1
|
Valvano M, Capannolo A, Cesaro N, Stefanelli G, Fabiani S, Frassino S, Monaco S, Magistroni M, Viscido A, Latella G. Nutrition, Nutritional Status, Micronutrients Deficiency, and Disease Course of Inflammatory Bowel Disease. Nutrients 2023; 15:3824. [PMID: 37686856 PMCID: PMC10489664 DOI: 10.3390/nu15173824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
During the disease course, most Inflammatory Bowel Disease patients present a condition of malnutrition, undernutrition, or even overnutrition. These conditions are mainly due to suboptimal nutritional intake, alterations in nutrient requirements and metabolism, malabsorption, and excessive gastrointestinal losses. A suboptimal nutritional status and low micronutrient serum levels can have a negative impact on both induction and maintenance of remission and on the quality of life of Inflammatory Bowel Disease patients. We performed a systematic review including all the studies evaluating the connection between nutrition, nutrition status (including undernutrition and overnutrition), micronutrient deficiency, and both disease course and therapeutic response in Inflammatory Bowel Disease patients. This systematic review was performed using PubMed/MEDLINE and Scopus. Four main clinical settings concerning the effect of nutrition on disease course in adult Inflammatory Bowel Disease patients were analyzed (induction of remission, maintenance of remission, risk of surgery, post-operative recurrence, and surgery-related complications). Four authors independently reviewed abstracts and manuscripts for eligibility. 6077 articles were found; 762 duplicated studies were removed. Out of 412 full texts analyzed, 227 were included in the review. The evidence summarized in this review showed that many nutritional aspects could be potential targets to induce a better control of symptoms, a deeper remission, and overall improve the quality of life of Inflammatory Bowel Disease patients.
Collapse
Affiliation(s)
- Marco Valvano
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy; (N.C.); (S.F.); (S.F.); (S.M.); (M.M.); (A.V.); (G.L.)
- Division of Gastroenterology, Galliera Hospital, 16128 Genoa, Italy;
| | - Annalisa Capannolo
- Diagnostic and Surgical Endoscopy Unit, San Salvatore Academic Hospital, 67100 L’Aquila, Italy;
| | - Nicola Cesaro
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy; (N.C.); (S.F.); (S.F.); (S.M.); (M.M.); (A.V.); (G.L.)
| | | | - Stefano Fabiani
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy; (N.C.); (S.F.); (S.F.); (S.M.); (M.M.); (A.V.); (G.L.)
| | - Sara Frassino
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy; (N.C.); (S.F.); (S.F.); (S.M.); (M.M.); (A.V.); (G.L.)
| | - Sabrina Monaco
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy; (N.C.); (S.F.); (S.F.); (S.M.); (M.M.); (A.V.); (G.L.)
| | - Marco Magistroni
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy; (N.C.); (S.F.); (S.F.); (S.M.); (M.M.); (A.V.); (G.L.)
| | - Angelo Viscido
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy; (N.C.); (S.F.); (S.F.); (S.M.); (M.M.); (A.V.); (G.L.)
| | - Giovanni Latella
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy; (N.C.); (S.F.); (S.F.); (S.M.); (M.M.); (A.V.); (G.L.)
| |
Collapse
|
2
|
Vetuschi A, Battista N, Pompili S, Cappariello A, Prete R, Taticchi A, Selvaggini R, Latella G G, Corsetti A, Sferra R. The antiinflammatory and antifibrotic effect of olive phenols and Lactiplantibacillus plantarum IMC513 in dextran sodium sulfate-induced chronic colitis. Nutrition 2022; 94:111511. [PMID: 34813981 DOI: 10.1016/j.nut.2021.111511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES After a chronic intestinal injury, several intestinal cells switch their phenotype to activated myofibroblasts, which in turn release an abnormal amount of extracellular matrix proteins, leading to the onset of the fibrotic process. To date, no resolutive pharmacological treatments are available, and the identification of new therapeutic approaches represents a crucial goal to achieve. The onset, maintenance, and progression of inflammatory bowel disease are related to abnormal intestinal immune responses to environmental factors, including diet and intestinal microflora components. This study aimed to evaluate the potential antiinflammatory and antifibrotic effect of a biologically debittered olive cream and its probiotic oral administration in an experimental model of dextran sodium sulfate (DSS)-induced chronic colitis. METHODS Chronic colitis was induced in mice by three cycles of oral administration of 2.5% DSS (5 d of DSS followed by 7 d of tap water). Mice were randomly divided into five groups: 10 control mice fed with standard diet (SD), 20 mice receiving SD and DSS (SD+DSS), 20 mice receiving an enriched diet (ED) with olive cream and DSS (ED+DSS), 20 mice receiving SD plus probiotics (PB; Lactiplantibacillus plantarum IMC513) and DSS (SD+PB+DSS), and 20 mice receiving ED plus PB and DSS (ED+ PB+DSS). Clinical features and large bowel macroscopic, histologic, and immunohistochemical findings were evaluated. RESULTS The simultaneous administration of ED and PB induced a significant reduction in macroscopic and microscopic colitis scores compared with the other DSS-treated groups. In addition, ED and PB led to a significant decrease in the expression of inflammatory cytokines and profibrotic molecules. CONCLUSIONS The concomitant oral administration of a diet enriched with biologically debittered olive cream and a specific probiotic strain (Lactiplantibacillus plantarum IMC513) can exert synergistic antiinflammatory and antifibrotic action in DSS-induced chronic colitis. Further studies are needed to define the cellular and molecular mechanisms modulated by olive cream compounds and by Lactiplantibacillus plantarum IMC513.
Collapse
Affiliation(s)
- Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Roberto Selvaggini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Latella G
- Department of Life, Health and Environmental Sciences-Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, L'Aquila, Italy
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
3
|
Vernia F, Longo S, Stefanelli G, Viscido A, Latella G. Dietary Factors Modulating Colorectal Carcinogenesis. Nutrients 2021; 13:nu13010143. [PMID: 33401525 PMCID: PMC7824178 DOI: 10.3390/nu13010143] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
The development of colorectal cancer, responsible for 9% of cancer-related deaths, is favored by a combination of genetic and environmental factors. The modification of diet and lifestyle may modify the risk of colorectal cancer (CRC) and prevent neoplasia in up to 50% of cases. The Western diet, characterized by a high intake of fat, red meat and processed meat has emerged as an important contributor. Conversely, a high intake of dietary fiber partially counteracts the unfavorable effects of meat through multiple mechanisms, including reduced intestinal transit time and dilution of carcinogenic compounds. Providing antioxidants (e.g., vitamins C and E) and leading to increased intraluminal production of protective fermentation products, like butyrate, represent other beneficial and useful effects of a fiber-rich diet. Protective effects on the risk of developing colorectal cancer have been also advocated for some specific micronutrients like vitamin D, selenium, and calcium. Diet-induced modifications of the gut microbiota modulate colonic epithelial cell homeostasis and carcinogenesis. This can have, under different conditions, opposite effects on the risk of CRC, through the production of mutagenic and carcinogenic agents or, conversely, of protective compounds. The aim of this review is to summarize the most recent evidence on the role of diet as a potential risk factor for the development of colorectal malignancies, as well as providing possible prevention dietary strategies.
Collapse
|
4
|
Impact of Novel Sorghum Bran Diets on DSS-Induced Colitis. Nutrients 2017; 9:nu9040330. [PMID: 28346392 PMCID: PMC5409669 DOI: 10.3390/nu9040330] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
We have demonstrated that polyphenol-rich sorghum bran diets alter fecal microbiota; however, little is known regarding their effect on colon inflammation. Our aim was to characterize the effect of sorghum bran diets on intestinal homeostasis during dextran sodium sulfate (DSS)-induced colitis. Male Sprague-Dawley rats (N = 20/diet) were provided diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins) or Hi Tannin Black (both) sorghum bran. Colitis was induced (N = 10/diet) with three separate 48-h exposures to 3% DSS, and feces were collected. On Day 82, animals were euthanized and the colon resected. Only discrete mucosal lesions, with no diarrhea or bloody stools, were observed in DSS rats. Only bran diets upregulated proliferation and Tff3, Tgfβ and short chain fatty acids (SCFA) transporter expression after a DSS challenge. DSS did not significantly affect fecal SCFA concentrations. Bran diets alone upregulated repair mechanisms and SCFA transporter expression, which suggests these polyphenol-rich sorghum brans may suppress some consequences of colitis.
Collapse
|
5
|
Morgan JLL, Ritchie LE, Crucian BE, Theriot C, Wu H, Sams C, Smith SM, Turner ND, Zwart SR. Increased dietary iron and radiation in rats promote oxidative stress, induce localized and systemic immune system responses, and alter colon mucosal environment. FASEB J 2013; 28:1486-98. [DOI: 10.1096/fj.13-239418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jennifer L. L. Morgan
- Oak Ridge Associated UniversitiesNational Aeronautics and Space Administration (NASA) Post‐Doctoral Fellowship Program, NASA Lyndon B. Johnson Space CenterHoustonTexasUSA
| | - Lauren E. Ritchie
- Department of Nutrition and Food ScienceTexas A&M UniversityCollege StationTexasUSA
| | - Brian E. Crucian
- Biomedical Research and Environmental Sciences DivisionNASA Lyndon B. Johnson Space CenterHoustonTexasUSA
| | - Corey Theriot
- Department of Preventive Medicine and Community HealthUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Honglu Wu
- Biomedical Research and Environmental Sciences DivisionNASA Lyndon B. Johnson Space CenterHoustonTexasUSA
| | - Clarence Sams
- Space and Clinical Operations Division, Human Health and Performance DirectorateNASA Lyndon B. Johnson Space CenterHoustonTexasUSA
| | - Scott M. Smith
- Biomedical Research and Environmental Sciences DivisionNASA Lyndon B. Johnson Space CenterHoustonTexasUSA
| | - Nancy D. Turner
- Department of Nutrition and Food ScienceTexas A&M UniversityCollege StationTexasUSA
| | - Sara R. Zwart
- Division of Space Life SciencesUniversities Space Research AssociationHoustonTexasUSA
| |
Collapse
|
6
|
Carra GE, Ibáñez JE, Saraví FD. The effect of acute hypoxia on short-circuit current and epithelial resistivity in biopsies from human colon. Dig Dis Sci 2013; 58:2499-506. [PMID: 23695875 DOI: 10.1007/s10620-013-2711-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 05/02/2013] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS In isolated colonic mucosa, decreases in short-circuit current (ISC) and transepithelial resistivity (RTE) occur when hypoxia is either induced at both sides or only at the serosal side of the epithelium. We assessed in human colon biopsies the sensitivity to serosal-only hypoxia and mucosal-only hypoxia and whether Na, K-ATPase blockade with ouabain interacts with hypoxia. MATERIALS AND METHODS Biopsy material from patients undergoing colonoscopy was mounted in an Ussing chamber for small samples (1-mm2 window). In a series of experiments we assessed viability and the electrical response to the mucolytic, dithiothreitol (1 mmol/l). In a second series, we explored the effect of hypoxia without and with ouabain. In a third series, we evaluated the response to a cycle of hypoxia and reoxygenation induced at the serosal or mucosal side while keeping the oxygenation of the opposite side. RESULTS 1st series: Dithiothreitol significantly decreased the unstirred layer and ISC but increased RTE. 2nd series: Both hypoxia and ouabain decreased ISC, but ouabain increased RTE and this effect on RTE prevailed even during hypoxia. 3rd series: Mucosal hypoxia caused lesser decreases of ISC and RTE than serosal hypoxia; in the former, but not in the latter, recovery was complete upon reoxygenation. CONCLUSIONS In mucolytic concentration, dithiothreitol modifies ISC and RTE. Oxygen supply from the serosal side is more important to sustain ISC and RTE in biopsy samples. The different effect of hypoxia and Na, K-ATPase blockade on RTE suggests that their depressing effect on ISC involves different mechanisms.
Collapse
Affiliation(s)
- Graciela E Carra
- Faculty of Medical Sciences, Institute of Physiology, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | | | | |
Collapse
|
7
|
Electrogenic transport, oxygen consumption, and sensitivity to acute hypoxia of human colonic epithelium. Int J Colorectal Dis 2011; 26:1205-10. [PMID: 21519802 DOI: 10.1007/s00384-011-1215-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2011] [Indexed: 02/04/2023]
Abstract
INTRODUCTION It is recognized that epithelial ion transport depends on oxygen supply, but this dependence has not been characterized in the human colon in vitro despite its surgical and clinical implications. PURPOSES The aim of this study is to measure the oxygen consumption of colonic epithelium under conditions which preserve vectorial ion transport and to assess the sensitivity of the human colonic epithelium short-circuit current (I (sc)) to acute hypoxia induced in vitro. METHODS Isolated mucosa preparations from human sigmoid colon were placed in a modified Ussing chamber which allows simultaneous measurement of short-circuit current (I (sc)) and oxygen consumption (QO(2)). In separate experiments, the sensitivity to acute hypoxia induced in a conventional Ussing chamber was assessed. RESULTS Basal mean ± SEM values (n = 8) were I (sc) = 3.3 ± 0.5 μEq h(-1) cm(-2) and QO(2) = 8.09 ± 0.55 μmol h(-1) cm(-2). The contribution of the serosal side to the oxygen supply was higher than that of the mucosal side (p = 0.0023). Ouabain reduced I (sc) by 70% (P < 0.0001) and QO(2) by 26% (n = 8; P = 0.0009), suggesting that a large fraction of QO(2) is needed to support ouabain-sensitive electrogenic transport. Induction of hypoxia at both sides of the Ussing chamber caused a rapid decrease in I (sc) after 2 min. I (sc) was also significantly depressed when hypoxia was induced by 5 min in the serosal side (n = 6, P < 0.0001), but was unaffected by hypoxia induced in the mucosal side. CONCLUSION The present results allow a better understanding of the clinical consequences of acute hypoxia on intestinal ion transport.
Collapse
|
8
|
Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, Bultman SJ. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 2011; 13:517-26. [PMID: 21531334 PMCID: PMC3099420 DOI: 10.1016/j.cmet.2011.02.018] [Citation(s) in RCA: 1326] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 10/07/2010] [Accepted: 02/24/2011] [Indexed: 02/07/2023]
Abstract
The microbiome is being characterized by large-scale sequencing efforts, yet it is not known whether it regulates host metabolism in a general versus tissue-specific manner or which bacterial metabolites are important. Here, we demonstrate that microbiota have a strong effect on energy homeostasis in the colon compared to other tissues. This tissue specificity is due to colonocytes utilizing bacterially produced butyrate as their primary energy source. Colonocytes from germfree mice are in an energy-deprived state and exhibit decreased expression of enzymes that catalyze key steps in intermediary metabolism including the TCA cycle. Consequently, there is a marked decrease in NADH/NAD(+), oxidative phosphorylation, and ATP levels, which results in AMPK activation, p27(kip1) phosphorylation, and autophagy. When butyrate is added to germfree colonocytes, it rescues their deficit in mitochondrial respiration and prevents them from undergoing autophagy. The mechanism is due to butyrate acting as an energy source rather than as an HDAC inhibitor.
Collapse
Affiliation(s)
- Dallas R Donohoe
- Department of Genetics, University of North Carolina at Chapel Hill, 27599-7264, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Colon, Rectum, and Anus. Surgery 2008. [DOI: 10.1007/978-0-387-68113-9_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
|
11
|
Cherbonnel-Lasserre CL, Linares-Cruz G, Rigaut JP, Sabatier L, Dutrillaux B. Strong decrease in biotin content may correlate with metabolic alterations in colorectal adenocarcinoma. Int J Cancer 1997; 72:768-75. [PMID: 9311592 DOI: 10.1002/(sici)1097-0215(19970904)72:5<768::aid-ijc11>3.0.co;2-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Short-chain fatty acids are an important source of energy for colonocytes. One of these is propionate, which is metabolized through carboxylation by propionyl-CoA carboxylase (PCC), an enzyme encoded by 2 genes, PCCA and PCCB. The co-factor of this reaction is biotin, a product of intestinal bacterial metabolism, as is propionate. Despite detailed knowledge about the metabolic effects and physiology of biotin, the relative amounts of this vitamin in normal colonic mucosae and in tumour tissue remains quite unknown. The biotin content in normal and cancerous cells from the distal digestive tract was examined on 10 pairs of tissue specimens of colorectal cancer and adjacent normal mucosae using reflectance in situ hybridization (RISH). Having observed a high biotin content in colon mucosae and a low content in colorectal-cancer cells, we then studied the transcription levels of PCCA and PCCB genes in 9 colorectal cancers and the corresponding mucosae. In all cases, the levels of mRNA were lower in colorectal cancers than in normal mucosae, the decrease being always more marked for PCCB than for PCCA. In normal mucosae and in adenocarcinoma cancer cells, PCCA and PCCB transcription levels were strongly related to the amount of biotin detected, but not to the number of chromosomes 13 (which carries PCCA) or 3 (which carries PCCB).
Collapse
|
12
|
Fonti R, Latella G, Bises G, Magliocca F, Nobili F, Caprilli R, Sambuy Y. Human colonocytes in primary culture: a model to study epithelial growth, metabolism and differentiation. Int J Colorectal Dis 1994; 9:13-22. [PMID: 8027618 DOI: 10.1007/bf00304294] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of this work was to set up an in vitro model for the study of normal and pathological functions of the colonic epithelium. We have isolated colonic crypts by mild proteolytic digestion and mechanical dissociation of human biopsy material obtained during colonoscopy. The crypts, free of connective tissue, when placed in culture rapidly attached to the substrate and formed colonies containing over 95% of epithelial cells. Histochemical and ultrastructural characterization of the colonies showed the presence of both absorptive and secretory cells, exhibiting a high degree of differentiation. Proliferative activity occurred mostly during the first 24 h and progressively declined thereafter. The cells survived and maintained differentiated characteristics for at least three days in culture. This method can be used to study normal functions of the colonic epithelium. It may also be employed to investigate both noxious and protective factors in pathological conditions such as inflammatory bowel disease and colorectal neoplasia.
Collapse
Affiliation(s)
- R Fonti
- Cattedra di Gastroenterologia, Università de L'Aquila, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Chapman MA, Grahn MF, Giamundo P, O'Connell PR, Onwu D, Hutton M, Maudsley J, Norton B, Rogers J, Williams NS. New technique to measure mucosal metabolism and its use to map substrate utilization in the healthy human large bowel. Br J Surg 1993; 80:445-9. [PMID: 8495306 DOI: 10.1002/bjs.1800800412] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A new method of assessing substrate utilization in gastrointestinal mucosal specimens is described. Small human endoscopic biopsy specimens with wet weights ranging between 1.4 and 12.2 mg were used to quantify the oxidation of three metabolic substrates, glucose, glutamine and butyrate, through to carbon dioxide over a 2-h period. The technique proved to be reproducible and capable of distinguishing variations in mucosal metabolism between individuals (P < 0.0001 for each substrate). Results were similar to those obtained previously using human and rat colonocytes. To characterize the metabolism of the healthy large bowel, specimens were obtained from five regions in 15 patients who had a normal colonoscopic examination. The results show that butyrate is the preferred fuel source of large bowel mucosa, followed by glutamine, then glucose (P < 0.01). There was no significant regional variation in utilization of the three substrates between the five regions; with respect to glutamine, this is contrary to previous findings.
Collapse
Affiliation(s)
- M A Chapman
- Surgical Unit, London Hospital Medical College, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|