1
|
Banzai K, Izumi S. Cis-regulatory elements of the cholinergic gene locus in the silkworm Bombyx mori. INSECT MOLECULAR BIOLOGY 2022; 31:73-84. [PMID: 34549831 DOI: 10.1111/imb.12739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Genes of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter are encoded in the same gene locus, called the cholinergic gene locus. They are essential in cholinergic neurons to maintain their functional phenotype. The genomic structure of the cholinergic gene locus is conserved among invertebrates to mammals. However, the cholinergic gene expression in a specific subset of neurons is unknown in insects except for Drosophila melanogaster. In this study, we analysed the upstream sequence of cholinergic gene locus in the silkworm Bombyx mori to identify specific cis-regulatory regions. We found multiple enhancer regions that are localized within 1 kb upstream of the cholinergic gene locus. The combination of promoter assays using small deletions and bioinformatic analysis among insect species illuminates two conserved sequences in the cis-regulatory region: TGACGTA and CCAAT, which are known as the cAMP response element and CAAT box, respectively. We found that dibutyryl-cAMP, an analogue of cAMP, influences the expression of ChAT in B. mori. Tissue-specific expression analysis of transcriptional factors identified potential candidates that control the cholinergic gene locus expression. Our investigation provides new insight into the regulation mechanism of cholinergic neuron-specific gene machinery in this lepidopteran insect.
Collapse
Affiliation(s)
- K Banzai
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | - S Izumi
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
2
|
Hamid R, Hajirnis N, Kushwaha S, Saleem S, Kumar V, Mishra RK. Drosophila Choline transporter non-canonically regulates pupal eclosion and NMJ integrity through a neuronal subset of mushroom body. Dev Biol 2019; 446:80-93. [DOI: 10.1016/j.ydbio.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/25/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022]
|
3
|
Nässel DR. Substrates for Neuronal Cotransmission With Neuropeptides and Small Molecule Neurotransmitters in Drosophila. Front Cell Neurosci 2018; 12:83. [PMID: 29651236 PMCID: PMC5885757 DOI: 10.3389/fncel.2018.00083] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 01/11/2023] Open
Abstract
It has been known for more than 40 years that individual neurons can produce more than one neurotransmitter and that neuropeptides often are colocalized with small molecule neurotransmitters (SMNs). Over the years much progress has been made in understanding the functional consequences of cotransmission in the nervous system of mammals. There are also some excellent invertebrate models that have revealed roles of coexpressed neuropeptides and SMNs in increasing complexity, flexibility, and dynamics in neuronal signaling. However, for the fly Drosophila there are surprisingly few functional studies on cotransmission, although there is ample evidence for colocalization of neuroactive compounds in neurons of the CNS, based both on traditional techniques and novel single cell transcriptome analysis. With the hope to trigger interest in initiating cotransmission studies, this review summarizes what is known about Drosophila neurons and neuronal circuits where different neuropeptides and SMNs are colocalized. Coexistence of neuroactive substances has been recorded in different neuron types such as neuroendocrine cells, interneurons, sensory cells and motor neurons. Some of the circuits highlighted here are well established in the analysis of learning and memory, circadian clock networks regulating rhythmic activity and sleep, as well as neurons and neuroendocrine cells regulating olfaction, nociception, feeding, metabolic homeostasis, diuretic functions, reproduction, and developmental processes. One emerging trait is the broad role of short neuropeptide F in cotransmission and presynaptic facilitation in a number of different neuronal circuits. This review also discusses the functional relevance of coexisting peptides in the intestine. Based on recent single cell transcriptomics data, it is likely that the neuronal systems discussed in this review are just a fraction of the total set of circuits where cotransmission occurs in Drosophila. Thus, a systematic search for colocalized neuroactive compounds in further neurons in anatomically defined circuits is of interest for the near future.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Hussain A, Pooryasin A, Zhang M, Loschek LF, La Fortezza M, Friedrich AB, Blais CM, Üçpunar HK, Yépez VA, Lehmann M, Gompel N, Gagneur J, Sigrist SJ, Grunwald Kadow IC. Inhibition of oxidative stress in cholinergic projection neurons fully rescues aging-associated olfactory circuit degeneration in Drosophila. eLife 2018; 7:32018. [PMID: 29345616 PMCID: PMC5790380 DOI: 10.7554/elife.32018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/16/2018] [Indexed: 12/03/2022] Open
Abstract
Loss of the sense of smell is among the first signs of natural aging and neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Cellular and molecular mechanisms promoting this smell loss are not understood. Here, we show that Drosophila melanogaster also loses olfaction before vision with age. Within the olfactory circuit, cholinergic projection neurons show a reduced odor response accompanied by a defect in axonal integrity and reduction in synaptic marker proteins. Using behavioral functional screening, we pinpoint that expression of the mitochondrial reactive oxygen scavenger SOD2 in cholinergic projection neurons is necessary and sufficient to prevent smell degeneration in aging flies. Together, our data suggest that oxidative stress induced axonal degeneration in a single class of neurons drives the functional decline of an entire neural network and the behavior it controls. Given the important role of the cholinergic system in neurodegeneration, the fly olfactory system could be a useful model for the identification of drug targets.
Collapse
Affiliation(s)
- Ashiq Hussain
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Atefeh Pooryasin
- Institute of Biology, Free University of Berlin, Neurogenetics, Germany.,Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mo Zhang
- Max-Planck Institute of Neurobiology, Martinsried, Germany
| | | | - Marco La Fortezza
- Fakultät für Biologie, Biozentrum, Ludwig-Maximilians-Universität München, München, Germany
| | - Anja B Friedrich
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | | | - Vicente A Yépez
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Martin Lehmann
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Nicolas Gompel
- Fakultät für Biologie, Biozentrum, Ludwig-Maximilians-Universität München, München, Germany
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Stephan J Sigrist
- Institute of Biology, Free University of Berlin, Neurogenetics, Germany.,Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ilona C Grunwald Kadow
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,Max-Planck Institute of Neurobiology, Martinsried, Germany.,ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
5
|
Larderet I, Fritsch PM, Gendre N, Neagu-Maier GL, Fetter RD, Schneider-Mizell CM, Truman JW, Zlatic M, Cardona A, Sprecher SG. Organization of the Drosophila larval visual circuit. eLife 2017; 6:28387. [PMID: 30726702 PMCID: PMC5577918 DOI: 10.7554/elife.28387] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/07/2017] [Indexed: 11/20/2022] Open
Abstract
Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.
Collapse
Affiliation(s)
- Ivan Larderet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Nanae Gendre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | | | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Paeger L, Bardos V, Kloppenburg P. Transient voltage-activated K + currents in central antennal lobe neurons: cell type-specific functional properties. J Neurophysiol 2017; 117:2053-2064. [PMID: 28179480 PMCID: PMC5434483 DOI: 10.1152/jn.00685.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 02/01/2023] Open
Abstract
In this study we analyzed transient voltage-activated K+ currents (IA) of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana The antennal lobe is the first synaptic processing station for olfactory information in insects. Local interneurons are crucial for computing olfactory information and form local synaptic connections exclusively in the antennal lobe, whereas a primary task of the projection neurons is the transfer of preprocessed olfactory information from the antennal lobe to higher order centers in the protocerebrum. The different physiological tasks of these neurons require specialized physiological and morphological neuronal phenotypes. We asked if and how the different physiological phenotypes are reflected in the functional properties of IA, which is crucial for shaping intrinsic electrophysiological properties of neurons. Whole cell patch-clamp recordings from adult male P. americana showed that all their central antennal lobe neurons can generate IA The current exhibited marked cell type-specific differences in voltage dependence of steady-state activation and inactivation, and differences in inactivation kinetics during sustained depolarization. Pharmacological experiments revealed that IA in all neuron types was partially blocked by α-dendrotoxin and phrixotoxin-2, which are considered blockers with specificity for Shaker- and Shal-type channels, respectively. These findings suggest that IA in each cell type is a mixed current generated by channels of both families. The functional role of IA was analyzed in experiments under current clamp, in which portions of IA were blocked by α-dendrotoxin or phrixotoxin-2. These experiments showed that IA contributes significantly to the intrinsic electrophysiological properties, such as the action potential waveform and membrane excitability.NEW & NOTEWORTHY In the insect olfactory system, projection neurons and local interneurons have task-specific electrophysiological and morphological phenotypes. Voltage-activated potassium channels play a crucial role in shaping functional properties of these neurons. This study revealed marked cell type-specific differences in the biophysical properties of transient voltage-activated potassium currents in central antennal lobe neurons.
Collapse
Affiliation(s)
- Lars Paeger
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Viktor Bardos
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Zwaka H, Münch D, Manz G, Menzel R, Rybak J. The Circuitry of Olfactory Projection Neurons in the Brain of the Honeybee, Apis mellifera. Front Neuroanat 2016; 10:90. [PMID: 27746723 PMCID: PMC5040750 DOI: 10.3389/fnana.2016.00090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
In the honeybee brain, two prominent tracts - the medial and the lateral antennal lobe tract - project from the primary olfactory center, the antennal lobes (ALs), to the central brain, the mushroom bodies (MBs), and the protocerebral lobe (PL). Intracellularly stained uniglomerular projection neurons were reconstructed, registered to the 3D honeybee standard brain atlas, and then used to derive the spatial properties and quantitative morphology of the neurons of both tracts. We evaluated putative synaptic contacts of projection neurons (PNs) using confocal microscopy. Analysis of the patterns of axon terminals revealed a domain-like innervation within the MB lip neuropil. PNs of the lateral tract arborized more sparsely within the lips and exhibited fewer synaptic boutons, while medial tract neurons occupied broader regions in the MB calyces and the PL. Our data show that uPNs from the medial and lateral tract innervate both the core and the cortex of the ipsilateral MB lip but differ in their innervation patterns in these regions. In the mushroombody neuropil collar we found evidence for ALT boutons suggesting the collar as a multi modal input site including olfactory input similar to lip and basal ring. In addition, our data support the conclusion drawn in previous studies that reciprocal synapses exist between PNs, octopaminergic-, and GABAergic cells in the MB calyces. For the first time, we found evidence for connections between both tracts within the AL.
Collapse
Affiliation(s)
- Hanna Zwaka
- Institute of Neurobiology, Free University BerlinBerlin, Germany; Abteilung Genetik von Lernen und Gedächtnis, Leibniz Institut für NeurobiologieMagdeburg, Germany
| | - Daniel Münch
- Neurobiology, University of Konstanz Konstanz, Germany
| | - Gisela Manz
- Institute of Neurobiology, Free University Berlin Berlin, Germany
| | - Randolf Menzel
- Institute of Neurobiology, Free University BerlinBerlin, Germany; Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| |
Collapse
|
8
|
Eck S, Helfrich-Förster C, Rieger D. The Timed Depolarization of Morning and Evening Oscillators Phase Shifts the Circadian Clock of Drosophila. J Biol Rhythms 2016; 31:428-42. [PMID: 27269519 DOI: 10.1177/0748730416651363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phase response curves (PRCs) for light or temperature stimuli have been shown to be most valuable in understanding how circadian clocks are entrained to daily environmental cycles. Nowadays, PRC experiments in which clock neurons are manipulated in a temporally restricted manner by thermogenetic or optogenetic tools are also useful to comprehend clock network properties. Here, we temporally depolarized specific clock neurons of Drosophila melanogaster by activating temperature-sensitive dTrpA1 channels to unravel their role in phase shifting the flies' activity rhythm. The depolarization of all clock neurons caused a PRC resembling the flies' light PRC, with strong phase delays in the first half of the subjective night and modest phase advances in its second half. However, the activation of the flies' pigment-dispersing factor (PDF)-positive morning (M) neurons (s-LNvs) only induced phase advances, and these reached into the subjective day, where the light PRC has its dead zone. This indicates that the M neurons are very potent in accelerating the clock, which is in line with previous observations. In contrast, the evening (E) neurons together with the PDF-positive l-LNvs appear to mediate phase delays. Most interestingly, the molecular clock (Period protein cycling) of the depolarized clock neurons was shifted in parallel to the behavior, and this shift was already visible within the first cycle after the temperature pulse. We identified cAMP response element binding protein B (CREB) as a putative link between membrane depolarization and the molecular clock.
Collapse
Affiliation(s)
- Saskia Eck
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Germany
| | | | - Dirk Rieger
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Germany
| |
Collapse
|
9
|
Barnstedt O, Owald D, Felsenberg J, Brain R, Moszynski JP, Talbot CB, Perrat PN, Waddell S. Memory-Relevant Mushroom Body Output Synapses Are Cholinergic. Neuron 2016; 89:1237-1247. [PMID: 26948892 PMCID: PMC4819445 DOI: 10.1016/j.neuron.2016.02.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/04/2016] [Accepted: 01/27/2016] [Indexed: 11/17/2022]
Abstract
Memories are stored in the fan-out fan-in neural architectures of the mammalian cerebellum and hippocampus and the insect mushroom bodies. However, whereas key plasticity occurs at glutamatergic synapses in mammals, the neurochemistry of the memory-storing mushroom body Kenyon cell output synapses is unknown. Here we demonstrate a role for acetylcholine (ACh) in Drosophila. Kenyon cells express the ACh-processing proteins ChAT and VAChT, and reducing their expression impairs learned olfactory-driven behavior. Local ACh application, or direct Kenyon cell activation, evokes activity in mushroom body output neurons (MBONs). MBON activation depends on VAChT expression in Kenyon cells and is blocked by ACh receptor antagonism. Furthermore, reducing nicotinic ACh receptor subunit expression in MBONs compromises odor-evoked activation and redirects odor-driven behavior. Lastly, peptidergic corelease enhances ACh-evoked responses in MBONs, suggesting an interaction between the fast- and slow-acting transmitters. Therefore, olfactory memories in Drosophila are likely stored as plasticity of cholinergic synapses. Mushroom body Kenyon cell function requires ChAT and VAChT expression Kenyon cell-released acetylcholine drives mushroom body output neurons Blocking nicotinic receptors impairs mushroom body output neuron activation Acetylcholine interacts with coreleased neuropeptide
Collapse
Affiliation(s)
- Oliver Barnstedt
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - David Owald
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| | - Johannes Felsenberg
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Ruth Brain
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - John-Paul Moszynski
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Clifford B Talbot
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Paola N Perrat
- Department of Neurobiology, UMass Medical School, Worcester, MA 01605, USA
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| |
Collapse
|
10
|
Bradler C, Warren B, Bardos V, Schleicher S, Klein A, Kloppenburg P. Properties and physiological function of Ca2+-dependent K+ currents in uniglomerular olfactory projection neurons. J Neurophysiol 2016; 115:2330-40. [PMID: 26823514 DOI: 10.1152/jn.00840.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/27/2016] [Indexed: 11/22/2022] Open
Abstract
Ca(2+)-activated potassium currents [IK(Ca)] are an important link between the intracellular signaling system and the membrane potential, which shapes intrinsic electrophysiological properties. To better understand the ionic mechanisms that mediate intrinsic firing properties of olfactory uniglomerular projection neurons (uPNs), we used whole cell patch-clamp recordings in an intact adult brain preparation of the male cockroach Periplaneta americana to analyze IK(Ca) In the insect brain, uPNs form the principal pathway from the antennal lobe to the protocerebrum, where centers for multimodal sensory processing and learning are located. In uPNs the activation of IK(Ca) was clearly voltage and Ca(2+) dependent. Thus under physiological conditions IK(Ca) is strongly dependent on Ca(2+) influx kinetics and on the membrane potential. The biophysical characterization suggests that IK(Ca) is generated by big-conductance (BK) channels. A small-conductance (SK) channel-generated current could not be detected. IK(Ca) was sensitive to charybdotoxin (CTX) and iberiotoxin (IbTX) but not to apamin. The functional role of IK(Ca) was analyzed in occlusion experiments under current clamp, in which portions of IK(Ca) were blocked by CTX or IbTX. Blockade of IK(Ca) showed that IK(Ca) contributes significantly to intrinsic electrophysiological properties such as the action potential waveform and membrane excitability.
Collapse
Affiliation(s)
- Cathleen Bradler
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ben Warren
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Viktor Bardos
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sabine Schleicher
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Andreas Klein
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Banzai K, Adachi T, Izumi S. Comparative analyses of the cholinergic locus of ChAT and VAChT and its expression in the silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2015; 185:1-9. [PMID: 25770047 DOI: 10.1016/j.cbpb.2015.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/17/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
Abstract
The cholinergic locus, which encodes choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), is specifically expressed in cholinergic neurons, maintaining the cholinergic phenotype. The organization of the locus is conserved in Bilateria. Here we examined the structure of cholinergic locus and cDNA coding for ChAT and VAChT in the silkworm, Bombyx mori. The B. mori ChAT (BmChAT) cDNA encodes a deduced polypeptide including a putative choline/carnitine O-acyltransferase domain and a conserved His residue required for catalysis. The B. mori VAChT (BmVAChT) cDNA encodes a polypeptide including a putative major facilitator superfamily domain and 10 putative transmembrane domains. BmChAT and BmVAChT cDNAs share the 5'-region corresponding to the first and second exon of cholinergic locus. Polymerase chain reaction analyses revealed that BmChAT and BmVAChT mRNAs were specifically expressed in the brain and segmental ganglia. The expression of BmChAT was detected 3 days after oviposition. The expression level was almost constant during the larval stage, decreased in the early pupal stage, and increased toward eclosion. The average ratios of BmChAT mRNA to BmVAChT mRNA in brain-subesophageal ganglion complexes were 0.54±0.10 in the larvae and 1.92±0.11 in adults. In addition, we examined promoter activity of the cholinergic locus and localization of cholinergic neurons, using a baculovirus-mediated gene transfer system. The promoter sequence, located 2kb upstream from the start of transcription, was essential for cholinergic neuron-specific gene õexpression. Cholinergic neurons were found in several regions of the brain and segmental ganglia in the larvae and pharate adults.
Collapse
Affiliation(s)
- Kota Banzai
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | - Takeshi Adachi
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | - Susumu Izumi
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan.
| |
Collapse
|
12
|
Tanaka NK, Endo K, Ito K. Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain. J Comp Neurol 2013; 520:4067-130. [PMID: 22592945 DOI: 10.1002/cne.23142] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The primary olfactory centers of both vertebrates and insects are characterized by glomerular structure. Each glomerulus receives sensory input from a specific type of olfactory sensory neurons, creating a topographic map of the odor quality. The primary olfactory center is also innervated by various types of neurons such as local neurons, output projection neurons (PNs), and centrifugal neurons from higher brain regions. Although recent studies have revealed how olfactory sensory input is conveyed to each glomerulus, it still remains unclear how the information is integrated and conveyed to other brain areas. By using the GAL4 enhancer-trap system, we conducted a systematic mapping of the neurons associated with the primary olfactory center of Drosophila, the antennal lobe (AL). We identified in total 29 types of neurons, among which 13 are newly identified in the present study. Analyses of arborizations of these neurons in the AL revealed how glomeruli are linked with each other, how different PNs link these glomeruli with multiple secondary sites, and how these secondary sites are organized by the projections of the AL-associated neurons.
Collapse
Affiliation(s)
- Nobuaki K Tanaka
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
13
|
Identifying specific light inputs for each subgroup of brain clock neurons in Drosophila larvae. J Neurosci 2012; 31:17406-15. [PMID: 22131402 DOI: 10.1523/jneurosci.5159-10.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In Drosophila, opsin visual photopigments as well as blue-light-sensitive cryptochrome (CRY) contribute to the synchronization of circadian clocks. We focused on the relatively simple larval brain, with nine clock neurons per hemisphere: five lateral neurons (LNs), four of which express the pigment-dispersing factor (PDF) neuropeptide, and two pairs of dorsal neurons (DN1s and DN2s). CRY is present only in the PDF-expressing LNs and the DN1s. The larval visual organ expresses only two rhodopsins (RH5 and RH6) and projects onto the LNs. We recently showed that PDF signaling is required for light to synchronize the CRY(-) larval DN2s. We now show that, in the absence of functional CRY, synchronization of the DN1s also requires PDF, suggesting that these neurons have no direct connection with the visual system. In contrast, the fifth (PDF(-)) LN does not require the PDF-expressing cells to receive visual system inputs. All clock neurons are light-entrained by light-dark cycles in the rh5(2);cry(b), rh6(1) cry(b), and rh5(2);rh6(1) double mutants, whereas the triple mutant is circadianly blind. Thus, any one of the three photosensitive molecules is sufficient, and there is no other light input for the larval clock. Finally, we show that constant activation of the visual system can suppress molecular oscillations in the four PDF-expressing LNs, whereas, in the adult, this effect of constant light requires CRY. A surprising diversity and specificity of light input combinations thus exists even for this simple clock network.
Collapse
|
14
|
Meinertzhagen IA, Lee CH. The genetic analysis of functional connectomics in Drosophila. ADVANCES IN GENETICS 2012; 80:99-151. [PMID: 23084874 DOI: 10.1016/b978-0-12-404742-6.00003-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fly and vertebrate nervous systems share many organizational features, such as layers, columns and glomeruli, and utilize similar synaptic components, such as ion channels and receptors. Both also exhibit similar network features. Recent technological advances, especially in electron microscopy, now allow us to determine synaptic circuits and identify pathways cell-by-cell, as part of the fly's connectome. Genetic tools provide the means to identify synaptic components, as well as to record and manipulate neuronal activity, adding function to the connectome. This review discusses technical advances in these emerging areas of functional connectomics, offering prognoses in each and identifying the challenges in bridging structural connectomics to molecular biology and synaptic physiology, thereby determining fundamental mechanisms of neural computation that underlie behavior.
Collapse
Affiliation(s)
- Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2.
| | | |
Collapse
|
15
|
McCarthy EV, Wu Y, deCarvalho T, Brandt C, Cao G, Nitabach MN. Synchronized bilateral synaptic inputs to Drosophila melanogaster neuropeptidergic rest/arousal neurons. J Neurosci 2011; 31:8181-93. [PMID: 21632940 PMCID: PMC3125135 DOI: 10.1523/jneurosci.2017-10.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 11/21/2022] Open
Abstract
Neuropeptide PDF (pigment-dispersing factor)-secreting large ventrolateral neurons (lLN(v)s) in the Drosophila brain regulate daily patterns of rest and arousal. These bilateral wake-promoting neurons are light responsive and integrate information from the circadian system, sleep circuits, and light environment. To begin to dissect the synaptic circuitry of the circadian neural network, we performed simultaneous dual whole-cell patch-clamp recordings of pairs of lLN(v)s. Both ipsilateral and contralateral pairs of lLN(v)s exhibit synchronous rhythmic membrane activity with a periodicity of ∼ 5-10 s. This rhythmic lLN(v) activity is blocked by TTX, voltage-gated sodium blocker, or α-bungarotoxin, nicotinic acetylcholine receptor antagonist, indicating that action potential-dependent cholinergic synaptic connections are required for rhythmic lLN(v) activity. Since injecting current into one neuron of the pair had no effect on the membrane activity of the other neuron of the pair, this suggests that the synchrony is attributable to bilateral inputs and not coupling between the pairs of lLN(v)s. To further elucidate the nature of these synaptic inputs to lLN(v)s, we blocked or activated a variety of neurotransmitter receptors and measured effects on network activity and ionic conductances. These measurements indicate the lLN(v)s possess excitatory nicotinic ACh receptors, inhibitory ionotropic GABA(A) receptors, and inhibitory ionotropic GluCl (glutamate-gated chloride) receptors. We demonstrate that cholinergic input, but not GABAergic input, is required for synchronous membrane activity, whereas GABA can modulate firing patterns. We conclude that neuropeptidergic lLN(v)s that control rest and arousal receive synchronous synaptic inputs mediated by ACh.
Collapse
Affiliation(s)
- Ellena v. McCarthy
- Department of Cellular and Molecular Physiology, Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, Connecticut 06520
| | - Ying Wu
- Department of Cellular and Molecular Physiology, Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, Connecticut 06520
| | - Tagide deCarvalho
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, and
| | - Christian Brandt
- Center for Sound Communication, Institute of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Guan Cao
- Department of Cellular and Molecular Physiology, Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, Connecticut 06520
| | - Michael N. Nitabach
- Department of Cellular and Molecular Physiology, Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
16
|
Keene AC, Mazzoni EO, Zhen J, Younger MA, Yamaguchi S, Blau J, Desplan C, Sprecher SG. Distinct visual pathways mediate Drosophila larval light avoidance and circadian clock entrainment. J Neurosci 2011; 31:6527-34. [PMID: 21525293 PMCID: PMC3103866 DOI: 10.1523/jneurosci.6165-10.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/25/2011] [Accepted: 03/13/2011] [Indexed: 11/21/2022] Open
Abstract
Visual organs perceive environmental stimuli required for rapid initiation of behaviors and can also entrain the circadian clock. The larval eye of Drosophila is capable of both functions. Each eye contains only 12 photoreceptors (PRs), which can be subdivided into two subtypes. Four PRs express blue-sensitive rhodopsin5 (rh5) and eight express green-sensitive rhodopsin6 (rh6). We found that either PR-subtype is sufficient to entrain the molecular clock by light, while only the Rh5-PR subtype is essential for light avoidance. Acetylcholine released from PRs confers both functions. Both subtypes of larval PRs innervate the main circadian pacemaker neurons of the larva, the neuropeptide PDF (pigment-dispersing factor)-expressing lateral neurons (LNs), providing sensory input to control circadian rhythms. However, we show that PDF-expressing LNs are dispensable for light avoidance, and a distinct set of three clock neurons is required. Thus we have identified distinct sensory and central circuitry regulating light avoidance behavior and clock entrainment. Our findings provide insights into the coding of sensory information for distinct behavioral functions and the underlying molecular and neuronal circuitry.
Collapse
Affiliation(s)
- Alex C. Keene
- Department of Biology, Center for Developmental Genetics, New York University, New York, New York 10003-6688, and
| | - Esteban O. Mazzoni
- Department of Biology, Center for Developmental Genetics, New York University, New York, New York 10003-6688, and
| | - Jamie Zhen
- Department of Biology, Center for Developmental Genetics, New York University, New York, New York 10003-6688, and
| | - Meg A. Younger
- Department of Biology, Center for Developmental Genetics, New York University, New York, New York 10003-6688, and
| | - Satoko Yamaguchi
- Department of Biology, Center for Developmental Genetics, New York University, New York, New York 10003-6688, and
| | - Justin Blau
- Department of Biology, Center for Developmental Genetics, New York University, New York, New York 10003-6688, and
| | - Claude Desplan
- Department of Biology, Center for Developmental Genetics, New York University, New York, New York 10003-6688, and
| | - Simon G. Sprecher
- Department of Biology, Center for Developmental Genetics, New York University, New York, New York 10003-6688, and
- Department of Biology, Institute of Cell and Developmental Biology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
17
|
Novel strains of mice deficient for the vesicular acetylcholine transporter: insights on transcriptional regulation and control of locomotor behavior. PLoS One 2011; 6:e17611. [PMID: 21423695 PMCID: PMC3053374 DOI: 10.1371/journal.pone.0017611] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/31/2011] [Indexed: 12/19/2022] Open
Abstract
Defining the contribution of acetylcholine to specific behaviors has been challenging, mainly because of the difficulty in generating suitable animal models of cholinergic dysfunction. We have recently shown that, by targeting the vesicular acetylcholine transporter (VAChT) gene, it is possible to generate genetically modified mice with cholinergic deficiency. Here we describe novel VAChT mutant lines. VAChT gene is embedded within the first intron of the choline acetyltransferase (ChAT) gene, which provides a unique arrangement and regulation for these two genes. We generated a VAChT allele that is flanked by loxP sequences and carries the resistance cassette placed in a ChAT intronic region (FloxNeo allele). We show that mice with the FloxNeo allele exhibit differential VAChT expression in distinct neuronal populations. These mice show relatively intact VAChT expression in somatomotor cholinergic neurons, but pronounced decrease in other cholinergic neurons in the brain. VAChT mutant mice present preserved neuromuscular function, but altered brain cholinergic function and are hyperactive. Genetic removal of the resistance cassette rescues VAChT expression and the hyperactivity phenotype. These results suggest that release of ACh in the brain is normally required to “turn down” neuronal circuits controlling locomotion.
Collapse
|
18
|
Johard HA, Yoishii T, Dircksen H, Cusumano P, Rouyer F, Helfrich-Förster C, Nässel DR. Peptidergic clock neurons inDrosophila: Ion transport peptide and short neuropeptide F in subsets of dorsal and ventral lateral neurons. J Comp Neurol 2009; 516:59-73. [DOI: 10.1002/cne.22099] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Lin TY, Huang CH, Kao HH, Liou GG, Yeh SR, Cheng CM, Chen MH, Pan RL, Juang JL. Abi plays an opposing role to Abl in Drosophila axonogenesis and synaptogenesis. Development 2009; 136:3099-107. [PMID: 19675132 DOI: 10.1242/dev.033324] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abl tyrosine kinase (Abl) regulates axon guidance by modulating actin dynamics. Abelson interacting protein (Abi), originally identified as a kinase substrate of Abl, also plays a key role in actin dynamics, yet its role with respect to Abl in the developing nervous system remains unclear. Here we show that mutations in abi disrupt axonal patterning in the developing Drosophila central nervous system (CNS). However, reducing abi gene dosage by half substantially rescues Abl mutant phenotypes in pupal lethality, axonal guidance defects and locomotion deficits. Moreover, we show that mutations in Abl increase synaptic growth and spontaneous synaptic transmission frequency at the neuromuscular junction. Double heterozygosity for abi and enabled (ena) also suppresses the synaptic overgrowth phenotypes of Abl mutants, suggesting that Abi acts cooperatively with Ena to antagonize Abl function in synaptogenesis. Intriguingly, overexpressing Abi or Ena alone in cultured cells dramatically redistributed peripheral F-actin to the cytoplasm, with aggregates colocalizing with Abi and/or Ena, and resulted in a reduction in neurite extension. However, co-expressing Abl with Abi or Ena redistributed cytoplasmic F-actin back to the cell periphery and restored bipolar cell morphology. These data suggest that abi and Abl have an antagonistic interaction in Drosophila axonogenesis and synaptogenesis, which possibly occurs through the modulation of F-actin reorganization.
Collapse
Affiliation(s)
- Tzu-Yang Lin
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gao S, Takemura SY, Ting CY, Huang S, Lu Z, Luan H, Rister J, Thum AS, Yang M, Hong ST, Wang JW, Odenwald WF, White BH, Meinertzhagen IA, Lee CH. The neural substrate of spectral preference in Drosophila. Neuron 2008; 60:328-42. [PMID: 18957224 PMCID: PMC2665173 DOI: 10.1016/j.neuron.2008.08.010] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/22/2008] [Accepted: 08/15/2008] [Indexed: 11/19/2022]
Abstract
Drosophila vision is mediated by inputs from three types of photoreceptor neurons; R1-R6 mediate achromatic motion detection, while R7 and R8 constitute two chromatic channels. Neural circuits for processing chromatic information are not known. Here, we identified the first-order interneurons downstream of the chromatic channels. Serial EM revealed that small-field projection neurons Tm5 and Tm9 receive direct synaptic input from R7 and R8, respectively, and indirect input from R1-R6, qualifying them to function as color-opponent neurons. Wide-field Dm8 amacrine neurons receive input from 13-16 UV-sensing R7s and provide output to projection neurons. Using a combinatorial expression system to manipulate activity in different neuron subtypes, we determined that Dm8 neurons are necessary and sufficient for flies to exhibit phototaxis toward ultraviolet instead of green light. We propose that Dm8 sacrifices spatial resolution for sensitivity by relaying signals from multiple R7s to projection neurons, which then provide output to higher visual centers.
Collapse
Affiliation(s)
- Shuying Gao
- Unit on Neuronal Connectivity, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shin-ya Takemura
- Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| | - Chun-Yuan Ting
- Unit on Neuronal Connectivity, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Songling Huang
- Unit on Neuronal Connectivity, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhiyuan Lu
- Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| | - Haojiang Luan
- Unit on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda MD 20892, USA
| | - Jens Rister
- Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas S. Thum
- Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Meiluen Yang
- Unit on Neuronal Connectivity, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sung-Tae Hong
- Laboratory for Neural Network of Cognition, Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Guseong-Dong, Yusong-Gu, Daejeon, 305-701, Korea
| | - Jing W. Wang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ward F. Odenwald
- Neural Cell-Fate Determinants Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda MD 20892, USA
| | - Benjamin H. White
- Unit on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda MD 20892, USA
| | - Ian A. Meinertzhagen
- Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| | - Chi-Hon Lee
- Unit on Neuronal Connectivity, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Daniels RW, Gelfand MV, Collins CA, DiAntonio A. Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS. J Comp Neurol 2008; 508:131-52. [PMID: 18302156 DOI: 10.1002/cne.21670] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system (CNS) and at Drosophila neuromuscular junctions (NMJs). Although glutamate is also used as a transmitter in the Drosophila CNS, there has been no systematic description of the central glutamatergic signaling system in the fly. With the recent cloning of the Drosophila vesicular glutamate transporter (DVGLUT), it is now possible to mark many, if not all, central glutamatergic neurons and synapses. Here we present the pattern of glutamatergic synapses and cell bodies in the late larval CNS and in the adult fly brain by using an anti-DVGLUT antibody. We also introduce two new tools for studying the Drosophila glutamatergic system: a dvglut promoter fragment fused to Gal4 whose expression labels glutamatergic neurons and a green fluorescent protein (GFP)-tagged DVGLUT transgene that localizes to synapses. In the larval CNS, we find synaptic DVGLUT immunoreactivity prominent in all brain lobe neuropil compartments except for the mushroom body. Likewise in the adult CNS, glutamatergic synapses are abundant throughout all major brain structures except the mushroom body. We also find that the larval ventral nerve cord neuropil is rich in glutamatergic synapses, which are primarily located near the dorsal surface of the neuropil, segregated from the ventrally positioned cholinergic processes. This description of the glutamatergic system in Drosophila highlights the prevalence of glutamatergic neurons in the CNS and presents tools for future study and manipulation of glutamatergic transmission.
Collapse
Affiliation(s)
- Richard W Daniels
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
22
|
Salvaterra PM, Kitamoto T. Drosophila cholinergic neurons and processes visualized with Gal4/UAS-GFP. Gene Expr Patterns 2007; 1:73-82. [PMID: 15018821 DOI: 10.1016/s1567-133x(01)00011-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2001] [Indexed: 11/19/2022]
Abstract
Using 7.4 kb of 5' flanking DNA from the Drosophila cholinergic gene locus to drive Gal4 expression we can visualize essentially all cholinergic neurons and neuropiles after genetic recombination with a UAS-GFP (S65T) reporter gene. In contrast to previous methods somata and neuropiles can be observed in the same samples. Fluorescence intensity is strong enough to allow observations in live animals at all developmental stages. Three-dimensional reconstructions made from confocal sections of whole-mount preparations reveal the extensive cholinergic connections among various regions of the nervous system.
Collapse
Affiliation(s)
- P M Salvaterra
- Division of Neuroscience, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, USA.
| | | |
Collapse
|
23
|
Hamasaka Y, Wegener C, Nässel DR. GABA modulates Drosophila circadian clock neurons via GABAB receptors and decreases in calcium. ACTA ACUST UNITED AC 2006; 65:225-40. [PMID: 16118795 DOI: 10.1002/neu.20184] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Circadian clocks play vital roles in the control of daily rhythms in physiology and behavior of animals. In Drosophila, analysis of the molecular and behavioral rhythm has shown that the master clock neurons are entrained by sensory inputs and are synchronized with other clock neurons. However, little is known about the neuronal circuits of the Drosophila circadian system and the neurotransmitters that act on the clock neurons. Here, we provide evidence for a new neuronal input pathway to the master clock neurons, s-LN(v)s, in Drosophila that utilizes GABA as a slow inhibitory neurotransmitter. We monitored intracellular calcium levels in dissociated larval s-LN(v)s with the calcium-sensitive dye Fura-2. GABA decreased intracellular calcium in the s-LN(v)s and blocked spontaneous oscillations in calcium levels. The duration of this response was dose-dependent between 1 nM and 100 microM. The response to GABA was blocked by a metabotropic GABA(B) receptor (GABA(B)-R) antagonist, CGP54626, but not by an ionotropic receptor antagonist, picrotoxin. The GABA(B)-R agonist, 3-APMPA, produced a response similar to GABA. An antiserum against one of the Drosophila GABA(B)-Rs (GABA(B)-R2) labeled the dendritic regions of the s-LN(v)s in both adults and larvae, as well as the dissociated s-LN(v)s. We found that some GABAergic processes terminate at the dendrites of the LN(v)s, as revealed by GABA immunostaining and a GABA-specific GAL4 line (GAD1-gal4). Our results suggest that the s-LN(v)s receive slow inhibitory GABAergic inputs that decrease intracellular calcium of these clock neurons and block their calcium cycling. This response is mediated by postsynaptic GABA(B) receptors.
Collapse
|
24
|
Hamasaka Y, Nässel DR. Mapping of serotonin, dopamine, and histamine in relation to different clock neurons in the brain of Drosophila. J Comp Neurol 2006; 494:314-30. [PMID: 16320241 DOI: 10.1002/cne.20807] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several sets of clock neurons cooperate to generate circadian activity rhythms in Drosophila melanogaster. To extend the knowledge on neurotransmitters in the clock circuitry, we analyzed the distribution of some biogenic amines in relation to identified clock neurons. This was accomplished by employing clock neuron-specific GAL4 lines driving green fluorescent protein (GFP) expression, combined with immunocytochemistry with antisera against serotonin, histamine, and tyrosine hydroxylase (for dopamine). In the larval and adult brain, serotonin-immunoreactive (-IR) neuron processes are in close proximity of both the dendrites and the dorsal terminals of the major clock neurons, the s-LN(v)s. Additionally, the terminals of the l-LN(v) clock neurons and serotonergic processes converge in the distal medulla. No histamine (HA)-IR processes contact the s-LN(v)s in the larval brain, but possibly impinge on the dorsal clock neurons, DN2. In the adult brain, HA-IR axons of the extraocular eyelet photoreceptors terminate on the dendritic branches of the LN(v)s. A few tyrosine hydroxylase (TH)-IR processes were seen close to the dorsal terminals of the s-LN(v)s, but not their dendrites, in the larval and adult brain. TH-IR processes also converge with the distal medulla branches of the l-LN(v)s in adults. None of the monoamines was detectable in the different clock neurons. By using an imaging system to monitor intracellular Ca(2+) levels in dissociated GFP-labeled larval s-LN(v)s, loaded with Fura-2, we demonstrated that application of serotonin induced dose-dependent decreases in Ca(2+). Thus, serotonergic neurons form functional inputs on the s-LN(v)s in the larval brain and possibly also in adults.
Collapse
|
25
|
Mazzoni EO, Desplan C, Blau J. Circadian pacemaker neurons transmit and modulate visual information to control a rapid behavioral response. Neuron 2005; 45:293-300. [PMID: 15664180 DOI: 10.1016/j.neuron.2004.12.038] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 10/28/2004] [Accepted: 11/23/2004] [Indexed: 10/25/2022]
Abstract
Circadian pacemaker neurons contain a molecular clock that oscillates with a period of approximately 24 hr, controlling circadian rhythms of behavior. Pacemaker neurons respond to visual system inputs for clock resetting, but, unlike other neurons, have not been reported to transmit rapid signals to their targets. Here we show that pacemaker neurons are required to mediate a rapid behavior. The Drosophila larval visual system, Bolwig's organ (BO), projects to larval pacemaker neurons to entrain their clock. BO also mediates larval photophobic behavior. We found that ablation or electrical silencing of larval pacemaker neurons abolished light avoidance. Thus, circadian pacemaker neurons receive input from BO not only to reset the clock but also to transmit rapid photophobic signals. Furthermore, as clock gene mutations also affect photophobicity, the pacemaker neurons modulate the sensitivity of larvae to light, generating a circadian rhythm in visual sensitivity.
Collapse
Affiliation(s)
- Esteban O Mazzoni
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | |
Collapse
|
26
|
Clark J, Meisner S, Torkkeli PH. Immunocytochemical localization of choline acetyltransferase and muscarinic ACh receptors in the antenna during development of the sphinx moth Manduca sexta. Cell Tissue Res 2005; 320:163-73. [PMID: 15719247 DOI: 10.1007/s00441-004-1039-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 10/29/2004] [Indexed: 10/25/2022]
Abstract
Immunocytochemistry with monoclonal antibodies was used to investigate the locations of muscarinic acetylcholine receptors (mAChR) and choline acetyltransferase (ChAT) in sections of the developing antennae of the moth Manduca sexta. The results were correlated with a previous morphological investigation in the developing antennae which allowed us to locate different cell types at various stages of development. Our findings indicated that the muscarinic cholinergic system was not restricted to the sensory neurons but was also present in glial and epidermal cells. By day 4-5 of adult development, immunoreactivity against both antibodies was present in the axons of the antennal nerve, and more intense labeling was present in sections from older pupae. At days 4-9, the cell bodies of the sensory neurons in the basal part of the epidermis were also intensely immunolabeled by the anti-mAChR antibody. In mature flagella, large numbers of cells, some with processes into hairs, were strongly labeled by both antibodies. Antennal glial cells were intensely immunolabeled with both antibodies by days 4-5, but in later stages, it was not possible to discriminate between glial and neural staining. At days 4-9, we observed a distinctly labeled layer of epidermal cells close to the developing cuticle. The expression of both ChAT and mAChRs by neurons in moth antennae may allow the regulation of excitability by endogenous ACh. Cholinergic communication between neurons and glia may be part of the system that guides axon elongation during development. The cholinergic system in the apical part of the developing epidermis could be involved in cuticle formation.
Collapse
Affiliation(s)
- Julie Clark
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 1X5
| | | | | |
Collapse
|
27
|
Yasuyama K, Okada Y, Hamanaka Y, Shiga S. Synaptic connections between eyelet photoreceptors and pigment dispersing factor-immunoreactive neurons of the blowflyProtophormia terraenovae. J Comp Neurol 2005; 494:331-44. [PMID: 16320242 DOI: 10.1002/cne.20812] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Studies using various mutants of Drosophila melanogaster bearing defects in their visual system, including those of the retinal and extraretinal photoreceptor systems, have indicated that the extraretinal photoreceptor known as the Hofbauer-Buchner (H-B) eyelet plays an active, if subsidiary, role in the entrainment of circadian rhythms. In the present study, in the context of unraveling the function of extraretinal photoreception on circadian rhythms and photoperiodic responses, we searched for extraretinal photoreceptors in the blowfly, Protophormia terraenovae, and found that this fly has a homolog of the H-B eyelet. In addition, we show morphologically direct synaptic connections between the eyelet of P. terraenovae (called here Pt-eyelet, after the species' name) and pigment-dispersing factor (PDF)-immunoreactive neurons, which are putative circadian pacemaker neurons, by immunogold electron microscopy combined with intracellular dye injection. The Pt-eyelet was found to reside in the middle of the posterior surface of the optic lobe between the retina and the lamina, as does the H-B eyelet. This extraretinal photoreceptor was composed of at least four photoreceptor cells equipped with well-organized microvillar rhabdomeres. Rhodopsin 6-like immunoreactivity and also the response to light stimuli clearly showed the Pt-eyelet to be functional. The Pt-eyelet terminals in the accessory medulla exhibited synaptic bouton-like appearances and formed divergent multiple-contact output synapses. Synaptic contacts from the Pt-eyelet terminal to the PDF-immunoreactive neurons were identified by the presence of presynaptic ribbons and accumulated synaptic vesicles. Their possible function is discussed in relation to previous studies on circadian rhythm and photoperiodic response of P. terraenovae.
Collapse
Affiliation(s)
- Kouji Yasuyama
- Department of Biology, Kawasaki Medical School, Kurashiki 701-0192, Japan.
| | | | | | | |
Collapse
|
28
|
Yang H, Kunes S. Nonvesicular release of acetylcholine is required for axon targeting in the Drosophila visual system. Proc Natl Acad Sci U S A 2004; 101:15213-8. [PMID: 15469930 PMCID: PMC524039 DOI: 10.1073/pnas.0308141101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Indexed: 01/08/2023] Open
Abstract
We report evidence for a developmental role of acetylcholine in axon pathfinding in the Drosophila visual system. Acetylcholine was detected on photoreceptor axons during their navigation to target sites in the brain, a time well before the formation of functional synapses. The pattern of photoreceptor axon projections was severely disrupted when acetylcholine synthesis or metabolism was altered or eliminated, or when transgenic alpha-bungarotoxin, a nicotinic acetylcholine receptor antagonist, was expressed in the developing eye or brain. The requirement for acetylcholine signaling exists before photoreceptor neurons form synaptic connections and does not require the function of vesicular acetylcholine transporter protein. That this early effect of acetylcholine is mediated through nonvesicular release is further supported by the observation that transgenic expression of tetanus toxin, a blocker of neurotransmitter release via synaptic vesicles, did not cause similar photoreceptor axon projection defects. These observations support the notion that a form of acetylcholine secretion mediates the behavior of growth cones during axon pathfinding.
Collapse
Affiliation(s)
- Hong Yang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
29
|
Matthies HJG, Broadie K. Techniques to dissect cellular and subcellular function in the Drosophila nervous system. Methods Cell Biol 2004; 71:195-265. [PMID: 12884693 DOI: 10.1016/s0091-679x(03)01011-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Heinrich J G Matthies
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
30
|
Wegener C, Hamasaka Y, Nässel DR. Acetylcholine increases intracellular Ca2+ via nicotinic receptors in cultured PDF-containing clock neurons of Drosophila. J Neurophysiol 2003; 91:912-23. [PMID: 14534288 DOI: 10.1152/jn.00678.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Light entrains the biological clock both in adult and larval Drosophila melanogaster. The Bolwig organ photoreceptors most likely constitute one substrate for this light entrainment in larvae. Acetylcholine (ACh) has been suggested as the neurotransmitter in these photoreceptors, but there is no evidence that ACh signaling is involved in photic input onto circadian pacemaker neurons. Here we demonstrate that the putative targets of the Bolwig photoreceptors, the PDF-containing clock neurons (LNs), in the larval brain express functional ACh receptors (AChRs). With the use of GAL4-UAS-driven expression of green fluorescent protein (GFP), we were able to identify LNs in dissociated cell culture. After loading with the Ca(2+)-sensitive dye fura-2, we monitored changes in intracellular Ca(2+) levels ([Ca(2+)](i)) in GFP-marked LNs while applying candidate neurotransmitters. ACh induced transient increases in [Ca(2+)](i) at physiological concentrations. These increases were dependent on extracellular Ca(2+) and Na(+) and were likely caused by activation of voltage-dependent Ca(2+) channels. Application of nicotinic and muscarinic agonists and antagonists showed that the AChRs on cultured LNs have a nicotinic pharmacology. Antibodies to several subunits of nicotinic AChRs (nAChRs) labeled the putative contact site of the Bolwig organ axon terminals with the dendrites of LNs, as well as dissociated LNs in culture. Our findings support a role of ACh as input factor onto the LNs and suggest that Ca(2+) is used as a second messenger mediating cholinergic input within the LNs. Experiments using a more general GAL4-UAS-driven expression of GFP showed that functional expression of nAChRs is a widespread phenomenon in peptidergic neurons.
Collapse
Affiliation(s)
- Christian Wegener
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | |
Collapse
|
31
|
Abstract
Circadian rhythms can be entrained by light to follow the daily solar cycle. In Drosophila melanogaster a pair of extraretinal eyelets expressing immunoreactivity to Rhodopsin 6 each contains four photoreceptors located beneath the posterior margin of the compound eye. Their axons project to the region of the pacemaker center in the brain with a trajectory resembling that of Bolwig's organ, the visual organ of the larva. A lacZ reporter line driven by an upstream fragment of the developmental gap gene Krüppel is a specific enhancer element for Bolwig's organ. Expression of immunoreactivity to the product of lacZ in Bolwig's organ persists through pupal metamorphosis and survives in the adult eyelet. We thus demonstrate that eyelet derives from the 12 photoreceptors of Bolwig's organ, which entrain circadian rhythmicity in the larva. Double labeling with anti-pigment-dispersing hormone shows that the terminals of Bolwig's nerve differentiate during metamorphosis in close temporal and spatial relationship to the ventral lateral neurons (LN(v)), which are essential to express circadian rhythmicity in the adult. Bolwig's organ also expresses immunoreactivity to Rhodopsin 6, which thus continues in eyelet. We compared action spectra of entrainment in different fly strains: in flies lacking compound eyes but retaining eyelet (so(1)), lacking both compound eyes and eyelet (so(1);gl(60j)), and retaining eyelet but lacking compound eyes as well as cryptochrome (so(1);cry(b)). Responses to phase shifts suggest that, in the absence of compound eyes, eyelet together with cryptochrome mainly mediates phase delays. Thus a functional role in circadian entrainment first found in Bolwig's organ in the larva is retained in eyelet, the adult remnant of Bolwig's organ, even in the face of metamorphic restructuring.
Collapse
|
32
|
Abstract
We have identified the Drosophila homologue of the non-motor accessory subunit of kinesin-II motor complex. It is homologous to the SpKAP115 of the sea urchin, KAP3A and KAP3B of the mouse, and SMAP protein in humans. In situ hybridization using a DmKAP specific cRNA probe has revealed a dynamic pattern of expression in the developing nervous system. The staining first appears in a subset of cells in the embryonic central nervous system at stage 13 and continues till the first instar larva stage. At the third instar larva stage the staining gets restricted to a few cells in the optic lobe and in the ventral ganglion region. It has also stained a subset of sensory neurons from late stage 13 and till the first instar larva stage. The DmKAP expression pattern in the nervous system corresponds well with that of Klp64D and Klp68D as reported earlier. In addition, we have found that the DmKAP gene is constitutively expressed in the germline cells and in follicle cells during oogenesis. These cells are also stained using an antibody to KLP68D protein, but mRNA in situ hybridization using KLP64D specific probe has not stained these cells. Together these results proved a basis for further analysis of tissue specific function of DmKAP in future.
Collapse
Affiliation(s)
- Ritu Sarpal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | | |
Collapse
|
33
|
Yasuyama K, Meinertzhagen IA, Schürmann FW. Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 2002; 445:211-26. [PMID: 11920702 DOI: 10.1002/cne.10155] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The calyx neuropil of the mushroom body in adult Drosophila melanogaster contains three major neuronal elements: extrinsic projection neurons, presumed cholinergic, immunoreactive to choline acetyltransferase (ChAT-ir) and vesicular acetylcholine transporter (VAChT-ir) antisera; presumed gamma-aminobutyric acid (GABA)ergic extrinsic neurons with GABA-like immunoreactivity; and local intrinsic Kenyon cells. The projection neurons connecting the calyx with the antennal lobe via the antennocerebral tract are the only source of cholinergic elements in the calyces. Their terminals establish an array of large boutons 2-7 microm in diameter throughout all calycal subdivisions. The GABA-ir extrinsic neurons, different in origin, form a network of fine fibers and boutons codistributed in all calycal regions with the cholinergic terminals and with tiny profiles, mainly Kenyon cell dendrites. We have investigated the synaptic circuits of these three neuron types using preembedding immuno-electron microscopy. All ChAT/VAChT-ir boutons form divergent synapses upon multitudinous surrounding Kenyon cell dendrites. GABA-ir elements also regularly contribute divergent synaptic input onto these dendrites, as well as occasional inputs to boutons of projection neurons. The same synaptic microcircuits involving these three neuron types are repeatedly established in glomeruli in all calycal regions. Each glomerulus comprises a large cholinergic bouton at its core, encircled by tiny vesicle-free Kenyon cell dendrites as well as by a number of GABAergic terminals. A single dendritic profile may thereby receive synaptic input from both cholinergic and GABAergic elements in close vicinity at presynaptic sites with T-bars typical of fly synapses. ChAT-ir boutons regularly have large extensions of the active zones. Thus, Kenyon cells may receive major excitatory input from cholinergic boutons and considerable postsynaptic inhibition from GABAergic terminals, as well as, more rarely, presynaptic inhibitory signaling. The calycal glomeruli of Drosophila are compared with the cerebellar glomeruli of vertebrates. The cholinergic boutons are the largest identified cholinergic synapses in the Drosophila brain and an eligible prospect for studying the genetic regulation of excitatory presynaptic function.
Collapse
Affiliation(s)
- Kouji Yasuyama
- Neuroscience Institute, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1.
| | | | | |
Collapse
|
34
|
Malpel S, Klarsfeld A, Rouyer F. Larval optic nerve and adult extra-retinal photoreceptors sequentially associate with clock neurons during Drosophila brain development. Development 2002; 129:1443-53. [PMID: 11880353 DOI: 10.1242/dev.129.6.1443] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The visual system is one of the input pathways for light into the circadian clock of the Drosophila brain. In particular, extra-retinal visual structures have been proposed to play a role in both larval and adult circadian photoreception. We have analyzed the interactions between extra-retinal structures of the visual system and the clock neurons during brain development. We first show that the larval optic nerve, or Bolwig nerve, already contacts clock cells (the lateral neurons) in the embryonic brain. Analysis of visual system-defective genotypes showed that the absence of the afferent Bolwig nerve resulted in a severe reduction of the lateral neurons dendritic arborization, and that the inhibition of nerve activity induced alterations of the dendritic morphology. During wild-type development, the loss of a functional Bolwig nerve in the early pupa was also accompanied by remodeling of the arborization of the lateral neurons. Approximately 1.5 days later, visual fibers that came from the Hofbauer-Buchner eyelet, a putative photoreceptive organ for the adult circadian clock, were seen contacting the lateral neurons. Both types of extra-retinal photoreceptors expressed rhodopsins RH5 and RH6, as well as the norpA-encoded phospholipase C. These data strongly suggest a role for RH5 and RH6, as well as NORPA, signaling in both larval and adult extra-retinal circadian photoreception. The Hofbauer-Buchner eyelet therefore does not appear to account for the previously described norpA-independent light input to the adult clock. This supports the existence of yet uncharacterized photoreceptive structures in Drosophila.
Collapse
Affiliation(s)
- Sébastien Malpel
- Institut de Neurobiologie Alfred Fessard, CNRS UPR 2216 (NGI), 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
35
|
Stuart AE, Mekeel HE, Kempter E. Uptake of the neurotransmitter histamine into the eyes of larvae of the barnacle (Balanus amphitrite). THE BIOLOGICAL BULLETIN 2002; 202:53-60. [PMID: 11842015 DOI: 10.2307/1543222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The photoreceptors of adult barnacles use histamine as their neurotransmitter and take up (3)H-histamine selectively from the extracellular medium. We assayed for the uptake of (3)H-histamine into the eyes of the free-swimming (nauplius) and settling (cyprid) larval stages of Balanus amphitrite. The extracellular space of nauplii proved permeable to dyes below about 800 molecular weight (MW), indicating that (3)H-histamine (MW 111) introduced into seawater would have access to internal structures. (3)H-Histamine was taken up into nauplii by a process with a K(D) of 0.32 microM. Uptake was antagonized by chlorpromazine, which also blocks uptake of (3)H-histamine into adult photoreceptors. In autoradiographs of serial sections of nauplii and cyprids incubated in (3)H-histamine, the ocelli and compound eyes were labeled; other structures in the animal were not. No eyes or other structures were labeled with (3)H-serotonin, a related amine whose transporter commonly transports histamine as well. These experiments show that a histamine-specific transporter similar to that found in the adult is expressed in all of the eyes of barnacle larvae. In the ocelli, where photoreceptors and pigment cells may be distinguished in the light microscope, label was unexpectedly concentrated far more over the pigment cells than over the photoreceptors.
Collapse
Affiliation(s)
- Ann E Stuart
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7545, USA.
| | | | | |
Collapse
|
36
|
Nunes-Tavares N, Cunha-E-Silva NL, Hassón-Voloch A. Choline acetyltransferase detection in normal and denervated electrocyte from Electrophorus electricus (L.) using a confocal scanning optical microscopy analysis. AN ACAD BRAS CIENC 2000; 72:331-40. [PMID: 11028098 DOI: 10.1590/s0001-37652000000300007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acetylcholine is the neurotransmitter responsible for the transmission of impulses from cholinergic neurons to cells of innervated tissues. Its biosynthesis is catalyzed by the enzyme Choline acetyltransferase that is considered to be a phenotypically specific marker for cholinergic system. It is well known that the regulation of Choline acetyltransferase activity under physiological and pathological conditions is important for development and neuronal activities of cholinergic functions. We observed the distribution of Choline acetyltransferase in sections from the normal and denervated main electric organ sections of Electrophorus electricus (L.) by immunofluorescence using a anti-Choline acetyltransferase antibody. The animals were submitted to a surgical procedure to remove about 20 nerves and after 30 and 60 days, they were sacrificed. After 30 days, the results from immunohistochemistry demonstrated an increase on the Choline acetyltransferase distribution at denervated tissue sections when compared with the sections from the normal contralateral organ. A very similar labeling was observed between normal and denervated tissue sections of the animals after 60 days. However, Choline acetyltransferase activity (nmolesACh/ min/ mg of protein) in extracts obtained from electrocyte microsomal preparation, estimated by Fonnun's method (Fonnun 1975), was 70% lower in the denervated extracts.
Collapse
Affiliation(s)
- N Nunes-Tavares
- Laboratório de Físico-Química Biológica, Centro de Ciências da Saude, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-590, Brasil
| | | | | |
Collapse
|
37
|
Rind FC, Leitinger G. Immunocytochemical evidence that collision sensing neurons in the locust visual system contain acetylcholine. J Comp Neurol 2000; 423:389-401. [PMID: 10870080 DOI: 10.1002/1096-9861(20000731)423:3<389::aid-cne3>3.0.co;2-s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lobula giant movement detector (LGMD1 and -2) neurons in the locust visual system are parts of motion-sensitive pathways that detect objects approaching on a collision course. The dendritic processes of the LGMD1 and -2 in the lobula are localised to discrete regions, allowing the dendrites of each neuron to be distinguished uniquely. As was described previously for the LGMD1, the afferent processes onto the LGMD2 synapse directly with each other, and these synapses are immediately adjacent to their outputs onto the LGMD2. Here we present immunocytochemical evidence, using antibodies against choline-protein conjugates and a polyclonal antiserum against choline acetyltransferase (ChAT; Chemicon Ab 143), that the LGMD1 and -2 and the retinotopic units presynaptic to them contain acetylcholine (ACh). It is proposed that these retinotopic units excite the LGMD1 or -2 but inhibit each other. It is well established that ACh has both excitatory and inhibitory effects and may provide the substrate for a critical race in the LGMD1 or -2, between excitation caused by edges moving out over successive photoreceptors, and inhibition spreading laterally resulting in the selective response to objects approaching on a collision course. In the optic lobe, ACh was also found to be localised in discrete layers of the medulla and in the outer chiasm between the lamina and medulla. In the brain, the antennal lobes contained neurons that reacted positively for ACh. Silver- or haematoxylin and eosin-stained sections through the optic lobe confirmed the identities of the positively immunostained neurons.
Collapse
Affiliation(s)
- F C Rind
- Neurobiology Department, School of Neurosciences and Psychiatry, University of Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
38
|
Ray K, Perez SE, Yang Z, Xu J, Ritchings BW, Steller H, Goldstein LS. Kinesin-II is required for axonal transport of choline acetyltransferase in Drosophila. J Cell Biol 1999; 147:507-18. [PMID: 10545496 PMCID: PMC2151187 DOI: 10.1083/jcb.147.3.507] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
KLP64D and KLP68D are members of the kinesin-II family of proteins in Drosophila. Immunostaining for KLP68D and ribonucleic acid in situ hybridization for KLP64D demonstrated their preferential expression in cholinergic neurons. KLP68D was also found to accumulate in cholinergic neurons in axonal obstructions caused by the loss of kinesin light chain. Mutations in the KLP64D gene cause uncoordinated sluggish movement and death, and reduce transport of choline acetyltransferase from cell bodies to the synapse. The inviability of KLP64D mutations can be rescued by expression of mammalian KIF3A. Together, these data suggest that kinesin-II is required for the axonal transport of a soluble enzyme, choline acetyltransferase, in a specific subset of neurons in Drosophila. Furthermore, the data lead to the conclusion that the cargo transport requirements of different classes of neurons may lead to upregulation of specific pathways of axonal transport.
Collapse
Affiliation(s)
- Krishanu Ray
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0683
| | - Sharon E. Perez
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Zhaohuai Yang
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0683
| | - Jenny Xu
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0683
| | - Bruce W. Ritchings
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0683
| | - Hermann Steller
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Lawrence S.B. Goldstein
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0683
| |
Collapse
|
39
|
Abstract
Many invertebrates have supplementary extraocular photoreceptors that often are implicated in circadian rhythms. An extraretinal group of candidate photoreceptors in the fruit fly, Drosophila melanogaster, has been revealed previously at the posterior margin of the compound eye by using a photoreceptor-specific monoclonal antibody (Hofbauer and Buchner [1989] Naturwissen 76:335-336), but it never has been characterized. Here, we report the fine structure of this cell cluster reported by Hofbauer and Buchner, which is called "eyelet," as well as the further candidacy of their visual pigment and neurotransmitter. Eyelet forms a specialized, pigmented organ with cells that have numerous microvilli arranged into coherent rhabdomeres. The presence of rhabdomeric microvilli is a defining feature of a photoreceptor, reported here for the first time in eyelet. The rhabdomeres exhibit Rh6 opsin-like immunoreactivity, which provides evidence that the photoreceptors are functional: they fail to immunostain with antibodies against NINAE (Rh1), Rh4, or Rh5. The photoreceptors have been shown previously to exhibit histamine-like immunoreactivity, but they also stain with a monoclonal antiserum raised against Drosophila choline acetyltransferase (ChAT), suggesting that the photoreceptors not only may contain histamine but also can synthesize acetylcholine. A ChAT-immunoreactive axon bundle originating from eyelet terminates in the cortex of the anterior medulla. This bundle also is seen with reduced silver stains. Electron microscopic examination revealed four axon profiles of similar size in this bundle, indicating that eyelet contains at least four photoreceptors. The pathway of eyelet's axon bundle coincides with the precocious pathway of Bolwig's nerve that arises from the larval organ of sight. The origin and possible function of eyelet are discussed.
Collapse
Affiliation(s)
- K Yasuyama
- Department of Biology, Kawasaki Medical School, Kurashiki City, Okayama 701-0192, Japan.
| | | |
Collapse
|
40
|
|
41
|
Bowman AB, Patel-King RS, Benashski SE, McCaffery JM, Goldstein LS, King SM. Drosophila roadblock and Chlamydomonas Lc7. J Cell Biol 1999. [DOI: 10.1083/jcb.146.1.165] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eukaryotic organisms utilize microtubule-dependent motors of the kinesin and dynein superfamilies to generate intracellular movement. To identify new genes involved in the regulation of axonal transport in Drosophila melanogaster, we undertook a screen based upon the sluggish larval phenotype of known motor mutants. One of the mutants identified in this screen, roadblock (robl), exhibits diverse defects in intracellular transport including axonal transport and mitosis. These defects include intra-axonal accumulations of cargoes, severe axonal degeneration, and aberrant chromosome segregation. The gene identified by robl encodes a 97–amino acid polypeptide that is 57% identical (70% similar) to the 105–amino acid Chlamydomonas outer arm dynein–associated protein LC7, also reported here. Both robl and LC7 have homology to several other genes from fruit fly, nematode, and mammals, but not Saccharomyces cerevisiae. Furthermore, we demonstrate that members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. We propose that roadblock/LC7 family members may modulate specific dynein functions.
Collapse
Affiliation(s)
- Aaron B. Bowman
- Howard Hughes Medical Institute, Division of Cellular and Molecular Medicine, Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0683
| | - Ramila S. Patel-King
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032-3305
| | - Sharon E. Benashski
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032-3305
| | - J. Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | - Lawrence S.B. Goldstein
- Howard Hughes Medical Institute, Division of Cellular and Molecular Medicine, Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0683
| | - Stephen M. King
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032-3305
| |
Collapse
|
42
|
Abstract
A variety of approaches have been developed to localize neurons and neural elements in nervous system tissues that make and use acetylcholine (ACh) as a neurotransmitter. Choline acetyltransferase (ChAT) is the enzyme catalyzing the biosynthesis of ACh and is considered to be an excellent phenotypic marker for cholinergic neurons. We have surveyed the distribution of choline acetyltransferase (ChAT)-expressing neurons in the Drosophila nervous system detected by three different but complementary techniques. Immunocytochemistry, using anti-ChAT monoclonal antibodies results in identification of neuronal processes and a few types of cell somata that contain ChAT protein. In situ hybridization using cRNA probes to ChAT messenger RNA results in identification of cell bodies transcribing the ChAT gene. X-gal staining and/or beta-galactosidase immunocytochemistry of transformed animals carrying a fusion gene composed of the regulatory DNA from the ChAT gene controlling expression of a lacZ reporter has also been useful in identifying cholinergic neurons and neural elements. The combination of these three techniques has revealed that cholinergic neurons are widespread in both the peripheral and central nervous system of this model genetic organism at all but the earliest developmental stages. Expression of ChAT is detected in a variety of peripheral sensory neurons, and in the brain neurons associated with the visual and olfactory system, as well as in neurons with unknown functions in the cortices of brain and ganglia.
Collapse
Affiliation(s)
- K Yasuyama
- Department of Biology, Kawasaki Medical School, Kurashiki, Japan
| | | |
Collapse
|