1
|
Simon SJ, Furches A, Chhetri H, Evans L, Abeyratne CR, Jones P, Wimp G, Macaya-Sanz D, Jacobson D, Tschaplinski TJ, Tuskan GA, DiFazio SP. Genetic underpinnings of arthropod community distributions in Populus trichocarpa. THE NEW PHYTOLOGIST 2024; 242:1307-1323. [PMID: 38488269 DOI: 10.1111/nph.19660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024]
Abstract
Community genetics seeks to understand the mechanisms by which natural genetic variation in heritable host phenotypes can encompass assemblages of organisms such as bacteria, fungi, and many animals including arthropods. Prior studies that focused on plant genotypes have been unable to identify genes controlling community composition, a necessary step to predict ecosystem structure and function as underlying genes shift within plant populations. We surveyed arthropods within an association population of Populus trichocarpa in three common gardens to discover plant genes that contributed to arthropod community composition. We analyzed our surveys with traditional single-trait genome-wide association analysis (GWAS), multitrait GWAS, and functional networks built from a diverse set of plant phenotypes. Plant genotype was influential in structuring arthropod community composition among several garden sites. Candidate genes important for higher level organization of arthropod communities had broadly applicable functions, such as terpenoid biosynthesis and production of dsRNA binding proteins and protein kinases, which may be capable of targeting multiple arthropod species. We have demonstrated the ability to detect, in an uncontrolled environment, individual genes that are associated with the community assemblage of arthropods on a host plant, further enhancing our understanding of genetic mechanisms that impact ecosystem structure.
Collapse
Affiliation(s)
- Sandra J Simon
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Anna Furches
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Hari Chhetri
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
- Computational Systems Biology Group, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Luke Evans
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, 80309, USA
| | | | - Piet Jones
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Gina Wimp
- Department of Biology, Georgetown University, Washington, DC, 20057, USA
| | - David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Daniel Jacobson
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Timothy J Tschaplinski
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gerald A Tuskan
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
2
|
Scheuerell RP, LeRoy CJ. Plant sex influences on riparian communities and ecosystems. Ecol Evol 2023; 13:e10308. [PMID: 37449021 PMCID: PMC10337289 DOI: 10.1002/ece3.10308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Over the past several decades, we have increased our understanding of the influences of plant genetics on associated communities and ecosystem functions. These influences have been shown at both broad spatial scales and across many plant families, creating an active subdiscipline of ecology research focused on genes-to-ecosystems connections. One complex aspect of plant genetics is the distinction between males and females in dioecious plants. The genetic determinants of plant sex are poorly understood for most plants, but the influences of plant sex on morphological, physiological, and chemical plant traits are well-studied. We argue that these plant traits, controlled by plant sex, may have wide-reaching influences on both terrestrial and aquatic communities and ecosystem processes, particularly for riparian plants. Here we systematically review the influences of plant sex on plant traits, influences of plant traits on terrestrial community members, and how interactions between plant traits and terrestrial community members can influence terrestrial ecosystem functions in riparian forests. We then extend these influences into adjacent aquatic ecosystem functions and aquatic communities to explore how plant sex might influence linked terrestrial-aquatic systems as well as the physical structure of riparian systems. This review highlights data gaps in empirical studies exploring the direct influences of plant sex on communities and ecosystems but draws inference from community and ecosystem genetics. Overall, this review highlights how variation by plant sex has implications for climate change adaptations in riparian habitats, the evolution and range shifts of riparian species and the methods used for conserving and restoring riparian systems.
Collapse
Affiliation(s)
- River P. Scheuerell
- Environmental Studies ProgramThe Evergreen State CollegeOlympiaWashingtonUSA
| | - Carri J. LeRoy
- Environmental Studies ProgramThe Evergreen State CollegeOlympiaWashingtonUSA
| |
Collapse
|
3
|
Shuster SM, Keith AR, Whitham TG. Simulating selection and evolution at the community level using common garden data. Ecol Evol 2022; 12:e8696. [PMID: 35342594 PMCID: PMC8928883 DOI: 10.1002/ece3.8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
A key issue in evolutionary biology is whether selection acting at levels higher than the individual can cause evolutionary change. If it can, then conceptual and empirical studies must consider how selection operates at multiple levels of biological organization. Here, we test the hypothesis that estimates of broad-sense community heritability, H C 2 , can be used to predict the evolutionary response by community-level phenotypes when community-level selection is imposed. Using an approach informed by classic quantitative genetics, we made three predictions. First, when we imposed community-level selection, we expected a significant change in the average phenotype of arthropod communities associated with individual tree genotypes [we imposed selection by favoring high and low NMDS (nonmetric multidimensional scaling) scores that reflected differences in arthropod species richness, abundance and composition]. Second, we expected H C 2 to predict the magnitude of the community-level response. Third, we expected no significant change in average NMDS scores with community-level selection imposed at random. We tested these hypotheses using three years of common garden data for 102 species comprising the arthropod communities, associated with nine clonally replicated Populus angustifolia genotypes. Each of our predictions were met. We conclude that estimates of H C 2 account for the resemblance among communities sharing common ancestry, the persistence of community composition over time, and the outcome of selection when it occurs at the community level. Our results provide a means for exploring how this process leads to large-scale community evolutionary change, and they identify the circumstances in which selection may routinely act at the community level.
Collapse
Affiliation(s)
- Stephen M. Shuster
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Arthur R. Keith
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Thomas G. Whitham
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
4
|
Wooley SC, Smith DS, Lonsdorf EV, Brown SC, Whitham TG, Shuster SM, Lindroth RL. Local adaptation and rapid evolution of aphids in response to genetic interactions with their cottonwood hosts. Ecol Evol 2020; 10:10532-10542. [PMID: 33072278 PMCID: PMC7548174 DOI: 10.1002/ece3.6709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/04/2023] Open
Abstract
Several studies have demonstrated the ecological consequences of genetic variation within a single plant species. For example, these studies show that individual plant genotypes support unique composition of the plants' associated arthropod community. By contrast, fewer studies have explored how plant genetic variation may influence evolutionary dynamics in the plant's associated species. Here, we examine how aphids respond evolutionarily to genetic variation in their host plant. We conducted two experiments to examine local adaptation and rapid evolution of the free‐feeding aphid Chaitophorus populicola across genetic variants of its host plant, Populus angustifolia. To test for local adaptation, we collected tree cuttings and aphid colonies from three sites along an elevation/climate gradient and conducted a reciprocal transplant experiment. In general, home aphids (aphids transplanted onto trees from the same site) produced 1.7–3.4 times as many offspring as foreign aphids (aphids transplanted onto trees from different sites). To test for rapid evolution, we used 4 clonally replicated aphid genotypes and transplanted each onto 5 clonally replicated P. angustifolia genotypes. Each tree genotype started with the same aphid genotype composition. After 21 days (~two aphid generations), aphid genotype composition changed (i.e., aphids evolved) and some tree genotypes supported unique evolutionary trajectories of aphids. These results suggest that plant evolution in response to human perturbation, such as climate change and invasive species, will also result in evolutionary responses in strongly interacting species that could cascade to affect whole communities.
Collapse
Affiliation(s)
- Stuart C. Wooley
- Department of Entomology University of Wisconsin‐Madison Madison Wisconsin USA
- Department of Biological Sciences California State University Turlock California USA
| | - David Solance Smith
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
- Biology Department California State University San Bernardino San Bernardino California USA
| | - Eric V. Lonsdorf
- Alexander Center for Population Biology Conservation and Science Lincoln Park Zoo Chicago Illinois USA
- Urban Wildlife Institute Conservation and Science Lincoln Park Zoo Chicago Illinois USA
| | - Sarah C. Brown
- Department of Entomology University of Wisconsin‐Madison Madison Wisconsin USA
| | - Thomas G. Whitham
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
- Center for Adaptable Western Landscapes Northern Arizona University Flagstaff Arizona USA
| | - Stephen M. Shuster
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
| | - Richard L. Lindroth
- Department of Entomology University of Wisconsin‐Madison Madison Wisconsin USA
| |
Collapse
|
5
|
Field E, Schönrogge K, Barsoum N, Hector A, Gibbs M. Individual tree traits shape insect and disease damage on oak in a climate-matching tree diversity experiment. Ecol Evol 2019; 9:8524-8540. [PMID: 31410259 PMCID: PMC6686283 DOI: 10.1002/ece3.5357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 11/09/2022] Open
Abstract
Diversifying planted forests by increasing genetic and species diversity is often promoted as a method to improve forest resilience to climate change and reduce pest and pathogen damage. In this study, we used a young tree diversity experiment replicated at two sites in the UK to study the impacts of tree diversity and tree provenance (geographic origin) on the oak (Quercus robur) insect herbivore community and a specialist biotrophic pathogen, oak powdery mildew. Local UK, French, and Italian provenances were planted in monocultures, provenance mixtures, and species mixes, allowing us to test whether: (a) local and nonlocal provenances differ in their insect herbivore and pathogen communities, and (b) admixing trees leads to associational effects on insect herbivore and pathogen damage. Tree diversity had variable impacts on foliar organisms across sites and years, suggesting that diversity effects can be highly dependent on environmental context. Provenance identity impacted upon both herbivores and powdery mildew, but we did not find consistent support for the local adaptation hypothesis for any group of organisms studied. Independent of provenance, we found tree vigor traits (shoot length, tree height) and tree apparency (the height of focal trees relative to their surroundings) were consistent positive predictors of powdery mildew and insect herbivory. Synthesis. Our results have implications for understanding the complex interplay between tree identity and diversity in determining pest damage, and show that tree traits, partially influenced by tree genotype, can be important drivers of tree pest and pathogen loads.
Collapse
Affiliation(s)
- Elsa Field
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | | | | | - Andrew Hector
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Melanie Gibbs
- Centre for Ecology & HydrologyCrowmarsh GiffordWallingfordUK
| |
Collapse
|
6
|
Body MJA, Zinkgraf MS, Whitham TG, Lin CH, Richardson RA, Appel HM, Schultz JC. Heritable Phytohormone Profiles of Poplar Genotypes Vary in Resistance to a Galling Aphid. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:654-672. [PMID: 30520677 DOI: 10.1094/mpmi-11-18-0301-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Insect galls are highly specialized structures arising from atypical development of plant tissue induced by insects. Galls provide the insect enhanced nutrition and protection against natural enemies and environmental stresses. Galls are essentially plant organs formed by an intimate biochemical interaction between the gall-inducing insect and its host plant. Because galls are plant organs, their development is likely to be governed by phytohormones involved in normal organogenesis. We characterized concentrations of both growth and defensive phytohormones in ungalled control leaves and galls induced by the aphid Pemphigus betae on narrowleaf cottonwood Populus angustifolia that differ genotypically in resistance to this insect. We found that susceptible trees differed from resistant trees in constitutive concentrations of both growth and defense phytohormones. Susceptible trees were characterized by significantly higher constitutive cytokinin concentrations in leaves, significantly greater ability of aphids to elicit cytokinin increases, and significantly lower constitutive defense phytohormone concentrations than observed in resistant trees. Phytohormone concentrations in both constitutive and induced responses in galled leaves exhibited high broad-sense heritability that, respectively, ranged from 0.39 to 0.93 and from 0.28 to 0.66, suggesting that selection can act upon these traits and that they might vary across the landscape. Increased cytokinin concentrations may facilitate forming strong photosynthate sinks in the galls, a requirement for galling insect success. By characterizing for the first time the changes in 15 phytohormones belonging to five different classes, this study offers a better overview of the signaling alteration occurring in galls that has likely been important for their ecology and evolution. Copyright © 2019 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Mélanie J A Body
- 1 Division of Plant Sciences, Christopher S. Bond Life Sciences Center, 1201 Rollins Street, University of Missouri, Columbia, MO 65211, U.S.A
| | - Matthew S Zinkgraf
- 2 Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, U.S.A.; and
| | - Thomas G Whitham
- 2 Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, U.S.A.; and
| | - Chung-Ho Lin
- 3 School of Natural Resources, 203 Anheuser-Busch Natural Resources Building, 1111 Rollins Street, University of Missouri, Columbia, MO 65201, U.S.A
| | - Ryan A Richardson
- 1 Division of Plant Sciences, Christopher S. Bond Life Sciences Center, 1201 Rollins Street, University of Missouri, Columbia, MO 65211, U.S.A
| | - Heidi M Appel
- 1 Division of Plant Sciences, Christopher S. Bond Life Sciences Center, 1201 Rollins Street, University of Missouri, Columbia, MO 65211, U.S.A
| | - Jack C Schultz
- 1 Division of Plant Sciences, Christopher S. Bond Life Sciences Center, 1201 Rollins Street, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
7
|
Ellison AM. Foundation Species, Non-trophic Interactions, and the Value of Being Common. iScience 2019; 13:254-268. [PMID: 30870783 PMCID: PMC6416672 DOI: 10.1016/j.isci.2019.02.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/27/2019] [Accepted: 02/21/2019] [Indexed: 11/26/2022] Open
Abstract
Foundation species define ecosystems, control the biological diversity of associated species, modulate critical ecosystem processes, and often have important cultural values and resonance. This review summarizes current understanding of the characteristics and traits of foundation species and how to distinguish them from other “important” species in ecological systems (e.g., keystone, dominant, and core species); illustrates how analysis of the structure and function of ecological networks can be improved and enriched by explicit incorporation of foundation species and their non-trophic interactions; discusses the importance of pro-active identification and management of foundation species as a cost-effective and efficient method of sustaining valuable ecosystem processes and services and securing populations of associated rare, threatened, or endangered species; and suggests broader engagement of citizen-scientists and non-specialists in the identification and study of foundation species and their biological and cultural values.
Collapse
Affiliation(s)
- Aaron M Ellison
- Harvard Forest, Harvard University, Petersham, MA 01366, USA.
| |
Collapse
|
8
|
Stone AC, Gehring CA, Cobb NS, Whitham TG. Genetic-Based Susceptibility of a Foundation Tree to Herbivory Interacts With Climate to Influence Arthropod Community Composition, Diversity, and Resilience. FRONTIERS IN PLANT SCIENCE 2018; 9:1831. [PMID: 30619404 PMCID: PMC6298196 DOI: 10.3389/fpls.2018.01831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Understanding how genetic-based traits of plants interact with climate to affect associated communities will help improve predictions of climate change impacts on biodiversity. However, few community-level studies have addressed such interactions. Pinyon pine (Pinus edulis) in the southwestern U.S. shows genetic-based resistance and susceptibility to pinyon needle scale (Matsucoccus acalyptus). We sought to determine if susceptibility to scale herbivory influenced the diversity and composition of the extended community of 250+ arthropod species, and if this influence would be consistent across consecutive years, an extreme drought year followed by a moderate drought year. Because scale insects alter the architecture of susceptible trees, it is difficult to separate the direct influences of susceptibility on arthropod communities from the indirect influences of scale-altered tree architecture. To separate these influences, scales were experimentally excluded from susceptible trees for 15 years creating susceptible trees with the architecture of resistant trees, hereafter referred to as scale-excluded trees. Five patterns emerged. (1) In both years, arthropod abundance was 3-4X lower on susceptible trees compared to resistant and scale-excluded trees. (2) Species accumulation curves show that alpha and gamma diversity were 2-3X lower on susceptible trees compared to resistant and scale-excluded trees. (3) Reaction norms of arthropod richness and abundance on individual tree genotypes across years showed genotypic variation in the community response to changes in climate. (4) The genetic-based influence of susceptibility on arthropod community composition is climate dependent. During extreme drought, community composition on scale-excluded trees resembled susceptible trees indicating composition was strongly influenced by tree genetics independent of tree architecture. However, under moderate drought, community composition on scale-excluded trees resembled resistant trees indicating traits associated with tree architecture became more important. (5) One year after extreme drought, the arthropod community rebounded sharply. However, there was a much greater rebound in richness and abundance on resistant compared to susceptible trees suggesting that reduced resiliency in the arthropod community is associated with susceptibility. These results argue that individual genetic-based plant-herbivore interactions can directly and indirectly impact community-level diversity, which is modulated by climate. Understanding such interactions is important for assessing the impacts of climate change on biodiversity.
Collapse
Affiliation(s)
- Adrian C. Stone
- Department of Biology, Metropolitan State University, Denver, CO, United States
| | - Catherine A. Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
- Merriam-Powell Center for Environmental Research, Flagstaff, AZ, United States
| | - Neil S. Cobb
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
- Merriam-Powell Center for Environmental Research, Flagstaff, AZ, United States
| | - Thomas G. Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
- Merriam-Powell Center for Environmental Research, Flagstaff, AZ, United States
| |
Collapse
|
9
|
Williams RS, Howells JM. Effects of Intraspecific Genetic Variation and Prior Herbivory in an Old-Field Plant on the Abundance of the Specialist Aphid Uroleucon nigrotuberculatum (Hemiptera: Aphididae). ENVIRONMENTAL ENTOMOLOGY 2018; 47:422-431. [PMID: 29425269 DOI: 10.1093/ee/nvx196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intraspecific genetic variation in plants can contribute to the diversity and abundance of associated insects, though many questions remain about why some genotypes support more insects than others. Since plant secondary metabolites, which may be induced after insect attack, may potentially vary among genotypes, these compounds provide a possible explanation for insect abundance variation in plants with substantial genetic variation. In this study, we examined four genotypes of the old-field plant species Solidago altissima (L.; Asterales: Asteraceae) and asked if the abundance of the specialist aphid Uroleucon nigrotuberculatum (Olive; Hemiptera: Aphididae) was affected by genotype and previous foliage damage by a specialist beetle. We hypothesized that different genotypes and prior herbivory would result in different quantities of terpenes produced by S. altissima, and that terpenes would affect aphid abundance. We found evidence of foliar terpene induction in a greenhouse environment, and significant differences in terpene production among genotypes in a field setting, though prior damage had little effect on aphid abundance in the field. There were significant effects of genotypes on aphid abundance, as well as genotype effects on terpenes and foliar nutrients (leaf N and C:N). Noteworthy was a change in the allocation of particular terpenes among genotypes that related to aphid abundance. Our analyses demonstrated that phytochemicals, and especially terpenes, related to aphid abundance. This study adds to a previous finding that variation in leaf terpenes in S. altissima provides a partial explanation for variable abundance among genotypes of a specialist aphid, and suggests that differences in the allocation of compounds is important.
Collapse
Affiliation(s)
- Ray S Williams
- Department of Biology, Appalachian State University, Rivers Street, Boone, NC
| | | |
Collapse
|
10
|
Keith AR, Bailey JK, Lau MK, Whitham TG. Genetics-based interactions of foundation species affect community diversity, stability and network structure. Proc Biol Sci 2018; 284:rspb.2016.2703. [PMID: 28490623 DOI: 10.1098/rspb.2016.2703] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/05/2017] [Indexed: 11/12/2022] Open
Abstract
We examined the hypothesis that genetics-based interactions between strongly interacting foundation species, the tree Populus angustifolia and the aphid Pemphigus betae, affect arthropod community diversity, stability and species interaction networks of which little is known. In a 2-year experimental manipulation of the tree and its aphid herbivore four major findings emerged: (i) the interactions of these two species determined the composition of an arthropod community of 139 species; (ii) both tree genotype and aphid presence significantly predicted community diversity; (iii) the presence of aphids on genetically susceptible trees increased the stability of arthropod communities across years; and (iv) the experimental removal of aphids affected community network structure (network degree, modularity and tree genotype contribution to modularity). These findings demonstrate that the interactions of foundation species are genetically based, which in turn significantly contributes to community diversity, stability and species interaction networks. These experiments provide an important step in understanding the evolution of Darwin's 'entangled bank', a metaphor that characterizes the complexity and interconnectedness of communities in the wild.
Collapse
Affiliation(s)
- Arthur R Keith
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Joseph K Bailey
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Matthew K Lau
- Harvard University, Harvard Forest, 324 North Main Street, Petersham, MA 01366, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA .,Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
11
|
Caterpillar mimicry by plant galls as a visual defense against herbivores. J Theor Biol 2016; 404:10-14. [PMID: 27220745 DOI: 10.1016/j.jtbi.2016.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 11/20/2022]
Abstract
Plant galls, induced by arthropods and various other organisms have an intimate relationship with host plants, and gall-inducers have limited mobility. In addition to their own photosynthesis, galls are resource sinks rich with nutrients, with neighboring plant organs commonly serving as external photosynthate sources. Galls, if not well defended, may therefore be attractive food sources for herbivores. Galls produced by some aphids, jumping plant lice, thrips, and gall midges in Japan, Palearctic region and in the Middle East visually resemble lepidopteran caterpillars. I propose that such visual resemblance may reduce herbivory of galls and surrounding plant tissues, resulting in an increase in galler survival due to reduced gall damage and in enhanced galler growth due to improved nutrient inflow to the galls, when herbivores avoid colonizing or consuming plant parts that look as if they have been occupied by other herbivores. Potential predators and parasitoids of caterpillars may be attracted to the caterpillar-like galls and then attack real caterpillars and other invertebrate herbivores, which would also be beneficial for both gallers and their hosts.
Collapse
|
12
|
Zinkgraf MS, Meneses N, Whitham TG, Allan GJ. Genetic variation in NIN1 and C/VIF1 genes is significantly associated with Populus angustifolia resistance to a galling herbivore, Pemphigus betae. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:50-59. [PMID: 26518288 DOI: 10.1016/j.jinsphys.2015.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
The identification of genes associated with ecologically important traits provides information on the potential genetic mechanisms underlying the responses of an organism to its natural environment. In this study, we investigated the genetic basis of host plant resistance to the gall-inducing aphid, Pemphigus betae, in a natural population of 154 narrowleaf cottonwoods (Populus angustifolia). We surveyed genetic variation in two genes putatively involved in sink-source relations and a phenology gene that co-located in a previously identified quantitative trait locus for resistance to galling. Using a candidate gene approach, three major findings emerged. First, natural variation in tree resistance to galling was repeatable. Sampling of the same tree genotypes 20 years after the initial survey in 1986 show that 80% of the variation in resistance was due to genetic differences among individuals. Second, we identified significant associations at the single nucleotide polymorphism and haplotype levels between the plant neutral invertase gene NIN1 and tree resistance. Invertases are a class of sucrose hydrolyzing enzymes and play an important role in plant responses to biotic stress, including the establishment of nutrient sinks. These associations with NIN1 were driven by a single nucleotide polymorphism (NIN1_664) located in the second intron of the gene and in an orthologous sequence to two known regulatory elements. Third, haplotypes from an inhibitor of invertase (C/VIF1) were significantly associated with tree resistance. The identification of genetic variation in these two genes provides a starting point to understand the possible genetic mechanisms that contribute to tree resistance to gall formation. We also build on previous work demonstrating that genetic differences in sink-source relationships of the host influence the ability of P. betae to manipulate the flow of nutrients and induce a nutrient sink.
Collapse
Affiliation(s)
- Matthew S Zinkgraf
- Department of Biological Sciences, Environmental Genetics and Genomics Laboratory (EnGGen), Northern Arizona University, Flagstaff, AZ 86011, USA.
| | - Nashelly Meneses
- Department of Biological Sciences, Environmental Genetics and Genomics Laboratory (EnGGen), Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Environmental Genetics and Genomics Laboratory (EnGGen), Northern Arizona University, Flagstaff, AZ 86011, USA; Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Gerard J Allan
- Department of Biological Sciences, Environmental Genetics and Genomics Laboratory (EnGGen), Northern Arizona University, Flagstaff, AZ 86011, USA; Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
13
|
Künkler N, Brandl R, Brändle M. Changes in clonal poplar leaf chemistry caused by stem galls alter herbivory and leaf litter decomposition. PLoS One 2013; 8:e79994. [PMID: 24260333 PMCID: PMC3833850 DOI: 10.1371/journal.pone.0079994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 10/02/2013] [Indexed: 11/29/2022] Open
Abstract
Gall-inducing insects are highly specialized herbivores that modify the phenotype of their host plants. Beyond the direct manipulation of plant morphology and physiology in the immediate environment of the gall, there is also evidence of plant-mediated effects of gall-inducing insects on other species of the assemblages and ecosystem processes associated with the host plant. We analysed the impact of gall infestation by the aphid Pemphigus spirothecae on chemical leaf traits of clonal Lombardy poplars (Populus nigra var. italica) and the subsequent effects on intensity of herbivory and decomposition of leaves across five sites. We measured the herbivory of two feeding guilds: leaf-chewing insects that feed on the blade (e.g. caterpillars and sawfly larvae) and skeletonising insects that feed on the mesophyll of the leaves (e.g. larvae of beetles). Galled leaves had higher phenol (35%) and lower nitrogen and cholorophyll contents (35% respectively 37%) than non-galled leaves, and these differences were stronger in August than in June. Total herbivory intensity was 27% higher on galled than on non-galled leaves; damage by leaf chewers was on average 61% higher on gall infested leaves, whereas damage by skeletonising insects was on average 39% higher on non-galled leaves. After nine months the decomposition rate of galled leaf litter was 15% lower than that of non-galled leaf litter presumably because of the lower nitrogen content of the galled leaf litter. This indicated after-life effects of gall infestation on the decomposers. We found no evidence for galling x environment interactions.
Collapse
Affiliation(s)
- Nora Künkler
- Department of Ecology - Animal Ecology, Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Roland Brandl
- Department of Ecology - Animal Ecology, Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Martin Brändle
- Department of Ecology - Animal Ecology, Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
14
|
Moran EV, Kubiske ME. Can elevated CO2 and ozone shift the genetic composition of aspen (Populus tremuloides) stands? THE NEW PHYTOLOGIST 2013; 198:466-475. [PMID: 23356555 DOI: 10.1111/nph.12153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/18/2012] [Indexed: 06/01/2023]
Abstract
The world's forests are currently exposed to increasing concentrations of carbon dioxide (CO2) and ozone (O3). Both pollutants can potentially exert a selective effect on plant populations. This, in turn, may lead to changes in ecosystem properties, such as carbon sequestration. Here, we report how elevated CO2 and O3 affect the genetic composition of a woody plant population via altered survival. Using data from the Aspen free-air CO2 enrichment (FACE) experiment (in which aspen clones were grown in factorial combinations of CO2 and O3), we develop a hierarchical Bayesian model of survival. We also examine how survival differences between clones could affect pollutant responses in the next generation. Our model predicts that the relative abundance of the tested clones, given equal initial abundance, would shift under either elevated CO2 or O3 as a result of changing survival rates. Survival was strongly affected by between-clone differences in growth responses. Selection could noticeably decrease O3 sensitivity in the next generation, depending on the heritability of growth responses and the distribution of seed production. The response to selection by CO2, however, is likely to be small. Our results suggest that the changing atmospheric composition could shift the genotypic composition and average pollutant responses of tree populations over moderate timescales.
Collapse
Affiliation(s)
- Emily V Moran
- ETH Zurich, CHN G19, Universitatstrasse 16, 8092, Zurich, Switzerland
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, 1122 Volunteer Blvd, Suite 106, Knoxville, TN, 37996, USA
| | - Mark E Kubiske
- US Forest Service Northern Research Station, 5985 Highway K, Rhinelander, WI, 54501, USA
| |
Collapse
|
15
|
Whitham TG, Gehring CA, Lamit LJ, Wojtowicz T, Evans LM, Keith AR, Smith DS. Community specificity: life and afterlife effects of genes. TRENDS IN PLANT SCIENCE 2012; 17:271-281. [PMID: 22322002 DOI: 10.1016/j.tplants.2012.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/26/2011] [Accepted: 01/09/2012] [Indexed: 05/31/2023]
Abstract
Community-level genetic specificity results when individual genotypes or populations of the same species support different communities. Our review of the literature shows that genetic specificity exhibits both life and afterlife effects; it is a widespread phenomenon occurring in diverse taxonomic groups, aquatic to terrestrial ecosystems, and species-poor to species-rich systems. Such specificity affects species interactions, evolution, ecosystem processes and leads to community feedbacks on the performance of the individuals expressing the traits. Thus, genetic specificity by communities appears to be fundamentally important, suggesting that specificity is a major driver of the biodiversity and stability of the world's ecosystems.
Collapse
Affiliation(s)
- Thomas G Whitham
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Wymore AS, Keeley ATH, Yturralde KM, Schroer ML, Propper CR, Whitham TG. Genes to ecosystems: exploring the frontiers of ecology with one of the smallest biological units. THE NEW PHYTOLOGIST 2011; 191:19-36. [PMID: 21631507 DOI: 10.1111/j.1469-8137.2011.03730.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Genes and their expression levels in individual species can structure whole communities and affect ecosystem processes. Although much has been written about community and ecosystem phenotypes with a few model systems, such as poplar and goldenrod, here we explore the potential application of a community genetics approach with systems involving invasive species, climate change and pollution. We argue that community genetics can reveal patterns and processes that otherwise might remain undetected. To further facilitate the community genetics or genes-to-ecosystem concept, we propose four community genetics postulates that allow for the conclusion of a causal relationship between the gene and its effect on the ecosystem. Although most current studies do not satisfy these criteria completely, several come close and, in so doing, begin to provide a genetic-based understanding of communities and ecosystems, as well as a sound basis for conservation and management practices.
Collapse
Affiliation(s)
- Adam S Wymore
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Annika T H Keeley
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Kasey M Yturralde
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Melanie L Schroer
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
17
|
Compson ZG, Larson KC, Zinkgraf MS, Whitham TG. A genetic basis for the manipulation of sink-source relationships by the galling aphid Pemphigus batae. Oecologia 2011; 167:711-21. [PMID: 21667296 DOI: 10.1007/s00442-011-2033-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 05/16/2011] [Indexed: 11/28/2022]
Abstract
We examined how the galling aphid Pemphigus batae manipulates resource translocation patterns of resistant and susceptible narrowleaf cottonwood Populus angustifolia. Using carbon-14 ((14)C)-labeling experiments in common garden trials, five patterns emerged. First, although aphid galls on resistant and susceptible genotypes did not differ in their capacity to intercept assimilates exported from the leaf they occupied, aphids sequestered 5.8-fold more assimilates from surrounding leaves on susceptible tree genotypes compared to resistant genotypes. Second, gall sinks on the same side of a shoot as a labeled leaf were 3.4-fold stronger than gall sinks on the opposite side of a shoot, which agrees with patterns of vascular connections among leaves of the same shoot (orthostichy). Third, plant genetic-based traits accounted for 26% of the variation in sink strength of gall sinks and 41% of the variation in sink strength of a plant's own bud sinks. Fourth, tree susceptibility to aphid gall formation accounted for 63% of the variation in (14)C import, suggesting strong genetic control of sink-source relationships. Fifth, competition between two galls was observed on a susceptible but not a resistant tree. On the susceptible tree distal aphids intercepted 1.5-fold more (14)C from the occupied leaf than did basal aphids, but basal aphids compensated for the presence of a distal competitor by almost doubling import to the gall from surrounding leaves. These findings and others, aimed at identifying candidate genes for resistance, argue the importance of including plant genetics in future studies of the manipulation of translocation patterns by phytophageous insects.
Collapse
Affiliation(s)
- Zacchaeus G Compson
- Department of Biology, Northern Arizona University, Flagstaff, AZ 86011-5640, USA.
| | | | | | | |
Collapse
|
18
|
|
19
|
Smith DS, Bailey JK, Shuster SM, Whitham TG. A geographic mosaic of trophic interactions and selection: trees, aphids and birds. J Evol Biol 2010; 24:422-9. [PMID: 21091573 DOI: 10.1111/j.1420-9101.2010.02178.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- D S Smith
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | | | | | | |
Collapse
|
20
|
|
21
|
Holeski LM, Kearsley MJC, Whitham TG. Separating ontogenetic and environmental determination of resistance to herbivory in cottonwood. Ecology 2010; 90:2969-73. [PMID: 19967853 DOI: 10.1890/08-2378.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We used narrowleaf cottonwood, Populus angustifolia, and the gall-forming aphid, Pemphigus betae, to determine the extent to which ontogenetic variation in resistance to herbivory is due to endogenous, stable genetic influences. In a three-year common garden trial using ramets propagated from the top, middle, and bottom of mature trees, we found that the resistance of trees to aphids was significantly higher in top vs. bottom source ramets, supporting the hypothesis of a stable, genetically programmed component to aphid resistance. The magnitude of ontogenetically based variation in resistance within an individual tree is comparable to the genetic variation in resistance among narrowleaf cottonwood genotypes or populations found in other studies. These ontogenetic-based findings have the potential to alter ecological interactions and evolutionary trajectories of plant-herbivore interactions.
Collapse
Affiliation(s)
- Liza M Holeski
- Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
22
|
Bridgeland WT, Beier P, Kolb T, Whitham TG. A conditional trophic cascade: Birds benefit faster growing trees with strong links between predators and plants. Ecology 2010; 91:73-84. [DOI: 10.1890/08-1821.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
The role of plant resistance and tolerance to herbivory in mediating the effects of introduced herbivores. Biol Invasions 2009. [DOI: 10.1007/s10530-009-9630-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Haloin JR, Strauss SY. Interplay between Ecological Communities and Evolution. Ann N Y Acad Sci 2008; 1133:87-125. [DOI: 10.1196/annals.1438.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Bangert RK, Allan GJ, Turek RJ, Wimp GM, Meneses N, Martinsen GD, Keim P, Whitham TG. From genes to geography: a genetic similarity rule for arthropod community structure at multiple geographic scales. Mol Ecol 2006; 15:4215-28. [PMID: 17054514 DOI: 10.1111/j.1365-294x.2006.03092.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We tested the hypothesis that leaf modifying arthropod communities are correlated with cottonwood host plant genetic variation from local to regional scales. Although recent studies found that host plant genetic composition can structure local dependent herbivore communities, the abiotic environment is a stronger factor than the genetic effect at increasingly larger spatial scales. In contrast to these studies we found that dependent arthropod community structure is correlated with both the cross type composition of cottonwoods and individual genotypes within local rivers up to the regional scale of 720,000 km(2) (Four Corner States region in the southwestern USA). Across this geographical extent comprising two naturally hybridizing cottonwood systems, the arthropod community follows a simple genetic similarity rule: genetically similar trees support more similar arthropod communities than trees that are genetically dissimilar. This relationship can be quantified with or without genetic data in Populus.
Collapse
Affiliation(s)
- R K Bangert
- Department of Biological Sciences, PO Box 5640, Northern Arizona University, Flagstaff, AZ 86011-5640, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bailey JK, Wooley SC, Lindroth RL, Whitham TG. Importance of species interactions to community heritability: a genetic basis to trophic-level interactions. Ecol Lett 2006; 9:78-85. [PMID: 16958871 DOI: 10.1111/j.1461-0248.2005.00844.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent community genetics studies have shown that specific genotypes of a host plant support distinct arthropod communities. Building upon these findings, we examined the hypothesis that a trophic community consisting of cottonwood trees, a galling herbivore and avian predators could also be related to the genetics of the host tree. We found genetic correlations among phytochemistry of individual tree genotypes, the density of a galling herbivore, and the intensity of avian predation on these herbivores. We detected significant broad-sense heritability of these interactions that range from H(B)2 = 0.70 to 0.83. The genetic basis of these interactions tended to increase across trophic levels suggesting that small genetic changes in the cottonwood phenotype could have major consequences at higher trophic levels affecting species interactions and energy flow. These findings show a heritable basis to trophic-level interactions indicating that there is a significant genetic basis to community composition and energy flow that is predictable by plant genotype. Our data clearly link plant genetics to patterns of avian foraging and show that species interactions are important components of community heritability and ecosystem processes. Overall, these data support the hypothesis that evolution of plant traits can alter trophic-level interactions and community composition.
Collapse
|
27
|
Bangert RK, Lonsdorf EV, Wimp GM, Shuster SM, Fischer D, Schweitzer JA, Allan GJ, Bailey JK, Whitham TG. Genetic structure of a foundation species: scaling community phenotypes from the individual to the region. Heredity (Edinb) 2006; 100:121-31. [PMID: 17047690 DOI: 10.1038/sj.hdy.6800914] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Understanding the local and regional patterns of species distributions has been a major goal of ecological and evolutionary research. The notion that these patterns can be understood through simple quantitative rules is attractive, but while numerous scaling laws exist (e.g., metabolic, fractals), we are aware of no studies that have placed individual traits and community structure together within a genetics based scaling framework. We document the potential for a genetic basis to the scaling of ecological communities, largely based upon our long-term studies of poplars (Populus spp.). The genetic structure and diversity of these foundation species affects riparian ecosystems and determines a much larger community of dependent organisms. Three examples illustrate these ideas. First, there is a strong genetic basis to phytochemistry and tree architecture (both above- and belowground), which can affect diverse organisms and ecosystem processes. Second, empirical studies in the wild show that the local patterns of genetics based community structure scale up to western North America. At multiple spatial scales the arthropod community phenotype is related to the genetic distance among plants that these arthropods depend upon for survival. Third, we suggest that the familiar species-area curve, in which species richness is a function of area, is also a function of genetic diversity. We find that arthropod species richness is closely correlated with the genetic marker diversity and trait variance suggesting a genetic component to these curves. Finally, we discuss how genetic variation can interact with environmental variation to affect community attributes across geographic scales along with conservation implications.
Collapse
Affiliation(s)
- R K Bangert
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf EV, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks JC, Hart SC, Wimp GM, Wooley SC. A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 2006; 7:510-23. [PMID: 16778835 DOI: 10.1038/nrg1877] [Citation(s) in RCA: 599] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Can heritable traits in a single species affect an entire ecosystem? Recent studies show that such traits in a common tree have predictable effects on community structure and ecosystem processes. Because these 'community and ecosystem phenotypes' have a genetic basis and are heritable, we can begin to apply the principles of population and quantitative genetics to place the study of complex communities and ecosystems within an evolutionary framework. This framework could allow us to understand, for the first time, the genetic basis of ecosystem processes, and the effect of such phenomena as climate change and introduced transgenic organisms on entire communities.
Collapse
Affiliation(s)
- Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chapman SK, Whitham TG, Powell M. Herbivory differentially alters plant litter dynamics of evergreen and deciduous trees. OIKOS 2006. [DOI: 10.1111/j.2006.0030-1299.14676.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Bangert RK, Turek RJ, Rehill B, Wimp GM, Schweitzer JA, Allan GJ, Bailey JK, Martinsen GD, Keim P, Lindroth RL, Whitham TG. A genetic similarity rule determines arthropod community structure. Mol Ecol 2006; 15:1379-91. [PMID: 16626460 DOI: 10.1111/j.1365-294x.2005.02749.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We define a genetic similarity rule that predicts how genetic variation in a dominant plant affects the structure of an arthropod community. This rule applies to hybridizing cottonwood species where plant genetic variation determines plant-animal interactions and structures a dependent community of leaf-modifying arthropods. Because the associated arthropod community is expected to respond to important plant traits, we also tested whether plant chemical composition is one potential intermediate link between plant genes and arthropod community composition. Two lines of evidence support our genetic similarity rule. First, in a common garden experiment we found that trees with similar genetic compositions had similar chemical compositions and similar arthropod compositions. Second, in a wild population, we found a similar relationship between genetic similarity in cottonwoods and the dependent arthropod community. Field data demonstrate that the relationship between genes and arthropods was also significant when the hybrids were analysed alone, i.e. the pattern is not dependent upon the inclusion of both parental species. Because plant-animal interactions and natural hybridization are common to diverse plant taxa, we suggest that a genetic similarity rule is potentially applicable, and may be extended, to other systems and ecological processes. For example, plants with similar genetic compositions may exhibit similar litter decomposition rates. A corollary to this genetic similarity rule predicts that in systems with low plant genetic variability, the environment will be a stronger factor structuring the dependent community. Our findings argue that the genetic composition of a dominant plant can structure higher order ecological processes, thus placing community and ecosystem ecology within a genetic and evolutionary framework. A genetic similarity rule also has important conservation implications because the loss of genetic diversity in one species, especially dominant or keystone species that define many communities, may cascade to negatively affect the rest of the dependent community.
Collapse
Affiliation(s)
- R K Bangert
- Department of Biological Sciences and the Merriam-Powell Center for Environmental Research, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Donaldson JR, Stevens MT, Barnhill HR, Lindroth RL. Age-Related Shifts in Leaf Chemistry of Clonal Aspen (Populus tremuloides). J Chem Ecol 2006; 32:1415-29. [PMID: 16724272 DOI: 10.1007/s10886-006-9059-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 02/14/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Developmental changes in plant structure and function can influence both mammalian and arthropod feeding preferences for many woody plant species. This study documents age-related changes that occur in the leaf chemistry of trembling aspen (Populus tremuloides Michx., Salicaceae) and discusses implications for the herbivore community and ecosystem processes. We collected leaves from replicate ramets from six age classes (1-25+ yr) in each of seven aspen clones growing in south central Wisconsin, USA. Chemical analyses were conducted to determine concentrations of condensed tannins, phenolic glycosides (salicortin and tremulacin), nitrogen, starch, and soluble sugars. Each variable differed significantly among clones and among age classes. On average, condensed tannin concentrations doubled in the first five years and then remained fairly constant among older age classes. Combined phenolic glycoside (salicortin + tremulacin) concentrations were high in the youngest ramets (ca. 19%) and decreased sharply with age. Developmental changes in tannin, salicortin, and tremulacin concentrations exceeded those of nitrogen and carbohydrates. Developmental shifts of this magnitude, and the age-related tradeoff that occurs between condensed tannins and phenolic glycosides, are likely to have significant influence on the herbivore community of aspen and may influence leaf litter decomposition and nutrient cycling.
Collapse
Affiliation(s)
- Jack R Donaldson
- Department of Entomology, University of Wisconsin, Madison, 53706, USA.
| | | | | | | |
Collapse
|
32
|
Shuster SM, Lonsdorf EV, Wimp GM, Bailey JK, Whitham TG. COMMUNITY HERITABILITY MEASURES THE EVOLUTIONARY CONSEQUENCES OF INDIRECT GENETIC EFFECTS ON COMMUNITY STRUCTURE. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01177.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Tovar-Sánchez E, Oyama K. Community structure of canopy arthropods associated toQuercus crassifolia×Quercus crassipescomplex. OIKOS 2006. [DOI: 10.1111/j.0030-1299.2006.14029.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Gruner DS, Taylor AD. Richness and species composition of arboreal arthropods affected by nutrients and predators: a press experiment. Oecologia 2006; 147:714-24. [PMID: 16425047 DOI: 10.1007/s00442-005-0337-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
A longstanding goal for ecologists is to understand the processes that maintain biological diversity in communities, yet few studies have investigated the combined effects of predators and resources on biodiversity in natural ecosystems. We fertilized nutrient limited plots and excluded insectivorous birds in a randomized block design, and examined the impacts on arthropods associated with the dominant tree in the Hawaiian Islands, Metrosideros polymorpha (Myrtaceae). After 33 months, the species load (per foliage mass) of herbivores and carnivores increased with fertilization, but rarified richness (standardized to abundance) did not change. Fertilization depressed species richness of arboreal detritivores, and carnivore richness dropped in caged, unfertilized plots, both because of the increased dominance of common, introduced species with treatments. Herbivore species abundance distributions were more equitable than other trophic levels following treatments, and fertilization added specialized native species without changing relativized species richness. Overall, bird removal and nutrient addition treatments on arthropod richness acted largely independently, but with countervailing influences that obscured distinct top-down and bottom-up effects on different trophic levels. This study demonstrates that species composition, biological invasions, and the individuality of species traits may complicate efforts to predict the interactive effects of resources and predation on species diversity in food webs.
Collapse
Affiliation(s)
- Daniel S Gruner
- Department of Zoology, University of Hawai'i, Mānoa, Hawaii, USA.
| | | |
Collapse
|
35
|
Shuster SM, Lonsdorf EV, Wimp GM, Bailey JK, Whitham TG. COMMUNITY HERITABILITY MEASURES THE EVOLUTIONARY CONSEQUENCES OF INDIRECT GENETIC EFFECTS ON COMMUNITY STRUCTURE. Evolution 2006. [DOI: 10.1554/05-121.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Schweitzer JA, Bailey JK, Hart SC, Wimp GM, Chapman SK, Whitham TG. The interaction of plant genotype and herbivory decelerate leaf litter decomposition and alter nutrient dynamics. OIKOS 2005. [DOI: 10.1111/j.0030-1299.2005.13650.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Bailey JK, Deckert R, Schweitzer JA, Rehill BJ, Lindroth RL, Gehring C, Whitham TG. Host plant genetics affect hidden ecological players: links amongPopulus, condensed tannins, and fungal endophyte infection. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b05-008] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have shown effects of host plant genetics on community and ecosystem processes, which makes understanding the impacts of genetically based traits on hidden or non-apparent organisms more important. Here we examined links among genetic variation in hybrid cottonwoods, plant phytochemistry, and twig fungal endophytes (i.e., a common hidden organism). We found three major patterns: (1) twig fungal endophyte infection was positively related to the introgression of Fremont cottonwood (Populus fremontii S. Wats.) RFLP genetic markers, (2) condensed tannin concentration in twig bark tissue was negatively correlated to the introgression of Fremont genetic markers, and (3) fungal endophyte infection was negatively related to condensed tannin concentration in twig bark. These data demonstrate that plant genotype can impact hidden ecological players (i.e., fungal endophytes) resulting in community and ecosystem consequences.Key words: ecological genetics, fungal endophytes, hidden players, hybridization, Populus, tannins.
Collapse
|
38
|
Rehill B, Clauss A, Wieczorek L, Whitham T, Lindroth R. Foliar phenolic glycosides from Populus fremontii, Populus angustifolia, and their hybrids. BIOCHEM SYST ECOL 2005. [DOI: 10.1016/j.bse.2004.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Wimp GM, Martinsen GD, Floate KD, Bangert RK, Whitham TG. PLANT GENETIC DETERMINANTS OF ARTHROPOD COMMUNITY STRUCTURE AND DIVERSITY. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb00894.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Wimp GM, Martinsen GD, Floate KD, Bangert RK, Whitham TG. PLANT GENETIC DETERMINANTS OF ARTHROPOD COMMUNITY STRUCTURE AND DIVERSITY. Evolution 2005. [DOI: 10.1554/04-018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
|
42
|
Abstract
Population and community ecology need a large-scale perspective because local patterns (of biodiversity) and processes (trophic interactions) are influenced by the regional setting. The ratio of the foraging range and/or dispersal ability to the distance between landscape elements influences local population dynamics. The spatial scale experienced by a species may be linked to its trophic level and also to traits such as body size, resource specialization, rarity, and population size variability. Hence, communities are assemblages of species with different spatial strategies. Effects of habitat loss and habitat fragmentation on plant-herbivore, herbivore-enemy, as well as plant-pollinator interactions are contingent on species and landscape. Metapopulation theory provides a unifying frame to approach plant-insect systems across fragmented landscape, although the landscape context is often ignored. In some cases theory is far ahead of empirical research. We call for more population data on large spatial and temporal scales to better understand plant-insect populations across fragmented landscapes.
Collapse
|
43
|
|
44
|
|
45
|
Whitham TG, Young WP, Martinsen GD, Gehring CA, Schweitzer JA, Shuster SM, Wimp GM, Fischer DG, Bailey JK, Lindroth RL, Woolbright S, Kuske CR. COMMUNITY AND ECOSYSTEM GENETICS: A CONSEQUENCE OF THE EXTENDED PHENOTYPE. Ecology 2003. [DOI: 10.1890/0012-9658(2003)084[0559:caegac]2.0.co;2] [Citation(s) in RCA: 535] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Whitham TG, Young WP, Martinsen GD, Gehring CA, Schweitzer JA, Shuster SM, Wimp GM, Fischer DG, Bailey JK, Lindroth RL, Woolbright S, Kuske CR. COMMUNITY AND ECOSYSTEM GENETICS: A CONSEQUENCE OF THE EXTENDED PHENOTYPE. Ecology 2003. [DOI: 10.1890/0012-9658%282003%29084%5b0559%3acaegac%5d2.0.co%3b2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
|
48
|
|
49
|
|
50
|
Dungey HS, Potts BM, Whitham TG, Li HF. Plant genetics affects arthropod community richness and composition: evidence from a synthetic eucalypt hybrid population. Evolution 2000; 54:1938-46. [PMID: 11209771 DOI: 10.1111/j.0014-3820.2000.tb01238.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To examine how genetic variation in a plant population affects arthropod community richness and composition, we quantified the arthropod communities on a synthetic population of Eucalyptus amygdalina, E. risdonii, and their F1 and advanced-generation hybrids. Five major patterns emerged. First, the pure species and hybrid populations supported significantly different communities. Second, species richness was significantly greatest on hybrids (F1 > F2 > E. amygdalina > E. risdonii). These results are similar to those from a wild population of the same species and represent the first case in which both synthetic and wild population studies confirm a genetic component to community structure. Hybrids also acted as centers of biodiversity by accumulating both the common and specialist taxa of both parental species (100% in the wild and 80% in the synthetic population). Third, species richness was significantly greater on F1s than the single F2 family, suggesting that the increased insect abundance on hybrids may not be caused by the breakup of coadapted gene complexes. Fourth, specialist arthropod taxa were most likely to show a dominance response to F1 hybrids, whereas generalist taxa exhibited a susceptible response. Fifth, in an analysis of 31 leaf terpenoids that are thought to play a role in plant defense, hybrids were generally intermediate to the parental chemotypes. Within the single F2 family, we found significant associations between the communities of individual trees and five individual oil components, including oil yield, demonstrating that there is a genetic effect on plant defensive chemistry that, in turn, may affect community structure. These studies argue that hybridization has important community-level consequences and that the genetic variation present in hybrid zones can be used to explore the genetic-based mechanisms that structure communities.
Collapse
Affiliation(s)
- H S Dungey
- Cooperative Research Centre for Sustainable Production Forestry and School of Plant Science, University of Tasmania, Hobart, Australia.
| | | | | | | |
Collapse
|