1
|
Abstract
Saccharomyces cerevisiae, whose evolutionary past includes a whole-genome duplication event, is characterized by a mosaic genome configuration with substantial apparent genetic redundancy. This apparent redundancy raises questions about the evolutionary driving force for genomic fixation of “minor” paralogs and complicates modular and combinatorial metabolic engineering strategies. While isoenzymes might be important in specific environments, they could be dispensable in controlled laboratory or industrial contexts. The present study explores the extent to which the genetic complexity of the central carbon metabolism (CCM) in S. cerevisiae, here defined as the combination of glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, and a limited number of related pathways and reactions, can be reduced by elimination of (iso)enzymes without major negative impacts on strain physiology. Cas9-mediated, groupwise deletion of 35 of the 111 genes yielded a “minimal CCM” strain which, despite the elimination of 32% of CCM-related proteins, showed only a minimal change in phenotype on glucose-containing synthetic medium in controlled bioreactor cultures relative to a congenic reference strain. Analysis under a wide range of other growth and stress conditions revealed remarkably few phenotypic changes from the reduction of genetic complexity. Still, a well-documented context-dependent role of GPD1 in osmotolerance was confirmed. The minimal CCM strain provides a model system for further research into genetic redundancy of yeast genes and a platform for strategies aimed at large-scale, combinatorial remodeling of yeast CCM.
Collapse
|
2
|
Tragni V, Cotugno P, De Grassi A, Massari F, Di Ronzo F, Aresta AM, Zambonin C, Sanzani SM, Ippolito A, Pierri CL. Targeting mitochondrial metabolite transporters in Penicillium expansum for reducing patulin production. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:158-181. [PMID: 33250320 DOI: 10.1016/j.plaphy.2020.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 06/12/2023]
Abstract
There is an increasing need of alternative treatments to control fungal infection and consequent mycotoxin accumulation in harvested fruits and vegetables. Indeed, only few biological targets of antifungal agents have been characterized and can be used for limiting fungal spread from decayed fruits/vegetables to surrounding healthy ones during storage. On this concern, a promising target of new antifungal treatments may be represented by mitochondrial proteins due to some species-specific functions played by mitochondria in fungal morphogenesis, drug resistance and virulence. One of the most studied mycotoxins is patulin produced by several species of Penicillium and Aspergillus genera. Patulin is toxic to many biological systems including bacteria, higher plants and animalia. Although precise biochemical mechanisms of patulin toxicity in humans are not completely clarified, its high presence in fresh and processed apple fruits and other apple-based products makes necessary developing a strategy for limiting its presence/accumulation. Patulin biosynthetic pathway consists of an enzymatic cascade, whose first step is represented by the synthesis of 6-methylsalicylic acid, obtained from the condensation of one acetyl-CoA molecule with three malonyl-CoA molecules. The most abundant acetyl-CoA precursor is represented by citrate produced by mitochondria. In the present investigation we report about the possibility to control patulin production through the inhibition of mitochondrial/peroxisome transporters involved in the export of acetyl-CoA precursors from mitochondria and/or peroxisomes, with specific reference to the predicted P. expansum mitochondrial Ctp1p, DTC, Sfc1p, Oac1p and peroxisomal PXN carriers.
Collapse
Affiliation(s)
- Vincenzo Tragni
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Pietro Cotugno
- Biology Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Anna De Grassi
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy; BROWSer S.r.l. (https://browser-bioinf.com/) c/o, Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126, Bari, Italy
| | - Federica Massari
- Biology Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Francesco Di Ronzo
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Antonella Maria Aresta
- Chemistry Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Carlo Zambonin
- Chemistry Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | | | - Antonio Ippolito
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy.
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy; BROWSer S.r.l. (https://browser-bioinf.com/) c/o, Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
3
|
Toleco MR, Naake T, Zhang Y, Heazlewood JL, R. Fernie A. Plant Mitochondrial Carriers: Molecular Gatekeepers That Help to Regulate Plant Central Carbon Metabolism. PLANTS 2020; 9:plants9010117. [PMID: 31963509 PMCID: PMC7020223 DOI: 10.3390/plants9010117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
The evolution of membrane-bound organelles among eukaryotes led to a highly compartmentalized metabolism. As a compartment of the central carbon metabolism, mitochondria must be connected to the cytosol by molecular gates that facilitate a myriad of cellular processes. Members of the mitochondrial carrier family function to mediate the transport of metabolites across the impermeable inner mitochondrial membrane and, thus, are potentially crucial for metabolic control and regulation. Here, we focus on members of this family that might impact intracellular central plant carbon metabolism. We summarize and review what is currently known about these transporters from in vitro transport assays and in planta physiological functions, whenever available. From the biochemical and molecular data, we hypothesize how these relevant transporters might play a role in the shuttling of organic acids in the various flux modes of the TCA cycle. Furthermore, we also review relevant mitochondrial carriers that may be vital in mitochondrial oxidative phosphorylation. Lastly, we survey novel experimental approaches that could possibly extend and/or complement the widely accepted proteoliposome reconstitution approach.
Collapse
Affiliation(s)
- M. Rey Toleco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- School of BioSciences, the University of Melbourne, Victoria 3010, Australia;
| | - Thomas Naake
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
4
|
Mitochondrial Citrate Transporters CtpA and YhmA Are Required for Extracellular Citric Acid Accumulation and Contribute to Cytosolic Acetyl Coenzyme A Generation in Aspergillus luchuensis mut. kawachii. Appl Environ Microbiol 2019; 85:AEM.03136-18. [PMID: 30737343 DOI: 10.1128/aem.03136-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/27/2019] [Indexed: 11/20/2022] Open
Abstract
Aspergillus luchuensis mut. kawachii (A. kawachii) produces a large amount of citric acid during the process of fermenting shochu, a traditional Japanese distilled spirit. In this study, we characterized A. kawachii CtpA and YhmA, which are homologous to the yeast Saccharomyces cerevisiae mitochondrial citrate transporters Ctp1 and Yhm2, respectively. CtpA and YhmA were purified from A. kawachii and reconstituted into liposomes. The proteoliposomes exhibited only counterexchange transport activity; CtpA transported citrate using countersubstrates, especially cis-aconitate and malate, whereas YhmA transported citrate using a wider variety of countersubstrates, including citrate, 2-oxoglutarate, malate, cis-aconitate, and succinate. Disruption of ctpA and yhmA caused deficient hyphal growth and conidium formation with reduced mycelial weight-normalized citrate production. Because we could not obtain a ΔctpA ΔyhmA strain, we constructed an S-tagged ctpA (ctpA-S) conditional expression strain in the ΔyhmA background using the Tet-On promoter system. Knockdown of ctpA-S in ΔyhmA resulted in a severe growth defect on minimal medium with significantly reduced acetyl coenzyme A (acetyl-CoA) and lysine levels, indicating that double disruption of ctpA and yhmA leads to synthetic lethality; however, we subsequently found that the severe growth defect was relieved by addition of acetate or lysine, which could remedy the acetyl-CoA level. Our results indicate that CtpA and YhmA are mitochondrial citrate transporters involved in citric acid production and that transport of citrate from mitochondria to the cytosol plays an important role in acetyl-CoA biogenesis in A. kawachii IMPORTANCE Citrate transport is believed to play a significant role in citrate production by filamentous fungi; however, details of the process remain unclear. This study characterized two citrate transporters from Aspergillus luchuensis mut. kawachii Biochemical and gene disruption analyses showed that CtpA and YhmA are mitochondrial citrate transporters required for normal hyphal growth, conidium formation, cytosolic acetyl-CoA synthesis, and citric acid production. The characteristics of fungal citrate transporters elucidated in this study will help expand our understanding of the citrate production mechanism and facilitate the development and optimization of industrial organic acid fermentation processes.
Collapse
|
5
|
Xiberras J, Klein M, Nevoigt E. Glycerol as a substrate for Saccharomyces cerevisiae based bioprocesses - Knowledge gaps regarding the central carbon catabolism of this 'non-fermentable' carbon source. Biotechnol Adv 2019; 37:107378. [PMID: 30930107 DOI: 10.1016/j.biotechadv.2019.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Glycerol is an interesting alternative carbon source in industrial bioprocesses due to its higher degree of reduction per carbon atom compared to sugars. During the last few years, significant progress has been made in improving the well-known industrial platform organism Saccharomyces cerevisiae with regard to its glycerol utilization capability, particularly in synthetic medium. This provided a basis for future metabolic engineering focusing on the production of valuable chemicals from glycerol. However, profound knowledge about the central carbon catabolism in synthetic glycerol medium is a prerequisite for such incentives. As a matter of fact, the current assumptions about the actual in vivo fluxes active on glycerol as the sole carbon source have mainly been based on omics data collected in complex media or were even deduced from studies with other non-fermentable carbon sources, such as ethanol or acetate. A number of uncertainties have been identified which particularly regard the role of the glyoxylate cycle, the subcellular localization of the respective enzymes, the contributions of mitochondrial transporters and the active anaplerotic reactions under these conditions. The review scrutinizes the current knowledge, highlights the necessity to collect novel experimental data using cells growing in synthetic glycerol medium and summarizes the current state of the art with regard to the production of valuable fermentation products from a carbon source that has been considered so far as 'non-fermentable' for the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Joeline Xiberras
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
6
|
Ferens FG, Spicer V, Krokhin OV, Motnenko A, Summers WA, Court DA. A deletion variant partially complements a porin-less strain of Neurospora crassa. Biochem Cell Biol 2017; 95:318-327. [DOI: 10.1139/bcb-2016-0166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial porin, the voltage-dependent anion channel, plays an important role in metabolism and other cellular functions within eukaryotic cells. To further the understanding of porin structure and function, Neurospora crassa wild-type porin was replaced with a deletion variant lacking residues 238–242 (238porin). 238porin was assembled in the mitochondrial outer membrane, but the steady state levels were only about 3% of those of the wild-type protein. The strain harbouring 238porin displayed cytochrome deficiencies and expressed alternative oxidase. Nonetheless, it exhibited an almost normal linear growth rate. Analysis of mitochondrial proteomes from a wild-type strain FGSC9718, a strain lacking porin (ΔPor-1), and one expressing only 238porin, revealed that the major differences between the variant strains were in the levels of subunits of the NADH:ubiquinone oxidoreductase (complex I) of the electron transport chain, which were reduced only in the ΔPor-1 strain. These, and other proteins related to electron flow and mitochondrial biogenesis, are differentially affected by relative porin levels.
Collapse
Affiliation(s)
- Fraser G. Ferens
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Victor Spicer
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Oleg V. Krokhin
- Department of Internal Medicine & Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - William A.T. Summers
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Deborah A. Court
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Zeman I, Neboháčová M, Gérecová G, Katonová K, Jánošíková E, Jakúbková M, Centárová I, Dunčková I, Tomáška L, Pryszcz LP, Gabaldón T, Nosek J. Mitochondrial Carriers Link the Catabolism of Hydroxyaromatic Compounds to the Central Metabolism in Candida parapsilosis. G3 (BETHESDA, MD.) 2016; 6:4047-4058. [PMID: 27707801 PMCID: PMC5144973 DOI: 10.1534/g3.116.034389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/01/2016] [Indexed: 12/23/2022]
Abstract
The pathogenic yeast Candida parapsilosis metabolizes hydroxyderivatives of benzene and benzoic acid to compounds channeled into central metabolism, including the mitochondrially localized tricarboxylic acid cycle, via the 3-oxoadipate and gentisate pathways. The orchestration of both catabolic pathways with mitochondrial metabolism as well as their evolutionary origin is not fully understood. Our results show that the enzymes involved in these two pathways operate in the cytoplasm with the exception of the mitochondrially targeted 3-oxoadipate CoA-transferase (Osc1p) and 3-oxoadipyl-CoA thiolase (Oct1p) catalyzing the last two reactions of the 3-oxoadipate pathway. The cellular localization of the enzymes indicates that degradation of hydroxyaromatic compounds requires a shuttling of intermediates, cofactors, and products of the corresponding biochemical reactions between cytosol and mitochondria. Indeed, we found that yeast cells assimilating hydroxybenzoates increase the expression of genes SFC1, LEU5, YHM2, and MPC1 coding for succinate/fumarate carrier, coenzyme A carrier, oxoglutarate/citrate carrier, and the subunit of pyruvate carrier, respectively. A phylogenetic analysis uncovered distinct evolutionary trajectories for sparsely distributed gene clusters coding for enzymes of both pathways. Whereas the 3-oxoadipate pathway appears to have evolved by vertical descent combined with multiple losses, the gentisate pathway shows a striking pattern suggestive of horizontal gene transfer to the evolutionarily distant Mucorales.
Collapse
Affiliation(s)
- Igor Zeman
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Martina Neboháčová
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Gabriela Gérecová
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Kornélia Katonová
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Eva Jánošíková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Michaela Jakúbková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Ivana Centárová
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Ivana Dunčková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - L'ubomír Tomáška
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Leszek P Pryszcz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
- Departament de Ciències Experimentals I de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Jozef Nosek
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| |
Collapse
|
8
|
Chen X, Zhu P, Liu L. Modular optimization of multi-gene pathways for fumarate production. Metab Eng 2016; 33:76-85. [DOI: 10.1016/j.ymben.2015.07.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/19/2015] [Accepted: 07/25/2015] [Indexed: 12/14/2022]
|
9
|
Chidi BS, Rossouw D, Bauer FF. Identifying and assessing the impact of wine acid-related genes in yeast. Curr Genet 2015; 62:149-64. [DOI: 10.1007/s00294-015-0498-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 11/28/2022]
|
10
|
Zambuzzi-Carvalho PF, Fernandes AG, Valadares MC, Tavares PDM, Nosanchuk JD, de Almeida Soares CM, Pereira M. Transcriptional profile of the human pathogenic fungus Paracoccidioides lutzii in response to sulfamethoxazole. Med Mycol 2015; 53:477-92. [DOI: 10.1093/mmy/myv011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/27/2015] [Indexed: 01/04/2023] Open
|
11
|
Mitochondrial engineering of the TCA cycle for fumarate production. Metab Eng 2015; 31:62-73. [PMID: 25708514 DOI: 10.1016/j.ymben.2015.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 12/08/2014] [Accepted: 02/11/2015] [Indexed: 01/07/2023]
Abstract
Microbial fumarate production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here, mitochondrial engineering was used to construct the oxidative pathway for fumarate production starting from the TCA cycle intermediate α-ketoglutarate in Candida glabrata. Accordingly, α-ketoglutarate dehydrogenase complex (KGD), succinyl-CoA synthetase (SUCLG), and succinate dehydrogenase (SDH) were selected to be manipulated for strengthening the oxidative pathway, and the engineered strain T.G-K-S-S exhibited increased fumarate biosynthesis (1.81 g L(-1)). To further improve fumarate production, the oxidative route was optimized. First, three fusion proteins KGD2-SUCLG2, SUCLG2-SDH1 and KGD2-SDH1 were constructed, and KGD2-SUCLG2 led to improved fumarate production (4.24 g L(-1)). In addition, various strengths of KGD2-SUCLG2 and SDH1 expression cassettes were designed by combinations of promoter strengths and copy numbers, resulting in a large increase in fumarate production (from 4.24 g L(-1) to 8.24 g L(-1)). Then, through determining intracellular amino acids and its related gene expression levels, argininosuccinate lyase in the urea cycle was identified as the key factor for restricting higher fumarate production. Correspondingly, after overexpression of it, the fumarate production was further increased to 9.96 g L(-1). Next, two dicarboxylic acids transporters facilitated an improvement of fumarate production, and, as a result, the final strain T.G-KS(H)-S(M)-A-2S reached fumarate titer of 15.76 g L(-1). This strategy described here paves the way to the development of an efficient pathway for microbial production of fumarate.
Collapse
|
12
|
Flipphi M, Oestreicher N, Nicolas V, Guitton A, Vélot C. The Aspergillus nidulans acuL gene encodes a mitochondrial carrier required for the utilization of carbon sources that are metabolized via the TCA cycle. Fungal Genet Biol 2014; 68:9-22. [DOI: 10.1016/j.fgb.2014.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
13
|
Palmieri F, Agrimi G, Blanco E, Castegna A, Di Noia MA, Iacobazzi V, Lasorsa FM, Marobbio CMT, Palmieri L, Scarcia P, Todisco S, Vozza A, Walker J. Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1757:1249-62. [PMID: 16844075 DOI: 10.1016/j.bbabio.2006.05.023] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/12/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
The inner membranes of mitochondria contain a family of carrier proteins that are responsible for the transport in and out of the mitochondrial matrix of substrates, products, co-factors and biosynthetic precursors that are essential for the function and activities of the organelle. This family of proteins is characterized by containing three tandem homologous sequence repeats of approximately 100 amino acids, each folded into two transmembrane alpha-helices linked by an extensive polar loop. Each repeat contains a characteristic conserved sequence. These features have been used to determine the extent of the family in genome sequences. The genome of Saccharomyces cerevisiae contains 34 members of the family. The identity of five of them was known before the determination of the genome sequence, but the functions of the remaining family members were not. This review describes how the functions of 15 of these previously unknown transport proteins have been determined by a strategy that consists of expressing the genes in Escherichia coli or Saccharomyces cerevisiae, reconstituting the gene products into liposomes and establishing their functions by transport assay. Genetic and biochemical evidence as well as phylogenetic considerations have guided the choice of substrates that were tested in the transport assays. The physiological roles of these carriers have been verified by genetic experiments. Various pieces of evidence point to the functions of six additional members of the family, but these proposals await confirmation by transport assay. The sequences of many of the newly identified yeast carriers have been used to characterize orthologs in other species, and in man five diseases are presently known to be caused by defects in specific mitochondrial carrier genes. The roles of eight yeast mitochondrial carriers remain to be established.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nickas ME, Diamond AE, Yang MJ, Neiman AM. Regulation of spindle pole function by an intermediary metabolite. Mol Biol Cell 2004; 15:2606-16. [PMID: 15034143 PMCID: PMC420086 DOI: 10.1091/mbc.e04-02-0128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spore formation in the yeast Saccharomyces cerevisiae depends on a modification of spindle pole bodies (SPBs) at the onset of meiosis II that allows them to promote de novo membrane formation. Depletion of the environmental carbon source during sporulation results in modification of only one SPB from each meiosis II spindle and formation of a two-spored ascus, called a nonsister dyad (NSD). We have found that mutants impaired in the glyoxylate pathway, which is required for the conversion of acetate to glucose, make NSDs when acetate is the primary carbon source. Wild-type cells make NSDs when the carbon source is glycerol, which is converted to glucose independently of the glyoxylate pathway. During NSD formation in glycerol, only the two SPBs created at the meiosis I/II transition ("daughters") are modified. In these conditions, the SPB components Mpc70p and Spo74p are not recruited to mother SPBs. Moreover, cooverexpression of Mpc70p and Spo74p suppresses NSD formation in glycerol. Our findings indicate that flux through the glyoxylate pathway during sporulation regulates modification of mother SPBs via recruitment of Mpc70p and Spo74p. These results define a cellular response in which the accumulation of an intermediary metabolite serves as a measure of biosynthetic capacity to regulate the number of daughter cells formed.
Collapse
Affiliation(s)
- Mark E Nickas
- Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA
| | | | | | | |
Collapse
|
15
|
|
16
|
Abstract
A comprehensive classification system for transmembrane molecular transporters has been proposed. This system is based on (i) mode of transport and energy-coupling mechanism, (ii) protein phylogenetic family, (iii) phylogenetic cluster, and (iv) substrate specificity. The proposed "Transport Commission" (TC) system is superficially similar to that implemented decades ago by the Enzyme Commission for enzymes, but it differs from the latter system in that it uses phylogenetic and functional data for classification purposes. Very few families of transporters include members that do not function exclusively in transport. Analyses reported reveal that channels, primary carriers, secondary carriers (uni-, sym-, and antiporters), and group translocators comprise distinct categories of transporters, and that transport mode and energy coupling are relatively immutable characteristics. By contrast, substrate specificity and polarity of transport are often readily mutable. Thus, with very few exceptions, a unified family of transporters includes members that function by a single transport mode and energy-coupling mechanism although a variety of substrates may be transported with either inwardly or outwardly directed polarity. The TC system allows cross-referencing according to substrates transported and protein sequence database accession numbers. Thus, familial assignments of newly sequenced transport proteins are facilitated. In this article I examine families of transporters that are eukaryotic specific. These families include (i) channel proteins, mostly from animals; (ii) facilitators and secondary active transport carriers; (iii) a few ATP-dependent primary active transporters; and (iv) transporters of unknown mode of action or energy-coupling mechanism. None of the several ATP-independent primary active transport energy-coupling mechanisms found in prokaryotes is represented within the eukaryotic-specific families. The analyses reported provide insight into transporter families that may have arisen in eukaryotes after the separation of eukaryotes from archaea and bacteria. On the basis of the reported analyses, it is suggested that the horizontal transfer of genes encoding transport proteins between eukaryotes and members of the other two domains of life occurred very infrequently during evolutionary history.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA.
| |
Collapse
|
17
|
Haurie V, Perrot M, Mini T, Jenö P, Sagliocco F, Boucherie H. The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 2001; 276:76-85. [PMID: 11024040 DOI: 10.1074/jbc.m008752200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast, the transition between the fermentative and the oxidative metabolism, called the diauxic shift, is associated with major changes in gene expression and protein synthesis. The zinc cluster protein Cat8p is required for the derepression of nine genes under nonfermentative growth conditions (ACS1, FBP1, ICL1, IDP2, JEN1, MLS1, PCK1, SFC1, and SIP4). To investigate whether the transcriptional control mediated by Cat8p can be extended to other genes and whether this control is the main control for the changes in the synthesis of the respective proteins during the adaptation to growth on ethanol, we analyzed the transcriptome and the proteome of a cat8 Delta strain during the diauxic shift. In this report, we demonstrate that, in addition to the nine genes known as Cat8p-dependent, there are 25 other genes or open reading frames whose expression at the diauxic shift is altered in the absence of Cat8p. For all of the genes characterized here, the Cat8p-dependent control results in a parallel alteration in mRNA and protein synthesis. It appears that the biochemical functions of the proteins encoded by Cat8p-dependent genes are essentially related to the first steps of ethanol utilization, the glyoxylate cycle, and gluconeogenesis. Interestingly, no function involved in the tricarboxylic cycle and the oxidative phosphorylation seems to be controlled by Cat8p.
Collapse
Affiliation(s)
- V Haurie
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, 33077 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Palmieri L, Lasorsa FM, Vozza A, Agrimi G, Fiermonte G, Runswick MJ, Walker JE, Palmieri F. Identification and functions of new transporters in yeast mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:363-9. [PMID: 11004452 DOI: 10.1016/s0005-2728(00)00173-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The genome of Saccharomyces cerevisiae encodes 35 putative members of the mitochondrial carrier family. Known members of this family transport substrates and products across the inner membranes of mitochondria. We are attempting to identify the functions of the yeast mitochondrial transporters via high-yield expression in Escherichia coli and/or S. cerevisiae, purification and reconstitution of their protein products into liposomes, where their transport properties are investigated. With this strategy, we have already identified the functions of seven S. cerevisiae gene products, whose structural and functional properties assigned them to the mitochondrial carrier family. The functional information obtained in the reconstituted system and the use of knock-out yeast strains can be usefully exploited for the investigation of the physiological role of individual transporters. Furthermore, the yeast carrier sequences can be used to identify the orthologous proteins in other organisms, including man.
Collapse
Affiliation(s)
- L Palmieri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Palmieri L, Runswick MJ, Fiermonte G, Walker JE, Palmieri F. Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance. J Bioenerg Biomembr 2000; 32:67-77. [PMID: 11768764 DOI: 10.1023/a:1005564429242] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The genome of Saccharomyces cerevisiae encodes 35 members of a family proteins that transport metabolites and substrates across the inner membranes of mitochondria. They include three isoforms of the ADP/ATP translocase and the phosphate and citrate carriers. At the start of our work, the functions of the remaining 30 members of the family were unknown. We are attempting to identify these 30 proteins by overexpression of the proteins in specially selected host strains of Escherichia coli that allow the carriers to accumulate at high levels in the form of inclusion bodies. The purified proteins are then reconstituted into proteoliposomes where their transport properties are studied. Thus far, we have identified the dicarboxylate, succinate-fumarate and ornithine carriers. Bacterial overexpression and functional identification, together with characterization of yeast knockout strains, has brought insight into the physiological significance of these transporters. The yeast dicarboxylate carrier sequence has been used to identify the orthologous protein in Caenorhabditis elegans and, in turn, this latter sequence has been used to establish the sequence of the human ortholog.
Collapse
Affiliation(s)
- L Palmieri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Italy.
| | | | | | | | | |
Collapse
|
20
|
Palmieri L, Vozza A, Agrimi G, De Marco V, Runswick MJ, Palmieri F, Walker JE. Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. J Biol Chem 1999; 274:22184-90. [PMID: 10428783 DOI: 10.1074/jbc.274.32.22184] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae encodes 35 members of the mitochondrial carrier family, including the OAC protein. The transport specificities of some family members are known, but most are not. The function of the OAC has been revealed by overproduction in Escherichia coli, reconstitution into liposomes, and demonstration that the proteoliposomes transport malonate, oxaloacetate, sulfate, and thiosulfate. Reconstituted OAC catalyzes both unidirectional transport and exchange of substrates. In S. cerevisiae, OAC is in inner mitochondrial membranes, and deletion of its gene greatly reduces transport of oxaloacetate sulfate, thiosulfate, and malonate. Mitochondria from wild-type cells swelled in isoosmotic solutions of ammonium salts of oxaloacetate, sulfate, thiosulfate, and malonate, indicating that these anions are cotransported with protons. Overexpression of OAC in the deletion strain increased greatly the [(35)S]sulfate/sulfate and [(35)S]sulfate/oxaloacetate exchanges in proteoliposomes reconstituted with digitonin extracts of mitochondria. The main physiological role of OAC appears to be to use the proton-motive force to take up into mitochondria oxaloacetate produced from pyruvate by cytoplasmic pyruvate carboxylase.
Collapse
Affiliation(s)
- L Palmieri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Redruello B, Valdes E, Luz Lopez M, Rodicio R. Multiple regulatory elements control the expression of the yeast ACR1 gene. FEBS Lett 1999; 445:246-50. [PMID: 10094465 DOI: 10.1016/s0014-5793(99)00120-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ACR1 gene, encoding a succinate-fumarate transporter, is required by the yeast Saccharomyces cerevisiae for ethanol utilization. Accordingly, gene expression is induced by ethanol and repressed by glucose. Here, we investigated three carbon source response elements present in its promoter region. Specific deletions as well as functional analysis of the elements in a heterologous promoter confirmed their role in transcriptional regulation. Protein binding to carbon source response elements of the ICL1 promoter was competed by all three elements to various extents by the respective ACR1 sequences. In addition, two putative stress response promoter elements present in the ACR1 promoter were investigated in deletion analyses and shown to contribute to gene expression.
Collapse
Affiliation(s)
- B Redruello
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Oviedo, Spain
| | | | | | | |
Collapse
|
22
|
Large-scale Phenotypic Analysis in Microtitre Plates of Mutants with Deleted Open Reading Frames from Yeast Chromosome III: Key-step Between Genomic Sequencing and Protein Function. J Microbiol Methods 1999. [DOI: 10.1016/s0580-9517(08)70206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
23
|
Palmieri L, Vozza A, Hönlinger A, Dietmeier K, Palmisano A, Zara V, Palmieri F. The mitochondrial dicarboxylate carrier is essential for the growth of Saccharomyces cerevisiae on ethanol or acetate as the sole carbon source. Mol Microbiol 1999; 31:569-77. [PMID: 10027973 DOI: 10.1046/j.1365-2958.1999.01197.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dicarboxylate carrier (DIC) is an integral membrane protein that catalyses a dicarboxylate-phosphate exchange across the inner mitochondrial membrane. We generated a yeast mutant lacking the gene for the DIC. The deletion mutant failed to grow on acetate or ethanol as sole carbon source but was viable on glucose, galactose, pyruvate, lactate and glycerol. The growth on ethanol or acetate was largely restored by the addition of low concentrations of aspartate, glutamate, fumarate, citrate, oxoglutarate, oxaloacetate and glucose, but not of succinate, leucine and lysine. The expression of the DIC gene in wild-type yeast was repressed in media containing ethanol or acetate with or without glycerol. These results indicate that the primary function of DIC is to transport cytoplasmic dicarboxylates into the mitochondrial matrix rather than to direct carbon flux to gluconeogenesis by exporting malate from the mitochondria. The delta DIC mutant may serve as a convenient host for overexpression of DIC and for the demonstration of its correct targeting and assembly.
Collapse
Affiliation(s)
- L Palmieri
- Department of Pharmaco-Biology, University of Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
van den Berg MA, de Jong-Gubbels P, Steensma HY. Transient mRNA responses in chemostat cultures as a method of defining putative regulatory elements: application to genes involved in Saccharomyces cerevisiae acetyl-coenzyme A metabolism. Yeast 1998; 14:1089-104. [PMID: 9778795 DOI: 10.1002/(sici)1097-0061(19980915)14:12<1089::aid-yea312>3.0.co;2-k] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To identify common regulatory sequences in the promoters of genes, transcription of 31 genes of Saccharomyces cerevisiae was analysed during the transient response to a glucose pulse in a chemostat culture. mRNA levels were monitored during the subsequent excess glucose, ethanol and acetate phases, while other conditions were kept constant. This setup allowed a direct comparison between regulation by glucose, ethanol and acetate. Genes with identical regulation patterns were grouped to identify regulatory elements in the promoters. In respect to regulation on glucose four classes were identified: no transcription under any of the conditions tested, no difference in regulation on glucose, induced on glucose and repressed on glucose. In addition, genes were found that were repressed or induced on ethanol or acetate. Sequence alignment of genes with similar regulation patterns revealed five new, putative regulatory promoter elements. (i) The glucose-inducible fermentation genes PDC1 and ADH1 share the sequence ATACCTTCSTT. (ii) Acetate-repression might be mediated by the decamer CCCGAG RGGA, present in the promoters of ACS2 and ACR1. (iii) A specific element (CCWTTSRNCCG) for the glyoxylate cycle was present in seven genes studied: CIT2, ICL1, MLS1, MDH2, CAT2, ACR1 and ACH1. These genes were derepressed on ethanol or acetate. (iv) The sequence ACGTSCRGAATGA was found in the promoters of the partially ethanol-repressed genes ACS1 and YAT1. (v) Ethanol induction, as seen for ACS2, ADH3 and MDH1, might be mediated via the sequence CGGSGCCGRAG.
Collapse
MESH Headings
- Acetates/metabolism
- Acetyl Coenzyme A/drug effects
- Acetyl Coenzyme A/genetics
- Acetyl Coenzyme A/metabolism
- Blotting, Northern
- Culture Media/pharmacology
- DNA, Fungal/drug effects
- DNA, Fungal/genetics
- Ethanol/metabolism
- Fermentation
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Fungal/drug effects
- Genes, Fungal/drug effects
- Genes, Fungal/genetics
- Glyoxylates/metabolism
- Kinetics
- RNA, Messenger/analysis
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- Regulatory Sequences, Nucleic Acid/drug effects
- Regulatory Sequences, Nucleic Acid/genetics
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- M A van den Berg
- Kluyver Institute for Biotechnology, Delft University of Technology, The Netherlands
| | | | | |
Collapse
|
25
|
Abstract
Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated.
Collapse
Affiliation(s)
- J M Gancedo
- Instituto de Investigaciones Biomédicas, Unidad de Bioquímica y Genética de Levaduras, CSIC, 28029 Madrid, Spain.
| |
Collapse
|
26
|
Nelson DR, Felix CM, Swanson JM. Highly conserved charge-pair networks in the mitochondrial carrier family. J Mol Biol 1998; 277:285-308. [PMID: 9514746 DOI: 10.1006/jmbi.1997.1594] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selection for regain-of-function mutations in the yeast ADP/ATP carrier AAC2 has revealed an unexpected series of charge-pairs. Four of the six amino acids involved are found in the mitochondrial energy transfer motifs used to define this family of proteins. As such, the results found with the ADP/ATP carrier may apply to the family as a whole. Mitochondrial carriers are built from three homologous domains, each with the conserved motif PX(D,E)XX(K,R). Neutralization of the conserved positive charges at K48, R152 or R252 in these motifs results in respiration defective yeast. Neutralization of the negative charges at D149 and D249 also make respiration defective yeast, though E45G or E45Q mutants are able to grow on glycerol. Regain of function occurs when a complementary charge is lost from another site in the molecule. This phenomenon has been observed independently eight times and thus is strong evidence for charge-pairs existing between the affected residues. Five different charge-pairs have been detected in the yeast AAC2 by this method and three more can be predicted based on homology between the domains. The highly conserved charge-pairs occurring within or between the three mitochondrial energy transfer signatures seem to be a critical feature of mitochondrial carrier structure, independent of the substrates transported. Conformational switching between alternative charge-pairs may constitute part of the basis for transport.
Collapse
Affiliation(s)
- D R Nelson
- Department of Biochemistry, The University of Tennessee, Memphis, TN 38163, USA
| | | | | |
Collapse
|
27
|
Palmieri L, Lasorsa FM, De Palma A, Palmieri F, Runswick MJ, Walker JE. Identification of the yeast ACR1 gene product as a succinate-fumarate transporter essential for growth on ethanol or acetate. FEBS Lett 1997; 417:114-8. [PMID: 9395087 DOI: 10.1016/s0014-5793(97)01269-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The protein encoded by the ACR1 gene in Saccharomyces cerevisiae belongs to a family of 35 related membrane proteins that are encoded in the fungal genome. Some of them are known to transport various substrates and products across the inner membranes of mitochondria, but the functions of 28 members of the family are unknown. The yeast ACR1 gene was introduced into Escherichia coli on an expression plasmid. The protein was over-produced as inclusion bodies, which were purified and solubilised in the presence of sarkosyl. The solubilised protein was reconstituted into liposomes and shown to transport fumarate and succinate. Its physiological role in S. cerevisiae is probably to transport cytoplasmic succinate, derived from isocitrate by the action of isocitrate lyase in the cytosol, into the mitochondrial matrix in exchange for fumarate. This exchange activity and the subsequent conversion of fumarate to oxaloacetate in the cytosol would be essential for the growth of S. cerevisiae on ethanol or acetate as the sole carbon source.
Collapse
Affiliation(s)
- L Palmieri
- The M.R.C. Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
28
|
DeRisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997; 278:680-6. [PMID: 9381177 DOI: 10.1126/science.278.5338.680] [Citation(s) in RCA: 2804] [Impact Index Per Article: 100.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA microarrays containing virtually every gene of Saccharomyces cerevisiae were used to carry out a comprehensive investigation of the temporal program of gene expression accompanying the metabolic shift from fermentation to respiration. The expression profiles observed for genes with known metabolic functions pointed to features of the metabolic reprogramming that occur during the diauxic shift, and the expression patterns of many previously uncharacterized genes provided clues to their possible functions. The same DNA microarrays were also used to identify genes whose expression was affected by deletion of the transcriptional co-repressor TUP1 or overexpression of the transcriptional activator YAP1. These results demonstrate the feasibility and utility of this approach to genomewide exploration of gene expression patterns.
Collapse
Affiliation(s)
- J L DeRisi
- Department of Biochemistry, Stanford University School of Medicine, Howard Hughes Medical Institute, Stanford, CA 94305-5428, USA
| | | | | |
Collapse
|
29
|
el Moualij B, Duyckaerts C, Lamotte-Brasseur J, Sluse FE. Phylogenetic classification of the mitochondrial carrier family of Saccharomyces cerevisiae. Yeast 1997; 13:573-81. [PMID: 9178508 DOI: 10.1002/(sici)1097-0061(199705)13:6<573::aid-yea107>3.0.co;2-i] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The screening of the open reading frames identified in the whole yeast genome has allowed us to discover 34 proteins belonging to the mitochondrial carrier family. By phylogenetic study, they can be divided into 27 subfamilies including ADP/ATP, phosphate and citrate carriers, putative oxoglutarate and GDC carriers and 22 new subfamilies. Topology predictions using the 'positive inside rule' approach have shown that the yeast carriers are similarly oriented with both extremities exposed to the cytosol. In each subfamily, a strict conservation of the charged residues in the six transmembrane alpha-helices is observed, suggesting a functional role for these residues and the existence of 27 functionally distinct carriers.
Collapse
Affiliation(s)
- B el Moualij
- Laboratoire de Bioénergétique, Institut de Chimie, University of Liège, Belgium
| | | | | | | |
Collapse
|
30
|
Kaplan RS, Mayor JA, Gremse DA, Wood DO. High level expression and characterization of the mitochondrial citrate transport protein from the yeast Saccharomyces cerevisiae. J Biol Chem 1995; 270:4108-14. [PMID: 7876161 DOI: 10.1074/jbc.270.8.4108] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The gene encoding the mitochondrial citrate transport protein (CTP) in the yeast Saccharomyces cerevisiae has been identified, and its protein product has been overexpressed in Escherichia coli. The expressed CTP accumulates in inclusion bodies and can be solubilized with sarkosyl. Approximately 25 mg of solubilized CTP at a purity of 75% is obtained per liter of E. coli culture. The function of the solubilized CTP has been reconstituted in a liposomal system where both its kinetic parameters (i.e. Km = 0.36 mM and Vmax = 2.5 mumol/min/mg protein) and its substrate specificity have been determined. Notably, the yeast CTP displays a stricter specificity for tricarboxylates than do CTPs from higher eukaryotic organisms. Dot matrix analysis of the yeast CTP sequence indicates the presence of three homologous sequence domains (each approximately 100 residues in length), which are also related to domains in other CTPs. Thus, the yeast CTP displays the tripartite structure characteristic of other mitochondrial transporters. Alignment of the yeast CTP sequence with CTPs from other sources defines a consensus sequence that displays 89 positions of amino acid identity, as well as the more generalized mitochondrial transporter-associated sequence motif. Based on hydropathy analysis, the yeast CTP contains six putative membrane-spanning alpha-helices. Finally, Southern blot analysis indicates that the yeast genome contains a single gene encoding the mitochondrial CTP. Our data indicate that, based on both its structural and functional properties, the expressed yeast CTP can be assigned membership in the mitochondrial carrier family. The identification of the yeast CTP gene, and the expression and purification of large quantities of its protein product, pave the way for investigations into the roles of specific amino acids in the CTP translocation mechanism, as well as for the initiation of crystallization trials.
Collapse
Affiliation(s)
- R S Kaplan
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile 36688
| | | | | | | |
Collapse
|