1
|
Darras BT, Volpe JJ. Muscle Involvement and Restricted Disorders. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:1074-1121.e18. [DOI: 10.1016/b978-0-443-10513-5.00037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Oliwa A, Langlands G, Sarkozy A, Munot P, Stewart W, Phadke R, Topf A, Straub V, Duncan R, Wigley R, Petty R, Longman C, Farrugia ME. Glycogen storage disease type IV without detectable polyglucosan bodies: importance of broad gene panels. Neuromuscul Disord 2023; 33:98-105. [PMID: 37598009 DOI: 10.1016/j.nmd.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/21/2023]
Abstract
Glycogen storage disease type IV (GSD IV) is caused by mutations in the glycogen branching enzyme 1 (GBE1) gene and is characterized by accumulation of polyglucosan bodies in liver, muscle and other tissues. We report three cases with neuromuscular forms of GSD IV, none of whom had polyglucosan bodies on muscle biopsy. The first case had no neonatal problems and presented with delayed walking. The other cases presented at birth: one with arthrogryposis, hypotonia, and respiratory distress, the other with talipes and feeding problems. All developed a similar pattern of axial weakness, proximal upper limb weakness and scapular winging, and much milder proximal lower limb weakness. Our cases expand the phenotypic spectrum of neuromuscular GSD IV, highlight that congenital myopathy and limb girdle weakness can be caused by mutations in GBE1, and emphasize that GSD IV should be considered even in the absence of characteristic polyglucosan bodies on muscle biopsy.
Collapse
Affiliation(s)
- Agata Oliwa
- Undergraduate Medical School, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Gavin Langlands
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Anna Sarkozy
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Pinki Munot
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Willie Stewart
- Department of Neuropathology, Laboratory Medicine Building, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Rahul Phadke
- Department of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Ana Topf
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Roderick Duncan
- Department of Orthopaedics, Royal Hospital for Sick Children, Glasgow, G51 4TF, UK
| | - Ralph Wigley
- Department of Chemical Pathology, Great Ormond Street Hospital Trust, London, WC1N 3JH, UK
| | - Richard Petty
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| |
Collapse
|
3
|
Bezirganoglu H, Adanur Saglam K. An Unusual Case of Neonatal Hypotonia and Femur Fracture: Neuromuscular Variant of Glycogen Storage Disease Type IV. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1375. [PMID: 37628374 PMCID: PMC10453659 DOI: 10.3390/children10081375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Glycogen storage disease type IV (GSD IV) (OMIM #232500) is an autosomal recessive disorder caused by deficiency of the glycogen-branching enzyme. Here, we report a patient presenting with prematurity and severe hypotonia resulting from a complicated pregnancy with polyhydramnios. During her stay in the neonatal unit, the infant remained dependent on a ventilator, and her movements were mostly absent, except for occasional small movements of her fingers. A spontaneous fracture of femur shaft occurred in the postnatal fourth week. Whole-exome sequencing of DNA from the patient revealed a homozygous missense variant in the GBE1 gene (c.1693C>T, p.Arg565Trp). The variation detected in the index case was also confirmed by Sanger sequencing in the patient and respective parents. This study showed that the neuromuscular subtypes of GSD-IV should be considered as a possible differential diagnosis in severe neonatal hypotonia cases.
Collapse
Affiliation(s)
- Handan Bezirganoglu
- Division of Neonatology, Trabzon Kanuni Training and Research Hospital, Trabzon 61080, Türkiye
| | - Kubra Adanur Saglam
- Department of Medical Genetics, Karadeniz Technical University Medical Faculty, Trabzon 61080, Türkiye
| |
Collapse
|
4
|
Koch RL, Soler-Alfonso C, Kiely BT, Asai A, Smith AL, Bali DS, Kang PB, Landstrom AP, Akman HO, Burrow TA, Orthmann-Murphy JL, Goldman DS, Pendyal S, El-Gharbawy AH, Austin SL, Case LE, Schiffmann R, Hirano M, Kishnani PS. Diagnosis and management of glycogen storage disease type IV, including adult polyglucosan body disease: A clinical practice resource. Mol Genet Metab 2023; 138:107525. [PMID: 36796138 DOI: 10.1016/j.ymgme.2023.107525] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Glycogen storage disease type IV (GSD IV) is an ultra-rare autosomal recessive disorder caused by pathogenic variants in GBE1 which results in reduced or deficient glycogen branching enzyme activity. Consequently, glycogen synthesis is impaired and leads to accumulation of poorly branched glycogen known as polyglucosan. GSD IV is characterized by a remarkable degree of phenotypic heterogeneity with presentations in utero, during infancy, early childhood, adolescence, or middle to late adulthood. The clinical continuum encompasses hepatic, cardiac, muscular, and neurologic manifestations that range in severity. The adult-onset form of GSD IV, referred to as adult polyglucosan body disease (APBD), is a neurodegenerative disease characterized by neurogenic bladder, spastic paraparesis, and peripheral neuropathy. There are currently no consensus guidelines for the diagnosis and management of these patients, resulting in high rates of misdiagnosis, delayed diagnosis, and lack of standardized clinical care. To address this, a group of experts from the United States developed a set of recommendations for the diagnosis and management of all clinical phenotypes of GSD IV, including APBD, to support clinicians and caregivers who provide long-term care for individuals with GSD IV. The educational resource includes practical steps to confirm a GSD IV diagnosis and best practices for medical management, including (a) imaging of the liver, heart, skeletal muscle, brain, and spine, (b) functional and neuromusculoskeletal assessments, (c) laboratory investigations, (d) liver and heart transplantation, and (e) long-term follow-up care. Remaining knowledge gaps are detailed to emphasize areas for improvement and future research.
Collapse
Affiliation(s)
- Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Bridget T Kiely
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Akihiro Asai
- Department of Pediatrics, University of Cincinnati Medical Center, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ariana L Smith
- Division of Urology, Department of Surgery, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Deeksha S Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Andrew P Landstrom
- Division of Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - T Andrew Burrow
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | | | - Deberah S Goldman
- Adult Polyglucosan Body Disease Research Foundation, Brooklyn, NY, USA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Areeg H El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Stephanie L Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Laura E Case
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA; Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
5
|
Kiely BT, Koch RL, Flores L, Burner D, Kaplan S, Kishnani PS. A novel approach to characterize phenotypic variation in GSD IV: Reconceptualizing the clinical continuum. Front Genet 2022; 13:992406. [PMID: 36176296 PMCID: PMC9513518 DOI: 10.3389/fgene.2022.992406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Glycogen storage disease type IV (GSD IV) has historically been divided into discrete hepatic (classic hepatic, non-progressive hepatic) and neuromuscular (perinatal-congenital neuromuscular, juvenile neuromuscular) subtypes. However, the extent to which this subtype-based classification system accurately captures the landscape of phenotypic variation among GSD IV patients has not been systematically assessed. Methods: This study synthesized clinical data from all eligible cases of GSD IV in the published literature to evaluate whether this disorder is better conceptualized as discrete subtypes or a clinical continuum. A novel phenotypic scoring approach was applied to characterize the extent of hepatic, neuromuscular, and cardiac involvement in each eligible patient. Results: 146 patients met all inclusion criteria. The majority (61%) of those with sufficient data to be scored exhibited phenotypes that were not fully consistent with any of the established subtypes. These included patients who exhibited combined hepatic-neuromuscular involvement; patients whose phenotypes were intermediate between the established hepatic or neuromuscular subtypes; and patients who presented with predominantly cardiac disease. Conclusion: The application of this novel phenotypic scoring approach showed that-in contrast to the traditional subtype-based view-GSD IV may be better conceptualized as a multidimensional clinical continuum, whereby hepatic, neuromuscular, and cardiac involvement occur to varying degrees in different patients.
Collapse
Affiliation(s)
- Bridget T. Kiely
- Duke University Medical Center, Department of Pediatrics, Division of Medical Genetics, Durham, NC, United States
| | - Rebecca L. Koch
- Duke University Medical Center, Department of Pediatrics, Division of Medical Genetics, Durham, NC, United States
| | - Leticia Flores
- Duke University Medical Center, Department of Pediatrics, Division of Medical Genetics, Durham, NC, United States
| | - Danielle Burner
- Duke University Medical Center, Department of Pediatrics, Division of Medical Genetics, Durham, NC, United States
| | - Samantha Kaplan
- Medical Center Library and Archives, Duke University School of Medicine, Durham, NC, United States
| | - Priya S. Kishnani
- Duke University Medical Center, Department of Pediatrics, Division of Medical Genetics, Durham, NC, United States
| |
Collapse
|
6
|
Lyo S, Miles J, Meisner J, Guelfguat M. Case report: adult-onset manifesting heterozygous glycogen storage disease type IV with dilated cardiomyopathy and absent late gadolinium enhancement on cardiac magnetic resonance imaging. Eur Heart J Case Rep 2020; 4:1-6. [PMID: 32617483 PMCID: PMC7319828 DOI: 10.1093/ehjcr/ytaa078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/26/2019] [Accepted: 03/17/2020] [Indexed: 11/17/2022]
Abstract
Background Glycogen storage disease type IV (GSD IV; Andersen’s disease) is a rare autosomal recessive disease caused by mutation in the GBE1 gene. Presentation of GSD IV varies on a continuum of severity and symptomatology ranging from neonatal death to mild adult-onset disease with variable involvement of hepatic, muscular, neurologic, dermatologic, and cardiac systems. Cardiomyopathy seen in GSD IV is also heterogeneous and its appearance on cardiac magnetic resonance imaging (CMR) is rarely described. Case summary A 29-year-old man without previous medical history was admitted to our facility multiple times over 2 years for focal sensorimotor deficits, gout arthropathy, chronic hyperlactataemia and hyperuricaemia, and severe decompensated non-ischaemic cardiomyopathy complicated by episodes of thromboembolic organ infarction. Echocardiography and CMR showed severe biventricular failure with the presence of intraventricular thrombi with increased right ventricular trabeculation and absent late gadolinium enhancement. He underwent muscle biopsy which showed prominent glycogen in skeletal muscle followed by genetic testing showing a single heterozygous splicing mutation c.993-1G>T found at the junction of intron 7 and exon 8 of the GBE1 gene which had not previously been reported and was predicted to be pathologic. He was referred to a tertiary care centre with glycogen storage disease specialists but expired prior to establishing care at that facility. Discussion Discovery of GSD IV in our patient was unexpected due to a highly variant clinical presentation. Our case stresses the clinical heterogeneity of GSD IV and the importance of genetic sequencing studies in the evaluation of potential glycogen storage disease.
Collapse
Affiliation(s)
- Shawn Lyo
- Department of Internal Medicine, Jacobi Medical Center, 1400 Pelham Pkwy S, Bronx, NY 10461, USA
| | - Jeremy Miles
- Department of Internal Medicine, Jacobi Medical Center, 1400 Pelham Pkwy S, Bronx, NY 10461, USA
| | - Jay Meisner
- Department of Cardiology, Jacobi Medical Center, 1400 Pelham Pkwy S, Bronx, NY 10461, USA
| | - Mark Guelfguat
- Department of Radiology, Jacobi Medical Center, 1400 Pelham Pkwy S, Bronx, NY 10461, USA
| |
Collapse
|
7
|
Abstract
Glycogen storage disease type IV (GSD-IV), or Andersen disease, is a rare autosomal recessive disorder that results from the deficiency of glycogen branching enzyme (GBE). This in turn results in accumulation of abnormal glycogen molecules that have longer outer chains and fewer branch points. GSD-IV manifests in a wide spectrum, with variable phenotypes depending on the degree and type of tissues in which this abnormal glycogen accumulates. Typically, GSD-IV presents with rapidly progressive liver cirrhosis and death in early childhood. However, there is a severe congenital neuromuscular variant of GSD-IV that has been reported in the literature, with fewer than 20 patient cases thus far. We report an unusual case of GSD-IV neuromuscular variant in a late preterm female infant who was born to non-consanguineous healthy parents with previously healthy children. Prenatally, our patient was found to have decreased fetal movement and polyhydramnios warranting an early delivery. Postnatally, she had severe hypotonia and respiratory failure, with no hepatic or cardiac involvement. Extensive metabolic and neurological workup revealed no abnormalities. However, molecular analysis by whole-exome sequencing revealed two pathogenic variants in the GBE1 gene. Our patient was thus a compound heterozygote of the two pathogenic variants: one of these was inherited from the mother [p.L490WfsX5 (c.1468delC)], and the other pathogenic variant was a de novo change [p.E449X (c.1245G>T)]. As expected in GSD-IV, diffuse intracytoplasmic periodic acid-Schiff-positive, diastase-resistant inclusions were found in the cardiac myocytes, hepatocytes, and skeletal muscle fibers of our patient.
Collapse
|
8
|
Darras BT, Volpe JJ. Muscle Involvement and Restricted Disorders. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:922-970.e15. [DOI: 10.1016/b978-0-323-42876-7.00033-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Malfatti E, Barnerias C, Hedberg-Oldfors C, Gitiaux C, Benezit A, Oldfors A, Carlier RY, Quijano-Roy S, Romero NB. A novel neuromuscular form of glycogen storage disease type IV with arthrogryposis, spinal stiffness and rare polyglucosan bodies in muscle. Neuromuscul Disord 2016; 26:681-687. [PMID: 27546458 DOI: 10.1016/j.nmd.2016.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 01/11/2023]
Abstract
Glycogen storage disease type IV (GSD IV) is an autosomal recessive disorder causing polyglucosan storage in various tissues. Neuromuscular forms present with fetal akinesia deformation sequence, lethal myopathy, or mild hypotonia and weakness. A 3-year-old boy presented with arthrogryposis, motor developmental delay, weakness, and rigid spine. Whole body MRI revealed fibroadipose muscle replacement but sparing of the sartorius, gracilis, adductor longus and vastus intermedialis muscles. Polyglucosan bodies were identified in muscle, and GBE1 gene analysis revealed two pathogenic variants. We describe a novel neuromuscular GSD IV phenotype and confirm the importance of muscle morphological studies in early onset neuromuscular disorders.
Collapse
Affiliation(s)
- Edoardo Malfatti
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, GHU La Pitié-Salpêtrière, 47 Boulevard de l'hôpital, 75013 Paris, France; Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France
| | - Christine Barnerias
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; AP-HP, Service de Neuropédiatrie, Hôpital Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France
| | - Carola Hedberg-Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cyril Gitiaux
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France; AP-HP Service des Explorations Foctionnelles Neurologiques, Höpital Universitaire Necker-Enfants Malades, Paris, France
| | - Audrey Benezit
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; AP-HP, Service de Neuropédiatrie, Hôpital Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France
| | - Anders Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Robert-Yves Carlier
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France; U1179 INSERM-UVSQ, Université Versailles Saint-Quentin en Yvelines, Montigny, France; AP-HP, Service de Pédiatrie, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Paris, France
| | - Susana Quijano-Roy
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France; AP-HP, Service de Pédiatrie, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Paris, France
| | - Norma B Romero
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, GHU La Pitié-Salpêtrière, 47 Boulevard de l'hôpital, 75013 Paris, France; Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France.
| |
Collapse
|
10
|
Bayram Y, Karaca E, Coban Akdemir Z, Yilmaz EO, Tayfun GA, Aydin H, Torun D, Bozdogan ST, Gezdirici A, Isikay S, Atik MM, Gambin T, Harel T, El-Hattab AW, Charng WL, Pehlivan D, Jhangiani SN, Muzny DM, Karaman A, Celik T, Yuregir OO, Yildirim T, Bayhan IA, Boerwinkle E, Gibbs RA, Elcioglu N, Tuysuz B, Lupski JR. Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin. J Clin Invest 2016; 126:762-78. [PMID: 26752647 DOI: 10.1172/jci84457] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/25/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Arthrogryposis, defined as congenital joint contractures in 2 or more body areas, is a clinical sign rather than a specific disease diagnosis. To date, more than 400 different disorders have been described that present with arthrogryposis, and variants of more than 220 genes have been associated with these disorders; however, the underlying molecular etiology remains unknown in the considerable majority of these cases. METHODS We performed whole exome sequencing (WES) of 52 patients with clinical presentation of arthrogryposis from 48 different families. RESULTS Affected individuals from 17 families (35.4%) had variants in known arthrogryposis-associated genes, including homozygous variants of cholinergic γ nicotinic receptor (CHRNG, 6 subjects) and endothelin converting enzyme-like 1 (ECEL1, 4 subjects). Deleterious variants in candidate arthrogryposis-causing genes (fibrillin 3 [FBN3], myosin IXA [MYO9A], and pleckstrin and Sec7 domain containing 3 [PSD3]) were identified in 3 families (6.2%). Moreover, in 8 families with a homozygous mutation in an arthrogryposis-associated gene, we identified a second locus with either a homozygous or compound heterozygous variant in a candidate gene (myosin binding protein C, fast type [MYBPC2] and vacuolar protein sorting 8 [VPS8], 2 families, 4.2%) or in another disease-associated genes (6 families, 12.5%), indicating a potential mutational burden contributing to disease expression. CONCLUSION In 58.3% of families, the arthrogryposis manifestation could be explained by a molecular diagnosis; however, the molecular etiology in subjects from 20 families remained unsolved by WES. Only 5 of these 20 unrelated subjects had a clinical presentation consistent with amyoplasia; a phenotype not thought to be of genetic origin. Our results indicate that increased use of genome-wide technologies will provide opportunities to better understand genetic models for diseases and molecular mechanisms of genetically heterogeneous disorders, such as arthrogryposis. FUNDING This work was supported in part by US National Human Genome Research Institute (NHGRI)/National Heart, Lung, and Blood Institute (NHLBI) grant U54HG006542 to the Baylor-Hopkins Center for Mendelian Genomics, and US National Institute of Neurological Disorders and Stroke (NINDS) grant R01NS058529 to J.R. Lupski.
Collapse
|
11
|
Paradas C, Akman HO, Ionete C, Lau H, Riskind PN, Jones DE, Smith TW, Hirano M, Dimauro S. Branching enzyme deficiency: expanding the clinical spectrum. JAMA Neurol 2014; 71:41-7. [PMID: 24248152 DOI: 10.1001/jamaneurol.2013.4888] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE The neuromuscular presentation of glycogen branching enzyme deficiency includes a severe infantile form and a late-onset variant known as adult polyglucosan body disease. Herein, we describe 2 patients with adult acute onset of fluctuating neurological signs and brain magnetic resonance imaging lesions simulating multiple sclerosis. A better definition of this new clinical entity is needed to facilitate diagnosis. OBJECTIVES To describe the clinical presentation and progression of a new intermediate variant of glycogen branching enzyme deficiency and to discuss genotype-phenotype correlations. DESIGN, SETTING, AND PARTICIPANTS Clinical, biochemical, morphological, and molecular study of 2 patients followed up for 6 years and 8 years at academic medical centers. The participants were 2 patients of non-Ashkenazi descent with adult acute onset of neurological signs initially diagnosed as multiple sclerosis. MAIN OUTCOMES AND MEASURES Clinical course, muscle and nerve morphology, longitudinal study of brain magnetic resonance imaging, and glycogen branching enzyme activity and GBE1 molecular analysis. RESULTS Molecular analysis showed that one patient was homozygous (c.1544G>A) and the other patient was compound heterozygous (c.1544G>A and c.1961-1962delCA) for GBE1 mutations. Residual glycogen branching enzyme activity was 16% and 30% of normal in leukocytes. Both patients manifested acute episodes of transient neurological symptoms, and neurological impairment was mild at age 45 years and 53 years. Brain magnetic resonance imaging revealed nonprogressive white matter lesions and spinocerebellar atrophy similar to typical adult polyglucosan body disease. CONCLUSIONS AND RELEVANCE GBE1 mutations can cause an early adult-onset relapsing-remitting form of polyglucosan body disease distinct from adult polyglucosan body disease in several ways, including younger age at onset, history of infantile liver involvement, and subacute and remitting course simulating multiple sclerosis. This should orient neurologists toward the correct diagnosis.
Collapse
Affiliation(s)
- Carmen Paradas
- Department of Neurology, Columbia University Medical Center, New York, New York2Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Hospital Universitario Virgen del Rocío, Instituto de Biomédicina de Sevilla, Consejo Superior de Investigación
| | - Hasan O Akman
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Carolina Ionete
- Department of Neurology, University of Massachusetts Memorial Medical Center, Worcester
| | - Heather Lau
- Rusk Institute of Rehabilitation, NYU Langone Medical Center, New York, New York
| | - Peter N Riskind
- Department of Neurology, University of Massachusetts Memorial Medical Center, Worcester
| | - David E Jones
- Department of Neurology, University of Massachusetts Memorial Medical Center, Worcester
| | - Thomas W Smith
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Salvatore Dimauro
- Department of Neurology, Columbia University Medical Center, New York, New York
| |
Collapse
|
12
|
Abstract
A total of 11 types of glycogen storage disorders have been recognized with variable clinical presentations. Type IV, also known as Andersen disease, represents a rare subtype that can induce severe clinical findings early in life. We report on a patient with early fetal onset of symptoms with severe neuromuscular findings at birth. The pregnancy was further complicated by polyhydramnios and depressed fetal movement. At birth severe hypotonia was noticed requiring active resuscitation and then mechanical ventilation. His lack of expected course for hypoxic ischemic encephalopathy prompted genetic testing, including a muscle biopsy, which confirmed the diagnosis of glycogen storage disease IV (GSD IV). Mutation analysis of the glycogen branching enzyme 1 gene demonstrated a previously unrecognized mutation. We review recent information on early presentation of GSD IV with particular interest in the presentation of the neonatal lethal neuromuscular form of this rare disorder.
Collapse
|
13
|
Magoulas PL, El-Hattab AW, Roy A, Bali DS, Finegold MJ, Craigen WJ. Diffuse reticuloendothelial system involvement in type IV glycogen storage disease with a novel GBE1 mutation: a case report and review. Hum Pathol 2012; 43:943-51. [DOI: 10.1016/j.humpath.2011.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/08/2011] [Accepted: 10/07/2011] [Indexed: 10/14/2022]
|
14
|
Lee YC, Chang CJ, Bali D, Chen YT, Yan YT. Glycogen-branching enzyme deficiency leads to abnormal cardiac development: novel insights into glycogen storage disease IV. Hum Mol Genet 2010; 20:455-65. [DOI: 10.1093/hmg/ddq492] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Taratuto AL, Akman HO, Saccoliti M, Riudavets M, Arakaki N, Mesa L, Sevlever G, Goebel H, DiMauro S. Branching enzyme deficiency/glycogenosis storage disease type IV presenting as a severe congenital hypotonia: muscle biopsy and autopsy findings, biochemical and molecular genetic studies. Neuromuscul Disord 2010; 20:783-90. [PMID: 20833045 DOI: 10.1016/j.nmd.2010.07.275] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 07/08/2010] [Accepted: 07/21/2010] [Indexed: 12/16/2022]
Abstract
The fatal infantile neuromuscular presentation of branching enzyme deficiency (glycogen storage disease type IV) due to mutations in the gene encoding the glycogen branching enzyme, is a rare but probably underdiagnosed cause of congenital hypotonia. We report an infant girl with severe generalized hypotonia, born at 33 weeks gestation who required ventilatory assistance since birth. She had bilateral ptosis, mild knee and foot contractures and echocardiographic evidence of cardiomyopathy. A muscle biopsy at 1 month of age showed typical polyglucosan storage. The autopsy at 3.5 months of age showed frontal cortex polymicrogyria and polyglucosan bodies in neurons of basal ganglia, thalamus, substantia innominata, brain stem, and myenteric plexus, as well as liver involvement. Glycogen branching enzyme activity in muscle was virtually undetectable. Sequencing of the GBE1 gene revealed a homozygous 28 base pair deletion and a single base insertion at the same site in exon 5. This case confirms previous observations that GBE deficiency ought to be included in the differential diagnosis of congenital hypotonia and that the phenotype correlates with the 'molecular severity' of the mutation.
Collapse
Affiliation(s)
- A L Taratuto
- Department of Neuropathology, Institute for Neurological Research, FLENI, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fernandez C, Halbert C, De Paula AM, Lacroze V, Froissart R, Figarella-Branger D, Chabrol B, Pellissier JF. Non-lethal neonatal neuromuscular variant of glycogenosis type IV with novel GBE1 mutations. Muscle Nerve 2010; 41:269-71. [PMID: 19813197 DOI: 10.1002/mus.21499] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report a recent case of the severe congenital variant of glycogen storage disease type IV with prolonged survival. The patient was found to be a compound heterozygote for two novel mutations, a missense mutation in exon 5 (p.H188P, c.563A>C) and a severe mutation in intron 5 (c.691+2T>C). We propose that the genotype and the quality of medical care may account for the severe but non-lethal phenotype.
Collapse
Affiliation(s)
- Carla Fernandez
- Laboratoire d'Anatomie Pathologique et Neuropathologie, Hôpital de la Timone Adultes, 264 rue Saint-Pierre, 13385 Marseille Cedex 05, France.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sponseller BT, Valberg SJ, Ward TL, Fales-Williams AJ, Mickelson JR. Muscular weakness and recumbency in a Quarter Horse colt due to glycogen branching enzyme deficiency. EQUINE VET EDUC 2010. [DOI: 10.1111/j.2042-3292.2003.tb00240.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Eminoglu TF, Tumer L, Okur I, Olgunturk R, Hasanoglu A, Gonul II, Dalgic B. Multisystem involvement in a patient due to accumulation of amylopectin-like material with diminished branching enzyme activity. J Inherit Metab Dis 2008; 31 Suppl 2:S255-9. [PMID: 18392749 DOI: 10.1007/s10545-008-0819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/17/2008] [Accepted: 01/22/2008] [Indexed: 11/29/2022]
Abstract
We report a 13-year-old boy with multisystem involvement secondary to accumulation of amylopectin-like material. He was born to consanguineous parents at full term without any complications and his maternal perinatal history was uneventful. His parents were cousins. He had normal growth and development except for his weight. His sister died from an unexplained cardiomyopathy at the age of 8 years. Our patient's initial symptom was severe heart failure. Since he also had a complaint of muscle weakness, electromyography was performed which showed muscle involvement. The diagnosis was suggested by tissue biopsy of skeletal muscle showing intracellular, basophilic, diastase-resistant, periodic acid-Schiff-positive inclusion bodies and was confirmed by the presence of a completed branching enzyme deficiency. Similar intracytoplasmic inclusion-like bodies were also found in liver biopsy, but very few in number compared with the skeletal muscle. The patient died from an intercurrent infection. Postmortem endomyocardial biopsy revealed the same intracytoplasmic inclusions as described above affecting almost all myocardial cells. Ultrastructural examination of liver biopsy was nondiagnostic; however, myocardium showed prominent, large, intracytoplasmic deposits. Glycogen branching enzyme gene sequence was normal, and thus classical branching enzyme deficiency was excluded. Our patient represents the first molecular study performed on a patient in whom there was multiple system involvement secondary to accumulation of amylopectin-like material. We suggest that this is an as yet undefined and different phenotype of glycogen storage disease associated with multisystemic involvement.
Collapse
Affiliation(s)
- T F Eminoglu
- Department of Pediatric Metabolism and Nutrition, Gazi University Hospital, Besevler, Ankara, 06510, Turkey.
| | | | | | | | | | | | | |
Collapse
|
19
|
Nolte KW, Janecke AR, Vorgerd M, Weis J, Schröder JM. Congenital type IV glycogenosis: the spectrum of pleomorphic polyglucosan bodies in muscle, nerve, and spinal cord with two novel mutations in the GBE1 gene. Acta Neuropathol 2008; 116:491-506. [PMID: 18661138 DOI: 10.1007/s00401-008-0417-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Revised: 07/14/2008] [Accepted: 07/19/2008] [Indexed: 11/30/2022]
Abstract
A diagnosis of GSD-IV was established in three premature, floppy infants based on characteristic, however unusually pleomorphic polyglucosan bodies at the electron microscopic level, glycogen branching enzyme deficiency in two cases, and the identification of GBE1 mutations in two cases. Pleomorphic polyglucosan bodies in muscle fibers and macrophages, and less severe in Schwann cells and microglial cells were noted. Most of the inclusions were granular and membrane-bound; others had an irregular contour, were more electron dense and were not membrane bound, or homogenous ('hyaline'). A paracrystalline pattern of granules was repeatedly noted showing a periodicity of about 10 nm with an angle of about 60 degrees or 120 degrees at sites of changing linear orientation. Malteser crosses were noted under polarized light in the larger inclusions. Some inclusions were PAS positive and others were not. Severely atrophic muscle fibers without inclusions, but with depletion of myofibrils in the plane of section studied indicated the devastating myopathic nature of the disease. Schwann cells and peripheral axons were less severely affected as was the spinal cord. Two novel protein-truncating mutations (c.1077insT, p.V359fsX16; g.101517_127067del25550insCAGTACTAA, DelExon4-7) were identified in these families. The present findings extend previous studies indicating that truncating GBE1 mutations cause a spectrum of severe diseases ranging from generalized intrauterine hydrops to fatal perinatal hypotonia and fatal cardiomyopathy in the first months of life.
Collapse
Affiliation(s)
- Kay W Nolte
- Department of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | | | | | | | | |
Collapse
|
20
|
Raju GP, Li HC, Bali DS, Chen YT, Urion DK, Lidov HGW, Kang PB. A case of congenital glycogen storage disease type IV with a novel GBE1 mutation. J Child Neurol 2008; 23:349-52. [PMID: 18230843 DOI: 10.1177/0883073807309248] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glycogen storage disease type IV (Andersen disease) is a rare metabolic disorder characterized by deficient glycogen branching enzyme activity resulting in abnormal, amylopectin-like glycogen deposition in multiple organs. This article reports on an infant with the congenital neuromuscular subtype of glycogen storage disease type IV who presented with polyhydramnios, hydrops fetalis, bilateral ankle contractures, biventricular cardiac dysfunction, and severe facial and extremity weakness. A muscle biopsy showed the presence of material with histochemical and ultrastructural characteristics consistent with amylopectin. Biochemical analysis demonstrated severely reduced branching enzyme activity in muscle tissue and fibroblasts. Genetic analysis demonstrated a novel deletion of exon 16 within GBE1, the gene associated with glycogen storage disease type IV. Continued genetic characterization of glycogen storage disease type IV patients may aid in predicting clinical outcomes in these patients and may also help in identifying treatment strategies for this potentially devastating metabolic disorder.
Collapse
Affiliation(s)
- G Praveen Raju
- Department of Neurology, Children's Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Assereto S, van Diggelen OP, Diogo L, Morava E, Cassandrini D, Carreira I, de Boode WP, Dilling J, Garcia P, Henriques M, Rebelo O, ter Laak H, Minetti C, Bruno C. Null mutations and lethal congenital form of glycogen storage disease type IV. Biochem Biophys Res Commun 2007; 361:445-50. [PMID: 17662246 DOI: 10.1016/j.bbrc.2007.07.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/07/2007] [Indexed: 11/25/2022]
Abstract
Glycogen branching enzyme deficiency (glycogen storage disease type IV, GSD-IV) is a rare autosomal recessive disorder of the glycogen synthesis with high mortality. Two female newborns showed severe hypotonia at birth and both died of cardiorespiratory failure, at 4 and 12 weeks, respectively. In both patients, muscle biopsies showed deposits of PAS-positive diastase-resistant material and biochemical analysis in cultured fibroblasts showed markedly reduced glycogen branching enzyme activity. Direct sequencing of GBE1 gene revealed that patient 1 was homozygous for a novel c.691+5 g>c in intron 5 (IVS5+5 g>c). RT-PCR analysis of GBE1 transcripts from fibroblasts cDNA showed that this mutation produce aberrant splicing. Patient 2 was homozygous for a novel c.1643G>A mutation leading to a stop at codon 548 in exon 13 (p.W548X). These data underscore that in GSD-IV a severe phenotype correlates with null mutations, and indicate that RNA analysis is necessary to characterize functional consequences of intronic mutations.
Collapse
Affiliation(s)
- Stefania Assereto
- Muscular and Neurodegenerative Disease Unit, Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Largo G. Gaslini 5, I-16147 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dimauro S, Akman O, Hays AP. Disorders of carbohydrate metabolism. HANDBOOK OF CLINICAL NEUROLOGY 2007; 86:167-82. [PMID: 18808999 DOI: 10.1016/s0072-9752(07)86007-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
L'herminé-Coulomb A, Beuzen F, Bouvier R, Rolland MO, Froissart R, Menez F, Audibert F, Labrune P. Fetal type IV glycogen storage disease: clinical, enzymatic, and genetic data of a pure muscular form with variable and early antenatal manifestations in the same family. Am J Med Genet A 2006; 139A:118-22. [PMID: 16278887 DOI: 10.1002/ajmg.a.30945] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report on a family of three consecutive fetuses affected by type IV glycogen storage disease (GSD IV). In all cases, cervical cystic hygroma was observed on the 12-week-ultrasound examination. During the second trimester, fetal hydrops developed in the first pregnancy whereas fetal akinesia appeared in the second pregnancy. The diagnosis was suggested by microscopic examination of fetal tissues showing characteristic inclusions exclusively in striated fibers, then confirmed by enzymatic studies on frozen muscle. Antenatal diagnosis was performed on the third and fourth pregnancies: cervical cystic hygroma and low glycogen branching enzyme (GBE) activity on chorionic villi sample (CVS) were detected in the third pregnancy whereas ultrasound findings were normal and GBE activity within normal range on CVS in the fourth pregnancy. Molecular analysis showed that the mother was heterozygous for a c.1471G > C mutation in exon 12, leading to the replacement of an alanine by a tyrosine at codon 491 (p.A491T); the father was heterozygous for a c.895G > T mutation in exon 7, leading to the creation of a stop codon at position 299 (p.G299X). GSD IV has to be considered in a context of cervical cystic hygroma with normal karyotype, particularly when second trimester hydrops or akinesia develop. Enzymatic analysis of GBE must be performed on CVS or amniotic cells to confirm the diagnosis. Characteristic intracellular inclusions are specific to the disease and should be recognized, even in macerated tissues after fetal death. Genetic analysis of the GBE gene may help to shed some light on the puzzling diversity of GSD IV phenotypes.
Collapse
|
24
|
Leonard JV, Morris AAM. Diagnosis and early management of inborn errors of metabolism presenting around the time of birth. Acta Paediatr 2006; 95:6-14. [PMID: 16373289 DOI: 10.1080/08035250500349413] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Inherited metabolic diseases often present around the time of birth. They are responsible for some cases of hydrops fetalis and a number of dysmorphic syndromes. Patients with inborn errors may also present at (or shortly after) birth with seizures or severe hypotonia. Most affected babies, however, appear normal at birth and subsequently deteriorate, with hypoglycaemia, acidosis, neurological or cardiac problems, or liver disease. Treatment often involves measures to reduce catabolism and to remove toxic metabolites. It should not be delayed for a definitive diagnosis. CONCLUSION In the newborn period, inborn errors can easily be misdiagnosed as sepsis or birth asphyxia; prompt detection requires vigilance and the early measurement of biochemical markers, such as plasma ammonia.
Collapse
Affiliation(s)
- James V Leonard
- Biochemistry, Endocrinology and Metabolism Unit, Institute of Child Health, London, UK.
| | | |
Collapse
|
25
|
Akman HO, Karadimas C, Gyftodimou Y, Grigoriadou M, Kokotas H, Konstantinidou A, Anninos H, Patsouris E, Thaker HM, Kaplan JB, Besharat I, Hatzikonstantinou K, Fotopoulos S, Dimauro S, Petersen MB. Prenatal diagnosis of glycogen storage disease type IV. Prenat Diagn 2006; 26:951-5. [PMID: 16874838 DOI: 10.1002/pd.1533] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glycogen storage disease type IV (GSD-IV) is a rare autosomal recessive disorder due to mutations in the GBE1 gene causing deficiency of the glycogen branching enzyme (GBE). Prenatal diagnosis has occasionally been performed by the measurement of the GBE activity in cultured chorionic villi (CV) cells. METHODS Two unrelated probands with severe hypotonia at birth and death during the neonatal period were diagnosed with GSD-IV on the basis of postmortem histological findings. DNA analysis revealed truncating GBE1 mutations in both families. RESULTS Prenatal diagnosis was performed in subsequent pregnancies by determination of branching enzyme activity and DNA analysis of CV or cultured amniocytes. Detailed autopsies of the affected fetuses at 14 and 24 weeks of gestation demonstrated intracellular inclusions of abnormal glycogen characteristic of GSD-IV. CONCLUSION Prenatal diagnosis of GSD-IV by DNA analysis is highly accurate in genetically confirmed cases.
Collapse
Affiliation(s)
- H Orhan Akman
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bruno C, van Diggelen OP, Cassandrini D, Gimpelev M, Giuffrè B, Donati MA, Introvini P, Alegria A, Assereto S, Morandi L, Mora M, Tonoli E, Mascelli S, Traverso M, Pasquini E, Bado M, Vilarinho L, van Noort G, Mosca F, DiMauro S, Zara F, Minetti C. Clinical and genetic heterogeneity of branching enzyme deficiency (glycogenosis type IV). Neurology 2005; 63:1053-8. [PMID: 15452297 DOI: 10.1212/01.wnl.0000138429.11433.0d] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glycogen storage disease type IV (GSD-IV) is a clinically heterogeneous autosomal recessive disorder due to glycogen branching enzyme (GBE) deficiency and resulting in the accumulation of an amylopectin-like polysaccharide. The typical presentation is liver disease of childhood, progressing to lethal cirrhosis. The neuromuscular form of GSD-IV varies in onset (perinatal, congenital, juvenile, or adult) and severity. OBJECTIVE To identify the molecular bases of different neuromuscular forms of GSD-IV and to establish possible genotype/phenotype correlations. METHODS Eight patients with GBE deficiency had different neuromuscular presentations: three had fetal akinesia deformation sequence (FADS), three had congenital myopathy, one had juvenile myopathy, and one had combined myopathic and hepatic features. In all patients, the promoter and the entire coding region of the GBE gene at the RNA and genomic level were sequenced. RESULTS Nine novel mutations were identified, including nonsense, missense, deletion, insertion, and splice-junction mutations. The three cases with FADS were homozygous, whereas all other cases were compound heterozygotes. CONCLUSIONS This study expands the spectrum of mutations in the GBE gene and confirms that the neuromuscular presentation of GSD-IV is clinically and genetically heterogeneous.
Collapse
Affiliation(s)
- C Bruno
- Neuromuscular Disease Unit, Department of Pediatrics, University of Genova, Istituto Giannina Gaslini, Largo G. Gaslini 5, I-16147 Genova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Das BB, Narkewicz MR, Sokol RJ, Chen YT, Bali D, Li SC, Matthews MR, Mierau GW, Ivy DD. Amylopectinosis disease isolated to the heart with normal glycogen branching enzyme activity and gene sequence. Pediatr Transplant 2005; 9:261-265. [PMID: 15787805 DOI: 10.1111/j.1399-3046.2005.00282.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a 17-month-old female patient with a rare cause of cardiomyopathy secondary to accumulation of amylopectin-like material (fibrillar glycogen) isolated to the heart. Evidence of amylopectinosis isolated to cardiac myocytes in this patient was demonstrated by histology and electron microscopy. Glycogen content, glycogen branching enzyme (GBE) activity, as well as phosphofructokinase enzyme activities measured in liver, skeletal muscle, fibroblasts and ex-transplanted heart tissue were all in the normal to lower normal ranges. Normal skeletal muscle and liver tissue histology and GBE activity, normal GBE activity in skin fibroblasts, plus normal GBE gene sequence in this patient exclude the classical branching enzyme deficiency (type IV GSD). We believe that this is an as yet uncharacterized and novel phenotype of GSD associated with cardiomyopathy, in which there is an imbalance in the regulation of glycogen metabolism limited to the heart.
Collapse
Affiliation(s)
- B B Das
- Section of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tiemann C, Bührer C, Burwinkel B, Wirtenberger M, Hoehn T, Hübner C, van Landeghem FKH, Stoltenburg G, Obladen M. Arthrogryposis multiplex with deafness, inguinal hernias, and early death: A family report of a probably autosomal recessive trait. Am J Med Genet A 2005; 137:125-9. [PMID: 16059941 DOI: 10.1002/ajmg.a.30860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report on three male newborn infants of a highly inbred Lebanese family presenting with a characteristic phenotype: arthrogryposis multiplex, deafness, large inguinal hernia, hiccup-like diaphragmatic contractions, and inability to suck, requiring nasogastric gavage feeding. All three boys died from respiratory failure during the first 3 months of life. Intra vitam or post mortem examinations revealed myopathic changes and elevated glycogen content of muscle tissue. This new syndrome is probably transmitted in an autosomal recessive mode, although X-linked inheritance cannot be excluded.
Collapse
Affiliation(s)
- Christian Tiemann
- Department of Neonatology, Charité Medical Center, Virchow Hospital, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Floppiness/hypotonia is a common neurologic symptom in infancy. A variety of neuromuscular disorders and central nervous system (CNS) disorders cause floppy infant syndrome (FIS). CNS disorders are the much more common causes of the syndrome than neuromuscular disorders. On long-term follow up, cerebral palsy and mental retardation turn out to be the 2 most common causes of FIS. This review focuses on neuromuscular causes of FIS. With the advent of molecular diagnosis, a few conditions can be diagnosed by DNA analysis of the peripheral lymphocytes (myotonic dystrophy, spinal muscular atrophy); however, for the most part, electrodiagnostic studies and muscle biopsy remain as essential diagnostic tools for FIS. Immunohistochemical study of the biopsied muscle also improves diagnostic capability. Management for most conditions remains supportive.
Collapse
Affiliation(s)
- Masanori Igarashi
- From the Department of Pediatrics and Neurology, University of Tennessee, Memphis
| |
Collapse
|
30
|
Janecke AR, Dertinger S, Ketelsen UP, Bereuter L, Simma B, Müller T, Vogel W, Offner FA. Neonatal type IV glycogen storage disease associated with "null" mutations in glycogen branching enzyme 1. J Pediatr 2004; 145:705-9. [PMID: 15520786 DOI: 10.1016/j.jpeds.2004.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The fatal neonatal form of type IV glycogen storage disease (GSD IV) was diagnosed on light and electron microscopy and by analysis of GBE1 , the gene encoding glycogen branching enzyme. We report two novel truncating mutations, as well as the first genomic mutational analysis of GBE1 using denaturing high performance liquid chromatography.
Collapse
Affiliation(s)
- Andreas R Janecke
- Department of Medical Biology and Human Genetics, Innsbruck Medical University, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tay SKH, Akman HO, Chung WK, Pike MG, Muntoni F, Hays AP, Shanske S, Valberg SJ, Mickelson JR, Tanji K, DiMauro S. Fatal infantile neuromuscular presentation of glycogen storage disease type IV. Neuromuscul Disord 2004; 14:253-60. [PMID: 15019703 DOI: 10.1016/j.nmd.2003.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 12/19/2003] [Accepted: 12/23/2003] [Indexed: 11/24/2022]
Abstract
Glycogen storage disease type IV or Andersen disease is an autosomal recessive disorder due to deficiency of glycogen branching enzyme. Typically, glycogen storage disease type IV presents with rapidly progressive liver cirrhosis and death in childhood. Variants include a cardiopathic form of childhood, a relatively benign myopathic form of young adults, and a late-onset neurodegenerative disorder (adult polyglucosan body disease). A severe neuromuscular variant resembling Werdnig-Hoffmann disease has also been described in two patients. The objective was to describe two additional infants with the neuromuscular variant and novel mutations in the GBE1 gene. Branching enzyme assay, Western blot, RT-PCR and sequencing were performed in muscle biopsies from both patients. The cDNA of patient 1 was subcloned and sequenced to define the mutations. Muscle biopsies showed accumulation of periodic acid Schiff-positive, diastase-resistant storage material in both patients and increased lysosomal enzyme activity in patient 1. Branching enzyme activity in muscle was negligible in both patients, and Western blot showed decreased branching enzyme protein. Patient 1 had two single base pair deletions, one in exon 10 (1238delT) and the other in exon 12 (1467delC), and each parent was heterozygous for one of the deletions. Patient 2 had a large homozygous deletion that spanned 627 bp and included exons 8-12. Patient 1, who died at 41 days, had neurophysiological and neuropathological features of Spinal Muscular Atrophy. Patient 2, who died at 5(1/2) weeks, had a predominantly myopathic process. The infantile neuromuscular form of glycogen storage disease type IV is considered extremely rare, but our encountering two patients in close succession suggests that the disease may be underdiagnosed.
Collapse
Affiliation(s)
- Stacey K H Tay
- Department of Neurology, College of Physicians and Surgeons, Columbia University, 4-420, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Giuffrè B, Parini R, Rizzuti T, Morandi L, van Diggelen OP, Bruno C, Giuffrè M, Corsello G, Mosca F. Severe neonatal onset of glycogenosis type IV: clinical and laboratory findings leading to diagnosis in two siblings. J Inherit Metab Dis 2004; 27:609-19. [PMID: 15669676 DOI: 10.1023/b:boli.0000042980.45692.bb] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glycogenosis type IV is an autosomal recessive disease, exceptionally diagnosed at birth: only very few reports of the fatal perinatal neuromuscular form have been described. We report on two sibling male newborns who died at 10 and 4 weeks of age with clinical signs of a systemic storage disease. Prenatal history included polyhydramnios, reduced fetal movements and fetal hydrops, and Caesarean section was performed at 36 weeks of gestational age because of fetal distress. At birth, both babies showed severe hypotonia, hyporeflexia and no spontaneous breathing activity. They never showed active movements, sucking and swallowing and were respirator-dependent until death. A muscle biopsy revealed, in both patients, the presence of PAS-positive and partially diastase-resistant cytoplasmic inclusions containing granular and filamentous amylopectin-like material. This suggested that the stored material consisted of abnormal glycogen. At autopsy, ultrastructural examination of cardiac and skeletal muscle, liver, kidney and brain showed PAS-positive diastase-resistant eosinophilic cytoplasmic inclusions. Determination of branching enzyme activity, in cultured fibroblasts from the second patient, showed markedly reduced enzyme activity, confirming diagnosis of glycogenosis type IV. Our patients showed the full spectrum of both prenatal signs (hydrops, polyhydramnios) and postnatal signs (hypotonia, hyporeflexia, absence of active movements, cardiomegaly), which have been reported previously. They suffered from a very severe form of glycogenosis type IV with clinical and histological involvement of many tissues and organs. Diagnosis was accomplished on the second baby and required several biochemical and histological studies, in order to rule out both neuromuscular disorders and the most common storage diseases with neonatal onset. In our experience, the correct interpretation of the histological findings was essential in the search for the diagnosis.
Collapse
Affiliation(s)
- B Giuffrè
- Dipartimento di Neonatologia, Istituti Clinici di Perfezionamento, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Valberg SJ, Ward TL, Rush B, Kinde H, Hiraragi H, Nahey D, Fyfe J, Mickelson JR. Glycogen Branching Enzyme Deficiency in Quarter Horse Foals. J Vet Intern Med 2001. [DOI: 10.1111/j.1939-1676.2001.tb01593.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Abstract
The classification of diseases affecting white matter has changed dramatically with the use of magnetic resonance imaging. Classical leukodystrophies, such as metachromatic leukodystrophy and Krabbe's disease, account for only a small number of inherited diseases that affect white matter. Magnetic resonance imaging has clarified genetic disorders that result in white matter changes or leukoencephalopathies. The term leukoencephalopathy is used to reflect the broader number of diseases that may cause as either primary or secondary changes in myelin development. This review attempts to categorize white matter disorders into classes such as lipid, myelin protein, organic acids, and defects in energy metabolism, in addition to other causes.
Collapse
Affiliation(s)
- E M Kaye
- Section of Biochemical Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4399, USA
| |
Collapse
|
35
|
Abstract
The metabolic myopathies are distinguished by extensive clinical and genetic heterogeneity within and between individual disorders. There are a number of explanations for the variability observed that go beyond single gene mutations or degrees of heteroplasmy in the case of mitochondrial DNA mutations. Some of the contributing factors include protein subunit interactions, tissue-specificity, modifying genetic factors, and environmental triggers. Advances in the molecular analysis of metabolic myopathies during the last decade have not only improved the diagnosis of individual disorders but also helped to characterize the contributing factors that make these disorders so complex.
Collapse
Affiliation(s)
- G D Vladutiu
- Associate Professor, Departments of Pediatrics, Neurology, and Pathology, Division of Genetics, School of Medicine and Biomedical Studies, State University of New York at Buffalo, 14209, USA.
| |
Collapse
|
36
|
Bruno C, DiRocco M, Lamba LD, Bado M, Marino C, Tsujino S, Shanske S, Stella G, Minetti C, van Diggelen OP, DiMauro S. A novel missense mutation in the glycogen branching enzyme gene in a child with myopathy and hepatopathy. Neuromuscul Disord 1999; 9:403-7. [PMID: 10545044 DOI: 10.1016/s0960-8966(99)00040-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified a novel missense mutation in the gene for glycogen branching enzyme (GBE 1) in a 16-month-old infant with a combination of hepatic and muscular features, an atypical clinical presentation of glycogenosis type IV (GSD IV). The patient was heterozygous for a G-to-A substitution at codon 524 (R524Q), changing an encoded arginine (CGA) to glutamine (CAA), while the GBE1 gene on the other allele was not expressed. This case broadens the spectrum of mutations in patients with GSD IV and confirms the clinical and molecular heterogeneity of this disease.
Collapse
Affiliation(s)
- C Bruno
- H. Houston Merritt Clinical Research Center for Muscular Dystrophy and Related Diseases, Department of Neurology, Columbia University College of Physicians and Surgeons, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cox PM, Brueton LA, Murphy KW, Worthington VC, Bjelogrlic P, Lazda EJ, Sabire NJ, Sewry CA. Early-onset fetal hydrops and muscle degeneration in siblings due to a novel variant of type IV glycogenosis. AMERICAN JOURNAL OF MEDICAL GENETICS 1999; 86:187-93. [PMID: 10449659 DOI: 10.1002/(sici)1096-8628(19990910)86:2<187::aid-ajmg20>3.0.co;2-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report on 3 consecutive sib fetuses, presenting at 13, 12, and 13 weeks of gestation, respectively, with fetal hydrops, limb contractures, and akinesia. Autopsy of the first fetus showed subcutaneous fluid collections and severe degeneration of skeletal muscle. Histologic studies demonstrated massive accumulation of diastase-resistant periodic acid-Schiff-positive material in the skeletal muscle cells and epidermal keratinocytes of all 3 fetuses. Enzyme studies of fibroblasts from the 3rd fetus showed deficient activity of glycogen brancher enzyme, indicating that this is a new, severe form of glycogenosis type IV with onset in the early second trimester.
Collapse
Affiliation(s)
- P M Cox
- Division of Investigative Science, Imperial College School of Medicine, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The molecular pathology of classical glycogen storage disorders, glycogen synthase deficiency and Fanconi-Bickel syndrome is reviewed. The isolation of the respective cDNAs, the chromosomal localization of the genes and the elucidation of the genomic organization enabled mutation analysis in most disorders. The findings have shed light on the multi-protein structure of the glucose-6-phosphatase system, the phosphorylase kinase enzymatic complex and the molecular background of the differential tissue expression in debranching enzyme deficiency. The immediate practical benefit of these studies is our extending ability to predict the outcome of clinical variants and to offer genetic counseling to most families. The elucidation of the tertiary structure of these proteins and their structure-function relationship poses major challenges for the future.
Collapse
Affiliation(s)
- O N Elpeleg
- Metabolic Disease Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
39
|
Alegria A, Martins E, Dias M, Cunha A, Cardoso ML, Maire I. Glycogen storage disease type IV presenting as hydrops fetalis. J Inherit Metab Dis 1999; 22:330-2. [PMID: 10384399 DOI: 10.1023/a:1005568507267] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- A Alegria
- Maternidade Júlio Dinis, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
40
|
Posada Rodríguez IJ, Gutiérrez-Rivas E, Cabello A. [Cardiac involvement in neuromuscular diseases]. Rev Esp Cardiol 1997; 50:882-901. [PMID: 9470454 DOI: 10.1016/s0300-8932(97)74695-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many neuromuscular disorders involve the heart, occasionally with overt clinical disease. Muscular dystrophies (dystrophinopathies, limb girdle muscular dystrophy, Emery-Dreifuss muscular dystrophy, Steinert's myotonic dystrophy), congenital myopathies, inflammatory myopathies and metabolic diseases (glycogenosis, periodic paralysis, mitochondrial diseases) may produce dilated or hypertrophic cardiomyopathy and heart rhythm or conduction disturbances. Furthermore the heart is commonly involved in some hereditary and degenerative diseases (Friedreich's ataxia and Kugelberg-Welander syndrome) and acquired (Guillain-Barré syndrome) or inherited (Refsum's disease and Charcot-Marie-Tooth syndrome) polyneuropathies. A cardiologist's high clinical suspicion and a simple but systematic skeletal muscle and peripheral nerve investigation, including muscle enzymes quantification, neurophysiological study and muscle biopsy, are necessary for an accurate diagnosis. In selected patients, more sophisticated biochemical and genetic analysis will be necessary. In most cases, endomyocardial biopsy is not essential for the diagnosis.
Collapse
MESH Headings
- Adolescent
- Adult
- Arrhythmias, Cardiac/diagnosis
- Arrhythmias, Cardiac/etiology
- Cardiomyopathy, Dilated/diagnosis
- Cardiomyopathy, Dilated/etiology
- Cardiomyopathy, Hypertrophic/diagnosis
- Cardiomyopathy, Hypertrophic/etiology
- Charcot-Marie-Tooth Disease/complications
- Child
- Child, Preschool
- Echocardiography
- Electrocardiography
- Glycogen Storage Disease/complications
- Glycogen Storage Disease/diagnosis
- Heart Diseases/diagnosis
- Heart Diseases/etiology
- Humans
- Infant
- Infant, Newborn
- Male
- Middle Aged
- Mitochondrial Myopathies/complications
- Mitochondrial Myopathies/diagnosis
- Muscular Atrophy/complications
- Muscular Atrophy/diagnosis
- Muscular Dystrophies/complications
- Muscular Dystrophies/diagnosis
- Myopathies, Nemaline/complications
- Myopathies, Nemaline/diagnosis
- Neuromuscular Diseases/complications
- Neuromuscular Diseases/diagnosis
- Neuromuscular Diseases/metabolism
- Paralyses, Familial Periodic/complications
- Paralyses, Familial Periodic/diagnosis
- Polyradiculoneuropathy/complications
- Polyradiculoneuropathy/diagnosis
- Refsum Disease/complications
- Refsum Disease/diagnosis
Collapse
|
41
|
Bao Y, Kishnani P, Wu JY, Chen YT. Hepatic and neuromuscular forms of glycogen storage disease type IV caused by mutations in the same glycogen-branching enzyme gene. J Clin Invest 1996; 97:941-8. [PMID: 8613547 PMCID: PMC507139 DOI: 10.1172/jci118517] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Glycogen storage disease type IV (GSD-IV) is an autosomal recessive disease resulting from deficient glycogen-branching enzyme (GBE) activity. The classic and most common form is progressive liver cirrhosis and failure leading to either liver transplantation or death by 5 yr of age. However, the liver disease is not always progressive. In addition, a neuromuscular type of the disease has been reported. The molecular basis of GSD-IV is not known, nor is there a known reason for the clinical variability. We studied the GBE gene in patients with various presentations of GSD-IV. Three point mutations in the GBE gene were found in two patients with the classical presentation: R515C, F257L, and R524X. Transient expression experiments showed that these mutations inactivated GBE activity. Two point mutations, L224P and Y329S, were detected in two separate alleles of a patient with the nonprogressive hepatic form. The L224P resulted in complete loss of GBE activity, whereas the Y329S resulted in loss of approximately 50% of GBE activity. The Y329S allele was also detected in another patient with the nonprogressive form of GSD-IV but not in 35 unrelated controls or in patients with the more severe forms of GSD-IV. A 210-bp deletion from nucleotide 873 to 1082 of the GBE cDNA was detected in a patient with the fatal neonatal neuromuscular presentation. This deletion, representing the loss of one full exon, was caused by a 3' acceptor splicing site mutation (ag to aa). The deletion abolished GBE activity. Our studies indicate that the three different forms of GSD-IV were caused by mutations in the same GBE gene. The data also suggest that the significant retention of GBE activity in the Y329S allele may be a reason for the mild disease. Further study of genotype/phenotype correlations may yield useful information in predicting the clinical outcomes.
Collapse
Affiliation(s)
- Y Bao
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
42
|
McConkie-Rosell A, Wilson C, Piccoli DA, Boyle J, DeClue T, Kishnani P, Shen JJ, Boney A, Brown B, Chen YT. Clinical and laboratory findings in four patients with the non-progressive hepatic form of type IV glycogen storage disease. J Inherit Metab Dis 1996; 19:51-8. [PMID: 8830177 DOI: 10.1007/bf01799348] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The classic clinical presentation for type IV glycogen storage disease (branching enzyme deficiency, GSD IV) is hepatosplenomegaly with failure to thrive occurring in the first 18 months of life, followed by progressive liver failure and death by age 5 years. Although there have been two patients without apparent liver progression previously reported, no long-term follow-up clinical data have been available. We present here the clinical spectrum of the non-progressive liver form of GSD IV in four patients, and long-term follow-up of the oldest identified patients (ages 13 and 20 years). None has developed progressive liver cirrhosis, skeletal muscle, cardiac or neurological involvement, and none has been transplanted. Branching enzyme activity was also measured in cultured skin fibroblasts from patients with the classic liver progressive, the early neonatal fatal, and the non-progressive hepatic presentations of GSD IV. The residual branching enzyme activity in the patients without progression was not distinguishable from the other forms and could not be used to predict the clinical course. Our data indicate that GSD IV does not always necessitate hepatic transplantation and that caution should be used when counselling patients regarding the prognosis of GSD IV. Patients should be carefully monitored for evidence of progression before recommending liver transplantation.
Collapse
Affiliation(s)
- A McConkie-Rosell
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|