1
|
Peralta-Castro A, Cordoba-Andrade F, Díaz-Quezada C, Sotelo-Mundo R, Winkler R, Brieba LG. The plant organellar primase-helicase directs template recognition and primosome assembly via its zinc finger domain. BMC PLANT BIOLOGY 2023; 23:467. [PMID: 37803262 PMCID: PMC10557236 DOI: 10.1186/s12870-023-04477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND The mechanisms and regulation for DNA replication in plant organelles are largely unknown, as few proteins involved in replisome assembly have been biochemically studied. A primase-helicase dubbed Twinkle (T7 gp4-like protein with intramitochondrial nucleoid localization) unwinds double-stranded DNA in metazoan mitochondria and plant organelles. Twinkle in plants is a bifunctional enzyme with an active primase module. This contrast with animal Twinkle in which the primase module is inactive. The organellar primase-helicase of Arabidopsis thaliana (AtTwinkle) harbors a primase module (AtPrimase) that consists of an RNA polymerase domain (RPD) and a Zn + + finger domain (ZFD). RESULTS Herein, we investigate the mechanisms by which AtTwinkle recognizes its templating sequence and how primer synthesis and coupling to the organellar DNA polymerases occurs. Biochemical data show that the ZFD of the AtPrimase module is responsible for template recognition, and this recognition is achieved by residues N163, R166, and K168. The role of the ZFD in template recognition was also corroborated by swapping the RPDs of bacteriophage T7 primase and AtPrimase with their respective ZFDs. A chimeric primase harboring the ZFD of T7 primase and the RPD of AtPrimase synthesizes ribonucleotides from the T7 primase recognition sequence and conversely, a chimeric primase harboring the ZFD of AtPrimase and the RPD of T7 primase synthesizes ribonucleotides from the AtPrimase recognition sequence. A chimera harboring the RPDs of bacteriophage T7 and the ZBD of AtTwinkle efficiently synthesizes primers for the plant organellar DNA polymerase. CONCLUSIONS We conclude that the ZFD is responsible for recognizing a single-stranded sequence and for primer hand-off into the organellar DNA polymerases active site. The primase activity of plant Twinkle is consistent with phylogeny-based reconstructions that concluded that Twinkle´s last eukaryotic common ancestor (LECA) was an enzyme with primase and helicase activities. In plants, the primase domain is active, whereas the primase activity was lost in metazoans. Our data supports the notion that AtTwinkle synthesizes primers at the lagging-strand of the organellar replication fork.
Collapse
Affiliation(s)
- Antolin Peralta-Castro
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821, Irapuato Guanajuato, Mexico
| | - Francisco Cordoba-Andrade
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821, Irapuato Guanajuato, Mexico
| | - Corina Díaz-Quezada
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821, Irapuato Guanajuato, Mexico
| | - Rogerio Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas Núm. 46, Ejido a La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - Robert Winkler
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821, Irapuato Guanajuato, Mexico
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821, Irapuato Guanajuato, Mexico.
| |
Collapse
|
2
|
Lloyd Evans D, Hlongwane TT, Joshi SV, Riaño Pachón DM. The sugarcane mitochondrial genome: assembly, phylogenetics and transcriptomics. PeerJ 2019; 7:e7558. [PMID: 31579570 PMCID: PMC6764373 DOI: 10.7717/peerj.7558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chloroplast genomes provide insufficient phylogenetic information to distinguish between closely related sugarcane cultivars, due to the recent origin of many cultivars and the conserved sequence of the chloroplast. In comparison, the mitochondrial genome of plants is much larger and more plastic and could contain increased phylogenetic signals. We assembled a consensus reference mitochondrion with Illumina TruSeq synthetic long reads and Oxford Nanopore Technologies MinION long reads. Based on this assembly we also analyzed the mitochondrial transcriptomes of sugarcane and sorghum and improved the annotation of the sugarcane mitochondrion as compared with other species. METHODS Mitochondrial genomes were assembled from genomic read pools using a bait and assemble methodology. The mitogenome was exhaustively annotated using BLAST and transcript datasets were mapped with HISAT2 prior to analysis with the Integrated Genome Viewer. RESULTS The sugarcane mitochondrion is comprised of two independent chromosomes, for which there is no evidence of recombination. Based on the reference assembly from the sugarcane cultivar SP80-3280 the mitogenomes of four additional cultivars (R570, LCP85-384, RB72343 and SP70-1143) were assembled (with the SP70-1143 assembly utilizing both genomic and transcriptomic data). We demonstrate that the sugarcane plastome is completely transcribed and we assembled the chloroplast genome of SP80-3280 using transcriptomic data only. Phylogenomic analysis using mitogenomes allow closely related sugarcane cultivars to be distinguished and supports the discrimination between Saccharum officinarum and Saccharum cultum as modern sugarcane's female parent. From whole chloroplast comparisons, we demonstrate that modern sugarcane arose from a limited number of Saccharum cultum female founders. Transcriptomic and spliceosomal analyses reveal that the two chromosomes of the sugarcane mitochondrion are combined at the transcript level and that splice sites occur more frequently within gene coding regions than without. We reveal one confirmed and one potential cytoplasmic male sterility (CMS) factor in the sugarcane mitochondrion, both of which are transcribed. CONCLUSION Transcript processing in the sugarcane mitochondrion is highly complex with diverse splice events, the majority of which span the two chromosomes. PolyA baited transcripts are consistent with the use of polyadenylation for transcript degradation. For the first time we annotate two CMS factors within the sugarcane mitochondrion and demonstrate that sugarcane possesses all the molecular machinery required for CMS and rescue. A mechanism of cross-chromosomal splicing based on guide RNAs is proposed. We also demonstrate that mitogenomes can be used to perform phylogenomic studies on sugarcane cultivars.
Collapse
Affiliation(s)
- Dyfed Lloyd Evans
- Plant Breeding, South African Sugarcane Research Institute, Durban, KwaZulu-Natal, South Africa
- Cambridge Sequence Services (CSS), Waterbeach, Cambridgeshire, UK
- Department of Computer Sciences, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | | | - Shailesh V. Joshi
- Plant Breeding, South African Sugarcane Research Institute, Durban, KwaZulu-Natal, South Africa
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Diego M. Riaño Pachón
- Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
3
|
Plant Organelle Genome Replication. PLANTS 2019; 8:plants8100358. [PMID: 31546578 PMCID: PMC6843274 DOI: 10.3390/plants8100358] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022]
Abstract
Mitochondria and chloroplasts perform essential functions in respiration, ATP production, and photosynthesis, and both organelles contain genomes that encode only some of the proteins that are required for these functions. The proteins and mechanisms for organelle DNA replication are very similar to bacterial or phage systems. The minimal replisome may consist of DNA polymerase, a primase/helicase, and a single-stranded DNA binding protein (SSB), similar to that found in bacteriophage T7. In Arabidopsis, there are two genes for organellar DNA polymerases and multiple potential genes for SSB, but there is only one known primase/helicase protein to date. Genome copy number varies widely between type and age of plant tissues. Replication mechanisms are only poorly understood at present, and may involve multiple processes, including recombination-dependent replication (RDR) in plant mitochondria and perhaps also in chloroplasts. There are still important questions remaining as to how the genomes are maintained in new organelles, and how genome copy number is determined. This review summarizes our current understanding of these processes.
Collapse
|
4
|
Ayala-García VM, Baruch-Torres N, García-Medel PL, Brieba LG. Plant organellar DNA polymerases paralogs exhibit dissimilar nucleotide incorporation fidelity. FEBS J 2018; 285:4005-4018. [PMID: 30152200 DOI: 10.1111/febs.14645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/27/2018] [Accepted: 08/24/2018] [Indexed: 01/06/2023]
Abstract
The coding sequences of plant mitochondrial and chloroplast genomes present a lower mutation rate than the coding sequences of animal mitochondria. However, plant mitochondrial genomes frequently rearrange and present high mutation rates in their noncoding sequences. DNA replication in plant organelles is carried out by two DNA polymerases (DNAP) paralogs. In Arabidopsis thaliana at least one DNAP paralog (AtPolIA or AtPolIB) is necessary for plant viability, suggesting that both genes are partially redundant. To understand how AtPolIs replicate genomes that present low and high mutation rates, we measured their nucleotide incorporation for all 16-base pair combinations in vitro. AtPolIA presents an error rate of 7.26 × 10-5 , whereas AtPolIB has an error rate of 5.45 × 10-4 . Thus, AtPolIA and AtPolIB are 3.5 and 26-times less accurate than human mitochondrial DNAP γ. The 8-fold difference in fidelity between both AtPolIs results from a higher catalytic efficiency in AtPolIA. Both AtPolIs extend from mismatches and the fidelity of AtPolIs ranks between high fidelity and lesion bypass DNAPs. The different nucleotide incorporation fidelity between AtPolIs predicts a prevalent role of AtPolIA in DNA replication and AtPolIB in DNA repair. We hypothesize that in plant organelles, DNA mismatches generated during DNA replication are repaired via recombination-mediated or DNA mismatch repair mechanisms that selectively target the coding region and that the mismatches generated by AtPolIs may result in the frequent expansion and rearrangements present in plant mitochondrial genomes.
Collapse
|
5
|
Cupp JD, Nielsen BL. Minireview: DNA replication in plant mitochondria. Mitochondrion 2014; 19 Pt B:231-7. [PMID: 24681310 PMCID: PMC4177014 DOI: 10.1016/j.mito.2014.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/28/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
Higher plant mitochondrial genomes exhibit much greater structural complexity compared to most other organisms. Unlike well-characterized metazoan mitochondrial DNA (mtDNA) replication, an understanding of the mechanism(s) and proteins involved in plant mtDNA replication remains unclear. Several plant mtDNA replication proteins, including DNA polymerases, DNA primase/helicase, and accessory proteins have been identified. Mitochondrial dynamics, genome structure, and the complexity of dual-targeted and dual-function proteins that provide at least partial redundancy suggest that plants have a unique model for maintaining and replicating mtDNA when compared to the replication mechanism utilized by most metazoan organisms.
Collapse
Affiliation(s)
- John D Cupp
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, United States.
| | - Brent L Nielsen
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
6
|
Gualberto JM, Mileshina D, Wallet C, Niazi AK, Weber-Lotfi F, Dietrich A. The plant mitochondrial genome: dynamics and maintenance. Biochimie 2013; 100:107-20. [PMID: 24075874 DOI: 10.1016/j.biochi.2013.09.016] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/17/2013] [Indexed: 12/21/2022]
Abstract
Plant mitochondria have a complex and peculiar genetic system. They have the largest genomes, as compared to organelles from other eukaryotic organisms. These can expand tremendously in some species, reaching the megabase range. Nevertheless, whichever the size, the gene content remains modest and restricted to a few polypeptides required for the biogenesis of the oxidative phosphorylation chain complexes, ribosomal proteins, transfer RNAs and ribosomal RNAs. The presence of autonomous plasmids of essentially unknown function further enhances the level of complexity. The physical organization of the plant mitochondrial DNA includes a set of sub-genomic forms resulting from homologous recombination between repeats, with a mixture of linear, circular and branched structures. This material is compacted into membrane-bound nucleoids, which are the inheritance units but also the centers of genome maintenance and expression. Recombination appears to be an essential characteristic of plant mitochondrial genetic processes, both in shaping and maintaining the genome. Under nuclear surveillance, recombination is also the basis for the generation of new mitotypes and is involved in the evolution of the mitochondrial DNA. In line with, or as a consequence of its complex physical organization, replication of the plant mitochondrial DNA is likely to occur through multiple mechanisms, potentially involving recombination processes. We give here a synthetic view of these aspects.
Collapse
Affiliation(s)
- José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Daria Mileshina
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Clémentine Wallet
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Adnan Khan Niazi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Frédérique Weber-Lotfi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
7
|
Backert S. Strand switching during rolling circle replication of plasmid-like DNA circles in the mitochondria of the higher plant Chenopodium album (L.). Plasmid 2000; 43:166-70. [PMID: 10686137 DOI: 10.1006/plas.1999.1437] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of sigma-like mitochondrial DNA molecules prepared from suspension cultured cells of Chenopodium album (L.) was studied by electron microscopy. These molecules were highly variable in size, ranging from about 1 to 104 kb, and had single- and double-stranded regions typical for rolling circle replicating intermediates. Partial denaturation studies confirmed that these structures constitute rolling circles. Close inspection of the circle-tail junctions of the replication fork at high magnification suggests that in circles with a double-stranded tail, both strands of the tail seem to be covalently attached to the circle in about 27% of the molecules. This observation can be explained by a phenomenon called strand switching or strand splippage during rolling circle replication, similar to a mechanism proposed for bacterial replicons or in vitro replicating constructs harboring bacteriophage T4 replication origins.
Collapse
MESH Headings
- Chenopodiaceae/genetics
- Chenopodiaceae/ultrastructure
- DNA Replication
- DNA, Circular/biosynthesis
- DNA, Circular/ultrastructure
- DNA, Mitochondrial/biosynthesis
- DNA, Mitochondrial/ultrastructure
- DNA, Plant/biosynthesis
- DNA, Plant/ultrastructure
- DNA, Single-Stranded/biosynthesis
- DNA, Single-Stranded/ultrastructure
- Electrophoresis, Gel, Pulsed-Field
- Microscopy, Electron
- Plasmids/metabolism
- Plasmids/ultrastructure
Collapse
Affiliation(s)
- S Backert
- Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, Berlin, D-10115, Germany.
| |
Collapse
|
8
|
Kusakabe T, Sugimoto Y, Hirota Y, Toné S, Kawaguchi Y, Koga K, Ohyama T. Isolation of replicational cue elements from a library of bent DNAs of Aspergillus oryzae. Mol Biol Rep 2000; 27:13-9. [PMID: 10939521 DOI: 10.1023/a:1007076511814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two fragments that could function as replicational cue elements were isolated from a genomic DNA digest of Aspergillus oryzae on the basis of abnormal behavior in polyacrylamide gel electrophoresis. The vector used in this study contained a scaffold-associated region of the Drosophila melanogaster ftz gene to provide nuclear retention. Neither fragment contained a yeast ARS consensus sequence or an eukaryotic topoisomerase II binding sequence. One of the fragments showed sequence homology with the mitochondrial replication origin of Candida utilis and a portion of mitochondrial DNA of Aspergillus nidulans. This plasmid carrying the cue fragment could also replicate in HeLa and NIH3T3 cells.
Collapse
Affiliation(s)
- T Kusakabe
- Laboratory of Silkworm Sciences, Faculty of Agriculture, Kyusyu University, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Attal J, Théron MC, Rival S, Puissant C, Houdebine LM. The efficiency of different IRESs (internal ribosomes entry site) in monocistronic mRNAS. Mol Biol Rep 2000; 27:21-6. [PMID: 10939522 DOI: 10.1023/a:1007084730470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The IRES from poliovirus and from encephalomyocarditis virus (EMCV) added between the cap and the AUG initiator codon were strong inhibitors of chloramphenicol acetyltransferase gene expression in three different cell types. The poliovirus IRES also inhibited bGH (bovine growth hormone) cDNA expression in the HC11 mammary cell line when added between the rabbit whey acidic gene promoter and the cDNA whereas the HTLV-1 IRES showed a stimulatory effect in the same situation. RNA stem loops were added before HTLV-1 (SUR) and the BiP (Immunoglobulin heavy-chain Binding Protein) IRESs followed by the firefly luciferase gene under the control of Rous sarcoma virus (RSV) promoter. The RNA loops abolished the expression of the reporter gene almost completely. These data suggest that the different IRESs may favour or inhibit translation of monocistronic mRNA.
Collapse
Affiliation(s)
- J Attal
- Unité de Differenciation Cellulaire, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
10
|
Backert S, Kunnimalaiyaan M, Börner T, Nielsen BL. In vitro replication of mitochondrial plasmid mp1 from the higher plant Chenopodium album (L.): a remnant of bacterial rolling circle and conjugative plasmids? J Mol Biol 1998; 284:1005-15. [PMID: 9837722 DOI: 10.1006/jmbi.1998.2254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
According to the endosymbiotic theory, mitochondrial genomes evolved from the chromosome of an alpha-proteobacterium-like ancestor and developed during evolution an extraordinary variation in size, structure and replication. We studied in vitro DNA replication of the mitochondrial circular plasmid mp1 (1309 bp) from the higher plant Chenopodium album (L.) as a model system that replicates in a manner reminiscent of bacterial rolling circle plasmids. Several mp1 subclones were tested for their ability to support DNA replication using a newly developed in vitro system. Neutral/neutral two-dimensional gel electrophoresis of the in vitro products revealed typical simple Y patterns of intermediates consistent with a rolling circle type of replication. Replication activity was very high for a BamHI-restricted total plasmid DNA clone, a 464 bp BamHI/KpnI fragment and a 363 bp BamHI/SmaI fragment. Further subcloning of a 148 bp BamHI/EcoRI fragment resulted in the strongest in vitro DNA replication activity, while a 1161 bp-template outside of this region resulted in a substantial loss of activity. Electron microscopic studies of in vitro DNA replication products from the highly active clones also revealed sigma-shaped molecules. These results support our in vivo data for the presence of a predominant replication origin between positions 628 and 776 on the plasmid map. This sequence shares homology with double-stranded rolling circle origin (dso) or transfer origin (oriT) nicking motifs from bacterial plasmids. mp1 is the first described rolling circle plasmid in eukaryotes.
Collapse
MESH Headings
- Base Sequence
- Chenopodiaceae/genetics
- Chenopodiaceae/metabolism
- Conjugation, Genetic
- DNA Replication
- DNA, Bacterial/biosynthesis
- DNA, Circular/biosynthesis
- DNA, Mitochondrial/biosynthesis
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/ultrastructure
- DNA, Plant/biosynthesis
- DNA, Plant/genetics
- DNA, Plant/ultrastructure
- Microscopy, Electron
- Plasmids/biosynthesis
- Plasmids/genetics
- Plasmids/ultrastructure
- Replication Origin
- Restriction Mapping
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- S Backert
- Department of Botany and Microbiology, Auburn University, 101 Life Sciences Building, Auburn, AL, 36849, USA.
| | | | | | | |
Collapse
|
11
|
Backert S, Dörfel P, Lurz R, Börner T. Rolling-circle replication of mitochondrial DNA in the higher plant Chenopodium album (L.). Mol Cell Biol 1996; 16:6285-94. [PMID: 8887658 PMCID: PMC231631 DOI: 10.1128/mcb.16.11.6285] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mitochondrial genomes of higher plants are larger and more complex than those of all other groups of organisms. We have studied the in vivo replication of chromosomal and plasmid mitochondrial DNAs prepared from a suspension culture and whole plants of the dicotyledonous higher plant Chenopodium album (L.). Electron microscopic studies revealed sigma-shaped, linear, and open circular molecules (subgenomic circles) of variable size as well as a minicircular plasmid of 1.3 kb (mp1). The distribution of single-stranded mitochondrial DNA in the sigma structures and the detection of entirely single-stranded molecules indicate a rolling-circle type of replication of plasmid mp1 and subgenomic circles. About half of the sigma-like molecules had tails exceeding the lengths of the corresponding circle, suggesting the formation of concatemers. Two replication origins (nicking sites) could be identified on mpl by electron microscopy and by a new approach based on the mapping of restriction fragments representing the identical 5' ends of the tails of sigma-like molecules. These data provide, for the first time, evidence for a rolling-circle mode of replication in the mitochondria of higher plants.
Collapse
MESH Headings
- DNA Replication
- DNA, Circular/biosynthesis
- DNA, Circular/ultrastructure
- DNA, Mitochondrial/biosynthesis
- DNA, Mitochondrial/ultrastructure
- DNA, Plant/biosynthesis
- DNA, Plant/ultrastructure
- Genes, Plant
- Microscopy, Electron
- Mitochondria/metabolism
- Models, Genetic
- Models, Structural
- Plants/genetics
- Plants/metabolism
- Plasmids
Collapse
Affiliation(s)
- S Backert
- Institut für Biologie, Humboldt-Universität zu Berlin, Germany
| | | | | | | |
Collapse
|
12
|
Zhang DX, Szymura JM, Hewitt GM. Evolution and structural conservation of the control region of insect mitochondrial DNA. J Mol Evol 1995; 40:382-91. [PMID: 7769615 DOI: 10.1007/bf00164024] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The control regions of mitochondrial DNA of two insects, Schistocerca gregaria and Chorthippus parallelus, have been isolated and sequenced. Their sizes are 752 bp and 1,512 bp, respectively, with the presence of a tandem repeat in C. parallelus. (The sequences of the two repeats are highly conserved, having a homology of 97.5%.) Comparison of their nucleotide sequences revealed the presence of several conserved sequence blocks dispersed through the whole control region, showing a different evolutionary pattern of this region in these insects as compared to that in Drosophila. A highly conserved secondary structure, located in the 3' region near the small rRNA gene, has been identified. Sequences immediately flanking this hairpin structure rather than the sequences of this structure themselves are conserved between S. gregaria/C. parallelus and Drosophila, having a sequence consensus of "TATA" at 5' and "GAA(A)T" at 3'. The motif "G(A)nT" is also present in the 3' flanking sequences of mammalian, amphibian, and fish mitochondrial L-strand replication origins and a potential plant mitochondrial second-strand-replication origin, indicating its universal conservation and functional importance related to replication origins. The stem-and-loop structure in S. gregaria/C. parallelus appears to be closely related to that found in Drosophila despite occupying a different position, and may be potentially associated with a second-strand-replication origin. This in turn suggests that such a secondary structure might be widely conserved across invertebrates while their location in the control region may be variable. We have looked for such a conserved structure in the control regions of two other insects, G. firmus and A. mellifera, whose DNA sequences have been published, and their possible presence is discussed. Mitochondrial control regions characterized to date in five different insect taxa (Drosophila, G. firmus, A. mellifera, S. gregaria, and C. parallelus) may be classed into two distinct groups having different evolutionary patterns. It is observed that tandem repetition of regions containing a probable replication origin occurred in some species from disjunct lineages in both groups, which would be the result of convergent evolution. We also discuss the possibility of a mechanism of "parahomologous recombination by unequal crossing-over" in mitochondria, which can explain the generation of such tandemly repeated sequences (especially the first critical repetition) in the control region of mtDNA, and also their convergent evolution in disjunct biological lineages during evolution.
Collapse
Affiliation(s)
- D X Zhang
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | | |
Collapse
|
13
|
|
14
|
Meissner K, Heinhorst S, Cannon GC, Börner T. Purification and characterization of a gamma-like DNA polymerase from Chenopodium album L. Nucleic Acids Res 1993; 21:4893-9. [PMID: 8177736 PMCID: PMC311402 DOI: 10.1093/nar/21.21.4893] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A DNA polymerase activity from mitochondria of the dicotyledonous angiosperm Chenopodium album L. was purified almost 9000 fold by successive column chromatography steps on DEAE cellulose, heparin agarose and ssDNA cellulose. The enzyme was characterized as a gamma-class polymerase, based on its resistance to inhibitors of the nuclear DNA polymerase alpha and its preference for poly(rA).(dT)12-18 over activated DNA in vitro. The molecular weight was estimated to be 80,000-90,000. A 3' to 5' exonuclease activity was found to be tightly associated with the DNA polymerase activity through all purification steps. This is the first report of an association between a DNA polymerase and an exonuclease activity in plant mitochondria.
Collapse
Affiliation(s)
- K Meissner
- FB Biologie, Humboldt-Universität Berlin, Germany
| | | | | | | |
Collapse
|
15
|
Abstract
The linear molecules that comprise most of the mitochondrial DNA (mtDNA) isolated from most organisms result from the artifactual degradation of circular genomes that exist within mitochondria. This view has been adopted by most investigators and is based on DNA fragment mapping data as well as analogy to the genome-sized circular mtDNA molecules obtained in high yield from animals. The alternative view that linear molecules actually represent the major form of DNA within mitochondria is supported by two observations; (1) over a 1000-fold range of genome size among fungi and plants we find the same size distribution of linear mtDNA molecules, and (2) linear mtDNA molecules much larger than genome size can be found for some fungi and plants. The circles that represent only a small fraction of the mtDNA obtained from most eukaryotes could be optional sequence forms unimportant for mitochondrial function; they may also participate in mtDNA replication. The circles might result from incidental recombination events between directly repeated sequences within or between tandemly arrayed genome units on linear mtDNA molecules.
Collapse
Affiliation(s)
- A J Bendich
- Department of Botany, University of Washington, Seattle 98195
| |
Collapse
|
16
|
Peng M, Lemke PA, Singh NK. A nucleotide sequence involved in replicative transformation of a filamentous fungus. Curr Genet 1993; 24:114-21. [PMID: 8358817 DOI: 10.1007/bf00324674] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Replicative plasmids generated through in-vivo recombination have been identified among transformants of the fungus Pleurotus ostreatus. In addition to sequences from a standard selection vector (pAN7-1), these recombinant plasmids contain recombined sequences of chromosomal origin conferring replicative potential upon the vector. One such recombined sequence, an 1148-bp insert into plasmid pP01, has been characterized. This sequence has been analyzed for secondary structural features as well as for consensus sites affiliated with origins of replication (ori) in other eukaryotic systems. The 1148-bp insert lacks an ORF and does not contain an acceptable match to the commonly identified 11-bp ars consensus sequence (A/TTTTATA/GTTTA/T) for autonomous replication in the yeast Saccharomyces cerevisiae. The analysis, however, revealed a cluster of three hairpin-loop-forming subsequences with individual delta G25 degrees C free energy values of -7.6, -6.4 and -5.2 kcal mol-1. Also found were two 7-bp analogues to centromere-affiliated sequences recognized in other fungi, as well as several putative gyrase recognition sites comparable to the 9-bp S. cerevisiae/E. coli gyrase-binding consensus sequence. Sequences comparable to the ori of the yeast 2-microns plasmid or to various sequences associated with ori of yeast/fungal mitochondrial DNAs (mtDNA) were not present in the 1148-bp insert. Replication of pP01 appears rather to involve a replication of chromosomal derivation devoid of an ars-type consensus.
Collapse
Affiliation(s)
- M Peng
- Department of Botany and Microbiology, Auburn University, AL 36849-5407
| | | | | |
Collapse
|
17
|
Hanson MR, Folkerts O. Structure and Function of the Higher Plant Mitochondrial Genome. INTERNATIONAL REVIEW OF CYTOLOGY 1992. [DOI: 10.1016/s0074-7696(08)62065-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|