85%) had typical LCR22A-LCR22D deletions, and only 7% of these typical deletions were inherited from a parent harboring the deletion constitutionally. However, 6% of individuals harbored other nested deletions that would not be identified by traditional 22q11.2 FISH, thus requiring an orthogonal technology to diagnose. Major medical problems included immune dysfunction or allergies (77%), palatal abnormalities (67%), congenital heart disease (64%), gastrointestinal difficulties (65%), endocrine dysfunction (>50%), scoliosis (50%), renal anomalies (16%), and airway abnormalities. Median full-scale intelligence quotient was 76, with no significant difference between individuals with and without congenital heart disease or hypocalcemia. Characteristic dysmorphic facial features were present in most individuals, but dermatoglyphic patterns of our cohort are similar to normal controls. This is the largest longitudinal study of patients with 22q11.2DS, helping to further describe the condition and aid in diagnosis and management. Further surveillance will likely elucidate additional clinically relevant findings as they age.
Collapse
Affiliation(s)
- Ian M. Campbell
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah E. Sheppard
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - T. Blaine Crowley
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel E. McGinn
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Davidson College, Davidson, NC, USA
| | - Alice Bailey
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael J. McGinn
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marta Unolt
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Cardiology, Bambino Gesu Hospital, Rome, Italy
| | - Jelle F. Homans
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erin Y. Chen
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Johns Hopkins University, Baltimore, MD, USA
| | - Harold I. Salmons
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| | - J. William Gaynor
- Division of Cardiothoracic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Oksana A. Jackson
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Plastic Surgery, Department of Pediatric Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Plastic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lorraine E. Katz
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maria R. Mascarenhas
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Gastroenterology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vincent F. X. Deeney
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Orthopaedics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rene M. Castelein
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karen B. Zu
- Division of Otolaryngology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa Elden
- Division of Otolaryngology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Staci Kallish
- Department of Medicine, Division of Translational Medicine and Human Genetics, The Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas F. Kolon
- Department of Pediatric Surgery, Division of Pediatric Urology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Surgery (Urology), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E. Hopkins
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Michele P. Lambert
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brian J. Forbes
- Division of Ophthalmology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie S. Moldenhauer
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Fetal Diagnosis and Treatment at Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erica M. Schindewolf
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Fetal Diagnosis and Treatment at Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cynthia B. Solot
- Center for Childhood Communication, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edward M. Moss
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Malamut and Moss, Bryn Mawr, PA, USA
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen E. Sullivan
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Beverly S. Emanuel
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine H. Zackai
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Donna M. McDonald-McGinn
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Fabbri C, Serretti A. 22q11.2 rearrangements: clinical and research implications of population-based risk of neuropsychiatric and developmental disorders. Lancet Psychiatry 2018; 5:531-532. [PMID: 29886043 DOI: 10.1016/s2215-0366(18)30181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 10/14/2022]
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Molebatsi K, Olashore AA. Early-onset psychosis in an adolescent with DiGeorge syndrome: A case report. S Afr J Psychiatr 2018; 24:1164. [PMID: 30263223 PMCID: PMC6138118 DOI: 10.4102/sajpsychiatry.v24.i0.1164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/22/2017] [Indexed: 11/30/2022] Open
Abstract
DiGeorge syndrome (DGS) was first described in 1829 by Dr Angelo DiGeorge. DGS is a cluster of symptoms because of a defect in the development of the pharyngeal pouch. Evidence from cytogenetic studies has linked the pathogenesis of DGS with a deletion of a gene located in chromosome 22-band 22q11. In most affected individuals, the deletion is de novo; however, inheritance has been reported in 10% - 25% of patients. DGS commonly presents with a classical triad of conotruncal cardiac anomalies, hypoplastic thymus and hypocalcaemia. DGS may be of focus to a psychiatrist as it is associated with cognitive deficits, high rates of schizophrenia and anxiety disorders. Patients may also present to mental health care workers with learning disabilities, developmental delay and behavioural disorders such as attention-deficit or hyperactivity disorder. Mental health workers therefore play an invaluable role in the diagnosis and timely treatment of the disorder. In a resource-limited area such as Botswana, with scarce mental health professionals, paediatricians and neurologists, DGS may be frequently misdiagnosed with consequent inappropriate interventions that may increase morbidity. Herein, we present a case to raise awareness and demonstrate one of the varied ways the syndrome may present. The multifaceted nature of DGS presentation underscores the need for a multidisciplinary approach to treatment.
Collapse
|
20
|
Molebatsi K, Olashore AA. Early-onset psychosis in an adolescent with DiGeorge syndrome: A case report. S Afr J Psychiatr 2018. [DOI: 10.4102/sajpsychiatry.v24i0.1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
21
|
Homans JF, Tromp IN, Colo D, Schlösser TPC, Kruyt MC, Deeney VFX, Crowley TB, McDonald-McGinn DM, Castelein RM. Orthopaedic manifestations within the 22q11.2 Deletion syndrome: A systematic review. Am J Med Genet A 2017; 176:2104-2120. [DOI: 10.1002/ajmg.a.38545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/07/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Jelle F. Homans
- Department of Orthopaedic Surgery; University Medical Center Utrecht; Utrecht The Netherlands
| | - Isabel N. Tromp
- Department of Orthopaedic Surgery; University Medical Center Utrecht; Utrecht The Netherlands
| | - Dino Colo
- Department of Orthopaedic Surgery; University Medical Center Utrecht; Utrecht The Netherlands
| | - Tom P. C. Schlösser
- Department of Orthopaedic Surgery; University Medical Center Utrecht; Utrecht The Netherlands
| | - Moyo C. Kruyt
- Department of Orthopaedic Surgery; University Medical Center Utrecht; Utrecht The Netherlands
| | - Vincent F. X. Deeney
- Department of Orthopaedic Surgery; The Children's Hospital of Philadelphia (CHOP) and The Perelman School of Medicine at the University of Pennsylvania; Philadelphia Pennsylvania
| | - Terrence B. Crowley
- Division of Human Genetics and 22q and You Center; The Children's Hospital of Philadelphia (CHOP); Philadelphia Pennsylvania
| | - Donna M. McDonald-McGinn
- Division of Human Genetics and 22q and You Center; The Children's Hospital of Philadelphia (CHOP); Philadelphia Pennsylvania
- The Perelman School of Medicine at the University of Pennsylvania; Philadelphia Pennsylvania
| | - René M. Castelein
- Department of Orthopaedic Surgery; University Medical Center Utrecht; Utrecht The Netherlands
| |
Collapse
|
22
|
Feldkamp ML, Carey JC, Byrne JLB, Krikov S, Botto LD. Etiology and clinical presentation of birth defects: population based study. BMJ 2017; 357:j2249. [PMID: 28559234 PMCID: PMC5448402 DOI: 10.1136/bmj.j2249] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective To assess causation and clinical presentation of major birth defects.Design Population based case cohort.Setting Cases of birth defects in children born 2005-09 to resident women, ascertained through Utah's population based surveillance system. All records underwent clinical re-review.Participants 5504 cases among 270 878 births (prevalence 2.03%), excluding mild isolated conditions (such as muscular ventricular septal defects, distal hypospadias).Main outcome measures The primary outcomes were the proportion of birth defects with a known etiology (chromosomal, genetic, human teratogen, twinning) or unknown etiology, by morphology (isolated, multiple, minors only), and by pathogenesis (sequence, developmental field defect, or known pattern of birth defects).Results Definite cause was assigned in 20.2% (n=1114) of cases: chromosomal or genetic conditions accounted for 94.4% (n=1052), teratogens for 4.1% (n=46, mostly poorly controlled pregestational diabetes), and twinning for 1.4% (n=16, conjoined or acardiac). The 79.8% (n=4390) remaining were classified as unknown etiology; of these 88.2% (n=3874) were isolated birth defects. Family history (similarly affected first degree relative) was documented in 4.8% (n=266). In this cohort, 92.1% (5067/5504) were live born infants (isolated and non-isolated birth defects): 75.3% (4147/5504) were classified as having an isolated birth defect (unknown or known etiology).Conclusions These findings underscore the gaps in our knowledge regarding the causes of birth defects. For the causes that are known, such as smoking or diabetes, assigning causation in individual cases remains challenging. Nevertheless, the ongoing impact of these exposures on fetal development highlights the urgency and benefits of population based preventive interventions. For the causes that are still unknown, better strategies are needed. These can include greater integration of the key elements of etiology, morphology, and pathogenesis into epidemiologic studies; greater collaboration between researchers (such as developmental biologists), clinicians (such as medical geneticists), and epidemiologists; and better ways to objectively measure fetal exposures (beyond maternal self reports) and closer (prenatally) to the critical period of organogenesis.
Collapse
Affiliation(s)
- Marcia L Feldkamp
- Division of Medical Genetics, Department of Pediatrics, 295 Chipeta Way, Suite 2S010, University of Utah School of Medicine, Salt Lake City, UT, USA,
| | - John C Carey
- Division of Medical Genetics, Department of Pediatrics, 295 Chipeta Way, Suite 2S010, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Janice L B Byrne
- Division of Medical Genetics, Department of Pediatrics, 295 Chipeta Way, Suite 2S010, University of Utah School of Medicine, Salt Lake City, UT, USA
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sergey Krikov
- Division of Medical Genetics, Department of Pediatrics, 295 Chipeta Way, Suite 2S010, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, 295 Chipeta Way, Suite 2S010, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
23
|
Rosenfeld JA, Patel A. Chromosomal Microarrays: Understanding Genetics of Neurodevelopmental Disorders and Congenital Anomalies. J Pediatr Genet 2016; 6:42-50. [PMID: 28180026 DOI: 10.1055/s-0036-1584306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/23/2016] [Indexed: 01/09/2023]
Abstract
Chromosomal microarray (CMA) testing, used to identify DNA copy number variations (CNVs), has helped advance knowledge about genetics of human neurodevelopmental disease and congenital anomalies. It has aided in discovering new CNV syndromes and uncovering disease genes. It has discovered CNVs that are not fully penetrant and/or cause a spectrum of phenotypes, including intellectual disability, autism, schizophrenia, and dysmorphisms. Such CNVs can pose challenges to genetic counseling. They also have helped increase knowledge of genetic risk factors for neurodevelopmental disease and raised awareness of possible shared etiologies among these variable phenotypes. Advances in CMA technology allow CNV identification at increasingly finer scales, improving detection of pathogenic changes, although these sometimes are difficult to distinguish from normal population variation. This paper confronts some of the challenges uncovered by CMA testing while reviewing advances in genetics and the clinical use of this test that has replaced standard karyotyping in most genetic evaluations.
Collapse
Affiliation(s)
- Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States; Baylor Miraca Genetics Laboratories, Baylor College of Medicine, Houston, Texas, United States
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States; Baylor Miraca Genetics Laboratories, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
24
|
Li D, Tian L, Hou C, Kim CE, Hakonarson H, Levine MA. Association of Mutations in SLC12A1 Encoding the NKCC2 Cotransporter With Neonatal Primary Hyperparathyroidism. J Clin Endocrinol Metab 2016; 101:2196-200. [PMID: 26963954 PMCID: PMC4870850 DOI: 10.1210/jc.2016-1211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Primary hyperparathyroidism with hypercalciuria has not been described in the newborn period. OBJECTIVE Our objectives are to identify the genetic basis for neonatal primary hyperparathyroidism in a family with 2 affected children. SUBJECTS An African American boy presenting with mild neonatal primary hyperparathyroidism and hypercalciuria was evaluated at The Children's Hospital of Philadelphia. His older brother with neonatal primary hyperparathyroidism had died in infancy of multiple organ failure. METHODS We collected clinical and biochemical data and performed exome sequencing analysis on DNA from the patient and his unaffected mother after negative genetic testing for known causes of primary hyperparathyroidism. RESULTS Exome sequencing followed by Sanger sequencing disclosed 2 heterozygous mutations, c.1883C>A, p.(A628D) and c.2786_2787insC, p.(T931fsX10), in the SLC12A1 gene, which was previously implicated in antenatal type 1 Bartter syndrome. Sanger sequencing confirmed the 2 mutations in the proband and his deceased brother; both parents were heterozygous for different mutations and an unaffected sister was homozygous for wild-type alleles. CONCLUSIONS These results demonstrate a previously unrecognized association between neonatal primary hyperparathyroidism and mutation of SLC12A1, the cause of antenatal Bartter syndrome type 1, and suggest that the loss of sodium-potassium-chloride cotransporter-2 cotransporter activity influences parathyroid gland function.
Collapse
Affiliation(s)
- Dong Li
- The Center for Applied Genomics (D.L., L.T., C.H., C.E.K., H.H.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Pediatrics (H.H., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; and Division of Endocrinology and Diabetes and the Center for Bone Health (M.A.L.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Lifeng Tian
- The Center for Applied Genomics (D.L., L.T., C.H., C.E.K., H.H.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Pediatrics (H.H., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; and Division of Endocrinology and Diabetes and the Center for Bone Health (M.A.L.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Cuiping Hou
- The Center for Applied Genomics (D.L., L.T., C.H., C.E.K., H.H.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Pediatrics (H.H., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; and Division of Endocrinology and Diabetes and the Center for Bone Health (M.A.L.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Cecilia E Kim
- The Center for Applied Genomics (D.L., L.T., C.H., C.E.K., H.H.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Pediatrics (H.H., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; and Division of Endocrinology and Diabetes and the Center for Bone Health (M.A.L.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Hakon Hakonarson
- The Center for Applied Genomics (D.L., L.T., C.H., C.E.K., H.H.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Pediatrics (H.H., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; and Division of Endocrinology and Diabetes and the Center for Bone Health (M.A.L.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Michael A Levine
- The Center for Applied Genomics (D.L., L.T., C.H., C.E.K., H.H.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Pediatrics (H.H., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; and Division of Endocrinology and Diabetes and the Center for Bone Health (M.A.L.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
25
|
Abstract
22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness - all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population.
Collapse
|
26
|
Vanyai HK, Thomas T, Voss AK. Mesodermal expression of Moz is necessary for cardiac septum development. Dev Biol 2015; 403:22-9. [DOI: 10.1016/j.ydbio.2015.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
|
27
|
Gelb BD. History of Our Understanding of the Causes of Congenital Heart Disease. CIRCULATION. CARDIOVASCULAR GENETICS 2015; 8:529-36. [PMID: 26082554 PMCID: PMC4870049 DOI: 10.1161/circgenetics.115.001058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bruce D Gelb
- From the Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
28
|
Swillen A, McDonald-McGinn D. Developmental trajectories in 22q11.2 deletion. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2015; 169:172-81. [PMID: 25989227 DOI: 10.1002/ajmg.c.31435] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chromosome 22q11.2 deletion syndrome (22q11.2DS), a neurogenetic condition, is the most common microdeletion syndrome affecting 1 in 2,000-4,000 live births and involving haploinsufficiency of ∼50 genes resulting in a multisystem disorder. Phenotypic expression is highly variable and ranges from severe life-threatening conditions to only a few associated features. Most common medical problems include: congenital heart disease, in particular conotruncal anomalies; palatal abnormalities, most frequently velopharyngeal incompetence (VPI); immunodeficiency; hypocalcemia due to hypoparathyroidism; genitourinary anomalies; severe feeding/gastrointestinal differences; and subtle dysmorphic facial features. The neurocognitive profile is also highly variable, both between individuals and during the course of development. From infancy onward, motor delays (often with hypotonia) and speech/language deficits are commonly observed. During the preschool and primary school ages, learning difficulties are very common. The majority of patients with 22q11.2DS have an intellectual level that falls in the borderline range (IQ 70-84), and about one-third have mild to moderate intellectual disability. More severe levels of intellectual disability are uncommon in children and adolescents but are more frequent in adults. Individuals with 22q11.2DS are at an increased risk for developing several psychiatric disorders including attention deficit with hyperactivity disorder (ADHD), autism spectrum disorder (ASD), anxiety and mood disorders, and psychotic disorders and schizophrenia. In this review, we will focus on the developmental phenotypic transitions regarding cognitive development in 22q11.2DS from early preschool to adulthood, and on the changing behavioral/psychiatric phenotype across age, on a background of frequently complex medical conditions.
Collapse
|
29
|
Ammar-Khodja F, Abdellali M. Exclusion of chromosomal abnormalities and microdeletions 22q11 and 10p13 in algerian patients with isolated conotruncal malformation. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Picard C, Moshous D, Fischer A. The Genetic and Molecular Basis of Severe Combined Immunodeficiency. CURRENT PEDIATRICS REPORTS 2014. [DOI: 10.1007/s40124-014-0070-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
|
32
|
Kozlova YO, Zabnenkova VV, Shilova NV, Min’zhenkova ME, Antonenko VG, Kotlukova NP, Simonova LV, Kazantseva IA, Levchenko EG, Bombardirova TD, Zolotukhina TV, Polyakov AV. Geneticl and clinical characteristics of 22q11.2 deletion syndrome. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414050081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Cirillo E, Giardino G, Gallo V, Puliafito P, Azzari C, Bacchetta R, Cardinale F, Cicalese MP, Consolini R, Martino S, Martire B, Molinatto C, Plebani A, Scarano G, Soresina A, Cancrini C, Rossi P, Digilio MC, Pignata C. Intergenerational and intrafamilial phenotypic variability in 22q11.2 deletion syndrome subjects. BMC MEDICAL GENETICS 2014; 15:1. [PMID: 24383682 PMCID: PMC3893549 DOI: 10.1186/1471-2350-15-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/27/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11.2DS) is a common microdeletion syndrome, which occurs in approximately 1:4000 births. Familial autosomal dominant recurrence of the syndrome is detected in about 8-28% of the cases. Aim of this study is to evaluate the intergenerational and intrafamilial phenotypic variability in a cohort of familial cases carrying a 22q11.2 deletion. METHODS Thirty-two 22q11.2DS subjects among 26 families were enrolled. RESULTS Second generation subjects showed a significantly higher number of features than their transmitting parents (212 vs 129, P = 0.0015). Congenital heart defect, calcium-phosphorus metabolism abnormalities, developmental and speech delay were more represented in the second generation (P < 0.05). Ocular disorders were more frequent in the parent group. No significant difference was observed for the other clinical variables. Intrafamilial phenotypic heterogeneity was identified in the pedigrees. In 23/32 families, a higher number of features were found in individuals from the second generation and a more severe phenotype was observed in almost all of them, indicating the worsening of the phenotype over generations. Both genetic and epigenetic mechanisms may be involved in the phenotypic variability. CONCLUSIONS Second generation subjects showed a more complex phenotype in comparison to those from the first generation. Both ascertainment bias related to patient selection or to the low rate of reproductive fitness of adults with a more severe phenotype, and several not well defined molecular mechanism, could explain intergenerational and intrafamilial phenotypic variability in this syndrome.
Collapse
Affiliation(s)
- Emilia Cirillo
- Department of Translational Medicine, “Federico II” University, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medicine, “Federico II” University, Naples, Italy
| | - Vera Gallo
- Department of Translational Medicine, “Federico II” University, Naples, Italy
| | - Pamela Puliafito
- Department of Pediatrics, (DPUO), University of Rome Tor Vergata, Rome, Italy
| | - Chiara Azzari
- Department of Pediatrics, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Rosa Bacchetta
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan; Pediatric ImmunoHematology IRCCS San Raffaele Hospital, Milan, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, Bari, Italy
| | | | - Rita Consolini
- Department of Internal and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Baldassarre Martire
- Department of Biomedicine and Evolutive Aging, University of Bari, Bari, Italy
| | | | - Alessandro Plebani
- A. Nocivelli Institute for Molecular Medicine, Pediatric Clinic, University of Brescia, Brescia, Italy
| | | | - Annarosa Soresina
- A. Nocivelli Institute for Molecular Medicine, Pediatric Clinic, University of Brescia, Brescia, Italy
| | - Caterina Cancrini
- Department of Pediatrics, (DPUO), University of Rome Tor Vergata, Rome, Italy
| | - Paolo Rossi
- Department of Pediatrics, (DPUO), University of Rome Tor Vergata, Rome, Italy
| | | | - Claudio Pignata
- Department of Translational Medicine, “Federico II” University, Naples, Italy
- Department of Translational Medical Sciences, Unit of Pediatric Immunology, “Federico II” University, via S. Pansini, 5-80131 Naples, Italy
| |
Collapse
|
34
|
Davies EG. Immunodeficiency in DiGeorge Syndrome and Options for Treating Cases with Complete Athymia. Front Immunol 2013; 4:322. [PMID: 24198816 PMCID: PMC3814041 DOI: 10.3389/fimmu.2013.00322] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/23/2013] [Indexed: 11/13/2022] Open
Abstract
The commonest association of thymic stromal deficiency resulting in T-cell immunodeficiency is the DiGeorge syndrome (DGS). This results from abnormal development of the third and fourth pharyngeal arches and is most commonly associated with a microdeletion at chromosome 22q11 though other genetic and non-genetic causes have been described. The immunological competence of affected individuals is highly variable, ranging from normal to a severe combined immunodeficiency when there is complete athymia. In the most severe group, correction of the immunodeficiency can be achieved using thymus allografts which can support thymopoiesis even in the absence of donor-recipient matching at the major histocompatibility loci. This review focuses on the causes of DGS, the immunological features of the disorder, and the approaches to correction of the immunodeficiency including the use of thymus transplantation.
Collapse
Affiliation(s)
- E Graham Davies
- Centre for Immunodeficiency, Institute of Child Health, University College London and Great Ormond Street Hospital , London , UK
| |
Collapse
|
35
|
Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat Rev Genet 2013; 14:125-38. [PMID: 23329113 DOI: 10.1038/nrg3373] [Citation(s) in RCA: 417] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genomic structural variants have long been implicated in phenotypic diversity and human disease, but dissecting the mechanisms by which they exert their functional impact has proven elusive. Recently however, developments in high-throughput DNA sequencing and chromosomal engineering technology have facilitated the analysis of structural variants in human populations and model systems in unprecedented detail. In this Review, we describe how structural variants can affect molecular and cellular processes, leading to complex organismal phenotypes, including human disease. We further present advances in delineating disease-causing elements that are affected by structural variants, and we discuss future directions for research on the functional consequences of structural variants.
Collapse
Affiliation(s)
- Joachim Weischenfeldt
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany
| | | | | | | |
Collapse
|
36
|
Hirschhorn R, Hirschhorn K, Notarangelo LD. Immunodeficiency Disorders. EMERY AND RIMOIN'S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS 2013:1-30. [DOI: 10.1016/b978-0-12-383834-6.00084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Biogenesis and mechanism of action of small non-coding RNAs: insights from the point of view of structural biology. Int J Mol Sci 2012; 13:10268-10295. [PMID: 22949860 PMCID: PMC3431858 DOI: 10.3390/ijms130810268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/17/2012] [Accepted: 08/02/2012] [Indexed: 01/17/2023] Open
Abstract
Non-coding RNAs are dominant in the genomic output of the higher organisms being not simply occasional transcripts with idiosyncratic functions, but constituting an extensive regulatory network. Among all the species of non-coding RNAs, small non-coding RNAs (miRNAs, siRNAs and piRNAs) have been shown to be in the core of the regulatory machinery of all the genomic output in eukaryotic cells. Small non-coding RNAs are produced by several pathways containing specialized enzymes that process RNA transcripts. The mechanism of action of these molecules is also ensured by a group of effector proteins that are commonly engaged within high molecular weight protein-RNA complexes. In the last decade, the contribution of structural biology has been essential to the dissection of the molecular mechanisms involved in the biosynthesis and function of small non-coding RNAs.
Collapse
|
38
|
Gennery AR. Immunological aspects of 22q11.2 deletion syndrome. Cell Mol Life Sci 2012; 69:17-27. [PMID: 21984609 PMCID: PMC11114664 DOI: 10.1007/s00018-011-0842-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 12/16/2022]
Abstract
Chromosome 22q11 deletion is the most common chromosomal deletion syndrome and is found in the majority of patients with DiGeorge syndrome and velo-cardio-facial syndrome. Patients with CHARGE syndrome may share similar features. Cardiac malformations, speech delay, and immunodeficiency are the most common manifestations. The immunological phenotype may vary widely between patients. Severe T lymphocyte immunodeficiency is rare-thymic transplantation offers a new approach to treatment, as well as insights into thymic physiology and central tolerance. Combined partial immunodeficiency is more common, leading to recurrent sinopulmonary infection in early childhood. Autoimmunity is an increasingly recognized complication. New insights into pathophysiology are reviewed.
Collapse
Affiliation(s)
- A R Gennery
- Institute of Cellular Medicine, Old Children's Outpatients, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
39
|
Deak KL, Horn SR, Rehder CW. The evolving picture of microdeletion/microduplication syndromes in the age of microarray analysis: variable expressivity and genomic complexity. Clin Lab Med 2011; 31:543-64, viii. [PMID: 22118736 DOI: 10.1016/j.cll.2011.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several new microdeletion and microduplication syndromes have been discovered in a genotype-first approach. Many of these disorders are caused by nonallelic homologous recombination between blocks of segmental duplication. The authors describe 9 regions for which copy number alteration is proposed to cause an abnormal phenotype. Some of these disorders have been observed in affected individuals and individuals lacking a clearly abnormal phenotype. These deletions and duplications are thought to be contributory, but not always sufficient, to elicit an abnormal outcome. Additional studies are necessary to further evaluate the penetrance and delineate the clinical spectrum associated with many of these newly described disorders.
Collapse
Affiliation(s)
- Kristen L Deak
- Department of Pathology, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
40
|
Hyman SJ, Novoa Y, Holzman I. Perinatal endocrinology: common endocrine disorders in the sick and premature newborn. Pediatr Clin North Am 2011; 58:1083-98, ix. [PMID: 21981950 DOI: 10.1016/j.pcl.2011.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Endocrine disorders are common in infants in the neonatal ICU. They often are associated with prematurity, low birth weight or very low birth weight, and small size for gestational age. They also frequently occur in infants who are critically ill or stressed. This article describes the most common conditions and current knowledge regarding management.
Collapse
Affiliation(s)
- Sharon J Hyman
- Division of Pediatric Endocrinology and Diabetes, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1616, New York, NY 10029, USA.
| | | | | |
Collapse
|
41
|
Marom T, Roth Y, Goldfarb A, Cinamon U. Head and neck manifestations of 22q11.2 deletion syndromes. Eur Arch Otorhinolaryngol 2011; 269:381-7. [PMID: 21861138 DOI: 10.1007/s00405-011-1745-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/01/2011] [Indexed: 11/28/2022]
Abstract
The allelic loss of 22q11.2 results in various developmental failures of pharyngeal pouch derivatives ("22q11.2 deletion syndromes", 22q.11DS), consequently affecting the anatomy and physiology of head and neck (H&N) organs. The objective of this paper was to describe those manifestations. Two 22q11.2DS patients with H&N manifestations were studied along with a comprehensive review of the English literature, from 1975 to 2010 regarding the associated H&N malformations among 22q11.2DS. A 24-year-old mentally disabled 22q11.2DS male presented with right hemithyroid enlargement, causing significant compressive signs. Sonography revealed a homogeneous 8 × 3 cm lesion, replacing almost the entire thyroid lobe. Fine needle aspiration revealed colloid material and abundant eosinophils. The hemithyroidectomy specimen confirmed follicular adenoma. A 19-year-old mentally disabled 22q11.2DS female underwent CT-angiography due to an upper GI bleeding. The study revealed a vascular malformation in the infratemporal fossa. Reviewing the reported data regarding 22q11.2DS-associated H&N malformations revealed abnormalities and malfunctions of the thyroid gland, parathyroid glands, thymus agenesis, cleft palate, carotid artery aberrations, malformations of the larynx and trachea and esophageal dysmotility. 22q11.DS patients may present with H&N anatomical abnormalities, along with hormonal dysfunctions, which require special awareness once treatment is offered, especially when concerning anesthetic and surgical aspects. In addition, hSNF5/INI1, a tumor suppressor gene, detected at location 22q11.2 was described to be "knocked out" in some patients. This may be associated with H&N tumors reported in these patients.
Collapse
Affiliation(s)
- Tal Marom
- Department of Otolaryngology-Head and Neck Surgery, Edith Wolfson Medical Center, Tel Aviv University Sackler School of Medicine, P.O. Box 5, 58100, Holon, Israel.
| | | | | | | |
Collapse
|
42
|
Bassett AS, McDonald-McGinn DM, Devriendt K, Digilio MC, Goldenberg P, Habel A, Marino B, Oskarsdottir S, Philip N, Sullivan K, Swillen A, Vorstman J. Practical guidelines for managing patients with 22q11.2 deletion syndrome. J Pediatr 2011; 159:332-9.e1. [PMID: 21570089 PMCID: PMC3197829 DOI: 10.1016/j.jpeds.2011.02.039] [Citation(s) in RCA: 376] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/24/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
|
43
|
Navon D. Genomic designation: how genetics can delineate new, phenotypically diffuse medical categories. SOCIAL STUDIES OF SCIENCE 2011; 41:203-226. [PMID: 21998922 DOI: 10.1177/0306312710391923] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper reports and discusses 'genomic designation' as a way of classifying people. In genomic designation the object of biomedical analysis--and the concomitant medical category that is subject to scientific, clinical, and social action--is delineated on a genomic basis, while the phenotype is decentralized and tabulated post factum. Unlike prominent sociological concepts such as biosociality or geneticization, where genetic proclivities for or explanations of phenotypic categories affect social processes, genomic designation treats characteristics of the genome as the essential referent of new categories of illness. I outline the relevant sociological literature and the shift to what Nikolas Rose has called the 'molecular gaze' before explicating the concept ofgenomic designation and its half-century history. I use 22q13 Deletion/Phelan-McDermid syndrome as an example of genomic designation: investigations into the deletion of genetic material at site q13 on the 22nd chromosome preceded and made practicable the delineation of a syndrome more than a decade later, even though the associated phenotype is not distinct enough for diagnosis. Finally, I discuss the implications of this turn to 'rigidly designate' kinds of people according to observations made at the level of the genome and outline directions for future research.
Collapse
Affiliation(s)
- Daniel Navon
- Department of Sociology, Columbia University, International Affairs Building, 420 West I 18th Street, 8th Floor, MC3355, NewYork, NY 10027, USA.
| |
Collapse
|
44
|
Kashork CD, Theisen A, Shaffer LG. Diagnosis of cryptic chromosomal syndromes by fluorescence in situ hybridization (FISH). CURRENT PROTOCOLS IN HUMAN GENETICS 2010; Chapter 8:Unit 8.10.1-20. [PMID: 20891031 DOI: 10.1002/0471142905.hg0810s67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This unit describes the various methods by which cytogeneticists detect chromosome abnormalities. The unit offers guidance for detecting such abnormalities with fluorescence in situ hybridization (FISH), as well as the benefits, limitations, and other applications of FISH.
Collapse
|
45
|
Michell AC, Bragança J, Broadbent C, Joyce B, Franklyn A, Schneider JE, Bhattacharya S, Bamforth SD. A novel role for transcription factor Lmo4 in thymus development through genetic interaction with Cited2. Dev Dyn 2010; 239:1988-1994. [PMID: 20549734 PMCID: PMC3417300 DOI: 10.1002/dvdy.22334] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2010] [Indexed: 12/20/2022] Open
Abstract
Deletion of the transcriptional modulator Cited2 in the mouse results in embryonic lethality, cardiovascular malformations, adrenal agenesis, cranial ganglia fusion, exencephaly, and left-right patterning defects, all seen with a varying degree of penetrance. The phenotypic heterogeneity, observed on different genetic backgrounds, indicates the existence of both genetic and environmental modifiers. Mice lacking the LIM domain-containing protein Lmo4 share specific phenotypes with Cited2 null embryos, such as embryonic lethality, cranial ganglia fusion, and exencephaly. These shared phenotypes suggested that Lmo4 may be a potential genetic modifier of the Cited2 phenotype. Examination of Lmo4-deficient embryos revealed partially penetrant cardiovascular malformations and hypoplastic thymus. Examination of Lmo4;Cited2 compound mutants indicated that there is a genetic interaction between Cited2 and Lmo4 in control of thymus development. Our data suggest that this may occur, in part, through control of expression of a common target gene, Tbx1, which is necessary for normal thymus development.
Collapse
Affiliation(s)
- Anna C Michell
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of OxfordRoosevelt Drive, Oxford, United Kingdom
| | | | - Carol Broadbent
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of OxfordRoosevelt Drive, Oxford, United Kingdom
| | - Bradley Joyce
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of OxfordRoosevelt Drive, Oxford, United Kingdom
| | - Angela Franklyn
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of OxfordRoosevelt Drive, Oxford, United Kingdom
| | - Jürgen E Schneider
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of OxfordRoosevelt Drive, Oxford, United Kingdom
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of OxfordRoosevelt Drive, Oxford, United Kingdom
| | | |
Collapse
|
46
|
McGoey RR, Lacassie Y. Paternal balanced reciprocal translocation t(9;22)(q34.3;q11.2) resulting in an infant with features of the 9q subtelomere and the 22q11 deletion syndromes due to 3:1 meiotic segregation and tertiary monosomy. Am J Med Genet A 2010; 149A:2538-42. [PMID: 19876901 DOI: 10.1002/ajmg.a.33078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The constitutional chromosomal reciprocal translocation (CRT) involving chromosomes 9 and 22 has been previously published in only five occasions. We report the sixth case of a balanced t(9;22) carrier who came to medical attention following the birth of his child with tertiary monosomy due to 3:1 meiotic segregation. This is only the second occurrence of paternal parent-of-origin to the t(9;22) CRT and is the first report of a t(9;22) undergoing 3:1 disjunction. It is also unique in its constellation of clinical features that overlap with two well-described cytogenetic microdeletion syndromes: the 9q subtelomeric and 22q11.2 deletion syndromes. With its uncommon breakpoint at chromosome 9q34, this case also emphasizes the added importance of array comparative genomic hybridization to analysis of offspring born to CRT carrier parents.
Collapse
Affiliation(s)
- Robin R McGoey
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70118, USA
| | | |
Collapse
|
47
|
Meola N, Gennarino VA, Banfi S. microRNAs and genetic diseases. PATHOGENETICS 2009; 2:7. [PMID: 19889204 PMCID: PMC2778645 DOI: 10.1186/1755-8417-2-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/04/2009] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) are a class of small RNAs (19-25 nucleotides in length) processed from double-stranded hairpin precursors. They negatively regulate gene expression in animals, by binding, with imperfect base pairing, to target sites in messenger RNAs (usually in 3' untranslated regions) thereby either reducing translational efficiency or determining transcript degradation. Considering that each miRNA can regulate, on average, the expression of approximately several hundred target genes, the miRNA apparatus can participate in the control of the gene expression of a large quota of mammalian transcriptomes and proteomes. As a consequence, miRNAs are expected to regulate various developmental and physiological processes, such as the development and function of many tissue and organs. Due to the strong impact of miRNAs on the biological processes, it is expected that mutations affecting miRNA function have a pathogenic role in human genetic diseases, similar to protein-coding genes. In this review, we provide an overview of the evidence available to date which support the pathogenic role of miRNAs in human genetic diseases. We will first describe the main types of mutation mechanisms affecting miRNA function that can result in human genetic disorders, namely: (1) mutations affecting miRNA sequences; (2) mutations in the recognition sites for miRNAs harboured in target mRNAs; and (3) mutations in genes that participate in the general processes of miRNA processing and function. Finally, we will also describe the results of recent studies, mostly based on animal models, indicating the phenotypic consequences of miRNA alterations on the function of several tissues and organs. These studies suggest that the spectrum of genetic diseases possibly caused by mutations in miRNAs is wide and is only starting to be unravelled.
Collapse
Affiliation(s)
- Nicola Meola
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy.
| | | | | |
Collapse
|
48
|
Rope AF, Cragun DL, Saal HM, Hopkin RJ. DiGeorge anomaly in the absence of chromosome 22q11.2 deletion. J Pediatr 2009; 155:560-5. [PMID: 19595366 DOI: 10.1016/j.jpeds.2009.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/04/2009] [Accepted: 04/09/2009] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To test the hypothesis that the prevalence of deletion 22q11.2 among individuals who meet criteria for DiGeorge anomaly (DGA) is lower than the 90% commonly cited. STUDY DESIGN Participants were identified through retrospective chart reviews on all patients who underwent testing for deletion 22q11.2 and all patients with a diagnosis of "DiGeorge" or any of the major criteria associated with DGA at a large pediatric hospital over a period of 6 years. DGA was confirmed in 64 individuals, based on the presence of at least 2 of the following features: (1) cellular immune deficiency and/or absence of part or all of the thymus; (2) hypocalcemia and/or parathyroid deficiency; (3) congenital heart disease. RESULTS Of the 64 individuals with DGA, 29 (45%) did not have a chromosome 22q11.2 deletion. Among this deletion-negative subset, diabetic embryopathy and other chromosome abnormalities were the most commonly recognized underlying etiologies. CONCLUSIONS These findings challenge a widely held belief that nearly 90% of DGA is due to chromosome 22q11.2 deletion. This study also calls attention to the heterogeneity of DGA, highlights similarities and differences between those with and without a chromosome 22q11.2 deletion, and attempts to resolve some confusing features of conditions associated with DGA.
Collapse
Affiliation(s)
- Alan F Rope
- Department of Pediatrics, Division of Medical Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | | | | | | |
Collapse
|
49
|
Hyman SJ, Novoa Y, Holzman I. Perinatal endocrinology: common endocrine disorders in the sick and premature newborn. Endocrinol Metab Clin North Am 2009; 38:509-24. [PMID: 19717002 DOI: 10.1016/j.ecl.2009.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Endocrine disorders are common in infants in the neonatal ICU. They often are associated with prematurity, low birth weight or very low birth weight, and small size for gestational age. They also frequently occur in infants who are critically ill or stressed. This article describes the most common conditions and current knowledge regarding management.
Collapse
Affiliation(s)
- Sharon J Hyman
- Division of Pediatric Endocrinology and Diabetes, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1616, New York, NY 10029, USA.
| | | | | |
Collapse
|
50
|
Rosa RFM, Zen PRG, Roman T, Graziadio C, Paskulin GA. Síndrome de deleção 22q11.2: compreendendo o CATCH22. REVISTA PAULISTA DE PEDIATRIA 2009. [DOI: 10.1590/s0103-05822009000200015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJETIVO:Realizar uma revisão dos aspectos históricos, epidemiológicos, clínicos, etiológicos e laboratoriais da síndrome de deleção 22q11.2, salientando-se a importância e as dificuldades do seu diagnóstico. FONTES DE DADOS: Pesquisa nas bases de dados Medline, Lilacs e SciELO, além da Internet e capítulos de livros em inglês, acerca de publicações feitas entre 1980 e 2008. Para isso, utilizaram-se os descritores "22q11", "DiGeorge", "Velocardiofacial" e "CATCH22". SÍNTESE DOS DADOS: A síndrome de deleção 22q11.2, também conhecida como síndrome de DiGeorge ou velocardiofacial, foi identificada no começo da década de 1990. A microdeleção 22q11.2 é considerada uma das síndromes de microdeleção genética mais frequentes em seres humanos. Caracteriza-se por um espectro fenotípico bastante amplo, com mais de 180 achados clínicos já descritos do ponto de vista físico e comportamental. Contudo, nenhum achado é patognomônico ou mesmo obrigatório. A maioria dos pacientes apresenta uma deleção pequena, detectada somente por técnicas de genética molecular, como a hibridização in situ fluorescente. Apresenta padrão de herança autossômico dominante, ou seja, indivíduos acometidos apresentam um risco de 50% de transmiti-la a seus filhos. CONCLUSÕES: Pacientes com a síndrome de deleção 22q11.2 frequentemente necessitam, ao longo de suas vidas, de um grande número de intervenções médicas e hospitalizações. O diagnóstico precoce é fundamental para a adequada avaliação e manejo clínico dos indivíduos e seus familiares.
Collapse
|