1
|
Dohm JC, Lange C, Holtgräwe D, Sörensen TR, Borchardt D, Schulz B, Lehrach H, Weisshaar B, Himmelbauer H. Palaeohexaploid ancestry for Caryophyllales inferred from extensive gene-based physical and genetic mapping of the sugar beet genome (Beta vulgaris). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:528-540. [PMID: 22211633 DOI: 10.1111/j.1365-313x.2011.04898.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sugar beet (Beta vulgaris) is an important crop plant that accounts for 30% of the world's sugar production annually. The genus Beta is a distant relative of currently sequenced taxa within the core eudicotyledons; the genomic characterization of sugar beet is essential to make its genome accessible to molecular dissection. Here, we present comprehensive genomic information in genetic and physical maps that cover all nine chromosomes. Based on this information we identified the proposed ancestral linkage groups of rosids and asterids within the sugar beet genome. We generated an extended genetic map that comprises 1127 single nucleotide polymorphism markers prepared from expressed sequence tags and bacterial artificial chromosome (BAC) end sequences. To construct a genome-wide physical map, we hybridized gene-derived oligomer probes against two BAC libraries with 9.5-fold cumulative coverage of the 758 Mbp genome. More than 2500 probes and clones were integrated both in genetic maps and the physical data. The final physical map encompasses 535 chromosomally anchored contigs that contains 8361 probes and 22 815 BAC clones. By using the gene order established with the physical map, we detected regions of synteny between sugar beet (order Caryophyllales) and rosid species that involves 1400-2700 genes in the sequenced genomes of Arabidopsis, poplar, grapevine, and cacao. The data suggest that Caryophyllales share the palaeohexaploid ancestor proposed for rosids and asterids. Taken together, we here provide extensive molecular resources for sugar beet and enable future high-resolution trait mapping, gene identification, and cross-referencing to regions sequenced in other plant species.
Collapse
Affiliation(s)
- Juliane C Dohm
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zechner U, Shi W, Hemberger M, Himmelbauer H, Otto S, Orth A, Kalscheuer V, Fischer U, Elango R, Reis A, Vogel W, Ropers H, Rüschendorf F, Fundele R. Divergent genetic and epigenetic post-zygotic isolation mechanisms in Mus and Peromyscus. J Evol Biol 2004; 17:453-60. [PMID: 15009278 DOI: 10.1046/j.1420-9101.2003.00656.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interspecific hybridization in the rodent genera Peromyscus and Mus results in abnormal placentation. In the Peromyscus interspecies hybrids, abnormal allelic interaction between an X-linked locus and the imprinted paternally expressed Peg3 locus was shown to cause the placental defects. In addition, loss-of-imprinting (LOI) of Peg3 was positively correlated with increased placental size. As in extreme cases this placental dysplasia constitutes a post-zygotic barrier against interspecies hybridization, this finding was the first direct proof that imprinted genes may be important in speciation and thus in evolution. In the Mus interspecies hybrids, a strong role of an X-linked locus in placental dysplasia has also been detected. However, here we show by backcross and allele specific expression analyses that neither LOI of Peg3 nor abnormal interactions between Peg3 and an X-linked locus are involved in generating placental dysplasia in Mus hybrids, although the placental phenotypes observed in the two genera seem to be identical. In contrast to this, another dysgenesis effect common to Peromyscus and Mus hybrids, altered foetal growth, is caused at least in part by the same X-chromosomal regions in both genera. These findings first underline the strong involvement of the X-chromosome in the genetics of speciation. Secondly, they indicate that disruption of epigenetic states, such as LOI, at specific loci may be involved in hybrid dysgenesis effects in one group, but not in another. Thus, we conclude that even in closely related groups divergent molecular mechanisms may be involved in the production of phenotypically similar post-zygotic barriers against hybridization.
Collapse
Affiliation(s)
- U Zechner
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Schalkwyk LC, Cusack B, Dunkel I, Hopp M, Kramer M, Palczewski S, Piefke J, Scheel S, Weiher M, Wenske G, Lehrach H, Himmelbauer H. Advanced integrated mouse YAC map including BAC framework. Genome Res 2001; 11:2142-50. [PMID: 11731506 PMCID: PMC311217 DOI: 10.1101/gr.176201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Functional characterization of the mouse genome requires the availability of a comprehensive physical map to obtain molecular access to chromosomal regions of interest. Positional cloning remains a crucial way of linking phenotype with particular genes. A key step and frequent stumbling block in positional cloning is making a contig of a genetically defined candidate region. The most efficient first step is isolating YAC (Yeast Artificial Chromosome) clones. A robust, detailed YAC contig map is thus an important tool. Employing Interspersed Repetitive Sequence (IRS)-PCR genomics, we have generated an advanced second-generation YAC contig map of the mouse genome that doubles both the depth of clones and the density of markers available. In addition to the primarily YAC-based map, we located 1942 BAC (Bacterial Artificial Chromosome) clones. This allows us to present for the first time a dense framework of BACs spanning the genome of the mouse, which, for instance, can serve as a nucleus for genomic sequencing. Four large-insert mouse YAC libraries from three different strains are included in our data, and our analysis incorporates the data of Hunter et al. and Nusbaum et al. There is a total of 20,205 markers on the final map, 12,033 from our own data, and a total of 56,093 YACs, of which 44,401 are positive for more than one marker.
Collapse
Affiliation(s)
- L C Schalkwyk
- Max-Planck-Institute of Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Gösele C, Hong L, Kreitler T, Rossmann M, Hieke B, Gross U, Kramer M, Himmelbauer H, Bihoreau MT, Kwitek-Black AE, Twigger S, Tonellato PJ, Jacob HJ, Schalkwyk LC, Lindpaintner K, Ganten D, Lehrach H, Knoblauch M. High-throughput scanning of the rat genome using interspersed repetitive sequence-PCR markers. Genomics 2000; 69:287-94. [PMID: 11056046 DOI: 10.1006/geno.2000.6352] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the establishment of a hybridization-based marker system for the rat genome based on the PCR amplification of interspersed repetitive sequences (IRS). Overall, 351 IRS markers were mapped within the rat genome. The IRS marker panel consists of 210 nonpolymorphic and 141 polymorphic markers that were screened for presence/absence polymorphism patterns in 38 different rat strains and substrains that are commonly used in biomedical research. The IRS marker panel was demonstrated to be useful for rapid genome screening in experimental rat crosses and high-throughput characterization of large-insert genomic library clones. Information on corresponding YAC clones is made available for this IRS marker set distributed over the whole rat genome. The two existing rat radiation hybrid maps were integrated by placing the IRS markers in both maps. The genetic and physical mapping data presented provide substantial information for ongoing positional cloning projects in the rat.
Collapse
Affiliation(s)
- C Gösele
- Max-Planck Institute of Molecular Genetics, Ihnestrasse 73, Berlin-Dahlem, D-14195, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Walsh CA. Genetics of neuronal migration in the cerebral cortex. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2000; 6:34-40. [PMID: 10899795 DOI: 10.1002/(sici)1098-2779(2000)6:1<34::aid-mrdd5>3.0.co;2-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of the cerebral cortex requires large-scale movement of neurons from areas of proliferation to areas of differentiation and adult function in the cortex proper, and the patterns of this neuronal migration are surprisingly complex. The migration of neurons is affected by several naturally occurring genetic defects in humans and mice; identification of the genes responsible for some of these conditions has recently yielded new insights into the mechanisms that regulate migration. Other key genes have been identified via the creation of induced mutations that can also cause dramatic disorders of neuronal migration. However, our understanding of the physiological and biochemical links between these genes is still relatively spotty. A number of molecules have also been studied in mice (Reelin, mDab1, and the VLDL and ApoE2 receptors) that appear to represent part of a coherent signaling pathway that regulates migration, because multiple genes cause an indistinguishable phenotype when mutated. On the other hand, two human genes that cause lissencephaly (LIS1, DCX) encode proteins that have recently been implicated as regulators or microtubule dynamics. This article reviews some of the mutant phenotypes in light of the mechanisms of neuronal migration. MRDD Research Reviews 6:34-40, 2000.
Collapse
Affiliation(s)
- C A Walsh
- Division of Neurogenetics, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA.
| |
Collapse
|
6
|
Hsu SJ, Erickson RP. Construction of a long-range YAC physical map spanning the 10-cM region between the markers D18Mit109 and D18Mit68 on mouse proximal chromosome 18. Genome 2000; 43:427-33. [PMID: 10902704 DOI: 10.1139/g99-124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four yeast artificial chromosome (YAC) contigs, physically approximately 8 Mb, have been constructed spanning a 10-cM region on mouse proximal chromosome 18 and include the sites of 21 known genes, including those near the twirler (Tw) locus and the recently isolated Niemann-Pick type C1 (npc1) gene, formerly designated as the spm locus. This physical map consists of 49 YAC clones that cover roughly 15% of the chromosome. The physical order of 38 microsatellite sequence-tagged sites (STSs) could be assembled and confirmed based on their presence or absence in individual YACs, from proximal D18Mit109 through distal D18Mit68. These YACs provide an important resource for the further characterization and identification of known and unknown genes. The physical map has been integrated with our previously published genetic linkage map and showed an average genetic to physical distance of cM/Mb > 1.1.
Collapse
Affiliation(s)
- S J Hsu
- Angel Charity for Children-Wings for Genetic Research, Steele Memorial Children's Research Center, Department of Pediatrics, The University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
7
|
Himmelbauer H, Schalkwyk LC, Lehrach H. Interspersed repetitive sequence (IRS)-PCR for typing of whole genome radiation hybrid panels. Nucleic Acids Res 2000; 28:e7. [PMID: 10606675 PMCID: PMC102539 DOI: 10.1093/nar/28.2.e7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The typing of a radiation hybrid (RH) panel is generally achieved using a unique primer pair for each marker. We here describe a complementing approach utilizing IRS-PCR. Advantages of this technology include the use of a single universal primer to specify any locus, the rapid typing of RH lines by hybridization, and the conservative use of hybrid DNA. The technology allows the mapping of a clone without the requirement for STS generation. To test the technique, we have mapped 48 BAC clones derived from mouse chromosome 12 which we mostly identified using complex probes. As mammalian genomes are repeat-rich, the technology can easily be adapted to species other than mouse.
Collapse
Affiliation(s)
- H Himmelbauer
- Max-Planck-Institute of Molecular Genetics, Ihnestrasse 73, D-14195 Berlin-Dahlem, Germany.
| | | | | |
Collapse
|
8
|
Abstract
Malformations of cortical development are increasingly recognized as causes of mental retardation and epilepsy. However, little is known about the molecular and biochemical signals that control the proliferation, migration, and organization of the cells involved in normal cerebral cortical development. Analysis of genes required for cortical development will help elucidate the pathogenesis of some epilepsies. In humans, two striking examples of abnormal cortical development, with varying degrees of epilepsy and mental retardation, are 'double cortex' and lissencephaly. Double cortex (DC), also known as subcortical band heterotopia, shows an abnormal band of neurons in the white matter underlying a relatively normal cortex. In pedigrees, DC often occurs in females, whereas affected males show more severe lissencephaly (XLIS), i.e. an abnormally thick cortex with decreased or absent surface convolutions. We and others have identified a novel brain specific gene, doublecortin, that is mutated in Double Cortex/X-linked lissencephaly (DC/XLIS) patients. Although the cellular function of doublecortin (DCX) is unknown, sequence analysis reveals a cytoplasmic protein with potential MAP kinase phosphorylation sites, as well as a site that is likely to be phosphorylated by c-Abl, suggesting that doublecortin functions as an intracellular signaling molecule critical for the migration of developing neurons. Interestingly, the scrambler mouse mutant demonstrates abnormal lamination with some similarity to lissencephaly and reflects a mutation in the murine homolog of the Drosophila disabled gene, mdab1, which binds c-Abl. Although a direct interaction between doublecortin and mDab1 has not been demonstrated, it is plausible that these two proteins may be part of a common signaling pathway. Therefore, abnormalities in signal transduction may be an underlying mechanism for the neuronal migration defects in DC/XLIS and the scrambler mouse, but further research is necessary to determine how such abnormalities give rise to cortical malformations and epilepsy.
Collapse
Affiliation(s)
- K M Allen
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | | |
Collapse
|
9
|
Hunter K, Greenwood J, Yang YL, Cunningham JM, Birren B, Housman D. An integrated somatic cell hybrid, YAC, and BAC map of the Rmc1 region of mouse chromosome 1. Genomics 1999; 58:318-22. [PMID: 10373331 DOI: 10.1006/geno.1999.5841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rmc1, the cellular receptor for the polytropic class of murine retroviruses, determines the tissue tropism of the virus and therefore plays a critical role in the pathogenesis of polytropic virus-induced leukemia. Previously we reported the physical mapping of this gene to a 5-cM region of mouse chromosome 1 and the construction of a yeast artificial chromosome (YAC) contig across this region. In this report we describe the refinement of the Rmc1 candidate region to approximately 600 kb and the generation of an integrated somatic cell hybrid, YAC, and bacterial artificial chromosome contig spanning the region. A number of genes and loci were physically ordered along the chromosome, including a recently identified candidate for Rmc1.
Collapse
Affiliation(s)
- K Hunter
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 01239, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Nock C, Gauss C, Schalkwyk LC, Klose J, Lehrach H, Himmelbauer H. Technology development at the interface of proteome research and genomics: mapping nonpolymorphic proteins on the physical map of mouse chromosomes. Electrophoresis 1999; 20:1027-32. [PMID: 10344281 DOI: 10.1002/(sici)1522-2683(19990101)20:4/5<1027::aid-elps1027>3.0.co;2-i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Data obtained from protein spots by peptide mass fingerprinting are used to identify the corresponding genes in sequence databases. The relevant cDNAs are obtained as clones from the Integrated Molecular Analysis of Genome Expression (I.M.A.G.E.) consortium. Mapping of I.M.A.G.E. clones is performed in two steps: first, cDNA clones are hybridized against a 10-hit genomic mouse bacterial artificial chromosome (BAC) library. Second, interspersed repetitive sequence polymerase chain reaction (IRS-PCR) using a single primer directed against the mouse B1 repeat element is performed on BACs. As each cDNA detects several BACs, and each individual BAC has a 50% chance to recover an IRS-PCR fragment, the majority of cDNAs produce at least a single IRS-PCR fragment. Individual IRS fragments are hybridized against high-density spotted filter grids containing the three-dimensional permutated pools of yeast artificial chromosome (YAC) library resources that are currently being used to construct a physical map of the mouse genome. IRS fragments that hybridize to YAC clones already placed into contigs immediately provide highly precise map positions. This technology therefore is able to draw links between proteins detected by 2-D gel electrophoresis and the corresponding gene loci in the mouse genome.
Collapse
Affiliation(s)
- C Nock
- Max-Planck-Institute for Molecular Genetics, Berlin-Dahlem, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Yang YL, Guo L, Xu S, Holland CA, Kitamura T, Hunter K, Cunningham JM. Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1. Nat Genet 1999; 21:216-9. [PMID: 9988277 DOI: 10.1038/6005] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The onset of leukaemia caused by type C retroviruses (MLV) in mice is accelerated by the emergence of recombinant polytropic or mink cell focus-forming (MCF) viruses. Susceptibility to infection by polytropic/MCF and also by closely related xenotropic MLV has been mapped to Rmc1 on mouse chromosome 1 (refs 5-7). To identify this gene, we introduced an expression cDNA library prepared from mouse NIH3T3 fibroblasts into nonpermissive hamster cells and screened these cells for acquired susceptibility to MCF viruses encoding beta-galactosidase and G418 resistance. From hamster cell clones identified in the screen, we recovered a mouse cDNA that maps to Rmc1 and confers MCF MLV infection when expressed in nonpermissive cell lines. It encodes a membrane protein related to Syg1p (suppressor of yeast G alpha deletion; ref. 8). The receptor-binding domain of the MCF MLV envelope protein binds specifically to Xenopus laevis oocytes that express mouse Syg1, suggesting it functions as a receptor that mediates virus entry. We also obtained the cDNA encoding human SYG1. When expressed in hamster cells, it establishes infectivity by MCF MLV as well as xenotropic MLV, which do not infect laboratory mice.
Collapse
Affiliation(s)
- Y L Yang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
This review is intended to provide an overview of techniques and a source of reagents for physical mapping of the mouse genome. It focuses on those applications, methods, or resources unique to the mouse and on the generation of comparative physical maps. The reference list is not comprehensive; rather, recent reviews on each topic and selected representative examples are given.
Collapse
Affiliation(s)
- G E Herman
- Department of Pediatrics, Ohio State University, Columbus, USA
| |
Collapse
|
13
|
Das M, Chu LL, Ghahremani M, Abrams-Ogg T, Roy MS, Housman D, Pelletier J. Characterization of an abundant short interspersed nuclear element (SINE) present in Canis familiaris. Mamm Genome 1998; 9:64-9. [PMID: 9434948 DOI: 10.1007/s003359900681] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A short interspersed nuclear element (Can SINE) of approximately 130-150 bp was cloned and characterized from Canis familiaris. We demonstrate that this element is interspersed, present approximately every 5-8.3 kbp, and many are sufficiently close to allow IRS (interspersed repetitive DNA sequences) PCR. Sequence analysis of > 20 Can SINEs from the dog has identified a conserved region that was used to design oligonucleotides for IRS PCR. Since Can SINEs are not present in human or rodent genomes, IRS PCR using oligonucleotides directed to the conserved region of Can SINEs can be used to simplify analysis of canid DNA in somatic cell hybrids, as well as in large insert cloning vectors. We demonstrate that the canid IRS products are polymorphic and could be developed as genetic markers for filter-based genotyping in this organism.
Collapse
Affiliation(s)
- M Das
- Dept. of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Hunter K. Application of interspersed repetitive sequence polymerase chain reaction for construction of yeast artificial chromosome contigs. Methods 1997; 13:327-35. [PMID: 9480779 DOI: 10.1006/meth.1997.0541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Construction of physical maps across candidate regions is one of the rate-limiting steps of positional cloning projects. To date, most physical maps have been constructed by polymerase chain reaction (PCR)-based sequence-tagged site (STS) content mapping. While effective, this technique has a number of disadvantages including problems with yeast artificial chromosome (YAC) chimerism, the time and effort required to generate new STSs from YAC ends, the cost of primer synthesis for large contiging projects, and the time, effort, and expense necessary for screening each STS in the two-tiered hierarchical YAC library screening format. An alternative strategy, interspersed repetitive sequence (IRS) PCR genomics, alleviates many of these constraints. Clonal overlap is detected by hybridization of individual IRS-PCR products to IRS-PCR product pools of the three-dimensional coordinate pools of YAC libraries in dot-blot format. Entire libraries can be screened in a single step, and multiple libraries can be screened simultaneously. Cloning YAC fragments, sequencing, and primer generation are eliminated, increasing the efficiency of contig construction and reducing the expense. In addition, the genomic location of the individual IRS-PCR products can also be simultaneously determined by screening either interspecific backcrosses or radiation hybrid panels, in dot-blot format, confirming contig extension in the region of interest.
Collapse
Affiliation(s)
- K Hunter
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
15
|
Ware ML, Fox JW, González JL, Davis NM, Lambert de Rouvroit C, Russo CJ, Chua SC, Goffinet AM, Walsh CA. Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 1997; 19:239-49. [PMID: 9292716 DOI: 10.1016/s0896-6273(00)80936-8] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although accurate long-distance neuronal migration is a cardinal feature of cerebral cortical development, little is known about control of this migration. The scrambler (scm) mouse shows abnormal cortical lamination that is indistinguishable from reeler. Genetic and physical mapping of scm identified yeast artificial chromosomes containing an exon of mdab1, a homolog of Drosophila disabled, which encodes a phosphoprotein that binds nonreceptor tyrosine kinases. mdab1 transcripts showed abnormal splicing in scm homozygotes, with 1.5 kb of intracisternal A particle retrotransposon sequence inserted into the mdab1 coding region in antisense orientation, producing a mutated and truncated predicted protein. Therefore, mdab1 is most likely the scm gene, thus implicating nonreceptor tyrosine kinases in neuronal migration and lamination in developing cerebral cortex.
Collapse
Affiliation(s)
- M L Ware
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sabile A, Poras I, Cherif D, Goodfellow P, Avner P. Isolation of monochromosomal hybrids for mouse chromosomes 3, 6, 10, 12, 14, and 18. Mamm Genome 1997; 8:81-5. [PMID: 9060403 DOI: 10.1007/s003359900362] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mouse/human somatic cell hybrids constitute a valuable resource for both genetic and physical mapping. In this report, we describe the production and characterization of a series of six monochromosomal hybrids generated by fusion of murine micro-cells with intact human recipient cells. The presence of each mouse chromosome was characterized by PCR analysis and the integrity of the mouse chromosome retained in the hybrids confirmed by fluorescence in situ hybridization (FISH) analysis.
Collapse
Affiliation(s)
- A Sabile
- Unité de Génétique Moléculaire Murine, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
17
|
Rotomondo F, Poirier C, Schmitt L, Canard B, Carle GF. Isolation and mapping of three STSs on mouse chromosome 19. Mamm Genome 1996; 7:464. [PMID: 8662219 DOI: 10.1007/s003359900282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- F Rotomondo
- Laboratoire d'Etude du Génome Murin, C.N.R.S. URA 1462, Faculté de Médecine, Université de Nice-Sophia Antipolis, France
| | | | | | | | | |
Collapse
|
18
|
Elango R, Riba L, Housman D, Hunter K. Generation and mapping of Mus spretus strain-specific markers for rapid genomic scanning. Mamm Genome 1996; 7:340-3. [PMID: 8661719 DOI: 10.1007/s003359900099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We describe here a set of genetic markers, based on IRS-PCR amplification difference, that are specifically designed for efficient, high throughput genetic mapping in [(M. domesticus x wild-derived) F1 x M. domesticus] interspecific backcrosses. 146 new genetic loci have been mapped, and strain distribution for these markers has been determined in 96 mouse strains. 103 (81%) of 127 tested markers are present only in one or more wild-derived strains, but absent in 76 other commonly used strains, demonstrating their utility in a variety of mouse pair combinations. Because of the ease of genotyping with this marker set, rapid genome scans for complex genetic trait loci involving crosses between wild-derived strains and other commonly used strains can now be carried out efficiently with large numbers of animals.
Collapse
Affiliation(s)
- R Elango
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
19
|
Hunter KW, Riba L, Schalkwyk L, Clark M, Resenchuk S, Beeghly A, Su J, Tinkov F, Lee P, Ramu E, Lehrach H, Housman D. Toward the construction of integrated physical and genetic maps of the mouse genome using interspersed repetitive sequence PCR (IRS-PCR) genomics. Genome Res 1996; 6:290-9. [PMID: 8723722 DOI: 10.1101/gr.6.4.290] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Using two recently developed techniques, IRS-PCR YAC walking and IRS-PCR genotyping, a framework-integrated physical and genetic map of the mouse genome was constructed. The map consists of 821 contigs, containing 7746 YAC clones originating from three different YAC libraries. Three hundred eighty of the contigs have been anchored to the genetic map. Approximately 16% of the physical length of the mouse genome is estimated to be represented.
Collapse
Affiliation(s)
- K W Hunter
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rettenberger G, Zimmermann W, Klett C, Zechner U, Hameister H. Mapping of murine YACs containing the genes Cea2 and Cea4 after B1-PCR amplification and FISH-analysis. Chromosome Res 1995; 3:473-8. [PMID: 8581299 DOI: 10.1007/bf00713961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PCR with primers specific for the murine B1 consensus sequence allows amplification of DNA from murine sources. We have used B1-PCR for amplifying yeast artificial chromosome (YAC) DNA which can be used to localize single YACs by fluorescence in situ hybridization. The genes for the pregnancy-specific glycoproteins Cea2 and Cea4, both belonging to the large carcinoembryonic antigen gene family, were localized by chromosomal in situ suppression hybridization of three YAC clones to murine chromosome 7A2-A3. This was facilitated by the use of the mouse lymphoma cell line WMP/WMP which contains nine pairs of Robertsonian fusion chromosomes.
Collapse
Affiliation(s)
- G Rettenberger
- Abteilung Medizinische Genetik, Universität Ulm, Germany
| | | | | | | | | |
Collapse
|
21
|
Hamvas RM, Lehrach HR. Repetitive sequence fingerprinting in the long range mapping of mammalian genomes. Electrophoresis 1995; 16:1602-6. [PMID: 8582341 DOI: 10.1002/elps.11501601264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review presents some properties of interspersed repeats, particularly human and mouse repeats, and shows how these have been utilized in long-range genome mapping. The link between the distribution of such repeats and their relationship with genome organization is discussed.
Collapse
Affiliation(s)
- R M Hamvas
- Genome Analysis Laboratory, Imperial Cancer Research Fund, London, UK
| | | |
Collapse
|
22
|
McCarthy L, Hunter K, Schalkwyk L, Riba L, Anson S, Mott R, Newell W, Bruley C, Bar I, Ramu E. Efficient high-resolution genetic mapping of mouse interspersed repetitive sequence PCR products, toward integrated genetic and physical mapping of the mouse genome. Proc Natl Acad Sci U S A 1995; 92:5302-6. [PMID: 7777502 PMCID: PMC41682 DOI: 10.1073/pnas.92.12.5302] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The ability to carry out high-resolution genetic mapping at high throughput in the mouse is a critical rate-limiting step in the generation of genetically anchored contigs in physical mapping projects and the mapping of genetic loci for complex traits. To address this need, we have developed an efficient, high-resolution, large-scale genome mapping system. This system is based on the identification of polymorphic DNA sites between mouse strains by using interspersed repetitive sequence (IRS) PCR. Individual cloned IRS PCR products are hybridized to a DNA array of IRS PCR products derived from the DNA of individual mice segregating DNA sequences from the two parent strains. Since gel electrophoresis is not required, large numbers of samples can be genotyped in parallel. By using this approach, we have mapped > 450 polymorphic probes with filters containing the DNA of up to 517 backcross mice, potentially allowing resolution of 0.14 centimorgan. This approach also carries the potential for a high degree of efficiency in the integration of physical and genetic maps, since pooled DNAs representing libraries of yeast artificial chromosomes or other physical representations of the mouse genome can be addressed by hybridization of filter representations of the IRS PCR products of such libraries.
Collapse
Affiliation(s)
- L McCarthy
- Imperial Cancer Research Fund, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|