1
|
Picache JA, Zheng W, Chen CZ. Therapeutic Strategies For Tay-Sachs Disease. Front Pharmacol 2022; 13:906647. [PMID: 35865957 PMCID: PMC9294361 DOI: 10.3389/fphar.2022.906647] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tay-Sachs disease (TSD) is an autosomal recessive disease that features progressive neurodegenerative presentations. It affects one in 100,000 live births. Currently, there is no approved therapy or cure. This review summarizes multiple drug development strategies for TSD, including enzyme replacement therapy, pharmaceutical chaperone therapy, substrate reduction therapy, gene therapy, and hematopoietic stem cell replacement therapy. In vitro and in vivo systems are described to assess the efficacy of the aforementioned therapeutic strategies. Furthermore, we discuss using MALDI mass spectrometry to perform a high throughput screen of compound libraries. This enables discovery of compounds that reduce GM2 and can lead to further development of a TSD therapy.
Collapse
|
2
|
The GM2 gangliosidoses: Unlocking the mysteries of pathogenesis and treatment. Neurosci Lett 2021; 764:136195. [PMID: 34450229 PMCID: PMC8572160 DOI: 10.1016/j.neulet.2021.136195] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022]
|
3
|
Pant DC, Dorboz I, Schluter A, Fourcade S, Launay N, Joya J, Aguilera-Albesa S, Yoldi ME, Casasnovas C, Willis MJ, Ruiz M, Ville D, Lesca G, Siquier-Pernet K, Desguerre I, Yan H, Wang J, Burmeister M, Brady L, Tarnopolsky M, Cornet C, Rubbini D, Terriente J, James KN, Musaev D, Zaki MS, Patterson MC, Lanpher BC, Klee EW, Pinto E Vairo F, Wohler E, Sobreira NLDM, Cohen JS, Maroofian R, Galehdari H, Mazaheri N, Shariati G, Colleaux L, Rodriguez D, Gleeson JG, Pujades C, Fatemi A, Boespflug-Tanguy O, Pujol A. Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy. J Clin Invest 2019; 129:1240-1256. [PMID: 30620337 DOI: 10.1172/jci123959] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Sphingolipid imbalance is the culprit in a variety of neurological diseases, some affecting the myelin sheath. We have used whole-exome sequencing in patients with undetermined leukoencephalopathies to uncover the endoplasmic reticulum lipid desaturase DEGS1 as the causative gene in 19 patients from 13 unrelated families. Shared features among the cases include severe motor arrest, early nystagmus, dystonia, spasticity, and profound failure to thrive. MRI showed hypomyelination, thinning of the corpus callosum, and progressive thalamic and cerebellar atrophy, suggesting a critical role of DEGS1 in myelin development and maintenance. This enzyme converts dihydroceramide (DhCer) into ceramide (Cer) in the final step of the de novo biosynthesis pathway. We detected a marked increase of the substrate DhCer and DhCer/Cer ratios in patients' fibroblasts and muscle. Further, we used a knockdown approach for disease modeling in Danio rerio, followed by a preclinical test with the first-line treatment for multiple sclerosis, fingolimod (FTY720, Gilenya). The enzymatic inhibition of Cer synthase by fingolimod, 1 step prior to DEGS1 in the pathway, reduced the critical DhCer/Cer imbalance and the severe locomotor disability, increasing the number of myelinating oligodendrocytes in a zebrafish model. These proof-of-concept results pave the way to clinical translation.
Collapse
Affiliation(s)
- Devesh C Pant
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Imen Dorboz
- INSERM UMR 1141, DHU PROTECT, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Agatha Schluter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Nathalie Launay
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Javier Joya
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service, Navarrabiomed, Pamplona, Spain
| | - Maria Eugenia Yoldi
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service, Navarrabiomed, Pamplona, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.,Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, c/Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mary J Willis
- Department of Pediatrics, Naval Medical Center San Diego, San Diego, California, USA
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Dorothée Ville
- Department of Neuropediatrics, Lyon University Hospital, Lyon, France
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital and GENDEV team CNRS UMR 5292, INSERM U1028, CRNL, and University Claude Bernard Lyon 1, Lyon, France
| | - Karine Siquier-Pernet
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Developmental Brain Disorders Laboratory, INSERM UMR 1163, Paris, France
| | - Isabelle Desguerre
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Developmental Brain Disorders Laboratory, INSERM UMR 1163, Paris, France
| | - Huifang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Molecular & Behavioral Neuroscience Institute, and
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Margit Burmeister
- Molecular & Behavioral Neuroscience Institute, and.,Departments of Computational Medicine & Bioinformatics, Psychiatry and Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Lauren Brady
- Department of Pediatrics (Neuromuscular and Neurometabolics), McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics (Neuromuscular and Neurometabolics), McMaster Children's Hospital, Hamilton, Ontario, Canada
| | | | | | | | - Kiely N James
- Laboratory for Pediatric Brain Disease, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, California, USA
| | - Damir Musaev
- Laboratory for Pediatric Brain Disease, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, California, USA
| | - Maha S Zaki
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Marc C Patterson
- Departments of Neurology and Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Eric W Klee
- Department of Clinical Genomics and.,Center for Individualized Medicine, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Filippo Pinto E Vairo
- Department of Clinical Genomics and.,Center for Individualized Medicine, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth Wohler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nara Lygia de M Sobreira
- McKusick-Nathans Institute of Genetic Medicine, and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julie S Cohen
- Moser Center for Leukodystrophies at the Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Reza Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George's, University of London, London, United Kingdom
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran.,Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Laurence Colleaux
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Developmental Brain Disorders Laboratory, INSERM UMR 1163, Paris, France
| | - Diana Rodriguez
- APHP, Department of Neuropediatrics, National Reference Center for Neurogenetic Disorders, Hôpital Armand-Trousseau, GHUEP, Paris, France.,GRC ConCer-LD, Sorbonne Universités, UPMC Université, Paris, France
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, California, USA
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ali Fatemi
- Moser Center for Leukodystrophies at the Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Odile Boespflug-Tanguy
- INSERM UMR 1141, DHU PROTECT, Paris Diderot University, Sorbonne Paris Cité, Paris, France.,Assistance Publique des Hopitaux de Paris (APHP), Reference Center for Leukodystrophies and Rare Leukoencephalopathies (LEUKOFRANCE), Hôpital Robert Debré, Paris, France
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Solovyeva VV, Shaimardanova AA, Chulpanova DS, Kitaeva KV, Chakrabarti L, Rizvanov AA. New Approaches to Tay-Sachs Disease Therapy. Front Physiol 2018; 9:1663. [PMID: 30524313 PMCID: PMC6256099 DOI: 10.3389/fphys.2018.01663] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
Tay-Sachs disease belongs to the group of autosomal-recessive lysosomal storage metabolic disorders. This disease is caused by β-hexosaminidase A (HexA) enzyme deficiency due to various mutations in α-subunit gene of this enzyme, resulting in GM2 ganglioside accumulation predominantly in lysosomes of nerve cells. Tay-Sachs disease is characterized by acute neurodegeneration preceded by activated microglia expansion, macrophage and astrocyte activation along with inflammatory mediator production. In most cases, the disease manifests itself during infancy, the “infantile form,” which characterizes the most severe disorders of the nervous system. The juvenile form, the symptoms of which appear in adolescence, and the most rare form with late onset of symptoms in adulthood are also described. The typical features of Tay-Sachs disease are muscle weakness, ataxia, speech, and mental disorders. Clinical symptom severity depends on residual HexA enzymatic activity associated with some mutations. Currently, Tay-Sachs disease treatment is based on symptom relief and, in case of the late-onset form, on the delay of progression. There are also clinical reports of substrate reduction therapy using miglustat and bone marrow or hematopoietic stem cell transplantation. At the development stage there are methods of Tay-Sachs disease gene therapy using adeno- or adeno-associated viruses as vectors for the delivery of cDNA encoding α and β HexA subunit genes. Effectiveness of this approach is evaluated in α or β HexA subunit defective model mice or Jacob sheep, in which Tay-Sachs disease arises spontaneously and is characterized by the same pathological features as in humans. This review discusses the possibilities of new therapeutic strategies in Tay-Sachs disease therapy aimed at preventing neurodegeneration and neuroinflammation.
Collapse
Affiliation(s)
- Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
5
|
Efficacy of a Bicistronic Vector for Correction of Sandhoff Disease in a Mouse Model. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:47-57. [PMID: 30534578 PMCID: PMC6279944 DOI: 10.1016/j.omtm.2018.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/23/2018] [Indexed: 12/01/2022]
Abstract
GM2 gangliosidoses are a family of severe neurodegenerative disorders resulting from a deficiency in the β-hexosaminidase A enzyme. These disorders include Tay-Sachs disease and Sandhoff disease, caused by mutations in the HEXA gene and HEXB gene, respectively. The HEXA and HEXB genes are required to produce the α and β subunits of the β-hexosaminidase A enzyme, respectively. Using a Sandhoff disease mouse model, we tested for the first time the potential of a comparatively lower dose (2.04 × 1013 vg/kg) of systemically delivered single-stranded adeno-associated virus 9 expressing both human HEXB and human HEXA cDNA under the control of a single promoter with a P2A-linked bicistronic vector design to correct the neurological phenotype. A bicistronic design allows maximal overexpression and secretion of the Hex A enzyme. Neonatal mice were injected with either this ssAAV9-HexB-P2A-HexA vector or a vehicle solution via the superficial temporal vein. An increase in survival of 56% compared with vehicle-injected controls and biochemical analysis of the brain tissue and serum revealed an increase in enzyme activity and a decrease in brain GM2 ganglioside buildup. This is a proof-of-concept study showing the “correction efficacy” of a bicistronic AAV9 vector delivered intravenously for GM2 gangliosidoses. Further studies with higher doses are warranted.
Collapse
|
6
|
Haematopoietic Stem Cell Transplantation Arrests the Progression of Neurodegenerative Disease in Late-Onset Tay-Sachs Disease. JIMD Rep 2017; 41:17-23. [PMID: 29214523 DOI: 10.1007/8904_2017_76] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 12/03/2022] Open
Abstract
UNLABELLED Tay-Sachs disease is a rare metabolic disease caused by a deficiency of hexosaminidase A that leads to accumulation of GM2 gangliosides predominantly in neural tissue. Late-onset Tay-Sachs disease variant is associated with a higher level of residual HexA activity. Treatment options are limited, and there are a few described cases who have undergone haematopoietic stem cell transplantation (HSCT) with variable outcome.We describe a case of a 23-year-old male patient who presented with a long-standing tremor since 7 years of age. He had gait ataxia, a speech stammer and swallowing problems. His condition had had a static course apart from his tremor that had been gradually deteriorating. Because of the deterioration in his neurological function, the patient had an uneventful, matched-sibling donor bone marrow transplant at the age of 15 years. Eight years post-HSCT, at the age of 23, he retains full donor engraftment, and his white cell beta-HexA of 191 nmol/mg/h is comparable to normal controls (in-assay control = 187). He continues to experience some intentional tremor that is tolerable for daily life and nonprogressive since HSCT. CONCLUSION HSCT is a potential treatment option which might arrest neurodegeneration in patients with LOTS.
Collapse
|
7
|
Karumuthil-Melethil S, Nagabhushan Kalburgi S, Thompson P, Tropak M, Kaytor MD, Keimel JG, Mark BL, Mahuran D, Walia JS, Gray SJ. Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease. Hum Gene Ther 2017; 27:509-21. [PMID: 27197548 DOI: 10.1089/hum.2016.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP- GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter-intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system.
Collapse
Affiliation(s)
| | | | - Patrick Thompson
- 2 Medical Genetics/Departments of Pediatrics, Queen's University , Kingston, Ontario, Canada
| | - Michael Tropak
- 3 Genetics and Genome Biology, SickKids, Toronto, Ontario, Canada
| | | | - John G Keimel
- 4 New Hope Research Foundation , North Oaks, Minnesota
| | - Brian L Mark
- 5 Department of Microbiology, University of Manitoba , Winnipeg, Manitoba, Canada
| | - Don Mahuran
- 3 Genetics and Genome Biology, SickKids, Toronto, Ontario, Canada .,6 Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Jagdeep S Walia
- 2 Medical Genetics/Departments of Pediatrics, Queen's University , Kingston, Ontario, Canada
| | - Steven J Gray
- 1 Gene Therapy Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,7 Department of Ophthalmology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| |
Collapse
|
8
|
Brunkhorst R, Vutukuri R, Pfeilschifter W. Fingolimod for the treatment of neurological diseases-state of play and future perspectives. Front Cell Neurosci 2014; 8:283. [PMID: 25309325 PMCID: PMC4162362 DOI: 10.3389/fncel.2014.00283] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022] Open
Abstract
Sphingolipids are a fascinating class of signaling molecules derived from the membrane lipid sphingomyelin. They show abundant expression in the brain. Complex sphingolipids such as glycosphingolipids (gangliosides and cerebrosides) regulate vesicular transport and lysosomal degradation and their dysregulation can lead to storage diseases with a neurological phenotype. More recently, simple sphingolipids such ceramide, sphingosine and sphingosine 1-phosphate (S1P) were discovered to signal in response to many extracellular stimuli. Forming an intricate signaling network, the balance of these readily interchangeable mediators is decisive for cell fate under stressful conditions. The immunomodulator fingolimod is the prodrug of an S1P receptor agonist. Following receptor activation, the drug leads to downregulation of the S1P1 receptor inducing functional antagonism. As the first drug to modulate the sphingolipid signaling pathway, it was marketed in 2010 for the treatment of multiple sclerosis (MS). At that time, immunomodulation was widely accepted as the key mechanism of fingolimod’s efficacy in MS. But given the excellent passage of this lipophilic compound into the brain and its massive brain accumulation as well as the abundant expression of S1P receptors on brain cells, it is conceivable that fingolimod also affects brain cells directly. Indeed, a seminal study showed that the protective effect of fingolimod in experimental autoimmune encephalitis (EAE), a murine MS model, is lost in mice lacking the S1P1 receptor on astrocytes, arguing for a specific role of astrocytic S1P signaling in MS. In this review, we discuss the role of sphingolipid mediators and their metabolizing enzymes in neurologic diseases and putative therapeutic strategies arising thereof.
Collapse
Affiliation(s)
- Robert Brunkhorst
- Cerebrovascular Research Group, Department of Neurology, Frankfurt University Hospital Frankfurt am Main, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, pharmazentrum frankfurt, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Waltraud Pfeilschifter
- Cerebrovascular Research Group, Department of Neurology, Frankfurt University Hospital Frankfurt am Main, Germany
| |
Collapse
|
9
|
Smith NJ, Winstone AM, Stellitano L, Cox TM, Verity CM. GM2 gangliosidosis in a UK study of children with progressive neurodegeneration: 73 cases reviewed. Dev Med Child Neurol 2012; 54:176-82. [PMID: 22115551 DOI: 10.1111/j.1469-8749.2011.04160.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To report the demographic, phenotypic, and time-to-diagnosis characteristics of children with GM2 gangliosidosis referred to the UK study of Progressive Intellectual and Neurological Deterioration. METHOD Case notification is made via monthly surveillance card, administered by the British Paediatric Surveillance Unit to all UK-based paediatricians; children with GM2 gangliosidosis were identified from cases satisfying inclusion in the UK study of Progressive Intellectual and Neurological Deterioration and analysed according to phenotypic and biochemical categories. RESULTS Between May 1997 and January 2010, 73 individuals with GM2 gangliosidoses were reported: 40 with Tay-Sachs disease, 31 with Sandhoff disease, and two with GM2 activator protein deficiency. Together they account for 6% (73/1164) of all diagnosed cases of progressive intellectual and neurological deterioration. The majority (62/73) were sporadic index cases with no family history. Children of Pakistani ancestry were overrepresented in all subtypes, particularly juvenile Sandhoff disease, accounting for 10 of 11 notified cases. Infantile-onset variants predominated (55/73); the mean age at onset of symptoms was 6.2 and 4.7 months for infantile-onset Tay-Sachs and Sandhoff disease respectively, and 26.2 and 34.7 months for the corresponding juvenile-onset variants. Time to diagnosis averaged 7.4 months and 28.0 months in infantile- and juvenile-onset disease respectively. INTERPRETATION GM2 gangliosidosis is a significant cause of childhood neurodegenerative disease; timely diagnosis relies upon improved clinical recognition, which may be increasingly important as specific therapies become available. There is a potential benefit from the introduction of screening programmes for high-risk ethnic groups.
Collapse
Affiliation(s)
- Nicholas J Smith
- Lysosomal Diseases Research Group, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | | | | | | | | |
Collapse
|
10
|
Passos Ó, Fernandes PA, Ramos MJ. QM/MM Study of the Catalytic Mechanism of GalNAc Removal from GM2 Ganglioside Catalyzed by Human β-HexosaminidaseA. J Phys Chem B 2011; 115:14751-9. [DOI: 10.1021/jp205826n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Óscar Passos
- Requimte, Faculty of Sciences, Porto University, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | | | - Maria João Ramos
- Requimte, Faculty of Sciences, Porto University, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| |
Collapse
|
11
|
Steenweg ME, Vanderver A, Blaser S, Bizzi A, de Koning TJ, Mancini GMS, van Wieringen WN, Barkhof F, Wolf NI, van der Knaap MS. Magnetic resonance imaging pattern recognition in hypomyelinating disorders. ACTA ACUST UNITED AC 2010; 133:2971-82. [PMID: 20881161 DOI: 10.1093/brain/awq257] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hypomyelination is observed in the context of a growing number of genetic disorders that share clinical characteristics. The aim of this study was to determine the possible role of magnetic resonance imaging pattern recognition in distinguishing different hypomyelinating disorders, which would facilitate the diagnostic process. Only patients with hypomyelination of known cause were included in this retrospective study. A total of 112 patients with Pelizaeus-Merzbacher disease, hypomyelination with congenital cataract, hypomyelination with hypogonadotropic hypogonadism and hypodontia, Pelizaeus-Merzbacher-like disease, infantile GM1 and GM2 gangliosidosis, Salla disease and fucosidosis were included. The brain scans were rated using a standard scoring list; the raters were blinded to the diagnoses. Grouping of the patients was based on cluster analysis. Ten clusters of patients with similar magnetic resonance imaging abnormalities were identified. The most important discriminating items were early cerebellar atrophy, homogeneity of the white matter signal on T(2)-weighted images, abnormal signal intensity of the basal ganglia, signal abnormalities in the pons and additional T(2) lesions in the deep white matter. Eight clusters each represented mainly a single disorder (i.e. Pelizaeus-Merzbacher disease, hypomyelination with congenital cataract, hypomyelination with hypogonadotropic hypogonadism and hypodontia, infantile GM1 and GM2 gangliosidosis, Pelizaeus-Merzbacher-like disease and fucosidosis); only two clusters contained multiple diseases. Pelizaeus-Merzbacher-like disease was divided between two clusters and Salla disease did not cluster at all. This study shows that it is possible to separate patients with hypomyelination disorders of known cause in clusters based on magnetic resonance imaging abnormalities alone. In most cases of Pelizaeus-Merzbacher disease, hypomyelination with congenital cataract, hypomyelination with hypogonadotropic hypogonadism and hypodontia, Pelizaeus-Merzbacher-like disease, infantile GM1 and GM2 gangliosidosis and fucosidosis, the imaging pattern gives clues for the diagnosis.
Collapse
Affiliation(s)
- Marjan E Steenweg
- Department of Child Neurology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Goto-Inoue N, Hayasaka T, Sugiura Y, Taki T, Li YT, Matsumoto M, Setou M. High-sensitivity analysis of glycosphingolipids by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight imaging mass spectrometry on transfer membranes. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 870:74-83. [PMID: 18571485 PMCID: PMC2551320 DOI: 10.1016/j.jchromb.2008.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 05/28/2008] [Accepted: 06/02/2008] [Indexed: 11/18/2022]
Abstract
Glycosphingolipids are ubiquitous constituents of cells. Yet there is still room for improvement in the techniques for analyzing glycosphingolipids. Here we report our highly sensitive and convenient analytical technology with imaging mass spectrometry for detailed structural analysis of glycosphingolipids. We were able to determine detailed ceramide structures; i.e., both the sphingosine base and fatty acid, by MS/MS/MS analysis on a PVDF membrane with 10 pmol of GM1, with which only faint bands were visible by primuline staining. The limit of detection was approximately 1 pmol of GM1, which is lower than the value in the conventional reports (10 pmol).
Collapse
Affiliation(s)
- Naoko Goto-Inoue
- Department of Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Faid V, Michalski JC, Morelle W. A mass spectrometric strategy for profiling glycoproteinoses, Pompe disease, and sialic acid storage diseases. Proteomics Clin Appl 2008; 2:528-42. [PMID: 21136856 DOI: 10.1002/prca.200780097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Indexed: 11/07/2022]
Abstract
Glycoproteinoses, Pompe disease, and sialic acid storage diseases are characterized by a massive accumulation of unprocessed oligosaccharides and/or glycoconjugates in urine. The identification of these glycocompounds is essential for a proper diagnosis. In this study, we investigated the potential of MALDI-TOF-MS to identify glycocompounds present in urine from patients with different inborn errors of glycan metabolism. Urinary glycocompounds were permethylated, and analyzed using GC-MS and MALDI-TOF-MS. In order to confirm tentative assignments, a second aliquot of urine was purified on a C18 Sep-Pak cartridge and glycocompounds were desalted on a column of nonporous graphitized carbon. The glycocompounds were then sequentially on-plate digested using an array of exoglycosidases. A range of disease-specific oligosaccharides as well as glycopeptides was identified for all oligosacchariduria models. In addition, free sialic acid accumulated in urine from a patient suffering from French-type sialuria, has been detected by a GC-MS approach, which could be applied to other sialic acid storage diseases. This procedure is simple, and can be performed in few simple steps in less than 24 h. This current method can be applied for newborn screening for other inherited metabolic diseases as well as for assessing treatments in clinical trials.
Collapse
Affiliation(s)
- Valegh Faid
- Unité Mixte de Recherche CNRS/USTL 8576, Glycobiologie Structurale et Fonctionnelle, IFR 147, Université des Sciences et Technologies de Lille 1, Villeneuve d'Ascq, France
| | | | | |
Collapse
|
14
|
Conzelmann E, Sandhoff K. Glycolipid and glycoprotein degradation. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 60:89-216. [PMID: 3310533 DOI: 10.1002/9780470123065.ch3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- E Conzelmann
- Institut für Organische Chemie und Biochemie, Universität Bonn, Federal Republic of Germany
| | | |
Collapse
|
15
|
Sonnino S, Mauri L, Chigorno V, Prinetti A. Gangliosides as components of lipid membrane domains. Glycobiology 2006; 17:1R-13R. [PMID: 16982663 DOI: 10.1093/glycob/cwl052] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell membrane components are organized as specialized domains involved in membrane-associated events such as cell signaling, cell adhesion, and protein sorting. These membrane domains are enriched in sphingolipids and cholesterol but display a low protein content. Theoretical considerations and experimental data suggest that some properties of gangliosides play an important role in the formation and stabilization of specific cell lipid membrane domains. Gangliosides are glycolipids with strong amphiphilic character and are particularly abundant in the plasma membranes, where they are inserted into the external leaflet with the hydrophobic ceramide moiety and with the oligosaccharide chain protruding into the extracellular medium. The geometry of the monomer inserted into the membrane, largely determined by the very large surface area occupied by the oligosaccharide chain, the ability of the ceramide amide linkage to form a network of hydrogen bonds at the water-lipid interface of cell membranes, the Delta(4) double bond of sphingosine proximal to the water-lipid interface, the capability of the oligosaccharide chain to interact with water, and the absence of double bonds into the double-tailed hydrophobic moiety are the ganglioside features that will be discussed in this review, to show how gangliosides are responsible for the formation of cell lipid membrane domains characterized by a strong positive curvature.
Collapse
Affiliation(s)
- Sandro Sonnino
- Department of Medical Chemistry, Biochemistry, and Biotechnology, Center of Excellence on Neurodegenerative Disease, University of Milan, 20090 Segrate (MI), Italy.
| | | | | | | |
Collapse
|
16
|
Rösner H. Developmental expression and possible roles of gangliosides in brain development. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 32:49-73. [PMID: 12827971 DOI: 10.1007/978-3-642-55557-2_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- H Rösner
- Institute of Zoology, University of Hohenheim-Stuttgart, Garbenstr. 30, 70593 Stuttgart, Germany
| |
Collapse
|
17
|
Abstract
The brief communication describes a 2-year-old child who presented with delayed achievement and regression of milestones, seizures of multiple types, exaggerated response to sound, inability to see and bilateral cherry red spots. In addition to these typical manifestations of the late infantile variety of Tay-sachs disease, unilateral ptosis was present. The magnetic resonance imaging of brain revealed abnormalities consistent with an advanced stage of the disease.
Collapse
|
18
|
|
19
|
Chapter 1b Normal and pathological catabolism of glycoproteins. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0167-7306(08)60279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Liessem B, Glombitza GJ, Knoll F, Lehmann J, Kellermann J, Lottspeich F, Sandhoff K. Photoaffinity labeling of human lysosomal beta-hexosaminidase B. Identification of Glu-355 at the substrate binding site. J Biol Chem 1995; 270:23693-9. [PMID: 7559539 DOI: 10.1074/jbc.270.40.23693] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The carbene precursor 3-azi-1-[([6-3H]-2-acetamido-2-deoxy-1-beta-D-galactopyranosyl)thi o -butane (also designated [3H]-1-ATB-GalNAc) has been used as a photoaffinity label for human lysosomal beta-hexosaminidase B (Hex B, EC 3.2.1.52) purified to apparent homogeneity from postmortal liver. [3H]-1-ATB-GalNAc behaved as an active site-directed inhibitor, which bound covalently to Hex B upon photolysis at 350 nm and resulted in 15% inactivation of enzyme activity. Up to 75% of the inactivation of Hex B was prevented by including the competitive inhibitor 2-acetamido-2-deoxy-D-glucono-1,5-lactone in the photoaffinity experiment. Incubation of [3H]-1-ATB-GalNAc with the enzyme followed by irradiation and subsequent separation of the three polypeptides composing the beta-subunit led mainly to labeling of the beta a-polypeptide. Subsequent proteolysis of beta a with trypsin and separation of the resulting peptides by high pressure liquid chromatography yielded one prominently labeled peptide fraction. Edman degradation resulted in the sequence E339ISEVFPDQFIHLGGD-EVEFK359. However, no modified amino acid was detected, indicating that the photoaffinity label was presumably bound to the peptide by a labile ester linkage. This was proven when the radiolabel was almost completely released from the peptide by treatment with aqueous ammonium hydroxide. Simultaneously, Glu-355 was converted into Gln-355, which is located within a region of Hex B that shows considerable homology with the alpha-subunit of human hexosaminidase A and other hexosaminidases from various species.
Collapse
Affiliation(s)
- B Liessem
- Institut für Organische Chemie und Biochemie, Universität Bonn, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
It is generally accepted that the process of molecular facilitation of neuronal circuits by means of stabilization of synaptic contacts represents the structural basis for memory formation. At the distinct zone of synaptic contact the following basic events occur: alterations of the electrical field strength at the outer surface of synaptic membranes, conformational changes of membrane-bound functional proteins (ion channels, ion pumps, receptors) and activation of second messenger cascade. Finally a trophic feed-back between synaptic terminals and their cell bodies through retro- and anterograde neuronal transport exists, which guarantees a stabilization of the newly formed synaptic connection. As a controlled Ca(2+)-exchange between the extracellular space (mM Ca(2+)-concentration) and the synaptoplasm (microM Ca2+) is essential for all these events, the present research concentrates on Ca(2+)-mediated primary messenger systems at the outer leaflet of synaptic membranes and on Ca(2+)-mediated modulatory mechanisms. These enable an always efficient electroresponsiveness although the environmental temperature might have changed. In this regard gangliosides being amphiphilic sialic acid containing glycosphingolipids, which are highly accumulated in complex composition in synaptic membranes play an important role. According to specific physico-chemical properties, they are assumed to fulfill the task of neuromodulators in connection with calcium, and thus contribute to the transmission and storage of information. The outcome of a series of experiments derived from neurology, ecophysiology, behavioral sciences, electron microscopy, biochemistry and physical chemistry give strong circumstantial evidence for this concept.
Collapse
Affiliation(s)
- H Rahmann
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
22
|
Tettamanti G, Riboni L. Gangliosides turnover and neural cells function: a new perspective. PROGRESS IN BRAIN RESEARCH 1994; 101:77-100. [PMID: 8029470 DOI: 10.1016/s0079-6123(08)61941-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- G Tettamanti
- Department of Medical Chemistry and Biochemistry, Medical School, University of Milan, Italy
| | | |
Collapse
|
23
|
Akhunov VS, Mirenburg TV, Krasnopolskaya XD. High-resolution loading tests in the study of genetic heterogeneity in gangliosidosis fibroblasts. J Inherit Metab Dis 1994; 17:104-11. [PMID: 8051915 DOI: 10.1007/bf00735405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
GM1- and GM2-gangliosides were isolated from brain and radiolabelled. The labelled moieties were localized by hydrolysis with lysosomal enzymes, followed by thin-layer chromatography of the products. High-resolution loading tests with labelled gangliosides were developed and found to differentiate infantile and juvenile forms of GM1- and GM2-gangliosidoses as well as the identification of B, O and AB types of GM2-gangliosidosis.
Collapse
Affiliation(s)
- V S Akhunov
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow
| | | | | |
Collapse
|
24
|
Liessem B, Giannis A, Sandhoff K, Nieger M. [Synthesis of 2-acetamido-1,4-imino-1,2,4-tridesoxy-D-galactitol and competitive inhibition of human lysosomal beta-hexosaminidase A]. Carbohydr Res 1993; 250:19-30. [PMID: 8143290 DOI: 10.1016/0008-6215(93)84151-u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The synthesis of 2-acetamido-1,4-imino-1,2,4-trideoxy-D-galactitol (1; 2-acetamido-4-amino-1,4-anhydro-2,4-dideoxy-D-galactitol) by two different routes starting from 2-acetamido-2-deoxy-D-glucose is described. Compound 1 is a competitive inhibitor of human lysosomal beta-hexosaminidase A with K(i) values of 18 microM (beta-subunit) and 220 microM (alpha-subunit). Similar properties were found for the already known 2-acetamido-2-deoxy-D-gluco-hydroximo-1,4-lactone.
Collapse
Affiliation(s)
- B Liessem
- Institut für Organische Chemie und Biochemie der Universität Bonn, Deutschland
| | | | | | | |
Collapse
|
25
|
|
26
|
Pshezhetsky AV, Levashov AV, Wiederschain GYa. Regulation of the GM1-galactosidase supramolecular structure and catalytic activity in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1122:154-60. [PMID: 1643088 DOI: 10.1016/0167-4838(92)90318-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Regulation of the supramolecular organization and the catalytic activity of GM1-galactosidase (EC 3.2.1.23) and neuraminidase (EC 3.2.1.18) from human kidney was studied in a system of hydrated reversed micelles of Aerosol OT in octane. It was shown that both the catalytic activity and the oligomeric structure of the GM1-galactosidase in reversed micelles depend on the [H2O]/[Aerosol OT] molar ratio (w(o)). GM1-galactosidase 64-67 kDa monomers, 260 kDa tetramers, and 660 kDa octamers were obtained in systems with w(o) = 0-20, 25-30 and 30-40, respectively. The association of GM1-galactosidase monomers into an octamer results in the cooperative increase in enzymatic activity. 'Protective protein', a component of the GM1-galactosidase-neuraminidase native complex, was found to improve this association significantly.
Collapse
Affiliation(s)
- A V Pshezhetsky
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | |
Collapse
|
27
|
Datti A, Emiliani C, Capocchi G, Orlacchio A. beta-N-acetylhexosaminidases in human cerebrospinal fluid and serum of patients with multiple sclerosis. Clin Chim Acta 1991; 200:73-80. [PMID: 1838034 DOI: 10.1016/0009-8981(91)90079-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Beta-N-Acetylhexosaminidase activity and isoenzyme have been investigated in normal human cerebrospinal fluid and that of patients with multiple sclerosis. beta-N-acetylhexosaminidase activity in normal cerebrospinal fluids has been resolved into five components. The major component was in a form that eluted from DEAE cellulose at the same salt concentration as hexosaminidase As, the isoenzyme previously identified in human serum. Cerebrospinal fluid from patients exhibited a different isoenzyme profile, showing a remarkable increase in a form having a pI which was more acidic than that of As. These changes have a potential use in the diagnosis and further biochemical characterization of multiple sclerosis.
Collapse
Affiliation(s)
- A Datti
- Departmento di Medicina Sperimentale e Scienze, Biochimiche, University of Perugia, Italy
| | | | | | | |
Collapse
|
28
|
Skaper SD, Leon A, Toffano G. Ganglioside function in the development and repair of the nervous system. From basic science to clinical application. Mol Neurobiol 1989; 3:173-99. [PMID: 2684226 DOI: 10.1007/bf02935630] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gangliosides play important roles in the normal physiological operations of the nervous system, in particular that of the brain. Changes in ganglioside composition occur in the mammalian brain not only during development, but also in aging and in several neuropathological situations. Gangliosides may modulate the ability of the brain to modify its response to cues or signals from the microenvironment. For example, cultured neurons are known to respond to exogenous ganglioside with changes characteristic of cell differentiation. Gangliosides can amplify the responses of neurons to extrinsic protein factors (neuronotrophic factors) that are normal constituents of the neuron's environment. The systemic administration of monosialoganglioside also potentiates trophic actions in vivo and improves neural responses following various types of injury to the adult mammalian central nervous system. The possible molecular mechanism(s) underlying the ganglioside effects may reflect an action in modulating ligand-receptor linked transfer of information across the plasma membrane of the cell.
Collapse
Affiliation(s)
- S D Skaper
- Fidia Research Laboratories, Department of CNS Research, Abano Terme, Italy
| | | | | |
Collapse
|
29
|
Bikker H, van den Berg FM, Wolterman RA, de Vijlder JJ, Bolhuis PA. Demonstration of a Sandhoff disease-associated autosomal 50-kb deletion by field inversion gel electrophoresis. Hum Genet 1989; 81:287-8. [PMID: 2921040 DOI: 10.1007/bf00279006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Field inversion gel electrophoresis (FIGE) of SfiI-digested chromosomal DNA was used to demonstrate a 50-kb deletion in one allele of the gene encoding the beta subunit of human hexosaminidase (HEXB at 5q13) of two apparently unrelated patients with Sandhoff disease. In conventional electrophoretic restriction analysis, this deletion was masked by hybridization of bands from the other allele.
Collapse
Affiliation(s)
- H Bikker
- Department of Experimental Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Synthesis and assembly of a catalytically active lysosomal enzyme, beta-hexosaminidase B, in a cell-free system. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37728-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Gudesblatt M, Ludman MD, Cohen JA, Desnick RJ, Chester S, Grabowski GA, Caroscio JT. Hexosaminidase A activity and amyotrophic lateral sclerosis. Muscle Nerve 1988; 11:227-30. [PMID: 2965300 DOI: 10.1002/mus.880110307] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abnormalities of GM2 ganglioside metabolism owing to hexosaminidase A (Hex A) deficiency have been associated with ALS phenotypes. The clinical features described in these ALS patients with Hex A deficiency include early onset, positive family history, and/or long disease duration. In an attempt to determine prospectively the incidence of Hex A deficiency within an ALS population, the records of The Mount Sinai Medical Center ALS Clinic were reviewed to select those patients with "atypical" ALS (total N = 52), i.e. onset before age 35, positive family history, and/or disease duration greater than 90 months. The control group (total N = 50), "typical" ALS patients, did not fulfill any of these historical criteria. Hex A activity determined in isolated peripheral blood leukocytes was normal in all typical ALS patients (mean 67.3%). Hex A deficiency was not found in any atypical ALS patients. Thus, Hex A deficiency apparently is an unusual etiology of typical or atypical ALS but is of medical and genetic importance in individual families.
Collapse
Affiliation(s)
- M Gudesblatt
- Department of Neurology, Mount Sinai Medical Center, New York, NY
| | | | | | | | | | | | | |
Collapse
|
32
|
Gene encoding the human beta-hexosaminidase beta chain: extensive homology of intron placement in the alpha- and beta-chain genes. Proc Natl Acad Sci U S A 1988; 85:1883-7. [PMID: 2964638 PMCID: PMC279885 DOI: 10.1073/pnas.85.6.1883] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lysosomal beta-hexosaminidase (EC 3.2.1.52) is composed of two structurally similar chains, alpha and beta, that are the products of different genes. Mutations in either gene causing beta-hexosaminidase deficiency result in the lysosomal storage disease GM2-gangliosidosis. To enable the investigation of the molecular lesions in this disorder and to study the evolutionary relationship between the alpha and beta chains, the beta-chain gene was isolated, and its organization was characterized. The beta-chain coding region is divided into 14 exons distributed over approximately 40 kilobases of DNA. Comparison with the alpha-chain gene revealed that 12 of the 13 introns interrupt the coding regions at homologous positions. This extensive sharing of intron placement demonstrates that the alpha and beta chains evolved by way of the duplication of a common ancestor.
Collapse
|
33
|
Little LE, Lau MM, Quon DV, Fowler AV, Neufeld EF. Proteolytic processing of the alpha-chain of the lysosomal enzyme, beta-hexosaminidase, in normal human fibroblasts. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68923-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Sandhoff K, Quintern L. [Sphingolipid storage diseases of the central nervous system: bases of biochemical and clinical heterogeneity]. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1988; 75:123-31. [PMID: 3132618 DOI: 10.1007/bf00405302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lysosomal storage disorders are progredient and often fatal diseases most of which result from a pronounced enzyme deficiency. In the case of sphingolipidoses, usually enzymes of sphingolipid catabolism are missing, or only a few percent of normal activity are detectable. For many sphingolipidoses, damage of the central nervous system is characteristic, but neurological and other symptoms can vary greatly, especially in adult variants. This variability is mainly caused by different allelic mutations of the structural genes, resulting in different levels of residual enzyme activity.
Collapse
Affiliation(s)
- K Sandhoff
- Institut für Organische Chemie und Biochemie der Universität, Bonn
| | | |
Collapse
|
35
|
Ilyas AA, Li SC, Chou DK, Li YT, Jungalwala FB, Dalakas MC, Quarles RH. Gangliosides GM2, IV4GalNAcGM1b, and IV4GalNAcGC1a as antigens for monoclonal immunoglobulin M in neuropathy associated with gammopathy. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68935-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Affiliation(s)
- S U Walkley
- Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
37
|
Alroy J, Adelman LS, Warren CD. Lectin histochemistry of gangliosidosis. II. Neurovisceral tissues from patients with Sandhoff's disease. Acta Neuropathol 1988; 76:359-65. [PMID: 3176901 DOI: 10.1007/bf00686972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lectin histochemical studies were performed on selected formalin-fixed, paraffin-embedded tissues of patients affected with the O variant of GM2-gangliosidosis (i.e., Sandhoff's disease). The purpose was to identify specific sugar residues of undegraded "stored" substances in cytoplasm of affected cells. We studied neural tissues from 13 patients, visceral tissues from four patients, and placentae from three affected fetuses. Neurons in all 13 cases studied stained with Concanavalia ensiformis agglutinin (Con A) and with Ulex europaeus agglutinin-I (UEA-I). Succinylated wheat germ agglutinin (S-WGA) stained affected visceral cells and astrocytes and macrophages in the central nervous system. These results demonstrate that alpha-D-mannosyl and alpha-L-fucosyl residues, which bind Con A and UEA-I, respectively, are present in affected neurons. Furthermore, they revealed the affected non-neuronal cells and astrocytes contain complex carbohydrates with nonreducing terminal beta-N-acetylglucosamine, which binds S-WGA.
Collapse
Affiliation(s)
- J Alroy
- Department of Pathology, Tufts University School of Medicine, Boston, MA 02111
| | | | | |
Collapse
|
38
|
Rosengren B, Månsson JE, Svennerholm L. Composition of gangliosides and neutral glycosphingolipids of brain in classical Tay-Sachs and Sandhoff disease: more lyso-GM2 in Sandhoff disease? J Neurochem 1987; 49:834-40. [PMID: 3612128 DOI: 10.1111/j.1471-4159.1987.tb00969.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ganglioside composition of the brain from an individual with classical Tay-Sachs disease and from an individual with Sandhoff disease was examined using our new quantitative methods for ganglioside content determination and compared with that of age-matched control brains. The concentration of GM2 was found to be 12.2 and 13.0 mumol/g of fresh tissue in Tay-Sachs disease and in Sandhoff disease cerebral gray matter, respectively. GM2 was 86 and 87% respectively, of total gangliosides. The concentration of GM1 and, in particular, GM3 ganglioside was also found to be increased, whereas the concentration of the major di- and trisialogangliosides (GD1a, GD1b, and GT1b) had diminished markedly. There was no significant increase in level of any other ganglioside than lyso-GM2. Its concentration was 12 and 16 nmol/g in cerebral gray matter of two Tay-Sachs disease brains and 43 nmol/g in Sandhoff disease brain. The Sandhoff disease brain also differed from the classical Tay-Sachs disease brain by having a much higher concentration of gangliotriaosylceramide and globotetraosylceramide. The structures of relevant gangliosides and neutral glycolipids were established by fast atom bombardment-mass spectrometry and permethylation studies.
Collapse
|
39
|
Hardy M, Salvayre R, Maret A, Douste-Blazy L. Irreversible inhibition of hexosaminidase C by medium-chain monocarboxylic acids and Triton X-100. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 924:557-61. [PMID: 3593766 DOI: 10.1016/0304-4165(87)90172-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The neutral beta-N-acetylhexosaminidase (hexosaminidase C) from human brain was partially purified (separated from lysosomal beta-N-acetylhexosaminidases by chromatography on a Con A-Sepharose column). Hexosaminidase C was inhibited by medium-chain fatty acids (monocarboxylic acids with chain-length between C6 and C9), whereas shorter-chain monocarboxylic acids showed no inhibitory effect. Studies on the inhibition mechanism showed an irreversible and pH-dependent inhibition which progresses with time and which is not reversed by the removal of fatty acids (by Bio-Beads SM-2). Similar inhibitory effects were also obtained using Triton X-100 (but not with homologous alkylamines). These results suggest that the hexosaminidase C inactivation is related to the hydrophobic properties of the inhibitor which acts as a denaturing agent mainly at acidic pH. The possibility has been discussed that this inactivation effect of monocarboxylic acid on hexosaminidase C could constitute a molecular model of the toxicity of medium-chain-length fatty acids.
Collapse
|
40
|
Besley GT, Broadhead DM, Young JA. GM2-gangliosidosis variant with altered substrate specificity: evidence for alpha-locus genetic compound. J Inherit Metab Dis 1987; 10:403-4. [PMID: 2964543 DOI: 10.1007/bf01799987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- G T Besley
- Department of Pathology, Royal Hospital for Sick Children, Edinburgh, UK
| | | | | |
Collapse
|
41
|
Novotny JR, Brendler S, Kytzia HJ, Sandhoff K, Gaedicke G. Hexosaminidase I indicates maturation disarrangement in acute leukemias. HAEMATOLOGY AND BLOOD TRANSFUSION 1987; 31:191-4. [PMID: 2965081 DOI: 10.1007/978-3-642-72624-8_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- J R Novotny
- Abteilung Pädiatrie II, Universitäts-Kinderklinik, Ulm/Donau, FRG
| | | | | | | | | |
Collapse
|
42
|
Orlacchio A, Emiliani C, Rambotti P, Pioda GB, Davis S. Alteration of beta-hexosaminidase activity and isoenzymes in human leukemic cells. BIOCHEMICAL MEDICINE AND METABOLIC BIOLOGY 1986; 36:283-92. [PMID: 2948528 DOI: 10.1016/0885-4505(86)90137-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
beta-Hexosaminidase (EC 3.2.1.20; Hex) activity and isoenzyme characteristics were analyzed in human normal and leukemic leukocytes. Unseparated CLL and CML cells had a specific activity that was lower, whereas ALL and AML blasts had a higher specific activity than normal lymphocytes and granulocytes. CLL B-cells had a lower specific activity compared with that in normal non-T-lymphocytes; CLL T-cells and normal T-cells had similar activity. Isoenzyme separation was performed by chromatofocusing on PBE-94 coupled with an automated enzyme assay. When using a single linear pH elution gradient, normal leukocytes and all leukemia cells contained two forms of isoenzyme (B and A). When a double pH elution gradient was performed, an extra distinct form of Hex (I) was recorded. Hex I was present in small amounts in normal granulocytes and PHA-stimulated normal lymphocytes; isoenzyme I was found in high amounts in all leukemias tested. The activity ratios I/B and I/A, as well as the I isoenzyme profile, may facilitate differentiation between normal and leukemic cells and between lymphoblastic and myeloblastic leukemias.
Collapse
|
43
|
Navon R, Argov Z, Frisch A. Hexosaminidase A deficiency in adults. AMERICAN JOURNAL OF MEDICAL GENETICS 1986; 24:179-96. [PMID: 2939718 DOI: 10.1002/ajmg.1320240123] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Deficiency of hexosaminidase A (Hex A) in adults was found in 15 individuals from nine unrelated Ashkenazi families; 14 individuals had neurological symptoms, one was clinically intact. Clinical, biochemical and genetic findings are reported and compared to previously reported cases. The clinical picture varied between and within families and included spinocerebellar, various motor neuron and cerebellar syndromes. Psychosis appeared in 30% of cases. Involvement of three generations was recorded in one family. The phenotype appears too variable to serve as a basis for genetic classification. The level of Hex A activity in serum, leukocytes, and fibroblasts of all 14 patients was in the range of Tay-Sachs disease (TSD) homozygotes when measured by the routine heat-inactivation method. More sensitive and direct methods detected some residual activity. Cultured skin fibroblasts of patients synthesize the alpha and beta chain precursors of Hex A of the same molecular weight as that synthesized by normal fibroblasts. However, the amount of the alpha chain precursor is greatly reduced. Mature chains were not detected. The one healthy adult we studied displayed a nonuniform distribution of Hex A; while it lacked activity in the serum it had intermediate activity in fibroblasts and leukocytes.
Collapse
|
44
|
Abstract
Five children from two non-consanguineous Asian families with juvenile-onset hexosaminidase deficiency are presented. Two have juvenile Tay-Sachs disease with hexosaminidase A deficiency and three have juvenile Sandhoff disease with hexosaminidase A and B deficiency. The contributing factors in the spectrum of the hexosaminidase deficiency disease are outlined, and previously reported cases of late-onset Tay-Sachs and Sandhoff disease are reviewed. The heterogeneity of the effects of hexosaminidase deficiency is discussed, with the recommendation that the diagnosis be considered, in its various forms, when there is no other obvious explanation.
Collapse
|
45
|
|
46
|
Sonderfeld S, Brendler S, Sandhoff K, Galjaard H, Hoogeveen AT. Genetic complementation in somatic cell hybrids of four variants of infantile GM2 gangliosidosis. Hum Genet 1985; 71:196-200. [PMID: 2933318 DOI: 10.1007/bf00284572] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cell hybridizations between fibroblasts of four variants (B, O, AB, and B1) of infantile GM2 gangliosidosis were performed. Cocultivated as well as hybrid cells were analyzed for their capability to degrade exogenously added [3H]-GM2. Hybridization of variant AB fibroblasts with fibroblasts of variant O, variant B, or variant B1 resulted in an enhanced rate of GM2 hydrolysis, showing intergenic complementation. Similar restoration of GM2 catabolism was observed after hybridization of variant B1 cells with variant O, but not with variant B cells. These results indicate that B1 cells carry a mutation in the gene locus for the alpha-subunit of beta-hexosaminidase. Studies of the processing of immature enzyme in variant B1 cells showed the presence of alpha-precursors and mature alpha-chains, but at a lower level as compared to normal cells.
Collapse
|
47
|
Perry TL, Norman MG, Yong VW, Whiting S, Crichton JU, Hansen S, Kish SJ. Hallervorden-Spatz disease: cysteine accumulation and cysteine dioxygenase deficiency in the globus pallidus. Ann Neurol 1985; 18:482-9. [PMID: 4073841 DOI: 10.1002/ana.410180411] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We describe neurochemical abnormalities found in the brains of 2 patients with autopsy-confirmed Hallervorden-Spatz (HS) disease. In 1 patient, contents of cystine and of glutathione-cysteine mixed disulfide in the globus pallidus were markedly elevated above values for appropriate control subjects. Activity of cysteine dioxygenase, which converts cysteine to cysteine sulfinic acid, was reduced in the globus pallidus, but normal in the frontal cortex and putamen of both patients. gamma-Aminobutyric acid content was markedly decreased in the globus pallidus and substantia nigra of both patients. These results suggest that cysteine accumulates locally in the globus pallidus in Hallervorden-Spatz disease as a result of an enzymatic block in the metabolic pathway from cysteine to taurine. Accumulated cysteine may chelate iron, accounting for the local increase in iron content in Hallervorden-Spatz disease. The combined excess of cysteine and ferrous iron may generate free radicals that damage neuronal membranes to cause the typical morphological changes observed in this disorder.
Collapse
|
48
|
Sonderfeld S, Conzelmann E, Schwarzmann G, Burg J, Hinrichs U, Sandhoff K. Incorporation and metabolism of ganglioside GM2 in skin fibroblasts from normal and GM2 gangliosidosis subjects. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 149:247-55. [PMID: 3922757 DOI: 10.1111/j.1432-1033.1985.tb08919.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ganglioside GM2, 3H-labeled in the sphingoid base, was added to the culture medium of normal and GM2 gangliosidosis fibroblasts. Ganglioside was found to adsorb rapidly to the cell surface, most of it could however be removed by trypsination. The trypsin-resistant incorporation was about 10 nmol/mg cell protein, after 48 h. The rates of adsorption and incorporation depended strongly on the concentration of fetal calf serum in the medium, higher serum concentrations being inhibitory. After various incubation times, the lipids were extracted, separated by thin-layer chromatography and visualized by fluorography. In normal cells a variety of degradation products as well as sphingomyelin was found whereas in GM2 gangliosidosis cells, only trace amounts of such products (mainly GA2) were found. In contrast, the higher gangliosides GM1 and GD1a were formed in comparable amounts (2.2-3.6% of total radioactivity after 92 h) in normal and pathologic cell lines. Supplementation of cells from GM2 gangliosidosis, variant AB, with purified GM2-activator protein restored ganglioside GM2 degradation to almost normal rates but had no effect on its glycosylation to gangliosides GM1 and GD1a. From these results we conclude that the synthesis of higher gangliosides from incorporated GM2 can occur by direct glycosylation and not only via lysosomal degradation and resynthesis from [3H]sphinganine-containing degradation products. Preliminary studies with subcellular fractionation after various times of [3H]ganglioside incorporation indicated biphasic kinetics for the net transport of membrane-inserted ganglioside to lysosomes, compatible with the notion that a portion of the glycolipids can also escape from secondary lysosomes and migrate to Golgi compartment or cell surface.
Collapse
|
49
|
Kytzia HJ, Sandhoff K. Evidence for two different active sites on human beta-hexosaminidase A. Interaction of GM2 activator protein with beta-hexosaminidase A. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39645-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
50
|
Gaedicke G, Novotny J, Raghavachar A, Drexler HG. Beta-hexosaminidase isoenzyme I: an early marker of hematopoietic malignancy. HAEMATOLOGY AND BLOOD TRANSFUSION 1985; 29:187-9. [PMID: 3161805 DOI: 10.1007/978-3-642-70385-0_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|