1
|
Fagunwa OE, Ashiru-Oredope D, Gilmore BF, Doherty S, Oyama LB, Huws SA. Climate change as a challenge for pharmaceutical storage and tackling antimicrobial resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177367. [PMID: 39500447 DOI: 10.1016/j.scitotenv.2024.177367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/11/2024]
Abstract
The rise of antimicrobial resistance (AMR) remains a pressing global health challenge. Infections that were once easily treatable with first-line antimicrobials are becoming increasingly difficult to manage. This shift directly threatens the wellness of humans, animals, plants, and the environment. While the AMR crisis can be attributed to a myriad of factors, including lack of infection prevention and control measures, over-prescription of antimicrobials, patient non-compliance, and the misuse of antimicrobials, one aspect that has garnered less attention is the role of storage conditions of these medicines. The way medications, particularly antimicrobials, are transported and stored until the point of use can influence their efficacy and, subsequently, may impact the development of resistant microbial strains. This review delves deeper into the often-overlooked domain of climate change (CC) and antimicrobial storage practices and the potential effects. Inappropriate storage conditions, such as exposure to extreme temperatures, humidity or light, can degrade the potency of antimicrobials. When these compromised medicines are administered to patients or animals alike, they may not effectively eradicate the targeted pathogens, leading to partial survival of the pathogens. These surviving pathogens, having been exposed to sub-lethal doses, are more likely to evolve and develop resistance mechanisms. The review discusses the mechanism underlying this and underscores the implications of antimicrobial storage practices in relation to two of the most pressing global health challenges: AMR and CC. The review also presents specific case studies and highlights the importance of monitoring storage practices and supply chain surveillance. Furthermore, the importance of deploying genomic tools to understand the potential impact of storage conditions on the development of AMR is discussed, and antimicrobial storage highlighted as a crucial part of comprehensive strategies in the fight against AMR.
Collapse
Affiliation(s)
- Omololu E Fagunwa
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK.
| | | | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Simon Doherty
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Linda B Oyama
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Sharon A Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK.
| |
Collapse
|
2
|
Braun V, Ratliff AC, Celia H, Buchanan SK. Energization of Outer Membrane Transport by the ExbB ExbD Molecular Motor. J Bacteriol 2023; 205:e0003523. [PMID: 37219427 PMCID: PMC10294619 DOI: 10.1128/jb.00035-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The outer membranes (OM) of Gram-negative bacteria contain a class of proteins (TBDTs) that require energy for the import of nutrients and to serve as receptors for phages and protein toxins. Energy is derived from the proton motif force (pmf) of the cytoplasmic membrane (CM) through the action of three proteins, namely, TonB, ExbB, and ExbD, which are located in the CM and extend into the periplasm. The leaky phenotype of exbB exbD mutants is caused by partial complementation by homologous tolQ tolR. TonB, ExbB, and ExbD are genuine components of an energy transmission system from the CM into the OM. Mutant analyses, cross-linking experiments, and most recently X-ray and cryo-EM determinations were undertaken to arrive at a model that describes the energy transfer from the CM into the OM. These results are discussed in this paper. ExbB forms a pentamer with a pore inside, in which an ExbD dimer resides. This complex harvests the energy of the pmf and transmits it to TonB. TonB interacts with the TBDT at the TonB box, which triggers a conformational change in the TBDT that releases bound nutrients and opens the pore, through which nutrients pass into the periplasm. The structurally altered TBDT also changes the interactions of its periplasmic signaling domain with anti-sigma factors, with the consequence being that the sigma factors initiate transcription.
Collapse
Affiliation(s)
- Volkmar Braun
- Max-Planck-Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Anna C. Ratliff
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Herve Celia
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| |
Collapse
|
3
|
Proteome of Gluconacetobacter diazotrophicus co-cultivated with sugarcane plantlets. J Proteomics 2009; 73:917-31. [PMID: 20026003 DOI: 10.1016/j.jprot.2009.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 11/04/2009] [Accepted: 12/08/2009] [Indexed: 11/20/2022]
Abstract
Gluconacetobacter diazotrophicus is a micro-aerobic bacterium able to fix atmospheric nitrogen in endophytic mode. A proteomic approach was used to analyze proteins differentially expressed in the presence and absence of sugarcane plantlets. Two-dimensional gel electrophoresis (2-DE) showed 42 spots with altered levels of expression. Analysis of these spots by matrix-assisted laser desorption ionization time-of-flight in tandem (MALDI-TOF-TOF) identified 38 proteins. Differentially expressed proteins were associated with carbohydrate and energy metabolism, folding, sorting and degradation processes, and transcription and translation. Among proteins expressed in co-cultivated bacteria, four belong to membrane systems; others, like a transcription elongation factor (GreA), a 60 kDa chaperonin (GroEL), and an outer membrane lipoprotein (Omp16) have also been described in other plant-bacteria associations, indicating a common protein expression pattern as a result of symbiosis. A high protein content of 60kDa chaperonin isoforms was detected as non-differentially expressed proteins of the bacteria proteome. These results allow the assessment of the physiological significance of specific proteins to G. diazotrophicus metabolism and to the pathways involved in bacteria-host endophytic interaction.
Collapse
|
4
|
Ferguson AD, Deisenhofer J. TonB-dependent receptors-structural perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1565:318-32. [PMID: 12409204 DOI: 10.1016/s0005-2736(02)00578-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Plants, bacteria, fungi, and yeast utilize organic iron chelators (siderophores) to establish commensal and pathogenic relationships with hosts and to survive as free-living organisms. In Gram-negative bacteria, transport of siderophores into the periplasm is mediated by TonB-dependent receptors. A complex of three membrane-spanning proteins TonB, ExbB and ExbD couples the chemiosmotic potential of the cytoplasmic membrane with siderophore uptake across the outer membrane. The crystallographic structures of two TonB-dependent receptors (FhuA and FepA) have recently been determined. These outer membrane transporters show a novel fold consisting of two domains. A 22-stranded antiparallel beta-barrel traverses the outer membrane and adjacent beta-strands are connected by extracellular loops and periplasmic turns. Located inside the beta-barrel is the plug domain, composed primarily of a mixed four-stranded beta-sheet and a series of interspersed alpha-helices. Siderophore binding induces distinct local and allosteric transitions that establish the structural basis of signal transduction across the outer membrane and suggest a transport mechanism.
Collapse
Affiliation(s)
- Andrew D Ferguson
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9050, USA
| | | |
Collapse
|
5
|
Kirby SD, Lainson FA, Donachie W, Okabe A, Tokuda M, Hatase O, Schryvers AB. The Pasteurella haemolytica 35 kDa iron-regulated protein is an FbpA homologue. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 12):3425-3436. [PMID: 9884235 DOI: 10.1099/00221287-144-12-3425] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In a previous investigation, a 35 kDa iron-regulated protein was identified from total cellular proteins of Pasteurella haemolytica grown under iron-depleted conditions. This study reports identification of the gene (fbpA) encoding the 35 kDa protein based on complementation of an entA Escherichia coli strain transformed with a plasmid derived from a P. haemolytica lambda ZAP II library. Cross-reactivity was demonstrated between an anti-35 kDa mAb and a 35 kDa protein expressed in this strain. Furthermore, a translated ORF identified on the recombinant plasmid corresponded with the N-terminal amino acid sequence of the intact and a CNBr-cleaved fragment of the 35 kDa iron-regulated protein. Nucleotide sequence analysis of the gene encoding the 35 kDa protein demonstrated homology with the cluster 1 group of extracellular solute-binding proteins, especially to the iron-binding proteins of this family. Complete sequence analysis of the recombinant plasmid insert identified three other predominant ORFs, two of which appeared to be in an operonic organization with fbpA. These latter components (fbpB and fbpC) showed homology to the transmembrane and ATPase components of ATP-binding cassette (ABC)-type uptake systems, respectively. Based on amino acid/DNA sequencing, citrate competition assay of iron affinity and visible wavelength spectra, it was concluded that the P. haemolytica 35 kDa protein functions as an FbpA homologue (referred to as PFbpA) and that the gene encoding this protein is part of an operon comprising a member of the FbpABC family of iron uptake systems. Primary sequence analysis revealed rather surprisingly that PFbpA is more closely related to the intracellular Mn/Fe-binding protein IdiA found in cyanobacteria than to any of the homologous FbpA proteins currently known in commensal or pathogenic members of the Pasteurellaceae or Neisseriaceae.
Collapse
Affiliation(s)
- S D Kirby
- Department of Microbiology and Infectious Diseases, University of Calgary,Calgary, Alberta,Canada T2N 4N1
| | - F A Lainson
- Moredun Research Institute, International Research Centre,Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ,UK
| | - W Donachie
- Moredun Research Institute, International Research Centre,Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ,UK
| | - A Okabe
- Department of Microbiology3and First Department of Physiology
| | - M Tokuda
- Kagawa Medical University, Kita-gun, Kagawa, 76107,Japan
| | - O Hatase
- Kagawa Medical University, Kita-gun, Kagawa, 76107,Japan
| | - A B Schryvers
- Department of Microbiology and Infectious Diseases, University of Calgary,Calgary, Alberta,Canada T2N 4N1
| |
Collapse
|
6
|
Higgs PI, Myers PS, Postle K. Interactions in the TonB-dependent energy transduction complex: ExbB and ExbD form homomultimers. J Bacteriol 1998; 180:6031-8. [PMID: 9811664 PMCID: PMC107680 DOI: 10.1128/jb.180.22.6031-6038.1998] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic membrane proteins ExbB and ExbD support TonB-dependent active transport of iron siderophores and vitamin B12 across the essentially unenergized outer membrane of Escherichia coli. In this study, in vivo formaldehyde cross-linking analysis was used to investigate the interactions of T7 epitope-tagged ExbB or ExbD proteins. ExbB and ExbD each formed two unique cross-linked complexes which were not dependent on the presence of TonB, the outer membrane receptor protein FepA, or the other Exb protein. Cross-linking analysis of ExbB- and ExbD-derived size variants demonstrated instead that these ExbB and ExbD complexes were homodimers and homotrimers and suggested that ExbB also interacted with an unidentified protein(s). Cross-linking analysis of epitope-tagged ExbB and ExbD proteins with TonB antisera afforded detection of a previously unrecognized TonB-ExbD cross-linked complex and confirmed the composition of the TonB-ExbB cross-linked complex. The implications of these findings for the mechanism of TonB-dependent energy transduction are discussed.
Collapse
Affiliation(s)
- P I Higgs
- Departments of Microbiology, Washington State University, Pullman, Washington 99164-4233, USA
| | | | | |
Collapse
|
7
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
8
|
Dennis JJ, Lafontaine ER, Sokol PA. Identification and characterization of the tolQRA genes of Pseudomonas aeruginosa. J Bacteriol 1996; 178:7059-68. [PMID: 8955385 PMCID: PMC178616 DOI: 10.1128/jb.178.24.7059-7068.1996] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The tolQ, tolR, and tolA genes from Pseudomonas aeruginosa PAO were cloned using degenerate oligonucleotide PCR primers designed based on conserved transmembrane regions of Escherichia coli TolQ and TolR and E. coli and Pseudomonas putida ExbB and ExbD. The resulting PCR product was used as a probe to isolate a 6.5-kb DNA fragment containing P. aeruginosa tolQ, tolR, and tolA. The nucleotide sequence of a 2.9-kb DNA fragment containing the tolQ, tolR, and tolA genes was determined. The DNA sequence predicts TolQ to be a 25,250-Da protein exhibiting 53% identity to E. coli TolQ. TolR is predicted to be a 15,788-Da protein, sharing 38% identity with the E. coli TolR protein. The P. aeruginosa tolA sequence predicts a 37,813-Da protein with 27% identity to the E. coli TolA. The P. aeruginosa TolQRA proteins were expressed in E. coli minicells. Analysis of plasmid-encoded tolQ::lacZ and tolA::lacZ promoter fusions in E. coli indicated that these genes are expressed at different levels, suggesting transcription from different promoters. Transcriptional analysis of the tol genes in P. aeruginosa revealed that the tolQ and tolR genes are cotranscribed as an approximately 1.5-kb transcript and that tolA is transcribed from its own promoter as an approximately 1.2-kb transcript. The P. aeruginosa Tol proteins were functionally unable to complement E. coli tol mutants, although P. aeruginosa TolQ was able to complement the iron-limited growth of an E. coli exbB mutant. Introduction of the tolQRA genes in the tol-like mutant PAO 1652 restored pyocin AR41 killing, indicating that the Tol proteins are involved in the uptake of pyocin AR41 in P. aeruginosa. Attempts to inactivate the chromosomal copy of the tolA or tolQ gene in the parent strain PAO proved to be unsuccessful, and we propose that inactivation of these genes in P. aeruginosa results in a lethal phenotype.
Collapse
Affiliation(s)
- J J Dennis
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Alberta, Canada
| | | | | |
Collapse
|
9
|
Abstract
The exbB and exbD genes of Haemophilus influenzae (Hi) were cloned and sequenced. The deduced Hi ExbB and ExbD proteins possessed 27 and 28% amino-acid identity (56 and 58% relatedness) with the Escherichia coli ExbB and ExbD proteins, respectively; two proteins which function as TonB accessory proteins during biopolymer transport. Plasmid-encoded Hi exbB and exbD partially complemented an E. coli exbB/exbD mutation.
Collapse
Affiliation(s)
- G P Jarosik
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235-9048
| | | |
Collapse
|
10
|
Karlsson M, Hannavy K, Higgins CF. ExbB acts as a chaperone-like protein to stabilize TonB in the cytoplasm. Mol Microbiol 1993; 8:389-96. [PMID: 8100348 DOI: 10.1111/j.1365-2958.1993.tb01582.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The TonB protein is required to transduce energy from the cytoplasmic membrane to outer membrane transport proteins of Gram-negative bacteria. Two accessory proteins, ExbB and ExbD, are required for TonB function and it has been suggested that TonB and ExbBD form a complex in the membrane. In this paper we demonstrate that there are two spatially distinct, functional interactions between ExbBD and TonB. First, there is an interaction between ExbBD and the N-terminal signal-like peptide of TonB, probably the formation of a stable complex in the membrane. Second, ExbB interacts with TonB in the cytoplasm. This interaction involves the domain of TonB that is normally periplasmic. Thus, this is a transient interaction which occurs during the synthesis and/or localization of TonB, implying a chaperone-like role for ExbB. The transmembrane topology of ExbB was shown to be consistent with this role.
Collapse
Affiliation(s)
- M Karlsson
- Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, UK
| | | | | |
Collapse
|
11
|
Koebnik R, Braun V. Insertion derivatives containing segments of up to 16 amino acids identify surface- and periplasm-exposed regions of the FhuA outer membrane receptor of Escherichia coli K-12. J Bacteriol 1993; 175:826-39. [PMID: 8423154 PMCID: PMC196223 DOI: 10.1128/jb.175.3.826-839.1993] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The FhuA receptor in the outer membrane of Escherichia coli K-12 is involved in the uptake of ferrichrome, colicin M, and the antibiotic albomycin and in infection by phages T1, T5, and phi 80. Fragments of up to 16 amino acid residues were inserted into FhuA and used to determine FhuA active sites and FhuA topology in the outer membrane. For this purpose antibiotic resistance boxes flanked by symmetric polylinkers were inserted into fhuA and subsequently partially deleted. Additional in-frame insertions were generated by mutagenesis with transposon Tn1725. The 68 FhuA protein derivatives examined contained segments of 4, 8, 12, 16, and 22 additional amino acid residues at 34 different locations from residues 5 to 646 of the mature protein. Most of the FhuA derivatives were found in normal amounts in the outer membrane fraction. Half of these were fully active toward all ligands, demonstrating proper insertion into the outer membrane. Seven of the 12- and 16-amino-acid-insertion derivatives (at residues 378, 402, 405, 415, 417, 456, and 646) were active toward all of the ligands and could be cleaved by subtilisin in whole cells, suggesting a surface location of the extra loops at sites which did not affect FhuA function. Two mutants were sensitive to subtilisin (insertions at residues 511 and 321) but displayed a strongly reduced sensitivity to colicin M and to phages phi 80 and T1. Four of the insertion derivatives (at residues 162, 223, 369, and 531) were cleaved only in spheroplasts and probably form loops at the periplasmic side of the outer membrane. The number and size of the proteolytic fragments indicate cleavage at or close to the sites of insertion, which has been proved for five insertions by amino acid sequencing. Most mutants with functional defects were affected in their sensitivity to all ligands, yet frequently to different degrees. Some mutants showed a specifically altered sensitivity to a few ligands; for example, mutant 511-04 was partially resistant only to colicin M, mutant 241-04 was reduced in ferrichrome and albomycin uptake and showed a reduced colicin M sensitivity, and mutant 321-04 was fully resistant to phage T1 and partially resistant to phage phi 80. The altered residues define preferential binding sites for these ligands. Insertions of 4 to 16 residues at positions 69, 70, 402, 530, 564, and 572 resulted in strongly reduced amounts of FhuA in the outer membrane fraction, varying in function from fully active to inactive. These results provide the basis for a model of FhuA organization in the outer membrane.
Collapse
Affiliation(s)
- R Koebnik
- Mikrobiologie II, Universität Tübingen, Germany
| | | |
Collapse
|
12
|
Schultz-Hauser G, Köster W, Schwarz H, Braun V. Iron(III) hydroxamate transport in Escherichia coli K-12: FhuB-mediated membrane association of the FhuC protein and negative complementation of fhuC mutants. J Bacteriol 1992; 174:2305-11. [PMID: 1551849 PMCID: PMC205852 DOI: 10.1128/jb.174.7.2305-2311.1992] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Iron(III) hydroxamate transport across the cytoplasmic membrane is catalyzed by the very hydrophobic FhuB protein and the membrane-associated FhuC protein, which contains typical ATP-binding domains. Interaction between the two proteins was demonstrated by immunoelectron microscopy with anti-FhuC antibodies, which showed FhuB-mediated association of FhuC with the cytoplasmic membrane. In addition, inactive FhuC derivatives carrying single amino acid replacements in the ATP-binding domains suppressed wild-type FhuC transport activity, which arose either from displacement of active FhuC from FhuB by the mutated FhuC derivatives or from the formation of mixed inactive FhuC multimers between wild-type and mutated FhuC proteins. Inactive FhuC derivatives containing internal deletions and insertions showed no phenotypic suppression, indicating conformational alterations that rendered the FhuC derivatives unable to displace wild-type FhuC. It is concluded that the physical interaction between FhuC and FhuB implies a coordinate activity of both proteins in the transport of iron(III) hydroxamates through the cytoplasmic membrane.
Collapse
|
13
|
Abstract
Serratia marcescens W225 expresses an unconventional iron(III) transport system. Uptake of Fe3+ occurs in the absence of an iron(III)-solubilizing siderophore, of an outer membrane receptor protein, and of the TonB and ExbBD proteins involved in outer membrane transport. The three SfuABC proteins found to catalyze iron(III) transport exhibit the typical features of periplasmic binding-protein-dependent systems for transport across the cytoplasmic membrane. In support of these conclusions, the periplasmic SfuA protein bound iron chloride and iron citrate but not ferrichrome, as shown by protection experiments against degradation by added V8 protease. The cloned sfuABC genes conferred upon an Escherichia coli aroB mutant unable to synthesize its own enterochelin siderophore the ability to grow under iron-limiting conditions (in the presence of 0.2 mM 2.2'-dipyridyl). Under extreme iron deficiency (0.4 mM 2.2'-dipyridyl), however, the entry rate of iron across the outer membrane was no longer sufficient for growth. Citrate had to be added in order for iron(III) to be translocated as an iron citrate complex in a FecA- and TonB-dependent manner through the outer membrane and via SfuABC across the cytoplasmic membrane. FecA- and TonB-dependent iron transport across the outer membrane could be clearly correlated with a very low concentration of iron in the medium. Expression of the sfuABC genes in E. coli was controlled by the Fur iron repressor gene. S. marcescens W225 was able to synthesize enterochelin and take up iron(III) enterochelin. It contained an iron(III) aerobactin transport system but lacked aerobactin synthesis. This strain was able to utilize the hydroxamate siderophores ferrichrome, coprogen, ferrioxamine B, rhodotorulic acid, and schizokinen as sole iron sources and grew on iron citrate as well. In contrast to E. coli K-12, S. marcescens could utilize heme. DNA fragments of the E. coli fhuA, iut, exbB, and fur genes hybridized with chromosomal S. marcescens DNA fragments, whereas no hybridization was obtained between S. marcescens chromosomal DNA and E. coli fecA, fhuE, and tonB gene fragments. The presence of multiple iron transport systems was also indicated by the increased synthesis of at least five outer membrane proteins (in the molecular weight range of 72,000 to 87,000) after growth in low-iron media. Serratia liquefaciens and Serratia ficaria produced aerobactin, showing that this siderophore also occurs in the genus Serratia.
Collapse
Affiliation(s)
- A Angerer
- Mikrobiologie II, Universität Tübingen, Germany
| | | | | |
Collapse
|
14
|
Brewer S, Tolley M, Trayer IP, Barr GC, Dorman CJ, Hannavy K, Higgins CF, Evans JS, Levine BA, Wormald MR. Structure and function of X-Pro dipeptide repeats in the TonB proteins of Salmonella typhimurium and Escherichia coli. J Mol Biol 1990; 216:883-95. [PMID: 2266560 DOI: 10.1016/s0022-2836(99)80008-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The TonB protein is required for several outer membrane transport processes in bacteria. A short 33-residue peptide segment of TonB has been studied by 1H and 13C nuclear magnetic resonance spectroscopy. The sequence of this peptide segment contains multiple Glu-Pro and Lys-Pro dipeptide repeats that maintain rigid, elongated structures and flank a short connecting segment that adopts a beta-strand configuration. This TonB peptide is shown to interact specifically with the FhuA protein, the outer membrane receptor for ferrichrome-iron, providing the first direct evidence that the TonB protein interacts with outer membrane receptors. Interaction with the FhuA protein involves the extended structural element containing positively charged Lys-Pro repeats, and suggests a functional role for this segment of the TonB protein. As TonB is anchored in the cytoplasmic membrane the protein must, uniquely, span the periplasm. These data, together with studies described in the accompanying paper, suggest a model by which TonB serves to transduce conformational information over extended distances, from the cytoplasmic membrane to the outer membrane.
Collapse
Affiliation(s)
- S Brewer
- Department of Biochemistry, University of Birmingham, England
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Armstrong S, Francis C, McIntosh M. Molecular analysis of the Escherichia coli ferric enterobactin receptor FepA. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77336-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Fischer E, Strehlow B, Hartz D, Braun V. Soluble and membrane-bound ferrisiderophore reductases of Escherichia coli K-12. Arch Microbiol 1990; 153:329-36. [PMID: 2186712 DOI: 10.1007/bf00249001] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
After uptake of microbial ferrisiderophores, iron is assumed to be released by reduction. Two ferrisiderophore-reductase activities were identified in Escherichia coli K-12. They differed in cellular location, susceptibility to amytal, and competition between oxygen and ferrichrome-iron(III) reduction. The ferrisiderophore reductase associated with the 40,000 X g sediment (membrane-bound enzyme) was inhibited by 10 mM amytal in contrast to the ferrisiderophore reductase present in the 100,000 X g supernatant (soluble enzyme). Reduction by the membrane-bound enzyme followed sigmoid kinetics, but was biphasic in the case of the soluble enzyme. The soluble reductase could be assigned to a protein consisting of a single polypeptide of Mr 26,000. Reduction of iron(III) by the purified enzyme depended on the addition of NADH or NADPH which were equally active reductants. The cofactor FMN and to a lesser degree FAD stimulated the reaction. Substrate specificity of the soluble reductase was low. In addition to the hydroxamate siderophores arthrobactin, schizokinen, fusigen, aerobactin, ferrichrome, ferrioxamine B, coprogen, and ferrichrome A, the iron(III) complexes of synthetic catecholates, dihydroxy benzoic acid, and dicitrate, as well as carrier-free iron(III) were accepted as substrates. Both ferrisiderophore reductases were not controlled by the fur regulatory system and were not suppressed by anaerobic growth.
Collapse
Affiliation(s)
- E Fischer
- Mikrobiologie II der Universität, Tübingen, Federal Republic of Germany
| | | | | | | |
Collapse
|
17
|
Abstract
The possession of specialized iron transport systems may be crucial for bacteria to override the iron limitation imposed by the host or the environment. One of the most commonly found strategies evolved by microorganisms is the production of siderophores, low-molecular-weight iron chelators that have very high constants of association for their complexes with iron. Thus, siderophores act as extracellular solubilizing agents for iron from minerals or organic compounds, such as transferrin and lactoferrin in the host vertebrate, under conditions of iron limitation. Transport of iron into the cell cytosol is mediated by specific membrane receptor and transport systems which recognize the iron-siderophore complexes. In this review I have analyzed in detail three siderophore-mediated iron uptake systems: the plasmid-encoded anguibactin system of Vibrio anguillarum, the aerobactin-mediated iron assimilation system present in the pColV-K30 plasmid and in the chromosomes of many enteric bacteria, and the chromosomally encoded enterobactin iron uptake system, found in Escherichia coli, Shigella spp., Salmonella spp., and other members of the family Enterobacteriaceae. The siderophore systems encoded by Pseudomonas aeruginosa, namely, pyochelin and pyoverdin, as well as the siderophore amonabactin, specified by Aeromonas hydrophila, are also discussed. The potential role of siderophore-mediated systems as virulence determinants in the specific host-bacteria interaction leading to disease is also analyzed with respect to the influence of these systems in the expression of other factors, such as toxins, in the bacterial virulence repertoire.
Collapse
|
18
|
Murphy CK, Klebba PE. Export of FepA::PhoA fusion proteins to the outer membrane of Escherichia coli K-12. J Bacteriol 1989; 171:5894-900. [PMID: 2553664 PMCID: PMC210451 DOI: 10.1128/jb.171.11.5894-5900.1989] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A library of fepA::phoA gene fusions was generated in order to study the structure and secretion of the Escherichia coli K-12 ferric enterobactin receptor, FepA. All of the fusion proteins contained various lengths of the amino-terminal portion of FepA fused in frame to the catalytic portion of bacterial alkaline phosphatase. Localization of FepA::PhoA fusion proteins in the cell envelope was dependent on the number of residues of mature FepA present at the amino terminus. Hybrids containing up to one-third of the amino-terminal portion of FepA fractionated with their periplasm, while those containing longer sequences of mature FepA were exported to the outer membrane. Outer membrane-localized fusion proteins expressed FepA sequences on the external face of the outer membrane and alkaline phosphatase moieties in the periplasmic space. From sequence determinations of the fepA::phoA fusion joints, residues within FepA which may be exposed on the periplasmic side of the outer membrane were identified.
Collapse
Affiliation(s)
- C K Murphy
- Department of Microbiology, Medical College of Wisconsin, Milwaukee 53226
| | | |
Collapse
|
19
|
Fischer E, Günter K, Braun V. Involvement of ExbB and TonB in transport across the outer membrane of Escherichia coli: phenotypic complementation of exb mutants by overexpressed tonB and physical stabilization of TonB by ExbB. J Bacteriol 1989; 171:5127-34. [PMID: 2670904 PMCID: PMC210326 DOI: 10.1128/jb.171.9.5127-5134.1989] [Citation(s) in RCA: 139] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The exb locus in Escherichia coli consists of two genes, termed exbB and exbD. Exb functions are related to TonB function in that most TonB-dependent processes are enhanced by Exb. Like tonB mutants, exb mutants were resistant to colicin M and albomycin but, in contrast to tonB mutants, showed only reduced sensitivity to colicins B and D. Overexpressed tonB on the multicopy vector pACYC177 largely restored the sensitivity of exb mutants to colicins B, D, and M but only marginally increased sensitivity to albomycin. Suppression of the btuB451 mutation in the structural gene for the vitamin B12 outer membrane receptor protein by a mutation in tonB occurred only in an exb+ strain. Degradation of the unstable overproduced TonB protein was prevented by overproduced ExbB protein. The ExbB protein also stabilized the ExbD protein. Pulse-chase experiments with radiolabeled ferrichrome revealed release of ferrichrome from exbB, tonB, and fhuC mutants, showing that ferrichrome had not crossed the cytoplasmic membrane. It is concluded that the ExbB and ExbD proteins contribute to the activity of TonB and, like TonB, are involved in receptor-dependent transport processes across the outer membrane.
Collapse
Affiliation(s)
- E Fischer
- Mikrobiologie II, Universität Tübingen, Federal Republic of Germany
| | | | | |
Collapse
|
20
|
Eick-Helmerich K, Braun V. Import of biopolymers into Escherichia coli: nucleotide sequences of the exbB and exbD genes are homologous to those of the tolQ and tolR genes, respectively. J Bacteriol 1989; 171:5117-26. [PMID: 2670903 PMCID: PMC210325 DOI: 10.1128/jb.171.9.5117-5126.1989] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Escherichia coli with mutations in the exb region are impaired in outer membrane receptor-dependent uptake processes. They are resistant to the antibiotic albomycin and exhibit reduced sensitivity to group B colicins. A 2.2-kilobase-pair DNA fragment of the exb locus was sequenced. It contained two open reading frames, designated exbB and exbD, which encoded polypeptides of 244 and 141 amino acids, respectively. Both proteins were found in the cytoplasmic membrane. They showed strong homologies to the TolQ and TolR proteins, respectively, which are involved in uptake of group A colicins and infection by filamentous bacteriophages. exbB and exbD were required to complement exb mutations. Osmotic shock treatment rendered exb mutants sensitive to colicin M, which was taken as evidence that the ExbB and ExbD proteins are involved in transport processes across the outer membrane. It is concluded that the exb- and tol-dependent systems originate from a common uptake system for biopolymers.
Collapse
Affiliation(s)
- K Eick-Helmerich
- Mikrobiologie II, Universität Tübingen, Federal Republic of Germany
| | | |
Collapse
|
21
|
Birkenbihl RP, Vielmetter W. Cosmid-derived map of E. coli strain BHB2600 in comparison to the map of strain W3110. Nucleic Acids Res 1989; 17:5057-69. [PMID: 2668876 PMCID: PMC318094 DOI: 10.1093/nar/17.13.5057] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A physical map for the genome of E. coli K12 strain BHB2600 was constructed by use of 570 cloned DNA elements (CDEs) withdrawn from a cosmid library. Dot blot hybridisation was applied to establish contig interrelations with subsequent fine mapping achieved by analysis of EcoR1 restriction patterns on Southern blots. The derived map covers nearly 95% of the E. coli genome resulting in 12 minor gaps. It may be compared to the almost complete map for strain W3110 of Kohara et al. (1). Except for one tiny gap (lpp,36.5') remaining gaps in BHB2600 do not coincide with those in W3110 so that both maps complement each other establishing an essentially complete clone represented map. Besides numerous minute differences (site and fragment gains and losses) both strains harbour at differing positions extended rearrangements flanked by mutually inverted repetitive elements, in our case insertion elements (IS1 and IS5).
Collapse
|
22
|
Zimmermann L, Angerer A, Braun V. Mechanistically novel iron(III) transport system in Serratia marcescens. J Bacteriol 1989; 171:238-43. [PMID: 2644190 PMCID: PMC209578 DOI: 10.1128/jb.171.1.238-243.1989] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A novel iron(III) transport system of Serratia marcescens, named SFU, was cloned and characterized in Escherichia coli. Iron acquisition by this system differed from that by E. coli and related organisms. No siderophore production and no receptor protein related to the SFU system could be detected. In addition, iron uptake was independent of the TonB and ExbB functions. On the cloned 4.8-kilobase sfu fragment, two loci encoding a 36-kilodalton (kDa) protein and three proteins with molecular masses of 40, 38, and 34 kDa were identified; the 40-kDa protein represents a precursor form. Furthermore, chromosomally encoded functions of E. coli were required for the uptake of iron by this system.
Collapse
Affiliation(s)
- L Zimmermann
- Mikrobiologie II, Universität Tübingen, Federal Republic of Germany
| | | | | |
Collapse
|
23
|
Curtis NA, Eisenstadt RL, East SJ, Cornford RJ, Walker LA, White AJ. Iron-regulated outer membrane proteins of Escherichia coli K-12 and mechanism of action of catechol-substituted cephalosporins. Antimicrob Agents Chemother 1988; 32:1879-86. [PMID: 3072926 PMCID: PMC176037 DOI: 10.1128/aac.32.12.1879] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Selected aminothiazolyl-oxime cephalosporin congeners substituted at C-3' with a catechol moiety were used to probe the basis of the enhanced antibacterial activity against Escherichia coli K-12 often associated with chemical modifications of this type. Evidence is presented for a tonB-dependent illicit transport of the compounds across the outer membrane of E. coli K-12, the process involving jointly and specifically the Fiu and Cir iron-regulated outer membrane proteins. Thus, both tonB and fiu cir mutants showed a comparably reduced susceptibility to the probe compounds, whereas mutants singularly lacking any one of the six iron-regulated outer membrane proteins (Fiu, FepA, FecA, FhuA, FhuE, and Cir) or lacking any combination of any two of these proteins (except Fiu plus Cir) did not show this resistance. Mutants devoid of all six iron-regulated outer membrane proteins were no more resistant to the probe compounds than fiu cir or tonB strains. In addition to the latter genes, the products of the exbB and possibly the exbC loci were necessary for maximal antibacterial potency. A dependence of antibacterial activity on the level of expression of the uptake system components was noted. Comparison of penicillin-binding protein target affinity with antibacterial activity suggested a possible periplasmic accumulation of active compounds by E. coli K-12. Free vicinal hydroxyl groups of the catechol residue were a primary chemical requirement for recognition by the uptake pathway and thus for high antibacterial activity.
Collapse
Affiliation(s)
- N A Curtis
- ICI Pharmaceuticals, Mereside, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Pressler U, Staudenmaier H, Zimmermann L, Braun V. Genetics of the iron dicitrate transport system of Escherichia coli. J Bacteriol 1988; 170:2716-24. [PMID: 2836368 PMCID: PMC211194 DOI: 10.1128/jb.170.6.2716-2724.1988] [Citation(s) in RCA: 135] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Escherichia coli B and K-12 express a citrate-dependent iron(III) transport system for which three structural genes and their arrangement and products have been determined. The fecA gene of E. coli B consists of 2,322 nucleotides and encodes a polypeptide containing a signal sequence of 33 amino acids. The cleavage site was determined by amino acid sequence analysis of the unprocessed protein and the mature protein. For the processed form a length of 741 amino acids was calculated. The mature FecA protein in the outer membrane contains at the N terminus the "TonB box," a pentapeptide, which has hitherto been found in all receptors and colicins which functionally require the TonB protein. In addition, the dyad repeat sequence GAAAATAATTCTTATTTCG is proposed to serve as the binding site of the Fur iron repressor protein. The fecB gene was mapped downstream of fecA and encodes a protein with an apparent molecular weight of 30,000. It was synthesized as a precursor, and the mature form was found in the periplasm. The fecD gene follows fecB and was related to a membrane-bound protein with an apparent molecular weight of 28,000. In Mu d1 insertion mutants upstream of fecA, the fec genes were not inducible by iron limitation and citrate, indicating a regulatory region, termed fecI, which controls fec gene expression.
Collapse
Affiliation(s)
- U Pressler
- Mikrobiologie II, Universität Tübingen, Federal Republic of Germany
| | | | | | | |
Collapse
|
26
|
Hantke K. Characterization of an iron sensitive Mud1 mutant in E. coli lacking the ribonucleotide reductase subunit B2. Arch Microbiol 1988; 149:344-9. [PMID: 2833197 DOI: 10.1007/bf00411654] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mutant, generated by a Mud1 insertion, formed long non-viable filaments in the presence of iron and air. Under anaerobic conditions normal growth in the presence of iron was observed. The mutation was mapped by P1 transductions at 48 min on the genetic map of Escherichia coli. By Southern blotting the insertion point was determined to be in nrdB, the structural gene for the ribonucleotide reductase subunit B2. The mutation could be complemented by the cloned nrdB gene. Up to now it was assumed that E. coli possesses only one enzyme for the synthesis of deoxyribonucleotides and only conditional lethal (temperature sensitive) mutants were isolated in nrdB. The insertion of Mud1 in nrdB should lead to a complete loss of the essential B2 subunit. Since the strain was able to grow under anaerobic conditions on minimal medium lacking deoxyribonucleotides and additional pathway for the synthesis of deoxyribonucleotides is postulated.
Collapse
Affiliation(s)
- K Hantke
- Lehrstuhl für Mikrobiologie II, Universität Tübingen, Federal Republic of Germany
| |
Collapse
|
27
|
Coulton JW, Mason P, Allatt DD. fhuC and fhuD genes for iron (III)-ferrichrome transport into Escherichia coli K-12. J Bacteriol 1987; 169:3844-9. [PMID: 3301821 PMCID: PMC212480 DOI: 10.1128/jb.169.8.3844-3849.1987] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nucleotide sequence for a 1,900-base-pair region of the Escherichia coli chromosome that includes the genes fhuC and fhuD was determined. Within this sequence are two open reading frames: nucleotides 127 to 921 and nucleotides 924 to 1811. These coding regions specify a FhuC protein with an Mr of 28,423 and a mature FhuD protein with an Mr of 29,610. The deduced amino acid sequence of FhuC shows extensive homology with those of components of some bacterial transport systems which are peripheral proteins of the cytoplasmic membrane. Because the FhuD protein contains a typical signal sequence of 30 amino acids at the amino terminus and displays characteristics of a soluble protein, it may be exported into the periplasm.
Collapse
|