1
|
Boerjan W, Strauss SH. Social and biological innovations are essential to deliver transformative forest biotechnologies. THE NEW PHYTOLOGIST 2024; 243:526-536. [PMID: 38803120 DOI: 10.1111/nph.19855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Forests make immense contributions to societies in the form of ecological services and sustainable industrial products. However, they face major challenges to their viability and economic use due to climate change and growing biotic and economic threats, for which recombinant DNA (rDNA) technology can sometimes provide solutions. But the application of rDNA technologies to forest trees faces major social and biological obstacles that make its societal acceptance a 'wicked' problem without straightforward solutions. We discuss the nature of these problems, and the social and biological innovations that we consider essential for progress. As case studies of biological challenges, we focus on studies of modifications in wood chemistry and transformation efficiency. We call for major innovations in regulations, and the dissolution of method-based market barriers, that together could lead to greater research investments, enable wide use of field studies, and facilitate the integration of rDNA-modified trees into conventional breeding programs. Without near-term adoption of such innovations, rDNA-based solutions will be largely unavailable to help forests adapt to the growing stresses from climate change and the proliferation of forest pests, nor will they be available to provide economic and environmental benefits from expanded use of wood and related bioproducts as part of an expanding bioeconomy.
Collapse
Affiliation(s)
- Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
2
|
Zhao H, Zhang J, Zhao J, Niu S. Genetic transformation in conifers: current status and future prospects. FORESTRY RESEARCH 2024; 4:e010. [PMID: 39524432 PMCID: PMC11524282 DOI: 10.48130/forres-0024-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 11/16/2024]
Abstract
Genetic transformation has been a cornerstone in plant molecular biology research and molecular design breeding, facilitating innovative approaches for the genetic improvement of trees with long breeding cycles. Despite the profound ecological and economic significance of conifers in global forestry, the application of genetic transformation in this group has been fraught with challenges. Nevertheless, genetic transformation has achieved notable advances in certain conifer species, while these advances are confined to specific genotypes, they offer valuable insights for technological breakthroughs in other species. This review offers an in-depth examination of the progress achieved in the genetic transformation of conifers. This discussion encompasses various factors, including expression vector construction, gene-delivery methods, and regeneration systems. Additionally, the hurdles encountered in the pursuit of a universal model for conifer transformation are discussed, along with the proposal of potential strategies for future developments. This comprehensive overview seeks to stimulate further research and innovation in this crucial field of forest biotechnology.
Collapse
Affiliation(s)
- Huanhuan Zhao
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinfeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jian Zhao
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Chen X, Liu Y, Lu L, Liu S, Weng Y, Shi J, Hao Z, Chen J. Establishment of a glucocorticoid inducible system for regulating somatic embryogenesis in Liriodendron hybrids. FORESTRY RESEARCH 2024; 4:e006. [PMID: 39524410 PMCID: PMC11543298 DOI: 10.48130/forres-0024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/06/2024] [Indexed: 11/16/2024]
Abstract
The precise expression of transcription factors (TFs) is crucial for plant growth and development, especially during somatic embryogenesis. However, conventional overexpression approaches, commonly used for functional genetics, can lead to deleterious effects. Therefore, it is imperative to ensure that TFs are expressed in a controlled and timely manner when aiming to enhance the efficiency of somatic embryogenesis. In this study, a dexamethasone/glucocorticoid receptor (DEX/GR) inducible expression system was employed to modulate the protein expression levels of target TFs within the nucleus during somatic embryogenesis in Liriodendron hybrids. We selected the WUSCHEL (WUS) gene, a well-established functional TF known for its vital role in somatic embryogenesis, as a model to assess the effectiveness of this system. Through DEX treatment, we induced the translocation of LhWUS-GR/LhWUS-GFP-GR fusion proteins from the cytoplasm to the nucleus, consequently leading to WUS-driven somatic embryogenesis. As the DEX concentration increased, there was a corresponding increase in the migration of the LhWUS-GFP-GR fusion protein into the nucleus. Additionally, we observed a higher proliferation ratio of callus expressing LhWUS-GR when exposed to varying DEX concentrations. Notably, the efficiency of somatic embryogenesis exhibited significant improvement under optimal DEX concentration. In conclusion, our study successfully utilizes the DEX/GR inducible system in Liriodendron hybrids, offering a valuable tool for the precise control and utilization of TFs at the desired levels. This innovative approach holds promise for advancing our understanding of TF function and enhancing plant development through the regulated manipulation of TF expression.
Collapse
Affiliation(s)
- Xinying Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Ye Liu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Lu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Siqin Liu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Yuhao Weng
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Li W, Lin YCJ, Chen YL, Zhou C, Li S, De Ridder N, Oliveira DM, Zhang L, Zhang B, Wang JP, Xu C, Fu X, Luo K, Wu AM, Demura T, Lu MZ, Zhou Y, Li L, Umezawa T, Boerjan W, Chiang VL. Woody plant cell walls: Fundamentals and utilization. MOLECULAR PLANT 2024; 17:112-140. [PMID: 38102833 DOI: 10.1016/j.molp.2023.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Nette De Ridder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laigeng Li
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Toshiaki Umezawa
- Laboratory of Metabolic Science of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
5
|
Li G, Sretenovic S, Coleman G, Qi Y. Base Editing in Poplar Through an Agrobacterium-Mediated Transformation Method. Methods Mol Biol 2023; 2653:53-71. [PMID: 36995619 DOI: 10.1007/978-1-0716-3131-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
CRISPR-Cas9 systems have revolutionized genome editing in plants and facilitated gene knockout and functional genomic studies in woody plants, like poplar. However, in tree species, previous studies have only focused on targeting indel mutations through CRISPR-based nonhomologous end joining (NHEJ) pathway. Cytosine base editors (CBEs) and adenine base editors (ABEs) enable C-to-T and A-to-G base changes, respectively. These base editors can introduce premature stop codons and amino acid changes, alter RNA splicing sites, and edit cis-regulatory elements of promoters. Base editing systems have only been recently established in trees. In this chapter, we describe a detailed, robust, and thoroughly tested protocol for preparing T-DNA vectors with two highly efficient CBEs, PmCDA1-BE3 and A3A/Y130F-BE3, and the highly efficient ABE8e as well as delivering the T-DNA through an improved protocol for Agrobacterium-mediated transformation in poplar. This chapter will provide promising application potential for precise base editing in poplar and other trees.
Collapse
Affiliation(s)
- Gen Li
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Gary Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
6
|
Cao L, Xu C, Sun Y, Niu C, Leng X, Hao B, Ma J, Liu Z, Xu Z, Yang C, Liu G. Genome-wide identification of glutamate synthase gene family and expression patterns analysis in response to carbon and nitrogen treatment in Populus. Gene 2023; 851:146996. [DOI: 10.1016/j.gene.2022.146996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/01/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
7
|
Fladung M, Kersten B. Tree Genetic Engineering, Genome Editing and Genomics. Int J Mol Sci 2022; 23:13980. [PMID: 36430457 PMCID: PMC9694923 DOI: 10.3390/ijms232213980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
In this Special Issue [...].
Collapse
Affiliation(s)
- Matthias Fladung
- Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927 Grosshansdorf, Germany
| | | |
Collapse
|
8
|
Grünhofer P, Stöcker T, Guo Y, Li R, Lin J, Ranathunge K, Schoof H, Schreiber L. Populus × canescens root suberization in reaction to osmotic and salt stress is limited to the developing younger root tip region. PHYSIOLOGIA PLANTARUM 2022; 174:e13765. [PMID: 36281836 DOI: 10.1111/ppl.13765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Populus is a valuable and fast-growing tree species commonly cultivated for economic and scientific purposes. But most of the poplar species are sensitive to drought and salt stress. Thus, we compared the physiological effects of osmotic stress (PEG8000) and salt treatment (NaCl) on poplar roots to identify potential strategies for future breeding or genetic engineering approaches. We investigated root anatomy using epifluorescence microscopy, changes in root suberin composition and amount using gas chromatography, transcriptional reprogramming using RNA sequencing, and modifications of root transport physiology using a pressure chamber. Poplar roots reacted to the imposed stress conditions, especially in the developing younger root tip region, with remarkable differences between both types of stress. Overall, the increase in suberin content was surprisingly small, but the expression of key suberin biosynthesis genes was strongly induced. Significant reductions of the radial water transport in roots were only observed for the osmotic and not the hydrostatic hydraulic conductivity. Our data indicate that the genetic enhancement of root suberization processes in poplar might be a promising target to convey increased tolerance, especially against toxic sodium chloride.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Tyll Stöcker
- Department of Crop Bioinformatics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Yayu Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Kosala Ranathunge
- UWA School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Heiko Schoof
- Department of Crop Bioinformatics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, Isik F, Ko JH, Li C, Li Q, Niu S, Qu G, Vu THG, Wang XR, Wei Z, Zhang L, Wei H. Current status and trends in forest genomics. FORESTRY RESEARCH 2022; 2:11. [PMID: 39525413 PMCID: PMC11524260 DOI: 10.48130/fr-2022-0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2024]
Abstract
Forests are not only the most predominant of the Earth's terrestrial ecosystems, but are also the core supply for essential products for human use. However, global climate change and ongoing population explosion severely threatens the health of the forest ecosystem and aggravtes the deforestation and forest degradation. Forest genomics has great potential of increasing forest productivity and adaptation to the changing climate. In the last two decades, the field of forest genomics has advanced quickly owing to the advent of multiple high-throughput sequencing technologies, single cell RNA-seq, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing, and spatial transcriptomes, as well as bioinformatics analysis technologies, which have led to the generation of multidimensional, multilayered, and spatiotemporal gene expression data. These technologies, together with basic technologies routinely used in plant biotechnology, enable us to tackle many important or unique issues in forest biology, and provide a panoramic view and an integrative elucidation of molecular regulatory mechanisms underlying phenotypic changes and variations. In this review, we recapitulated the advancement and current status of 12 research branches of forest genomics, and then provided future research directions and focuses for each area. Evidently, a shift from simple biotechnology-based research to advanced and integrative genomics research, and a setup for investigation and interpretation of many spatiotemporal development and differentiation issues in forest genomics have just begun to emerge.
Collapse
Affiliation(s)
- Dulal Borthakur
- Dulal Borthakur, Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Victor Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Xuan Hieu Cao
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Fikret Isik
- Cooperative Tree Improvement Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100093, P.R. China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Thi Ha Giang Vu
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå 90187, Sweden
| | - Zhigang Wei
- College of Life Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
10
|
Characterization, expression, and functional analysis of the pathogenesis-related gene PtDIR11 in transgenic poplar. Int J Biol Macromol 2022; 210:182-195. [PMID: 35545137 DOI: 10.1016/j.ijbiomac.2022.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022]
Abstract
Lignins and lignans are important for plant resistance to pathogens. Dirigent (DIR) proteins control the regio- and stereo-selectivity of coniferyl alcohol in lignan and lignin biosynthesis. DIR genes have been implicated in defense-related responses in several plant species, but their role in poplar immunity is unclear. We cloned PtDIR11 from Populus trichocarpa; we found that overexpression of PtDIR11 in poplar improved the lignan biosynthesis and enhanced the resistance of poplar to Septotis populiperda. PtDIR11 has a typical DIR domain; it belongs to the DIR-b/d family and is expressed in the cell membrane. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis showed that PtDIR11 expression was highest in stems, followed by leaves and roots. Furthermore, PtDIR11 expression was induced by S. populiperda, salicylic acid (SA), jasmonate (JA), and ethylene (ET) stresses. The recombinant PtDIR11 protein inhibited the growth of S. populiperda in vitro. Overexpressing (OE) PtDIR11 in "Nanlin 895" poplar enhanced growth. The OE lines exhibited minimal changes in lignin content, but their total lignan and flavonoid contents were significantly greater than in the wild-type (WT) lines. Overexpression of PtDIR11 affected multiple biological pathways of poplar, such as phenylpropanoid biosynthesis. The methanol extracts of OE-PtDIR11 lines showed greater anti-S. populiperda activity than did lignin extracts from the WT lines. Furthermore, OE-PtDIR11 lines upregulated genes that were related to phenylpropanoid biosynthesis and genes associated with the JA and ET signal transduction pathways; it downregulated genes that were related to SA signal transduction compared with the WT line under S. populiperda stress. Therefore, the OE transgenic plants analysis revealed that PtDIR11 is a good candidate gene for breeding of disease resistant poplar.
Collapse
|
11
|
Li M, Wang D, Long X, Hao Z, Lu Y, Zhou Y, Peng Y, Cheng T, Shi J, Chen J. Agrobacterium-Mediated Genetic Transformation of Embryogenic Callus in a Liriodendron Hybrid ( L. Chinense × L. Tulipifera). FRONTIERS IN PLANT SCIENCE 2022; 13:802128. [PMID: 35371158 PMCID: PMC8970691 DOI: 10.3389/fpls.2022.802128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
A highly efficient genetic transformation system of Liriodendron hybrid embryogenic calli through Agrobacterium-mediated genetic transformation was established and optimized. The Agrobacterium tumefaciens strain EHA105, harboring the plasmid pBI121, which contained the ß-glucuronidase (GUS) gene and neomycin phosphotransferase II (npt II) gene under the control of the CaMV35S promoter, was used for transformation. Embryogenic calli were used as the starting explant to study several factors affecting the Agrobacterium-mediated genetic transformation of the Liriodendron hybrid, including the effects of various media, selection by different Geneticin (G418) concentrations, pre-culture period, Agrobacterium optical density, infection duration, co-cultivation period, and delayed selection. Transformed embryogenic calli were obtained through selection on medium containing 90 mg L-1 G418. Plant regeneration was achieved and selected via somatic embryogenesis on medium containing 15 mg L-1 G418. The optimal conditions included a pre-culture time of 2 days, a co-culture time of 3 days, an optimal infection time of 10 min, and a delayed selection time of 7 days. These conditions, combined with an OD600 value of 0.6, remarkably enhanced the transformation rate. The results of GUS chemical tissue staining, polymerase chain reaction (PCR), and southern blot analysis demonstrated that the GUS gene was successfully expressed and integrated into the Liriodendron hybrid genome. A transformation efficiency of 60.7% was achieved for the regenerated callus clumps. Transgenic plantlets were obtained in 5 months, and the PCR analysis showed that 97.5% of plants from the tested G418-resistant lines were PCR positive. The study of the Liriodendron hybrid reported here will facilitate the insertion of functional genes into the Liriodendron hybrid via Agrobacterium-mediated transformation.
Collapse
Affiliation(s)
- Meiping Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dan Wang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaofei Long
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ye Lu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yanwei Zhou
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ye Peng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Tielong Cheng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
12
|
Anjanappa RB, Gruissem W. Current progress and challenges in crop genetic transformation. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153411. [PMID: 33872932 DOI: 10.1016/j.jplph.2021.153411] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 05/14/2023]
Abstract
Plant transformation remains the most sought-after technology for functional genomics and crop genetic improvement, especially for introducing specific new traits and to modify or recombine already existing traits. Along with many other agricultural technologies, the global production of genetically engineered crops has steadily grown since they were first introduced 25 years ago. Since the first transfer of DNA into plant cells using Agrobacterium tumefaciens, different transformation methods have enabled rapid advances in molecular breeding approaches to bring crop varieties with novel traits to the market that would be difficult or not possible to achieve with conventional breeding methods. Today, transformation to produce genetically engineered crops is the fastest and most widely adopted technology in agriculture. The rapidly increasing number of sequenced plant genomes and information from functional genomics data to understand gene function, together with novel gene cloning and tissue culture methods, is further accelerating crop improvement and trait development. These advances are welcome and needed to make crops more resilient to climate change and to secure their yield for feeding the increasing human population. Despite the success, transformation remains a bottleneck because many plant species and crop genotypes are recalcitrant to established tissue culture and regeneration conditions, or they show poor transformability. Improvements are possible using morphogenetic transcriptional regulators, but their broader applicability remains to be tested. Advances in genome editing techniques and direct, non-tissue culture-based transformation methods offer alternative approaches to enhance varietal development in other recalcitrant crops. Here, we review recent developments in plant transformation and regeneration, and discuss opportunities for new breeding technologies in agriculture.
Collapse
Affiliation(s)
- Ravi B Anjanappa
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Wilhelm Gruissem
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland; Advanced Plant Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung City 402, Taiwan.
| |
Collapse
|
13
|
Allona I, Kirst M, Boerjan W, Strauss S, Sederoff R. Editorial: Forest Genomics and Biotechnology. FRONTIERS IN PLANT SCIENCE 2019; 10:1187. [PMID: 31681350 PMCID: PMC6806019 DOI: 10.3389/fpls.2019.01187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Isabel Allona
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Steven Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Ronald Sederoff
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
14
|
Ma J, Wan D, Duan B, Bai X, Bai Q, Chen N, Ma T. Genome sequence and genetic transformation of a widely distributed and cultivated poplar. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:451-460. [PMID: 30044051 PMCID: PMC6335071 DOI: 10.1111/pbi.12989] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 05/20/2023]
Abstract
Populus alba is widely distributed and cultivated in Europe and Asia. This species has been used for diverse studies. In this study, we assembled a de novo genome sequence of P. alba var. pyramidalis (= P. bolleana) and confirmed its high transformation efficiency and short transformation time by experiments. Through a process of hybrid genome assembly, a total of 464 M of the genome was assembled. Annotation analyses predicted 37 901 protein-coding genes. This genome is highly collinear to that of P. trichocarpa, with most genes having orthologs in the two species. We found a marked expansion of gene families related to histone and the hormone auxin but loss of disease resistance genes in P. alba if compared with the closely related P. trichocarpa. The genome sequence presented here represents a valuable resource for further molecular functional analyses of this species as a new tree model, poplar breeding practices and comparative genomic analyses across different poplars.
Collapse
Affiliation(s)
- Jianchao Ma
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Bingbing Duan
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Xiaotao Bai
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Qiuxian Bai
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Ningning Chen
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Tao Ma
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
15
|
Clifton‐Brown J, Harfouche A, Casler MD, Dylan Jones H, Macalpine WJ, Murphy‐Bokern D, Smart LB, Adler A, Ashman C, Awty‐Carroll D, Bastien C, Bopper S, Botnari V, Brancourt‐Hulmel M, Chen Z, Clark LV, Cosentino S, Dalton S, Davey C, Dolstra O, Donnison I, Flavell R, Greef J, Hanley S, Hastings A, Hertzberg M, Hsu T, Huang LS, Iurato A, Jensen E, Jin X, Jørgensen U, Kiesel A, Kim D, Liu J, McCalmont JP, McMahon BG, Mos M, Robson P, Sacks EJ, Sandu A, Scalici G, Schwarz K, Scordia D, Shafiei R, Shield I, Slavov G, Stanton BJ, Swaminathan K, Taylor G, Torres AF, Trindade LM, Tschaplinski T, Tuskan GA, Yamada T, Yeon Yu C, Zalesny RS, Zong J, Lewandowski I. Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GLOBAL CHANGE BIOLOGY. BIOENERGY 2019; 11:118-151. [PMID: 30854028 PMCID: PMC6392185 DOI: 10.1111/gcbb.12566] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/18/2018] [Indexed: 05/07/2023]
Abstract
Genetic improvement through breeding is one of the key approaches to increasing biomass supply. This paper documents the breeding progress to date for four perennial biomass crops (PBCs) that have high output-input energy ratios: namely Panicum virgatum (switchgrass), species of the genera Miscanthus (miscanthus), Salix (willow) and Populus (poplar). For each crop, we report on the size of germplasm collections, the efforts to date to phenotype and genotype, the diversity available for breeding and on the scale of breeding work as indicated by number of attempted crosses. We also report on the development of faster and more precise breeding using molecular breeding techniques. Poplar is the model tree for genetic studies and is furthest ahead in terms of biological knowledge and genetic resources. Linkage maps, transgenesis and genome editing methods are now being used in commercially focused poplar breeding. These are in development in switchgrass, miscanthus and willow generating large genetic and phenotypic data sets requiring concomitant efforts in informatics to create summaries that can be accessed and used by practical breeders. Cultivars of switchgrass and miscanthus can be seed-based synthetic populations, semihybrids or clones. Willow and poplar cultivars are commercially deployed as clones. At local and regional level, the most advanced cultivars in each crop are at technology readiness levels which could be scaled to planting rates of thousands of hectares per year in about 5 years with existing commercial developers. Investment in further development of better cultivars is subject to current market failure and the long breeding cycles. We conclude that sustained public investment in breeding plays a key role in delivering future mass-scale deployment of PBCs.
Collapse
Affiliation(s)
- John Clifton‐Brown
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systemsUniversity of TusciaViterboItaly
| | | | - Huw Dylan Jones
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | | | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityGenevaNew York
| | - Anneli Adler
- SweTree Technologies ABUmeåSweden
- Institute of Crop Production EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Chris Ashman
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Danny Awty‐Carroll
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | - Sebastian Bopper
- Department of Seed Science and Technology, Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
| | - Vasile Botnari
- Institute of Genetics, Physiology and Plant Protection (IGFPP) of Academy of Sciences of MoldovaChisinauMoldova
| | | | - Zhiyong Chen
- Insitute of MiscanthusHunan Agricultural UniversityHunan ChangshaChina
| | - Lindsay V. Clark
- Department of Crop Sciences & Center for Advanced Bioenergy and Bioproducts Innovation, 279 Edward R Madigan LaboratoryUniversity of IllinoisUrbanaIllinois
| | - Salvatore Cosentino
- Dipartimento di Agricoltura Alimentazione e AmbienteUniversità degli Studi di CataniaCataniaItaly
| | - Sue Dalton
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Chris Davey
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Oene Dolstra
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Iain Donnison
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | - Joerg Greef
- Julius Kuhn‐Institut (JKI)Bundesforschungsinstitut fur KulturpflanzenBraunschweigGermany
| | | | - Astley Hastings
- Institute of Biological and Environmental ScienceUniversity of AberdeenAberdeenUK
| | | | - Tsai‐Wen Hsu
- Taiwan Endemic Species Research Institute (TESRI)Nantou CountyTaiwan
| | - Lin S. Huang
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Antonella Iurato
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Elaine Jensen
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Xiaoli Jin
- Department of Agronomy & The Key Laboratory of Crop Germplasm Resource of Zhejiang ProvinceZhejiang UniversityHangzhouChina
| | - Uffe Jørgensen
- Department of AgroecologyAarhus University Centre for Circular BioeconomyTjeleDenmark
| | - Andreas Kiesel
- Department of Biobased Products and Energy Crops, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | - Do‐Soon Kim
- Department of Plant Sciences, Research Institute of Agriculture & Life Sciences, CALSSeoul National UniversitySeoulKorea
| | - Jianxiu Liu
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Jon P. McCalmont
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Bernard G. McMahon
- Natural Resources Research InstituteUniversity of Minnesota – DuluthDuluthMinnesota
| | | | - Paul Robson
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Erik J. Sacks
- Department of Crop Sciences & Center for Advanced Bioenergy and Bioproducts Innovation, 279 Edward R Madigan LaboratoryUniversity of IllinoisUrbanaIllinois
| | - Anatolii Sandu
- Institute of Genetics, Physiology and Plant Protection (IGFPP) of Academy of Sciences of MoldovaChisinauMoldova
| | - Giovanni Scalici
- Dipartimento di Agricoltura Alimentazione e AmbienteUniversità degli Studi di CataniaCataniaItaly
| | - Kai Schwarz
- Julius Kuhn‐Institut (JKI)Bundesforschungsinstitut fur KulturpflanzenBraunschweigGermany
| | - Danilo Scordia
- Dipartimento di Agricoltura Alimentazione e AmbienteUniversità degli Studi di CataniaCataniaItaly
| | - Reza Shafiei
- James Hutton InstituteUniversity of DundeeDundeeUK
| | | | | | | | | | - Gail Taylor
- Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Andres F. Torres
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Luisa M. Trindade
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Timothy Tschaplinski
- The Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTennessee
| | - Gerald A. Tuskan
- The Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTennessee
| | - Toshihiko Yamada
- Field Science Centre for the Northern BiosphereHokkaido UniversitySapporoJapan
| | - Chang Yeon Yu
- College of Agriculture and Life Sciences 2Kangwon National UniversityChuncheonSouth Korea
| | | | - Junqin Zong
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Iris Lewandowski
- Department of Biobased Products and Energy Crops, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| |
Collapse
|
16
|
Abstract
First publications of successful Agrobacterium-mediated transformation of tobacco were published more than 30 years ago. Protocols for Agrobacterium-based transformation as well as biolistic bombardment and PEG transformation of protoplasts are available for more than 150 plant species from various plant families. Also for many Populus species and hybrids, adapted transformation protocols have been published. The standard protocol for Agrobacterium-mediated transformation of different Populus genotypes is the leaf-disc method. Here, we first describe the transfer of genes into poplar by using the Agrobacterium-based leaf disc methods. In addition, alternative basic transformation methods, namely, biolistic bombardment and PEG transformation of protoplasts, are also described. Further, we present improved poplar transformation protocols by simplifying the transformation procedure and optimizing tissue preparation and plant regeneration.
Collapse
Affiliation(s)
| | - Olaf Polak
- Thuenen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Khira Deecke
- Thuenen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | | |
Collapse
|
17
|
Wang B, Zhang Y, Zhao J, Dong M, Zhang J. Heat-Shock-Induced Removal of Transgenes Using the Gene-Deletor System in Hybrid Aspen ( Populus tremula × P. tremuloides). Genes (Basel) 2018; 9:genes9100484. [PMID: 30297683 PMCID: PMC6210648 DOI: 10.3390/genes9100484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/23/2018] [Accepted: 10/01/2018] [Indexed: 11/19/2022] Open
Abstract
To evaluate the efficacy of the gene-deletor system in aspen, we evaluated the system for foreign gene removal in a hybrid aspen clone, INRA 353-53 (Populus tremula × P. tremuloides). The recombinase flipping DNA (FLP) gene was under the control of the heat-inducible promoter of Gmhsp17.6-L, and the β-glucuronidase (gusA) gene which was under the control of the 35S promoter and were constructed using the gene-deletor system in the pCaLFGmFNLFG vector. Six transgenic plants and their sublines were heated at 42 °C for 8 h and gene deletion was verified by polymerase chain reaction (PCR). Three lines exhibited partial transgene deletion while the remaining three lines did not delete. Transgenic lines were evaluated by Southern-blot analyses, verifying that the six transgenic plant lines all had a single copy of transfer DNA (t-DNA). Two partial-deletion lines and two non-deletion lines were analysed for methylation and expression of promoter and recombinase. Hardly any methylation was detected in the Gmhsp17.6-L promoter or recombinase FLP gene sequences, however, the expression of the promoter and recombinase was increased significantly in the partial-deletion compared with the non-deletion line after heat-shock treatment. These results suggest that the excision efficiency had no direct relationship with methylation status of the Gmhsp17.6-L promoter and FLP recombinase, yet was affected by the expression of the Gmhsp17.6-L and FLP after heat-shock treatment.
Collapse
Affiliation(s)
- Beibei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Tree and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China.
| | - Yan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Tree and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jian Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Tree and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Mingliang Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Tree and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jinfeng Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Tree and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
18
|
Wang G, Dong Y, Liu X, Yao G, Yu X, Yang M. The Current Status and Development of Insect-Resistant Genetically Engineered Poplar in China. FRONTIERS IN PLANT SCIENCE 2018; 9:1408. [PMID: 30298085 PMCID: PMC6160562 DOI: 10.3389/fpls.2018.01408] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 09/05/2018] [Indexed: 05/03/2023]
Abstract
Poplar is one of the main afforestation tree species in China, and the use of a single, or only a few, clones with low genetic diversity in poplar plantations has led to increasing problems with insect pests. The use of genetic engineering to cultivate insect-resistant poplar varieties has become a hot topic. Over the past 20 years, there have been remarkable achievements in this area. To date, nearly 22 insect-resistant poplar varieties have been created and approved for small-scale field testing, environmental release, or pilot-scale production. Here, we comprehensively review the development of insect-resistant genetically modified (GM) poplars in China. This review mostly addresses issues surrounding the regulation and commercialization of Bt poplar in China, the various insecticidal genes used, the effects of transgenic poplars on insects, toxic protein expression, multigene transformation, the stability of insect resistance, and biosafety. The efficacy of GM poplars for pest control differed among different transgenic poplar clones, larval instars, and insect species. The Bt protein analysis revealed that the expression level of Cry3A was significantly higher than that of Cry1Ac. Temporal and spatial studies of Bt protein showed that its expression varied with the developmental stage and tissue. The inheritance and expression of the exogenous gene were reviewed in transgenic hybrid poplar progeny lines and grafted sections. Biosafety issues, in terms of transgene stability and the effects on soil microorganisms, natural enemies of insects, and arthropod communities are also discussed.
Collapse
Affiliation(s)
- Guiying Wang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China
- Langfang Academy of Agriculture and Forestry Sciences, Langfang, China
| | - Yan Dong
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Xiaojie Liu
- Langfang Academy of Agriculture and Forestry Sciences, Langfang, China
| | - Guosheng Yao
- Langfang Academy of Agriculture and Forestry Sciences, Langfang, China
| | - Xiaoyue Yu
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Minsheng Yang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| |
Collapse
|
19
|
Preliminary study of Cell Wall Structure and its Mechanical Properties of C3H and HCT RNAi Transgenic Poplar Sapling. Sci Rep 2018; 8:10508. [PMID: 30002401 PMCID: PMC6043518 DOI: 10.1038/s41598-018-28675-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/06/2018] [Indexed: 12/02/2022] Open
Abstract
This research focused on the cell wall structure and its mechanical properties of down-regulated Coumaroyl shikimate 3-hydroxylase (C3H) transgenic poplar and down-regulated hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT) transgenic poplar (Populus alba × P. glandulosa cv ‘84 k’). The wood samples with respect to microstructure, the longitudinal elastic modulus (MOE) and hardness of wood fiber secondary cell wall were investigated. The results show that the lignin contents in the two transgenic poplar woods were lower than non-modified wood. The C3H transgenic poplar and HCT transgenic poplar have more than 18.5% and 16.1% cellulose crystalline regions than non-modified poplar respectively. The diameter of the fiber cell and the vessel element of transgenic poplars are smaller. Double radial vessel cell wall thicknesses of both transgenic poplars were smaller than non-modified poplar. Cell wall ratios for the transgenic poplar were higher than non-modified poplar and cell wall density was significantly lower in both C3H and HCT transgenic poplar. The cell wall MOEs of C3H and HCT transgenic poplar was 5.8% and 7.0% higher than non-modified poplar. HCT can be more effective than C3H to modify the trees by considerably increasing mechanical properties of the cell wall.
Collapse
|
20
|
Fernandez i Marti A, Dodd RS. Using CRISPR as a Gene Editing Tool for Validating Adaptive Gene Function in Tree Landscape Genomics. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Babst BA, Coleman GD. Seasonal nitrogen cycling in temperate trees: Transport and regulatory mechanisms are key missing links. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:268-277. [PMID: 29576080 DOI: 10.1016/j.plantsci.2018.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/22/2018] [Indexed: 05/08/2023]
Abstract
Nutrient accumulation, one of the major ecosystem services provided by forests, is largely due to the accumulation and retention of nutrients in trees. This review focuses on seasonal cycling of nitrogen (N), often the most limiting nutrient in terrestrial ecosystems. When leaves are shed during autumn, much of the N may be resorbed and stored in the stem over winter, and then used for new stem and leaf growth in spring. A framework exists for understanding the metabolism and transport of N in leaves and stems during winter dormancy, but many of the underlying genes remain to be identified and/or verified. Transport of N during seasonal N cycling is a particularly weak link, since the physical pathways for loading and unloading of amino N to and from the phloem are poorly understood. Short-day photoperiod followed by decreasing temperatures are the environmental cues that stimulate dormancy induction, and nutrient remobilization and storage. However, beyond the involvement of phytochrome, very little is known about the signal transduction mechanisms that link environmental cues to nutrient remobilization and storage. We propose a model whereby nutrient transport and sensing plays a major role in source-sink transitions of leaves and stems during seasonal N cycling.
Collapse
Affiliation(s)
- Benjamin A Babst
- Arkansas Forest Resources Center, Division of Agriculture, University of Arkansas System, Monticello, AR 71656, USA; School of Forestry and Natural Resources, University of Arkansas at Monticello, Monticello, AR 71656, USA.
| | - Gary D Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
22
|
Dong X, Jiang X, Kuang G, Wang Q, Zhong M, Jin D, Hu J. Genetic control of flowering time in woody plants: Roses as an emerging model. PLANT DIVERSITY 2017; 39:104-110. [PMID: 30159498 PMCID: PMC6112279 DOI: 10.1016/j.pld.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 05/11/2023]
Abstract
Genetic control of the timing of flowering in woody plants is complex and has yet to be adequately investigated due to their long life-cycle and difficulties in genetic modification. Studies in Populus, one of the best woody plant models, have revealed a highly conserved genetic network for flowering timing in annuals. However, traits like continuous flowering cannot be addressed with Populus. Roses and strawberries have relatively small, diploid genomes and feature enormous natural variation. With the development of new genetic populations and genomic tools, roses and strawberries have become good models for studying the molecular mechanisms underpinning the regulation of flowering in woody plants. Here, we review findings on the molecular and genetic factors controlling continuous flowering in roses and woodland strawberries. Natural variation at TFL1 orthologous genes in both roses and strawberries seems be the key plausible factor that regulates continuous flowering. However, recent efforts suggest that a two-recessive-loci model may explain the controlling of continuous flowering in roses. We propose that epigenetic factors, including non-coding RNAs or chromatin-related factors, might also play a role. Insights into the genetic control of flowering time variation in roses should benefit the development of new germplasm for woody crops and shed light on the molecular genetic bases for the production and maintenance of plant biodiversity.
Collapse
Affiliation(s)
- Xue Dong
- Group of Plant Molecular Genetics and Adaptation, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences. Lanhei Road 132, Heilongtan, Kunming 650201, Yunnan Province, PR China
| | - Xiaodong Jiang
- Group of Plant Molecular Genetics and Adaptation, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences. Lanhei Road 132, Heilongtan, Kunming 650201, Yunnan Province, PR China
| | - Guoqiang Kuang
- Second High School, Rongcheng 264309, Shandong Province, PR China
| | - Qingbo Wang
- Second High School, Rongcheng 264309, Shandong Province, PR China
| | - Micai Zhong
- Group of Plant Molecular Genetics and Adaptation, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences. Lanhei Road 132, Heilongtan, Kunming 650201, Yunnan Province, PR China
| | - Dongmin Jin
- Group of Plant Molecular Genetics and Adaptation, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences. Lanhei Road 132, Heilongtan, Kunming 650201, Yunnan Province, PR China
| | - Jinyong Hu
- Group of Plant Molecular Genetics and Adaptation, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences. Lanhei Road 132, Heilongtan, Kunming 650201, Yunnan Province, PR China
- Corresponding author.
| |
Collapse
|
23
|
Yadav R, Yadav N, Goutam U, Kumar S, Chaudhury A. Genetic Engineering of Poplar: Current Achievements and Future Goals. PLANT BIOTECHNOLOGY: RECENT ADVANCEMENTS AND DEVELOPMENTS 2017:361-390. [DOI: 10.1007/978-981-10-4732-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
24
|
Zhang Z, Finer JJ. Low Agrobacterium tumefaciens inoculum levels and a long co-culture period lead to reduced plant defense responses and increase transgenic shoot production of sunflower ( Helianthus annuus L.). IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2016; 52:354-366. [PMID: 27746666 PMCID: PMC5042984 DOI: 10.1007/s11627-016-9774-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/28/2016] [Indexed: 05/23/2023]
Abstract
Agrobacterium-mediated plant transformation is typically conducted by inoculating plant tissues with an Agrobacterium suspension containing approximately 108-109 bacteria mL-1, followed by a 2-3-d co-culture period. Use of longer co-culture periods could potentially increase transformation efficiencies by allowing more time for Agrobacterium to interact with plant cells, but bacterial overgrowth is likely to occur, leading to severe tissue browning and reduced transformation and regeneration. Low bacterial inoculum levels were therefore evaluated as a means to reduce the negative outcomes associated with long co-culture. The use of low inoculum bacterial suspensions (approximately 6 × 102 bacteria mL-1) followed by long co-culture (15 d) led to the production of an average of three transformed sunflower shoots per explant while the use of high inoculum (approximately 6 × 108 bacteria mL-1) followed by short co-culture (3 d) led to no transformed shoots. Low inoculum and long co-culture acted synergistically, and both were required for the improvement of sunflower transformation. Gene expression analysis via qRT-PCR showed that genes related to plant defense response were generally expressed at lower levels in the explants treated with low inoculum than those treated with high inoculum during 15 d of co-culture, suggesting that low inoculum reduced the induction of plant defense responses. The use of low inoculum with long co-culture (LI/LC) led to large increases in sunflower transformation efficiency. This method has great potential for improving transformation efficiencies and expanding the types of target tissues amenable for transformation of different plant species.
Collapse
Affiliation(s)
- Zhifen Zhang
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
- Department of Horticulture, The University of Georgia Tifton Campus, Tifton, GA 31793 USA
| | - John J. Finer
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| |
Collapse
|
25
|
Maheshwari P, Kovalchuk I. Agrobacterium-Mediated Stable Genetic Transformation of Populus angustifolia and Populus balsamifera. FRONTIERS IN PLANT SCIENCE 2016; 7:296. [PMID: 27014319 PMCID: PMC4783574 DOI: 10.3389/fpls.2016.00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/25/2016] [Indexed: 05/02/2023]
Abstract
The present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar - Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 = 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, LethbridgeAB, Canada
| |
Collapse
|
26
|
Allwright MR, Taylor G. Molecular Breeding for Improved Second Generation Bioenergy Crops. TRENDS IN PLANT SCIENCE 2016; 21:43-54. [PMID: 26541073 DOI: 10.1016/j.tplants.2015.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/18/2015] [Accepted: 10/02/2015] [Indexed: 05/24/2023]
Abstract
There is increasing urgency to develop and deploy sustainable sources of energy to reduce our global dependency on finite, high-carbon fossil fuels. Lignocellulosic feedstocks, used in power and liquid fuel generation, are valuable sources of non-food plant biomass. They are cultivated with minimal inputs on marginal or degraded lands to prevent competition with arable agriculture and offer significant potential for sustainable intensification (the improvement of yield without the necessity for additional inputs) through advanced molecular breeding. This article explores progress made in next generation sequencing, advanced genotyping, association genetics, and genetic modification in second generation bioenergy production. Using poplar as an exemplar where most progress has been made, a suite of target traits is also identified giving insight into possible routes for crop improvement and deployment in the immediate future.
Collapse
Affiliation(s)
- Mike R Allwright
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, SO17 1BJ Southampton, UK
| | - Gail Taylor
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, SO17 1BJ Southampton, UK.
| |
Collapse
|
27
|
Lessons from 25 Years of GM Tree Field Trials in Europe and Prospects for the Future. BIOSAFETY OF FOREST TRANSGENIC TREES 2016. [DOI: 10.1007/978-94-017-7531-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Genetic Engineering Contribution to Forest Tree Breeding Efforts. BIOSAFETY OF FOREST TRANSGENIC TREES 2016. [DOI: 10.1007/978-94-017-7531-1_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Sainger M, Chaudhary D, Dahiya S, Jaiwal R, Jaiwal PK. Development of an efficient in vitro plant regeneration system amenable to Agrobacterium- mediated transformation of a recalcitrant grain legume blackgram (Vigna mungo L. Hepper). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:505-17. [PMID: 26600677 PMCID: PMC4646867 DOI: 10.1007/s12298-015-0315-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/04/2015] [Accepted: 07/07/2015] [Indexed: 06/05/2023]
Abstract
An efficient, rapid and direct multiple shoot regeneration system amenable to Agrobacterium-mediated transformation from primary leaf with intact petiole of blackgram (Vigna mungo) is established for the first time. The effect of the explant type and its age, type and concentration of cytokinin and auxin either alone or in combination and genotype on multiple shoot regeneration efficiency and frequency was optimized. The primary leaf explants with petiole excised from 4-day-old seedlings directly developed multiple shoots (an average of 10 shoots/ explant) from the cut ends of the petiole in 95 % of the cultures on MSB (MS salts and B5 vitamins) medium containing 1.0 μM 6-benzylaminopurine. Elongated (2-3 cm) shoots were rooted on MSB medium with 2.5 μM indole-butyric acid and resulted plantlets were hardened and established in soil, where they resumed growth and reached maturity with normal seed set. The regenerated plants were morphologically similar to seed-raised plants and required 8 weeks time from initiation of culture to establish them in soil. The regeneration competent cells present at the cut ends of petiole are fully exposed and are, thus, easily accessible to Agrobacterium, making this plant regeneration protocol amenable for the production of transgenic plants. The protocol was further successfully used to develop fertile transgenic plants of blackgram using Agrobacterium tumefaciens strain EHA 105 carrying a binary vector pCAMBIA2301 that contains a neomycin phosphotransferase gene (nptII) and a β-glucuronidase (GUS) gene (uidA) interrupted with an intron. The presence and integration of transgenes in putative T0 plants were confirmed by polymerase chain reaction (PCR) and Southern blot hybridization, respectively. The transgenes were inherited in Mendelian fashion in T1 progeny and a transformation frequency of 1.3 % was obtained. This protocol can be effectively used for transferring new traits in blackgram and other legumes for their quantitative and qualitative improvements.
Collapse
Affiliation(s)
- Manish Sainger
- />Centre for Biotechnology, M. D. University, Rohtak, 124001 India
| | | | - Savita Dahiya
- />Centre for Biotechnology, M. D. University, Rohtak, 124001 India
| | - Ranjana Jaiwal
- />Department of Zoology, M. D. University, Rohtak, 124001 India
| | - Pawan K. Jaiwal
- />Centre for Biotechnology, M. D. University, Rohtak, 124001 India
| |
Collapse
|
30
|
Hjältén J, Axelsson EP. GM trees with increased resistance to herbivores: trait efficiency and their potential to promote tree growth. FRONTIERS IN PLANT SCIENCE 2015; 6:279. [PMID: 25983736 PMCID: PMC4416443 DOI: 10.3389/fpls.2015.00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/07/2015] [Indexed: 05/04/2023]
Abstract
Climate change, as well as a more intensive forestry, is expected to increase the risk of damage by pests and pathogens on trees, which can already be a severe problem in tree plantations. Recent development of biotechnology theoretically allows for resistance enhancement that could help reduce these risks but we still lack a comprehensive understanding of benefits and tradeoffs with pest resistant GM (genetically modified) trees. We synthesized the current knowledge on the effectiveness of GM forest trees with increased resistance to herbivores. There is ample evidence that induction of exogenous Bacillus thuringiensis genes reduce performance of target pests whereas upregulation of endogenous resistance traits e.g., phenolics, generates variable results. Our review identified very few studies estimating the realized benefits in tree growth of GM trees in the field. This is concerning as the realized benefit with insect resistant GM plants seems to be context-dependent and likely manifested only if herbivore pressure is sufficiently high. Future studies of secondary pest species and resistance evolution in pest to GM trees should be prioritized. But most importantly we need more long-term field tests to evaluate the benefits and risks with pest resistant GM trees.
Collapse
Affiliation(s)
- Joakim Hjältén
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural SciencesUmeå, Sweden
- *Correspondence: Joakim Hjältén, Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 2, Umeå SE-90183, Sweden
| | - E. Petter Axelsson
- Department of Forest Ecology and Management, Swedish University of Agricultural SciencesUmeå, Sweden
| |
Collapse
|
31
|
A multi-year assessment of the environmental impact of transgenic Eucalyptus trees harboring a bacterial choline oxidase gene on biomass, precinct vegetation and the microbial community. Transgenic Res 2014; 23:767-77. [PMID: 24927812 DOI: 10.1007/s11248-014-9809-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 05/30/2014] [Indexed: 12/24/2022]
Abstract
A 4-year field trial for the salt tolerant Eucalyptus globulus Labill. harboring the choline oxidase (codA) gene derived from the halobacterium Arthrobacter globiformis was conducted to assess the impact of transgenic versus non-transgenic trees on biomass production, the adjacent soil microbial communities and vegetation by monitoring growth parameters, seasonal changes in soil microbes and the allelopathic activity of leaves. Three independently-derived lines of transgenic E. globulus were compared with three independent non-transgenic lines including two elite clones. No significant differences in biomass production were detected between transgenic lines and non-transgenic controls derived from same seed bulk, while differences were seen compared to two elite clones. Significant differences in the number of soil microbes present were also detected at different sampling times but not between transgenic and non-transgenic lines. The allelopathic activity of leaves from both transgenic and non-transgenic lines also varied significantly with sampling time, but the allelopathic activity of leaves from transgenic lines did not differ significantly from those from non-transgenic lines. These results indicate that, for the observed variables, the impact on the environment of codA-transgenic E. globulus did not differ significantly from that of the non-transformed controls on this field trial.
Collapse
|
32
|
Scientific Research Related to Genetically Modified Trees. CHALLENGES AND OPPORTUNITIES FOR THE WORLD'S FORESTS IN THE 21ST CENTURY 2014. [DOI: 10.1007/978-94-007-7076-8_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Tzin V, Rogachev I, Meir S, Moyal Ben Zvi M, Masci T, Vainstein A, Aharoni A, Galili G. Tomato fruits expressing a bacterial feedback-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway possess enhanced levels of multiple specialized metabolites and upgraded aroma. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4441-52. [PMID: 24006429 PMCID: PMC3808321 DOI: 10.1093/jxb/ert250] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Tomato (Solanum lycopersicum) fruit contains significant amounts of bioactive compounds, particularly multiple classes of specialized metabolites. Enhancing the synthesis and accumulation of these substances, specifically in fruits, are central for improving tomato fruit quality (e.g. flavour and aroma) and could aid in elucidate pathways of specialized metabolism. To promote the production of specialized metabolites in tomato fruit, this work expressed under a fruit ripening-specific promoter, E8, a bacterial AroG gene encoding a 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS), which is feedback-insensitive to phenylalanine inhibition. DAHPS, the first enzyme of the shikimate pathway, links between the primary and specialized metabolism derived from aromatic amino acids. AroG expression influenced the levels of number of primary metabolites, such as shikimic acid and aromatic amino acids, as well as multiple volatile and non-volatile phenylpropanoids specialized metabolites and carotenoids. An organoleptic test, performed by trained panellists, suggested that the ripe AroG-expressing tomato fruits had a preferred floral aroma compare with fruits of the wild-type line. These results imply that fruit-specific manipulation of the conversion of primary to specialized metabolism is an attractive approach for improving fruit aroma and flavour qualities as well as discovering novel fruit-specialized metabolites.
Collapse
Affiliation(s)
- Vered Tzin
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
- * Present address: Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY 14853-1801, USA
| | - Ilana Rogachev
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | - Sagit Meir
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | - Michal Moyal Ben Zvi
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
- Present address: Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | - Tania Masci
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | - Gad Galili
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Han ZF, Hunter DM, Sibbald S, Zhang JS, Tian L. Biological activity of the tzs gene of nopaline Agrobacterium tumefaciens GV3101 in plant regeneration and genetic transformation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1359-65. [PMID: 24088018 DOI: 10.1094/mpmi-04-13-0106-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Agrobacterium tumefaciens has been widely used in plant genetic transformation. Hormone-encoding genes residing in the T-DNA region have been removed, resulting in disarmed Agrobacterium strains that are used in various transformation experiments. Nopaline Agrobacterium strains, however, carry another hormone gene, trans-zeatin synthesizing (tzs), that codes for trans-zeatin in the virulence region of the tumor-inducing plasmids. We investigated the activity and function of the tzs gene of a nopaline Agrobacterium sp. strain GV3101 in plant in vitro regeneration. Leaf explants of tobacco and Nicotiana benthamiana co-cultured with strain GV3101 exhibited active shoot regeneration in media without added plant growth regulators. On medium without plant growth regulators, transgenic shoots were also induced from explants co-cultured with GV3101 containing a binary vector. Enzyme-linked immunosorbent assay showed that cell-free extracts of Agrobacterium sp. strain GV3101 culture contained the trans-zeatin at 860 ng/liter. Polymerase chain reaction using tzs-specific primers showed that the tzs gene was present in strain GV3101 but not in other Agrobacterium strains. The study showed that the tzs gene in GV3101 was actively expressed, and that trans-zeatin produced in the Agrobacterium strain can promote plant shoot regeneration.
Collapse
|
35
|
Han X, Ma S, Kong X, Takano T, Liu S. Efficient Agrobacterium-Mediated Transformation of Hybrid Poplar Populus davidiana Dode x Populus bollena Lauche. Int J Mol Sci 2013; 14:2515-28. [PMID: 23354481 PMCID: PMC3587999 DOI: 10.3390/ijms14022515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/29/2012] [Accepted: 01/17/2013] [Indexed: 11/17/2022] Open
Abstract
Poplar is a model organism for high in vitro regeneration in woody plants. We have chosen a hybrid poplar Populus davidiana Dode x Populus bollena Lauche. By optimizing the Murashige and Skoog medium with (0.3 mg/L) 6-benzylaminopurine and (0.08 mg/L) naphthaleneacetic acid, we have achieved the highest frequency (90%) for shoot regeneration from poplar leaves. It was also important to improve the transformation efficiency of poplar for genetic breeding and other applications. In this study, we found a significant improvement of the transformation frequency by controlling the leaf age. Transformation efficiency was enhanced by optimizing the Agrobacterium concentration (OD(600) = 0.8-1.0) and an infection time (20-30 min). According to transmission electron microscopy observations, there were more Agrobacterium invasions in the 30-day-old leaf explants than in 60-day-old and 90-day-old explants. Using the green fluorescent protein (GFP) marker, the expression of MD-GFP fusion proteins in the leaf, shoot, and root of hybrid poplar P. davidiana Dode x Populus. bollena Lauche was visualized for confirmation of transgene integration. Southern and Northern blot analysis also showed the integration of T-DNA into the genome and gene expression of transgenic plants. Our results suggest that younger leaves had higher transformation efficiency (~30%) than older leaves (10%).
Collapse
Affiliation(s)
- Xue Han
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China; E-Mails: (X.H.); (S.M.); (X.K.)
| | - Shurong Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China; E-Mails: (X.H.); (S.M.); (X.K.)
| | - Xianghui Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China; E-Mails: (X.H.); (S.M.); (X.K.)
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, University of Tokyo, Nishitokyo-shi, Tokyo 188-0002, Japan; E-Mail:
| | - Shenkui Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China; E-Mails: (X.H.); (S.M.); (X.K.)
| |
Collapse
|
36
|
Yadav NK, Vaidya BN, Henderson K, Lee JF, Stewart WM, Dhekney SA, Joshee N. A Review of <i>Paulownia</i> Biotechnology: A Short Rotation, Fast Growing Multipurpose Bioenergy Tree. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.411259] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Fladung M, Altosaar I, Bartsch D, Baucher M, Boscaleri F, Gallardo F, Häggman H, Hoenicka H, Nielsen K, Paffetti D, Séguin A, Stotzky G, Vettori C. European discussion forum on transgenic tree biosafety. Nat Biotechnol 2012; 30:37-8. [PMID: 22231091 DOI: 10.1038/nbt.2078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
|
39
|
Wang H, Wang C, Liu H, Tang R, Zhang H. An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana. PLANT CELL REPORTS 2011; 30:2037-44. [PMID: 21717184 DOI: 10.1007/s00299-011-1111-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/10/2011] [Accepted: 06/15/2011] [Indexed: 05/25/2023]
Abstract
Transgenic technology has been successfully used for gene function analyses and trait improvement in cereal plants. However, its usage is limited in woody plants, especially in the difficult-to-transform but commercially viable hybrid poplar. In this work, an efficient regeneration and transformation system was established for the production of two hybrid aspen clones: Populus alba × P. berolinensis and Populus davidiana × P. bolleana. A plant transformation vector designed to express the reporter gene uidA, encoding β-glucuronidase (GUS), driven by the cauliflower mosaic virus 35S promoter, was used to detect transformation event at early stages of plant regeneration, and to optimize the parameters that may affect poplar transformation efficiency. Bacterium strain and age of leaf explant are two major factors that affect transformation efficiency. Addition of thidiazuron (TDZ) improved both regeneration and transformation efficiency. The transformation efficiency is approximately 9.3% for P. alba × P. berolinensis and 16.4% for P. davidiana × P. bolleana. Using this system, transgenic plants were usually produced in less than 1 month after co-cultivation. The growth characteristics and morphology of transgenic plants were identical to the untransformed wild type plants, and the transgenes could be inherited by vegetative propagation, as confirmed by PCR, Southern blotting, RT-PCR and β-glucuronidase staining analyses. The establishment of this system will help to facilitate the studies of gene functions in tree growth and development at a genome level, and as well as the introduction of some valuable traits in aspen breeding.
Collapse
Affiliation(s)
- Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | | | | | | | | |
Collapse
|
40
|
Attila C, Ueda A, Cirillo SLG, Cirillo JD, Chen W, Wood TK. Pseudomonas aeruginosa PAO1 virulence factors and poplar tree response in the rhizosphere. Microb Biotechnol 2011; 1:17-29. [PMID: 21261818 PMCID: PMC3864428 DOI: 10.1111/j.1751-7915.2007.00002.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Whole-transcriptome analysis was used here for the first time in the rhizosphere to discern the genes involved in the pathogenic response of Pseudomonas aeruginosa PAO1 as well as to discern the response of the poplar tree. Differential gene expression shows that 185 genes of the bacterium and 753 genes of the poplar tree were induced in the rhizosphere. Using the P. aeruginosa transcriptome analysis, isogenic knockout mutants, and two novel plant assays (poplar and barley), seven novel PAO1 virulence genes were identified (PA1385, PA2146, PA2462, PA2463, PA2663, PA4150 and PA4295). The uncharacterized putative haemolysin repressor, PA2463, upon inactivation, resulted in greater poplar virulence and elevated haemolysis while this mutant remained competitive in the rhizosphere. In addition, disruption of the haemolysin gene itself (PA2462) reduced the haemolytic activity of P. aeruginosa, caused less cytotoxicity and reduced barley virulence, as expected. Inactivating PA1385, a putative glycosyl transferase, reduced both poplar and barley virulence. Furthermore, disrupting PA2663, a putative membrane protein, reduced biofilm formation by 20-fold. Inactivation of PA3476 (rhlI) increased virulence with barley as well as haemolytic activity and cytotoxicity, so quorum sensing is important in plant pathogenesis. Hence, this strategy is capable of elucidating virulence genes for an important pathogen.
Collapse
Affiliation(s)
- Can Attila
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | | | | | | | |
Collapse
|
41
|
Kim YH, Kim MD, Choi YI, Park SC, Yun DJ, Noh EW, Lee HS, Kwak SS. Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:334-47. [PMID: 20649941 DOI: 10.1111/j.1467-7652.2010.00551.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nucleoside diphosphate kinase 2 (NDPK2) is known to regulate the expression of antioxidant genes in plants. Previously, we reported that overexpression of Arabidopsis NDPK2 (AtNDPK2) under the control of an oxidative stress-inducible SWPA2 promoter in transgenic potato and sweetpotato plants enhanced tolerance to various abiotic stresses. In this study, transgenic poplar (Populus alba × Poplus glandulosa) expressing the AtNDPK2 gene under the control of a SWPA2 promoter (referred to as SN) was generated to develop plants with enhanced tolerance to oxidative stress. The level of AtNDPK2 expression and NDPK activity in SN plants following methyl viologen (MV) treatment was positively correlated with the plant's tolerance to MV-mediated oxidative stress. We also observed that antioxidant enzyme activities such as ascorbate peroxidase, catalase and peroxidase were increased in MV-treated leaf discs of SN plants. The growth of SN plants was substantially increased under field conditions including increased branch number and stem diameter. SN plants exhibited higher transcript levels of the auxin-response genes IAA2 and IAA5. These results suggest that enhanced AtNDPK2 expression affects oxidative stress tolerance leading to improved plant growth in transgenic poplar.
Collapse
Affiliation(s)
- Yun-Hee Kim
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Dramatic progress has been made in the development of gene transfer systems for higher plants. The ability to introduce foreign genes into plant cells and tissues and to regenerate viable, fertile plants has allowed for explosive expansion of our understanding of plant biology and has provided an unparalleled opportunity to modify and improve crop plants. Genetic engineering of plants offers significant potential for seed, agrichemical, food processing, specialty chemical, and pharmaceutical industries to develop new products and manufacturing processes. The extent to which genetically engineered plants will have an impact on key industries will be determined both by continued technical progress and by issues such as regulatory approval, proprietary protection, and public perception.
Collapse
|
43
|
Yevtushenko DP, Misra S. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. x P. maximowiczii A. Henry. PLANT CELL REPORTS 2010; 29:211-21. [PMID: 20087597 DOI: 10.1007/s00299-009-0806-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 10/28/2009] [Accepted: 11/25/2009] [Indexed: 05/06/2023]
Abstract
Many economically important species of Populus, especially those in sections Aigeiros and Tacamahaca, remain recalcitrant to genetic transformation. In this study, a simple and reliable protocol was developed for the efficient Agrobacterium-mediated transformation of a difficult-to-transform, but commercially viable, hybrid poplar Populus nigra L. x P. maximowiczii A. Henry (NM6). A plant transformation vector designed to express the beta-glucuronidase (GUS) gene was used to detect transformation events at early stages of plant regeneration and to optimize parameters affecting poplar transformation. The use of zeatin riboside in shoot-induction medium, regeneration of shoots via indirect organogenesis, and early selection pressure were the major modifications that drastically improved the efficiency of poplar transformation and minimized the number of untransformed regenerants. Transgenic shoots were routinely obtained 4-10 weeks after co-culture with A. tumefaciens, with a greater than 90% rate of plant recovery. Stable transgene integration, ranging from a single insertion to ten copies per genome, was confirmed by Southern blot analysis. The mean transformation frequency was 36.3% and about two-thirds of the lines had 1-2 transgene copies. Among the explants, petioles and leaves had a higher transformation frequency than did stem segments. Growth characteristics and the morphology of transgenic poplar plants were identical to untransformed controls. These findings will accelerate the development of P. nigra x P. maximowiczii plants with novel traits, and may also be useful to improve transformation procedures for other Populus species.
Collapse
Affiliation(s)
- Dmytro P Yevtushenko
- Department of Biochemistry and Microbiology, Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3P6, Canada.
| | | |
Collapse
|
44
|
Singh S, Rajam MV. Citrus biotechnology: Achievements, limitations and future directions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2009; 15:3-22. [PMID: 23572908 PMCID: PMC3550383 DOI: 10.1007/s12298-009-0001-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Citrus is one of the most important commercial and nutritional fruit crops in the world, hence it needs to be improved to cater to the diverse needs of consumers and crop breeders. Genetic manipulation through conventional techniques in this genus is invariably a difficult task for plant breeders as it poses various biological limitations comprising long juvenile period, high heterozygosity, sexual incompatibility, nucellar polyembryony and large plant size that greatly hinder cultivar improvement. Hence, several attempts were made to improve Citrus sps. by using various in vitro techniques. Citrus sps are widely known for their recalcitrance to transformation and subsequent rooting, but constant research has led to the establishment of improved protocols to ensure the production of uniformly transformed plants, albeit with relatively low efficiency, depending upon the genotype. Genetic modification through Agrobacterium-mediated transformation has emerged as an important tool for introducing agronomically important genes into Citrus sps. Somatic hybridization has been applied to overcome self and cross-incompatibility barriers and generated inter-specific and inter-generic hybrids. Encouraging results have been achieved through transgenics for resistance against viruses and bacteria, thereby augmenting the yield and quality of the fruit. Now, when major transformation and regeneration protocols have sufficiently been standardized for important cultivars, ongoing citrus research focuses mainly on incorporating such genes in citrus genotypes that can combat different biotic and abiotic stresses. This review summarizes the advances made so far in Citrus biotechnology, and suggests some future directions of research in this fruit crop.
Collapse
Affiliation(s)
- Sandeepa Singh
- Department of Genetics, University of Delhi — South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Manchikatla V. Rajam
- Department of Genetics, University of Delhi — South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
45
|
Song J, Lu S, Chen ZZ, Lourenco R, Chiang VL. Genetic transformation of Populus trichocarpa genotype Nisqually-1: a functional genomic tool for woody plants. PLANT & CELL PHYSIOLOGY 2006; 47:1582-9. [PMID: 17018558 DOI: 10.1093/pcp/pcl018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We report here the Agrobacterium-mediated genetic transformation of Nisqually-1, a Populus trichocarpa genotype whose genome was recently sequenced. Several systems were established. Internodal stem segments from vigorously growing greenhouse plants are the explants most amenable to transformation. For the most efficient system, approximately 40% of the stem segments infected with pBI121-containing Agrobacterium tumefaciens C58 produced transgenic calli, as confirmed by beta-glucuronidase (GUS) staining. The regeneration efficiency of independent transgenic plants was approximately 13%, as revealed by genomic Southern analysis. Some transgenic plants were produced in as little as 5 months after co-cultivation. This system may help to facilitate studies of gene functions in tree growth and development at a genome level.
Collapse
Affiliation(s)
- Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Xibeiwang, Haidian District, Beijing 100094, PR China
| | | | | | | | | |
Collapse
|
46
|
Vengadesan G, Amutha S, Muruganantham M, Anand RP, Ganapathi A. Transgenic Acacia sinuata from Agrobacterium tumefaciens-mediated transformation of hypocotyls. PLANT CELL REPORTS 2006; 25:1174-80. [PMID: 16807750 DOI: 10.1007/s00299-006-0176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 04/15/2006] [Accepted: 05/02/2006] [Indexed: 05/10/2023]
Abstract
Transgenic herbicide tolerant Acacia sinuata plants were produced by transformation with the bar gene conferring phosphinothricin resistance. Precultured hypocotyl explants were infected with Agrobacterium tumefaciens strain EHA105 in the presence of 100 microM acetosyringone and shoots regenerated on MS (Murashige and Skoog, 1962, Physiol Plant 15:473-497) medium with 13.3 microM benzylaminopurine, 2.6 microM indole-3-acetic acid, 1 g l(-1) activated charcoal, 1.5 mg l(-1) phosphinothricin, and 300 mg l(-1) cefotaxime. Phosphinothricin at 1.5 mg l(-1) was used for the selection. Shoots surviving selection on medium with phosphinothricin expressed GUS. Following Southern hybridization, eight independent shoots regenerated of 500 cocultivated explants were demonstrated to be transgenic, which represented transformation frequency of 1.6%. The transgenics carried one to four copies of the transgene. Transgenic shoots were propagated as microcuttings in MS medium with 6.6 microM 6-benzylaminopurine and 1.5 mg l(-1) phosphinothricin. Shoots elongated and rooted in MS medium with gibberellic acid and indole-3-butyric acid, respectively both supplemented with 1.5 mg l(-1) phosphinothricin. Micropropagation of transgenic plants by microcuttings proved to be a simple means to bulk up the material. Several transgenic plants were found to be resistant to leaf painting with the herbicide Basta.
Collapse
Affiliation(s)
- G Vengadesan
- Department of Biotechnology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India.
| | | | | | | | | |
Collapse
|
47
|
Stefani F, Bérubé J. Evaluation of foliar fungal endophyte incidence in field-grown transgenicBtwhite spruce trees. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A total of 770 transgenic Bt white spruce needles were collected and plated on potato dextrose agar to determine their foliar endophyte diversity. The ribosomal internal transcribed spacer regions for 310 foliar endophytes were amplified by polymerase chain reaction (PCR) and digested using CfoI and MspI, which created 21 restriction groups. Isolates from each restriction group were sequenced and compared with reference sequences in GenBank. Eighteen sequence groups were obtained, of which five were identified at the species level. The most common endophytic fungi identified by PCR-RFLP was Lophodermium piceae (incidence of 74.5%). The second and third most common ones were Hypoxylon fragiforme (3.63%) and Lophodermium nitens (3.18%). A statistical analysis performed on the most common endophyte groups showed no statistical difference in endophyte frequency or distribution between the control white spruce needles (nontransgenic) and saplings with constructs containing the reporter gene GUS or the Bt Cry1A(b) gene and kanamycin.
Collapse
Affiliation(s)
- F.O.P. Stefani
- Faculté de foresterie et de géomatique, Université Laval, Québec, QC G1K 7P4, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - J.A. Bérubé
- Faculté de foresterie et de géomatique, Université Laval, Québec, QC G1K 7P4, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| |
Collapse
|
48
|
Van Beveren KS, Spokevicius AV, Tibbits J, Wang Q, Bossinger G. Transformation of cambial tissue in vivo provides an efficient means for induced somatic sector analysis and gene testing in stems of woody plant species. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:629-638. [PMID: 32689272 DOI: 10.1071/fp06057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 04/28/2006] [Indexed: 06/11/2023]
Abstract
Large-scale functional analysis of genes and transgenes suspected to be involved in wood development in trees is hindered by long generation times, low transformation and regeneration efficiencies and difficulties with phenotypic assessment of traits, especially those that appear late in a tree's development. To avoid such obstacles many researchers have turned to model plants such as Arabidopsis thaliana (L.) Heynh., Zinnia elegans Jacq. and Nicotiana ssp., or have focused their attention on in vitro wood formation systems or in vivo approaches targeting primary meristems for transformation. Complementing such efforts, we report the use of Agrobacterium to introduce transgenes directly into cambial cells of glasshouse-grown trees in order to create transgenic somatic tissue sectors. These sectors are suitable for phenotypic evaluation and analysis of target gene function. In our experiments the wood formation zone containing the cambium of Eucalyptus, Populus and Pinus species of varying age was inoculated with Agrobacterium containing a CaMV 35S::GUS construct. Following an initial wound response, frequent and stable transformation was observed in the form of distinct GUS-staining patterns (sectors) in newly formed secondary tissues. Sector size and extent depended on the cell type transformed, the species and the length of time treated plants were allowed to grow (more than two years in some cases). Induced somatic sector analysis (ISSA) can now be efficiently used to study cell fate and gene function during secondary growth in stems of forest tree species.
Collapse
Affiliation(s)
- Kim S Van Beveren
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| | - Antanas V Spokevicius
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| | - Josquin Tibbits
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| | - Qing Wang
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| | - Gerd Bossinger
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| |
Collapse
|
49
|
Spokevicius AV, Van Beveren KS, Bossinger G. Agrobacterium-mediated transformation of dormant lateral buds in poplar trees reveals developmental patterns in secondary stem tissues. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:133-139. [PMID: 32689220 DOI: 10.1071/fp05176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 09/21/2005] [Indexed: 06/11/2023]
Abstract
In an attempt to devise a method for the rapid creation of somatic transgenic wood sectors of sufficient size that would allow us to detect and analyse altered wood characteristics within them, we have explored the manual wounding and subsequent infection with Agrobacterium of dormant lateral buds in poplar. Following treatment and transformation with a 35S-GUS construct, frequent stable transformation was found in the form of distinct and specific GUS staining patterns in the outer cortex, cambial region (including primary and secondary xylem and phloem) and pith. Sector frequency and size were consistent with anatomical features of dormant lateral buds at the time of manual wounding and Agrobacterium-infection. The suitability of somatic sector analysis for functional genomic studies as well as for studies investigating pattern formation and the developmental fate of various cell-types within poplar stems is discussed.
Collapse
Affiliation(s)
- Antanas V Spokevicius
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| | - Kim S Van Beveren
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| | - Gerd Bossinger
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| |
Collapse
|
50
|
Abstract
Inherent characteristics of duckweed, including fast, clonal growth, small size and simple growth habit, argue for their use as a biomanufacturing platform for proteins, polymers and small molecules. This review addresses five areas relevant to commercialization of the duckweed platform: (1) the characteristics of wild-type duckweed and general cultural requirements; (2) the genetics and biochemistry of the plants and recent scientific developments that provide the technology necessary to genetically modify duckweed; (3) the advantages provided by inherent duckweed characteristics and genetic engineering technology relative to bioproduction; (4) recent progress towards commercialization of duckweed-based products and (5) the major research needs for further R&D.
Collapse
Affiliation(s)
- Anne-Marie Stomp
- Department of Forestry, North Carolina State University, Raleigh, NC 27695-8002, USA.
| |
Collapse
|