1
|
Erill I, Campoy S, Kılıç S, Barbé J. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response. Front Mol Biosci 2016; 3:33. [PMID: 27489856 PMCID: PMC4951493 DOI: 10.3389/fmolb.2016.00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.
Collapse
Affiliation(s)
- Ivan Erill
- Erill Lab, Department of Biological Sciences, University of Maryland Baltimore County Baltimore, MD, USA
| | - Susana Campoy
- Unitat de Microbiologia, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Sefa Kılıç
- Erill Lab, Department of Biological Sciences, University of Maryland Baltimore County Baltimore, MD, USA
| | - Jordi Barbé
- Unitat de Microbiologia, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
2
|
Sanchez-Alberola N, Campoy S, Barbé J, Erill I. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes. BMC Genomics 2012; 13:58. [PMID: 22305460 PMCID: PMC3323433 DOI: 10.1186/1471-2164-13-58] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 02/03/2012] [Indexed: 12/18/2022] Open
Abstract
Background The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Results Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Conclusions Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the mechanisms of evolution of global transcriptional networks involved in adaptability and rapid response to environmental changes, suggesting that small chromosomes may act as evolutionary test beds for the rewiring of transcriptional networks.
Collapse
Affiliation(s)
- Neus Sanchez-Alberola
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
3
|
Hybrid pathogenicity island PAGI-5 contributes to the highly virulent phenotype of a Pseudomonas aeruginosa isolate in mammals. J Bacteriol 2008; 190:7130-40. [PMID: 18757543 DOI: 10.1128/jb.00785-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Most known virulence determinants of Pseudomonas aeruginosa are remarkably conserved in this bacterium's core genome, yet individual strains differ significantly in virulence. One explanation for this discrepancy is that pathogenicity islands, regions of DNA found in some strains but not in others, contribute to the overall virulence of P. aeruginosa. Here we employed a strategy in which the virulence of a panel of P. aeruginosa isolates was tested in mouse and plant models of disease, and a highly virulent isolate, PSE9, was chosen for comparison by subtractive hybridization to a less virulent strain, PAO1. The resulting subtractive hybridization sequences were used as tags to identify genomic islands found in PSE9 but absent in PAO1. One 99-kb island, designated P. aeruginosa genomic island 5 (PAGI-5), was a hybrid of the known P. aeruginosa island PAPI-1 and novel sequences. Whereas the PAPI-1-like sequences were found in most tested isolates, the novel sequences were found only in the most virulent isolates. Deletional analysis confirmed that some of these novel sequences contributed to the highly virulent phenotype of PSE9. These results indicate that targeting highly virulent strains of P. aeruginosa may be a useful strategy for identifying pathogenicity islands and novel virulence determinants.
Collapse
|
4
|
Yang MK, Hsu CH, Sung VL. Analyses of binding sequences of the two LexA proteins of Xanthomonas axonopodis pathovar citri. Mol Genet Genomics 2008; 280:49-58. [PMID: 18437426 DOI: 10.1007/s00438-008-0344-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
Xanthomonas axonopodis pv. citri (X. axonopodis pv. citri) possesses two lexA genes, designated lexA1 and lexA2. Electrophoretic mobility shift data show that LexA1 binds to both lexA1 and lexA2 promoters, but LexA2 does not bind to the lexA1 promoter, suggesting that LexA1 and LexA2 play different roles in regulating the expression of SOS genes. In this study, we have determined that LexA2 binds to a 14-bp dyad-spacer-dyad palindromic sequence, 5'-TGTACAAATGTACA-3', located at nucleotides -41 to -28 relative to the translation start site of lexA2 of X. axonopodis pv. citri. The two spacer nucleotides in this sequence can be changed from AA to TT without affecting LexA2 binding; all other base deletions or substitutions abolish LexA2 binding. The LexA1 binding sequence in the promoter region of lexA2 is TTAGTACTAAAGTTATAA and is located at -133 to -116, and that in the lexA1 gene is AGTAGTAATACTACT located at nucleotides -19 to -5 relative to the translation start site of lexA1. Any base change in the latter sequence abolishes LexA1 binding.
Collapse
Affiliation(s)
- Mei-Kwei Yang
- Department of Life Science, Fu Jen University, 510 Chun-Chen Road, Taipei 242, Taiwan, ROC.
| | | | | |
Collapse
|
5
|
Erill I, Campoy S, Barbé J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 2007; 31:637-56. [PMID: 17883408 DOI: 10.1111/j.1574-6976.2007.00082.x] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The SOS response of bacteria is a global regulatory network targeted at addressing DNA damage. Governed by the products of the lexA and recA genes, it co-ordinates a comprehensive response against DNA lesions and its description in Escherichia coli has stood for years as a textbook paradigm of stress-response systems in bacteria. In this paper we review the current state of research on the SOS response outside E. coli. By retracing research on the identification of multiple diverging LexA-binding motifs across the Bacteria Domain, we show how this work has led to the description of a minimum regulon core, but also of a heterogeneous collection of SOS regulatory networks that challenges many tenets of the E. coli model. We also review recent attempts at reconstructing the evolutionary history of the SOS network that have cast new light on the SOS response. Exploiting the newly gained knowledge on LexA-binding motifs and the tight association of LexA with a recently described mutagenesis cassette, these works put forward likely evolutionary scenarios for the SOS response, and we discuss their relevance on the ultimate nature of this stress-response system and the evolutionary pressures driving its evolution.
Collapse
Affiliation(s)
- Ivan Erill
- Biomedical Applications Group, Centro Nacional de Microelectrónica, Barcelona, Spain
| | | | | |
Collapse
|
6
|
Kanack KJ, Runyen-Janecky LJ, Ferrell EP, Suh SJ, West SEH. Characterization of DNA-binding specificity and analysis of binding sites of the Pseudomonas aeruginosa global regulator, Vfr, a homologue of the Escherichia coli cAMP receptor protein. MICROBIOLOGY (READING, ENGLAND) 2006; 152:3485-3496. [PMID: 17159200 DOI: 10.1099/mic.0.29008-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vfr, a global regulator of Pseudomonas aeruginosa virulence factors, is a homologue of the Escherichia coli cAMP receptor protein, CRP. Vfr is 91% similar to CRP and maintains many residues important for CRP to bind cAMP, bind DNA, and interact with RNA polymerase at target promoters. While vfr can complement an E. coli crp mutant in beta-galactosidase production, tryptophanase production and catabolite repression, crp can only complement a subset of Vfr-dependent phenotypes in P. aeruginosa. Using specific CRP binding site mutations, it is shown that Vfr requires the same nucleotides as CRP for optimal transcriptional activity from the E. coli lac promoter. In contrast, CRP did not bind Vfr target sequences in the promoters of the toxA and regA genes. Footprinting analysis revealed Vfr protected sequences upstream of toxA, regA, and the quorum sensing regulator lasR, that are similar to but significantly divergent from the CRP consensus binding sequence, and Vfr causes similar DNA bending to CRP in bound target sequences. Using a preliminary Vfr consensus binding sequence deduced from the Vfr-protected sites, Vfr target sequences were identified upstream of the virulence-associated genes plcN, plcHR, pbpG, prpL and algD, and in the vfr/orfX, argH/fimS, pilM/ponA intergenic regions. From these sequences the Vfr consensus binding sequence, 5'-ANWWTGNGAWNY : AGWTCACAT-3', was formulated. This study suggests that Vfr shares many of the same functions as CRP, but has specialized functions, at least in terms of DNA target sequence binding, required for regulation of a subset of genes in its regulon.
Collapse
Affiliation(s)
- Kristen J Kanack
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Laura J Runyen-Janecky
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Evan P Ferrell
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Sang-Jin Suh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Susan E H West
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
7
|
Yang MK, Su SR, Sung VL. Identification and characterization of a second lexA gene of Xanthomonas axonopodis Pathovar citri. Appl Environ Microbiol 2005; 71:3589-98. [PMID: 16000766 PMCID: PMC1169025 DOI: 10.1128/aem.71.7.3589-3598.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously identified and characterized a lexA gene from Xanthomonas axonopodis pv. citri. For this study, we cloned and expressed a lexA homologue from X. axonopodis pv. citri. This gene was designated lexA2, and the previously identified lexA gene was renamed lexA1. The coding region of lexA2 is 606 bp long and shares 59% nucleotide sequence identity with lexA1. Analyses of the deduced amino acid sequence revealed that LexA2 has structures that are characteristic of LexA proteins, including a helix-turn-helix DNA binding domain and conserved amino acid residues required for the autocleavage of LexA. The lexA2 mutant, which was constructed by gene replacement, was 4 orders of magnitude more resistant to the DNA-damaging agent mitomycin C at 0.1 microg/ml and 1 order of magnitude more resistant to another DNA-damaging agent, methylmethane sulfonate at 30 microg/ml, than the wild type. A lexA1 lexA2 double mutant had the same degree of susceptibility to mitomycin C as the lexA1 or lexA2 single mutant but was 1 order of magnitude more resistant to methylmethane sulfonate at 30 microg/ml than the lexA1 or lexA2 single mutant. These results suggest that LexA1 and LexA2 play different roles in regulating the production of methyltransferases that are required for repairing DNA damage caused by methylmethane sulfonate. A mitomycin C treatment also caused LexA2 to undergo autocleavage, as seen with LexA1. The results of electrophoresis mobility shift assays revealed that LexA2 does not bind the lexA1 promoter. It binds to both the lexA2 and recA promoters. However, neither LexA2 nor LexA1 appears to regulate recA expression, as lexA1, lexA2, and lexA1 lexA2 mutants did not become constitutive for recA transcription and RecA production. These results suggest that recA expression in X. axonopodis pv. citri is regulated by mechanisms that have yet to be identified.
Collapse
Affiliation(s)
- Mei-Kwei Yang
- Department of Life Science, Fu Jen University, 510 Chun-Chen Road, Taipei 242, Taiwan, Republic of China.
| | | | | |
Collapse
|
8
|
Chin-A-Woeng TFC, van den Broek D, Lugtenberg BJJ, Bloemberg GV. The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:244-253. [PMID: 15782638 DOI: 10.1094/mpmi-18-0244] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The rhizobacterium Pseudomonas chlororaphis PCL1391 produces the antifungal metabolite phenazine-1-carboxamide (PCN), which is a crucial trait in its competition with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici in the rhizosphere. The expression of the PCN biosynthetic gene cluster in PCL1391 is population density-dependent and is regulated by the quorum-sensing genes phzI and phzR via synthesis of the autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL). Here, we describe the identification of an additional regulatory gene of PCN biosynthesis in PCL1391. A mutation in the psrA gene (Pseudomonas sigma regulator), the gene product of which is a member of the TetR/AcrR family of transcriptional regulators, resulted in increased production of autoinducer molecules and PCN. Expression studies showed that inactivation of psrA resulted in increased expression of the phzI and phzR genes and the phz biosynthetic operon and that introduction of functional copies of psrA represses the expression of these genes, resulting in reduced production of autoinducer signal and PCN. Surprisingly, inactivation of psrA in the phzI or phzR quorum-sensing mutants, which do not produce detectable amounts of PCN and autoinducers by themselves, restored PCN biosynthesis. This phenomenon was accompanied by the appearance of compounds with autoinducer activities migrating at the positions of C4-HSL and C6-HSL on C18 reverse phase-thin-layer chromatography. These observations indicate that PsrA also represses at least one silent, yet unidentified, quorum-sensing system or autoinducer biosynthetic pathway in PCL1391. The expression of psrA declines at the onset of the stationary phase at the same moment at which quorum-sensing (-regulated) genes are activated. In addition, expression studies in a psrA- and a multicopy psrA background showed that psrA is autoregulated. Multiple copies of psrA repress its own expression. Mutation of gacS, encoding the sensor kinase member of a two-component global regulatory system significantly reduced production of autoinducers and PCN. We show a novel link between global regulation and quorum sensing via the PsrA regulator.
Collapse
Affiliation(s)
- Thomas F C Chin-A-Woeng
- Leiden University, Institute of Biology, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
9
|
Fernández de Henestrosa AR, Cuñé J, Mazón G, Dubbels BL, Bazylinski DA, Barbé J. Characterization of a new LexA binding motif in the marine magnetotactic bacterium strain MC-1. J Bacteriol 2003; 185:4471-82. [PMID: 12867456 PMCID: PMC165786 DOI: 10.1128/jb.185.15.4471-4482.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MC-1 is a marine, magnetotactic bacterium that is phylogenetically associated with the alpha subclass of the Proteobacteria and is the first and only magnetotactic coccus isolated in pure culture to date. By using a TBLASTN search, a lexA gene was identified in the published genome of MC-1; it was subsequently cloned, and the protein was purified to >90% purity. Results from reverse transcription-PCR analysis revealed that the MC-1 lexA gene comprises a single transcriptional unit with two open reading frames encoding proteins of unknown function and with a rumA-like gene, a homologue of the Escherichia coli umuD gene. Mobility shift assays revealed that this LexA protein specifically binds both to its own promoter and to that of the umuDC operon. However, MC-1 LexA does not bind to the promoter regions of other genes, such as recA and uvrA, that have been previously reported to be regulated by LexA in bacterial species belonging to the alpha subclass of the Proteobacteria: Site-directed mutagenesis of both the lexA and umuDC operator regions demonstrated that the sequence CCTN(10)AGG is the specific target motif for the MC-1 LexA protein.
Collapse
|
10
|
Abstract
Based upon our earlier studies (A. Tapias, A. R. Fernández de Henestrosa, and J. Barbé, J. Bacteriol. 179:1573-1579, 1997) we hypothesized that the regulatory sequence of the Rhizobium etli recA gene was TTGN11CAA. However, further detailed analysis of the R. etli recA operator described in the present work suggests that it may in fact be GAACN7GTAC. This new conclusion is based upon PCR mutagenesis analysis carried out in the R. etli recA operator, which indicates that the GAAC and GTAC submotifs found in the sequence GAACN7GTAC are required for the maximal stimulation of in vivo transcription and in vitro DNA-protein complex formation. This DNA-protein complex is also detected when the GAACN7GTAC wild-type sequence is modified to obtain GAACN7GAAC, GTACN7GTAC, or GAACN7GTTC. The wild-type promoters of the Rhizobium meliloti and Agrobacterium tumefaciens recA genes, which also contain the GAACN7GTAC sequence, compete with the R. etli recA promoter for the DNA-protein complex formation but not with mutant derivatives in any of these motifs, indicating that the R. etli, R. meliloti, and A. tumefaciens recA genes present the same regulatory sequence.
Collapse
Affiliation(s)
- A Tapias
- Molecular Microbiology and Bacterial Genetics Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193-Barcelona, Spain
| | | |
Collapse
|
11
|
Fernández de Henestrosa AR, Rivera E, Tapias A, Barbé J. Identification of the Rhodobacter sphaeroides SOS box. Mol Microbiol 1998; 28:991-1003. [PMID: 9663685 DOI: 10.1046/j.1365-2958.1998.00860.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gel-mobility shift assays with crude cell extracts of Rhodobacter sphaeroides, which belongs to the alpha group of the proteobacteria, have shown that a protein binds to the promoter of its recA gene, resulting in two retardation bands. Analysis of the minimal region of the R. sphaeroides recA gene required for the formation of the DNA-protein complexes, revealed the presence of the motifs GTTCN7GATC and GAACN7GAAC, which are centred at positions -21 and +8 from the transcriptional starting point respectively. Using PCR mutagenesis, we have demonstrated that these two motifs are required for the formation of both DNA-protein complexes in vitro as well as for the DNA damage-mediated inducibility of the recA gene in vivo. Furthermore, the level of the recA gene expression in the constitutive mutants is the same as that achieved by the wild-type cells after DNA damage, indicating that the binding protein must be a repressor. The motif GTTCN7GTTC is also present upstream of the R. sphaeroides uvrA promoter, which in vitro specifically binds to a protein and whose expression is DNA damage inducible. Mutagenesis of this motif abolishes both the binding of this protein to the uvrA promoter and the DNA damage-mediated expression of this gene. The fact that the recA and uvrA wild-type promoters compete with each other for the retardation band formation, but not with their mutant derivatives in any of these motifs, indicates that the same repressor binds to the operator of both genes. All these results lead us to propose the sequence GTTCN7GTTC as the SOS box of R. sphaeroides. This is the first SOS box known whose sequence is a direct repeat and not a palindrome.
Collapse
|
12
|
Dalrymple BP, Swadling Y. Expression of a Butyrivibrio fibrisolvens E14 gene (cinB) encoding an enzyme with cinnamoyl ester hydrolase activity is negatively regulated by the product of an adjacent gene (cinR). MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 4):1203-1210. [PMID: 9141683 DOI: 10.1099/00221287-143-4-1203] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A second cinnamoyl ester hydrolase (CEH) encoding gene (cinB) has been characterized from the ruminal bacterium Butyrivibrio fibrisolvens E14. CinB is more similar to CinA (previously named CinI) (28% amino acid identify), the first CEH described from B. fibrisolvens E14, than either of the enzymes are to any other member of the family of hydrolases to which they belong. Upstream of cinB, and in the opposite orientation, is a gene (cinR) encoding a protein with substantial similarity to members of the MarR family of negative regulators of bacterial gene expression. By alignment of these sequences, a possible helix-turn-helix DNA-binding domain has been identified. CinR was expressed at a high level in Escherichia coli using the lac promoter. In E. coli CinR repressed the expression of CinB, but had no effect on the expression of CinA. In gel mobility-shift assays, CinR bound specifically to the cinR-cinB intergenic region. Two identical 16 nucleotide inverted repeats adjacent to the putative PcinR and PcinB promoters are likely binding sites for CinR. The addition of FAXX (O-[5-O-(trans-feruloyl)-alpha-L-arabinofuranosyl]-(1,3)- O-beta-D-xylopyranosyl-(1,4)-D-xylopyranose) and Fara [5-O-(trans-feruloyl)-arabinofuranose], but not xylobiose, ferulic acid and a number of other soluble components of hemicellulose, inhibited the binding of CinR to DNA.
Collapse
Affiliation(s)
- Brian P Dalrymple
- Division of Tropical Animal production. Commonwealth Scientific and Industrial Research Organisation, Private Bag no. 3 PO, Indooroopilly, Qld 4068, Australia
| | - Yolande Swadling
- Division of Tropical Animal production. Commonwealth Scientific and Industrial Research Organisation, Private Bag no. 3 PO, Indooroopilly, Qld 4068, Australia
| |
Collapse
|
13
|
Tapias A, Fernández de Henestrosa AR, Barbe J. Characterization of the promoter of the Rhizobium etli recA gene. J Bacteriol 1997; 179:1573-9. [PMID: 9045815 PMCID: PMC178868 DOI: 10.1128/jb.179.5.1573-1579.1997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The promoter of the Rhizobium etli recA gene has been identified by primer extension and by making deletions affecting several regions located upstream of its coding region. A gel mobility shift assay carried out with crude extracts of cells of R. etli has been used to show that a DNA-protein complex is formed in the R. etli recA promoter region in vitro. Analysis of the minimal region of the recA promoter giving rise to this DNA-protein complex revealed the presence of an imperfect palindrome corresponding to the sequence TTGN11CAA. Site-directed mutation of both halves of this palindrome indicated that both motifs, TTG and CAA, are necessary for both normal DNA-protein complex formation in vitro and full DNA damage-mediated inducibility of the recA gene in vivo. However, the TTG motif seems to be more dispensable than the CAA one. The presence of this same palindrome upstream of the recA genes of Rhizobium meliloti and Agrobacterium tumefaciens, whose expression is also regulated in R. etli cells, suggests that this TTGN11CAA sequence may be the SOS box of at least these three members of the Rhizobiaceae.
Collapse
Affiliation(s)
- A Tapias
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
14
|
Movahedzadeh F, Colston MJ, Davis EO. Characterization of Mycobacterium tuberculosis LexA: recognition of a Cheo (Bacillus-type SOS) box. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 3):929-936. [PMID: 9084177 DOI: 10.1099/00221287-143-3-929] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The gene coding for the Mycobacterium tuberculosis homologue of LexA has been cloned and sequenced. Amino acids required for autocatalytic cleavage are conserved, whereas those important for specific DNA binding are not, when compared with Escherichia coli LexA. The transcriptional start site was mapped and a DNA sequence motif was identified which resembled the consensus Cheo box sequence involved in the regulation of DNA-damage-inducible genes in Bacillus subtilis. The M. tuberculosis-LexA protein was overexpressed in E. coli and purified by means of a His tag. The purified LexA was shown to bind to the Cheo box sequence found upstream of its own gene.
Collapse
Affiliation(s)
- Farahnaz Movahedzadeh
- Division of Mycobacterial Research, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - M Joseph Colston
- Division of Mycobacterial Research, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Elaine O Davis
- Division of Mycobacterial Research, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
15
|
Winterling KW, Levine AS, Yasbin RE, Woodgate R. Characterization of DinR, the Bacillus subtilis SOS repressor. J Bacteriol 1997; 179:1698-703. [PMID: 9045831 PMCID: PMC178884 DOI: 10.1128/jb.179.5.1698-1703.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Bacillus subtilis, exposure to DNA damage and the development of natural competence lead to the induction of the SOS regulon. It has been hypothesized that the DinR protein is the cellular repressor of the B. subtilis SOS system due to its homology to the Escherichia coli LexA transcriptional repressor. Indeed, comparison of DinR and its homologs from gram-negative and -positive bacteria revealed conserved structural motifs within the carboxyl-terminal domain that are believed to be important for autocatalysis of the protein. In contrast, regions within the DNA binding domain were conserved only within gram-negative or -positive genera, which possibly explains the differences in the sequence specificities between gram-negative and gram-positive SOS boxes. The hypothesis that DinR is the repressor of the SOS regulon in B. subtilis has been tested through overexpression, purification, and characterization of the DinR protein. Like E. coli LexA, B. subtilis DinR undergoes an autocatalytic reaction at alkaline pH at a siscile Ala91-Gly92 bond. The cleavage reaction can also be mediated in vitro under more physiological conditions by the E. coli RecA protein. By using electrophoretic mobility shift assays, we demonstrated that DinR interacts with the previously characterized SOS box of the B. subtilis recA gene, but not with sequences containing single base pair mutations within the SOS box. Together, these observations strongly suggest that DinR is the repressor of the SOS regulon in B. subtilis.
Collapse
Affiliation(s)
- K W Winterling
- Section on DNA replication, repair, and mutagenesis, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2725, USA
| | | | | | | |
Collapse
|
16
|
Bereswill S, Geider K. Characterization of the rcsB gene from Erwinia amylovora and its influence on exoploysaccharide synthesis and virulence of the fire blight pathogen. J Bacteriol 1997; 179:1354-61. [PMID: 9023222 PMCID: PMC178836 DOI: 10.1128/jb.179.4.1354-1361.1997] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
RcsB belongs to a family of positive regulators of exopolysaccharide synthesis in various enterobacteria. The rcsB gene of the fire blight pathogen Erwinia amylovora was cloned by PCR amplification with consensus primers, and its role in exopolysaccharide (EPS) synthesis was investigated. Its overexpression from high-copy-number plasmids stimulated the synthesis of the acidic EPS amylovoran and suppressed expression of the levan-forming enzyme levansucrase. Inactivation of rcsB by site-directed mutagenesis created mutants that were deficient in amylovoran synthesis and avirulent on host plants. In addition, a cosmid which complemented rcsB mutants was selected from a genomic library. The spontaneous E. amylovora mutant E8 has a similar phenotype and was complemented by the cloned rcsB gene. The rcsB region of strain E8 was also amplified by PCR, and the mutation was characterized as a nine-nucleotide deletion at the start of the rcsB gene. Nucleotide sequence analysis of the E. amylovora rcsB region and the predicted amino acid sequence of RcsB revealed extensive homology to rcsB and the encoded protein of other bacteria such as Escherichia coli and Erwinia stewartii. In all three organisms, rcsB is localized adjacent to the rcsC gene, which is transcribed in the opposite direction of rcsB. The E. amylovora rcsB gene has now been shown to strongly affect the formation of disease symptoms of a plant pathogen.
Collapse
Affiliation(s)
- S Bereswill
- Max-Planck-Institut für Zellbiologie, Rosenhof, Ladenburg, Germany
| | | |
Collapse
|
17
|
Hishida T, Iwasaki H, Ishioka K, Shinagawa H. Molecular analysis of the Pseudomonas aeruginosa genes, ruvA, ruvB and ruvC, involved in processing of homologous recombination intermediates. Gene X 1996; 182:63-70. [PMID: 8982068 DOI: 10.1016/s0378-1119(96)00474-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Escherichia coli, the products of the ruvA, ruvB and ruvC genes are all involved in the processing of recombination intermediates (Holliday structures) into recombinant molecules. We cloned a 9.4-kb DNA fragment from Pscudomonas aeruginosa PAO1 in a plasmid by functional complementation of the UV sensitivity of an E. coli strain with ruvABC deleted. In P. aeruginosa, the ruv region seemed to form a non-SOS regulated single operon consisting of orf26-ruvC-ruvA-ruvB, while in this region of E. coli, ruvA and ruvB form an SOS-regulated operon, orf26 and ruvC form a non-SOS operon, and these two operons are split by orf23. The deduced amino acid sequences of P. aeruginosa RuvA, RuvB and RuvC proteins were 55, 72 and 55% identical to those of the corresponding E. coli Ruv proteins. The individual ruv genes of P. aeruginosa complemented the corresponding single ruv mutations of E. coli, suggesting that the P. aeruginosa Ruv proteins can interact functionally with their E. coli Ruv partners in forming heterologous complexes. The sequence alignments of the Ruv proteins were extended by incorporation of data about the putative ruv genes obtained from data banks, and the RuvB sequences were conspicuously more conserved than the RuvA and RuvC sequences.
Collapse
Affiliation(s)
- T Hishida
- Department of Molecular Microbiology, Japan
| | | | | | | |
Collapse
|
18
|
Miller MC, Resnick JB, Smith BT, Lovett CM. The Bacillus subtilis dinR Gene Codes for the Analogue of Escherichia coli LexA. J Biol Chem 1996. [DOI: 10.1074/jbc.271.52.33502] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Shepley DP, Little JW. Mutant LexA proteins with specific defects in autodigestion. Proc Natl Acad Sci U S A 1996; 93:11528-33. [PMID: 8876169 PMCID: PMC38091 DOI: 10.1073/pnas.93.21.11528] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In self-processing biochemical reactions, a protein or RNA molecule specifically modifies its own structure. Many such reactions are regulated in response to the needs of the cell by an interaction with another effector molecule. In the system we study here, specific cleavage of the Escherichia coli LexA repressor, LexA cleaves itself in vitro at a slow rate, but in vivo cleavage requires interaction with an activated form of RecA protein. RecA acts indirectly as a coprotease to stimulate LexA autodigestion. We describe here a new class of lexA mutants, lexA (Adg-; for autodigestion-defective) mutants, termed Adg- for brevity. Adg- mutants specifically interfered with the ability of LexA to autodigest but left intact its ability to undergo RecA-mediated cleavage. The data are consistent with a conformational model in which RecA favors a reactive conformation capable of undergoing cleavage. To our knowledge, this is the first example of a mutation in a regulated self-processing reaction that impairs the rate of self-processing without markedly affecting the stimulated reaction. Had wild-type lexA carried such a substitution, discovery of its self-processing would have been difficult; we suggest that, in other systems, a slow rate of self-processing has prevented recognition that a reaction is of this nature.
Collapse
Affiliation(s)
- D P Shepley
- Department of Biochemistry, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
20
|
Abstract
The uvrB gene of Pseudomonas aeruginosa has been isolated from a genomic library by complementation of an Escherichia coli uvrB mutant. The complete nucleotide sequence of P. aeruginosa uvrB consists of 2,013 bp, encoding a polypeptide of 670 amino acids. A P. aeruginosa SOS consensus region, which functions as a binding site for the LexA repressor molecule, is not present in the upstream region of the uvrB gene isolated. By transcriptional fusions with a reporter gene, it has been demonstrated that, contrary to what happens with the homologous gene of E. coli, the P. aeruginosa uvrB gene is not DNA damage inducible. Nevertheless, the UvrB protein must be functional in P. aeruginosa cells because a uvrB-defective mutant is extremely sensitive to UV radiation.
Collapse
Affiliation(s)
- E Rivera
- Department of Genetics and Microbiology, Autonomous University of Barcelona Bellaterra, Spain
| | | | | |
Collapse
|
21
|
Clerch B, Garriga X, Torrents E, Rosales CM, Llagostera M. Construction and characterization of two lexA mutants of Salmonella typhimurium with different UV sensitivities and UV mutabilities. J Bacteriol 1996; 178:2890-6. [PMID: 8631678 PMCID: PMC178025 DOI: 10.1128/jb.178.10.2890-2896.1996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Salmonella typhimurium has a SOS regulon which resembles that of Escherichia coli. recA mutants of S. typhimurium have already been isolated, but no mutations in lexA have been described yet. In this work, two different lexA mutants of S. typhimurium LT2 have been constructed on a sulA background to prevent cell death and further characterized. The lexA552 and lexA11 alleles contain an insertion of the kanamycin resistance fragment into the carboxy- and amino-terminal regions of the lexA gene, respectively. SOS induction assays indicated that both lexA mutants exhibited a LexA(Def) phenotype, although SOS genes were apparently more derepressed in the lexA11 mutant than in the lexA552 mutant. Like lexA(Def) of E. coli, both lexA mutations only moderately increased the UV survival of S. typhimurium, and the lexA552 strain was as mutable as the lexA+ strain by UV in the presence of plasmids encoding MucAB or E. coli UmuDC (UmuDCEc). In contrast, a lexA11 strain carrying any of these plasmids was nonmutable by UV. This unexpected behavior was abolished when the lexA11 mutation was complemented in trans by the lexA gene of S. typhimurium. The results of UV mutagenesis correlated well with those of survival to UV irradiation, indicating that MucAB and UmuDCEc proteins participate in the error-prone repair of UV damage in lexA552 but not in lexA11. These intriguing differences between the mutagenic responses of lexA552 and lexA11 mutants to UV irradiation are discussed, taking into account the different degrees to which the SOS response is derepressed in these mutants.
Collapse
Affiliation(s)
- B Clerch
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
22
|
Boyce JD, Davidson BE, Hillier AJ. Identification of prophage genes expressed in lysogens of the Lactococcus lactis bacteriophage BK5-T. Appl Environ Microbiol 1995; 61:4099-104. [PMID: 8526524 PMCID: PMC167717 DOI: 10.1128/aem.61.11.4099-4104.1995] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Bacteriophage BK5-T is a small isometric-headed temperate phage that infects Lactococcus lactis subsp. cremoris. Northern (RNA) analysis of mRNA produced by lysogenic strains containing BK5-T prophage revealed four major BK5-T transcripts that are 0.8, 1.3, 1.8, and 1.8 kb in size and enabled a transcription map of the prophage genome to be prepared. The position and size of each transcript corresponded closely to the position and size of open reading frames predicted from the nucleotide sequence of BK5-T. Analysis of the transcripts suggested that one of them was derived from the gene encoding the BK5-T integrase and another was from the gene encoding the BK5-T homolog of the lambda cI repressor. Computer analysis of the nucleotide sequence upstream of the BK5-T cI homolog predicted the presence of a pair of divergent promoters and three inverted repeat sequences, features characteristic of temperature-phage immunity regions. By analogy with lambda, the three inverted repeat sequences could be binding sites for cI or Cro homologs and the two divergent promoters could initiate transcription through the BK5-T equivalents of cI and cro.
Collapse
Affiliation(s)
- J D Boyce
- Russell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
23
|
Abstract
We present edition VIII of the genetic map of Salmonella typhimurium LT2. We list a total of 1,159 genes, 1,080 of which have been located on the circular chromosome and 29 of which are on pSLT, the 90-kb plasmid usually found in LT2 lines. The remaining 50 genes are not yet mapped. The coordinate system used in this edition is neither minutes of transfer time in conjugation crosses nor units representing "phage lengths" of DNA of the transducing phage P22, as used in earlier editions, but centisomes and kilobases based on physical analysis of the lengths of DNA segments between genes. Some of these lengths have been determined by digestion of DNA by rare-cutting endonucleases and separation of fragments by pulsed-field gel electrophoresis. Other lengths have been determined by analysis of DNA sequences in GenBank. We have constructed StySeq1, which incorporates all Salmonella DNA sequence data known to us. StySeq1 comprises over 548 kb of nonredundant chromosomal genomic sequences, representing 11.4% of the chromosome, which is estimated to be just over 4,800 kb in length. Most of these sequences were assigned locations on the chromosome, in some cases by analogy with mapped Escherichia coli sequences.
Collapse
Affiliation(s)
- K E Sanderson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
24
|
Riera J, Barbé J. Cloning, sequence and regulation of expression of the lexA gene of Aeromonas hydrophila. Gene X 1995; 154:71-5. [PMID: 7867953 DOI: 10.1016/0378-1119(94)00836-h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The lexA gene of Aeromonas hydrophila (Ah) has been isolated by using a specific one-step cloning system. The Ah LexA repressor is able to block Escherichia coli (Ec) SOS gene expression and is likely to be cleaved by the activated RecA protein of this bacterial species after DNA damage. Ah lexA would encode a protein of 207 amino acids (aa), which is 75% identical to the LexA repressor of Ec. Two Ec-like SOS boxes have been located upstream from Ah lexA, the distance between them being 4 bp, whereas this same distance in Ec lexA is 5 bp. The structure and sequence of the DNA-binding domain of the LexA repressor of Ec, as well as the region at which its hydrolysis occurs, are highly conserved in Ah LexA. Moreover, a residue of the region implicated in the specific cleavage reaction, and which is present in all known RecA-cleavable repressors, is changed in the Ah LexA. Expression of Ah lexA is DNA-damage inducible in both the Ah and Ec genetic backgrounds to the same extent. In contrast, Ec lexA is poorly induced in DNA-injured Ah cells.
Collapse
Affiliation(s)
- J Riera
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Spain
| | | |
Collapse
|
25
|
Liu Y, Chatterjee A, Chatterjee AK. Nucleotide sequence, organization and expression of rdgA and rdgB genes that regulate pectin lyase production in the plant pathogenic bacterium Erwinia carotovora subsp. carotovora in response to DNA-damaging agents. Mol Microbiol 1994; 14:999-1010. [PMID: 7715460 DOI: 10.1111/j.1365-2958.1994.tb01334.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In most soft-rotting Erwinia spp., including E. carotovora subsp. carotovora strain 71 (Ecc71), production of the plant cell wall degrading enzyme pectin lyase (Pnl) is activated by DNA-damaging agents such as mitomycin C (MC). Induction of Pnl production in Ecc71 requires a functional recA gene and the rdg locus. DNA sequencing and RNA analyses revealed that the rdg locus contains two regulatory genes, rdgA and rdgB, in separate transcriptional units. There is high homology between RdgA and repressors of lambdoid phages, specially phi 80. RdgB, however, has significant homology with transcriptional activators of Mu phage. Both RdgA and RdgB are also predicted to possess helix-turn-helix motifs. By replacing the rdgB promoter with the IPTG-inducible tac promoter, we have determined that rdgB by itself can activate Pnl production in Escherichia coli. However, deletion analysis of rdg+ DNA indicated that, when driven by their native promoters, functions of both rdgA and rdgB are required for the induction of pnlA expression by MC treatment. While rdgB transcription occurs only after MC treatment, a substantial level of rdgA mRNA is detected in the absence of MC treatment. Moreover, upon induction with MC, a new rdgA mRNA species, initiated from a different start site, is produced at a high level. Thus, the two closely linked rdgA and rdgB genes, required for the regulation of Pnl production, are expressed differently in Ecc71.
Collapse
Affiliation(s)
- Y Liu
- Department of Plant Pathology, University of Missouri, Columbia 65211
| | | | | |
Collapse
|
26
|
Riera J, Fernández de Henestrosa AR, Garriga X, Tapias A, Barbé J. Interspecies regulation of the recA gene of gram-negative bacteria lacking an E. coli-like SOS operator. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:523-7. [PMID: 7808403 DOI: 10.1007/bf00302266] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The recA genes of Agrobacterium tumefaciens, Rhizobium meliloti, Rhizobium phaseoli and Rhodobacter sphaeroides, species belonging to the alpha-group bacteria of the Proteobacteria class, have been fused in vitro to the lacZ gene of Escherichia coli. By using a mini-Tn5 transposon derivative, each of these recA-lacZ fusions was introduced into the chromosome of each of the four species, and into that of E. coli. The recA genes of three of the alpha bacteria are induced by DNA damage when inserted in A. tumefaciens, R. phaseoli or R. meliloti chromosomes. The expression of the recA gene of R. sphaeroides is DNA damage-mediated only when present in its own chromosome; none of the genes is induced in E. coli. Likewise, the recA gene of E. coli is not induced in any of the four alpha species. These data indicate that A. tumefaciens, R. meliloti and R. phaseoli possess a LexA-like repressor, which is able to block the expression of their recA genes, as well as that of R. sphaeroides, but not the recA gene of E. coli. The LexA repressor of R. sphaeroides does not repress the recA gene of A. tumefaciens, R. meliloti, R. phaseoli or E. coli.
Collapse
Affiliation(s)
- J Riera
- Department of Genetics and Microbiology, Faculty of Sciences, Autonomous University of Barcelona, Spain
| | | | | | | | | |
Collapse
|
27
|
Fernández de Henestrosa AR, Barbé J. Autoregulation and kinetics of induction of the Rhizobium phaseoli recA gene. Mutat Res 1994; 308:99-107. [PMID: 7516490 DOI: 10.1016/0027-5107(94)90202-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A fusion between the recA gene of Rhizobium phaseoli and the lacZ gene was constructed in vitro and cloned in a mini-Tn5 transposon derivative to obtain chromosomal insertions which make it possible to quantitatively examine their transcriptional regulation in both R. phaseoli and E. coli. Likewise, and by insertion of a spectinomycin-resistance gene cassette into the recA gene of R. phaseoli and subsequent marker exchange, a RecA- derivative of this bacterial species has been obtained. Analysis of this recA-lacZ fusion showed that it was inducible by DNA damage in the RecA+ strain of R. phaseoli but not in the RecA- mutant. On the other hand, the recA-lacZ fusion of R. phaseoli was not induced in DNA-damaged RecA+ cells of E. coli. Furthermore, the range of UV doses which give rise to dose dependence in the induction of its respective recA genes is different in R. phaseoli from that in E. coli.
Collapse
Affiliation(s)
- A R Fernández de Henestrosa
- Department of Genetics and Microbiology, Faculty of Sciences, Autonomous University of Barcelona, Bellaterra, Spain
| | | |
Collapse
|
28
|
Calero S, Fernandez de Henestrosa AR, Barbé J. Molecular cloning, sequence and regulation of expression of the recA gene of the phototrophic bacterium Rhodobacter sphaeroides. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:116-20. [PMID: 8277942 DOI: 10.1007/bf00277356] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The recA gene of Rhodobacter sphaeroides 2.4.1 has been isolated by complementation of a UV-sensitive RecA- mutant of Pseudomonas aeruginosa. Its complete nucleotide sequence consists of 1032 bp, encoding a polypeptide of 343 amino acids. The deduced amino acid sequence displayed highest identity to the RecA proteins from Rhizobium meliloti, Rhizobium phaseoli, and Agrobacterium tumefaciens. An Escherichia coli-like SOS consensus region, which functions as a binding site for the LexA repressor molecule was not present in the 215 bp upstream region of the R. sphaeroides recA gene. Nevertheless, by using a recA-lacZ fusion, we have shown that expression of the recA gene of R. sphaeroides is inducible by DNA damage. A recA-defective strain of R. sphaeroides was obtained by replacement of the active recA gene by a gene copy inactivated in vitro. The resulting recA mutant exhibited increased sensitivity to UV irradiation, and was impaired in its ability to perform homologous recombination as well as to trigger DNA damage-mediated expression. This is the first recA gene from a Gram-negative bacterium that lacks an E. coli-like SOS box but whose expression has been shown to be DNA damage-inducible and auto-regulated.
Collapse
Affiliation(s)
- S Calero
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
29
|
Abstract
We have identified in Bacillus subtilis a DNA-binding protein that is functionally analogous to the Escherichia coli LexA protein. We show that the 23-kDa B. subtilis protein binds specifically to the consensus sequence 5'-GAACN4GTTC-3' located within the putative promoter regions of four distinct B. subtilis DNA damage-inducible genes: dinA, dinB, dinC, and recA. In RecA+ strains, the protein's specific DNA binding activity was abolished following treatment with mitomycin C; the decrease in DNA binding activity after DNA damage had a half-life of about 5 min and was followed by an increase in SOS gene expression. There was no detectable decrease in DNA binding activity in B. subtilis strains deficient in RecA (recA1, recA4) or otherwise deficient in SOS induction (recM13) following mitomycin C treatment. The addition of purified B. subtilis RecA protein, activated by single-stranded DNA and dATP, abolished the specific DNA binding activity in crude extracts of RecA+ strains and strains deficient in SOS induction. We purified the B. subtilis DNA-binding protein more than 4,000-fold, using an affinity resin in which a 199-bp DNA fragment containing the dinC promoter region was coupled to cellulose. We show that B. subtilis RecA inactivates the DNA binding activity of the purified B. subtilis protein in a reaction that requires single-stranded DNA and nucleoside triphosphate. By analogy with E. coli, our results indicate that the DNA-binding protein is the repressor of the B. subtilis SOS DNA repair system.
Collapse
Affiliation(s)
- C M Lovett
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267
| | | | | |
Collapse
|
30
|
Calero S, Garriga X, Barbé J. Analysis of the DNA damage-mediated induction of Pseudomonas putida and Pseudomonas aeruginosa lexA genes. FEMS Microbiol Lett 1993; 110:65-70. [PMID: 8319897 DOI: 10.1111/j.1574-6968.1993.tb06296.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A fusion between the lexA gene of Pseudomonas aeruginosa and Pseudomonas putida and the lacZ gene was constructed in vitro and cloned in a mini-Tn5 transposon derivative to obtain chromosomal insertions which enable to quantitatively examine their transcriptional regulation in both Pseudomonas and E. coli. Analysis of DNA damage-mediated induction of these lexA-lacZ fusions showed that expression of P. putida and P. aeruginosa lexA genes was always higher and earlier than the expression of the lexA gene of E. coli. Furthermore, and in contrast to the lexA gene fusion of E. coli, the rates and extent of the induction of lexA gene fusion of P. putida and P. aeruginosa were largely independent of the UV doses applied. The behaviour of the lexA-lacZ fusions of two Pseudomonas species was the same regardless of whether they were inserted into their own chromosome or into E. coli.
Collapse
Affiliation(s)
- S Calero
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
31
|
Riera J, Barbé J. Sequence of the Providencia rettgeri lexA gene and its control region. Nucleic Acids Res 1993; 21:2256. [PMID: 8502572 PMCID: PMC309499 DOI: 10.1093/nar/21.9.2256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- J Riera
- Department of Genetics and Microbiology, Faculty of Sciences, Autonomous University of Barcelona, Bellaterra, Spain
| | | |
Collapse
|
32
|
Bourdineaud J, Heierli D, Gamper M, Verhoogt H, Driessen A, Konings W, Lazdunski C, Haas D. Characterization of the arcD arginine:ornithine exchanger of Pseudomonas aeruginosa. Localization in the cytoplasmic membrane and a topological model. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53337-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Schnarr M, Granger-Schnarr M. LexA, the Self-Cleaving Transcriptional Repressor of the SOS System. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 1993. [DOI: 10.1007/978-3-642-77950-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|