1
|
Chen Y, Wang R, Zhu Z, Subedi N, Jiang X, Jing M, Huang L. Phylogenomic analyses revealed a new lineage of house mouse (Mus musculus) in Gyirong Basin of Xizang Autonomous Region, China. Mol Phylogenet Evol 2025; 209:108370. [PMID: 40339673 DOI: 10.1016/j.ympev.2025.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/03/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
In the present study, we collected 20 individuals and 12 individuals of wild mice from the Gyirong Basin of Xizang Autonomous Region in China and Sudurpashchim in Nepal. Phylogeny and genetic structure inferred from different types of genomic markers suggest that these samples all belong to Mus musculus, among which individuals from Gyirong Basin represent a new genomic lineage (named as M. m. gyirongus), and samples from Sudurpashchim represent an intermediate population between the central population and M. m. castaneus. M. m. gyirongus, along with M. m. domesticus and M. m. musculus, differentiated from the central population compactly during ∼ 272,000-251,000 years ago in the interglacial period. Three lineages all experienced continuous population decline before ∼ 70,000 years ago. Then, they underwent population fluctuations at different periods that might have been impacted by climate changes, migration history, and human activities. Genes related to the structure and function of neural synapses, reproduction and development, regulation of cell cycle and carcinogenesis, and immune response have undergone positive selection in the genome of M. m. gyirongus. The discovery of M. m. gyirongus not only helps us to better understand the evolutionary history of M. musculus, but also provides new regional resources for breeding novel laboratory mouse strains.
Collapse
Affiliation(s)
- Yingjie Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Rongguo Wang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Zhongxu Zhu
- Key Laboratory of Genetic Evolution and Animal Models & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Naresh Subedi
- National Trust for Nature Conservation, Lalitpur, Nepal
| | - Xuelong Jiang
- Key Laboratory of Genetic Evolution and Animal Models & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Meidong Jing
- School of Life Sciences, Nantong University, Nantong 226019, China.
| | - Ling Huang
- School of Life Sciences, Nantong University, Nantong 226019, China.
| |
Collapse
|
2
|
Macholán M, Daniszová K, Hiadlovská Z. The Expansion of House Mouse Major Urinary Protein Genes Likely Did Not Facilitate Commensalism with Humans. Genes (Basel) 2023; 14:2090. [PMID: 38003032 PMCID: PMC10671799 DOI: 10.3390/genes14112090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Mouse wild-derived strains (WDSs) combine the advantages of classical laboratory stocks and wild animals, and thus appear to be promising tools for diverse biomedical and evolutionary studies. We employed 18 WDSs representing three non-synanthropic species (Mus spretus, Mus spicilegus, and M. macedonicus) and three house mouse subspecies (Mus musculus musculus, M. m. domesticus, M. m. castaneus), which are all important human commensals to explore whether the number of major urinary protein (MUP) genes and their final protein levels in urine are correlated with the level of commensalism. Contrary to expectations, the MUP copy number (CN) and protein excretion in the strains derived from M. m. castaneus, which is supposed to be the strongest commensal, were not significantly different from the non-commensal species. Regardless of an overall tendency for higher MUP amounts in taxa with a higher CN, there was no significant correlation at the strain level. Our study thus suggests that expansion of the Mup cluster, which appeared before the house mouse diversification, is unlikely to facilitate commensalism with humans in three house mouse subspecies. Finally, we found considerable variation among con(sub)specific WDSs, warning against generalisations of results based on a few strains.
Collapse
Affiliation(s)
- Miloš Macholán
- Institute of Animal Physiology and Genetics, Laboratory of Mammalian Evolutionary Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic
| | - Kristina Daniszová
- Institute of Animal Physiology and Genetics, Laboratory of Mammalian Evolutionary Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Zuzana Hiadlovská
- Institute of Animal Physiology and Genetics, Laboratory of Mammalian Evolutionary Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| |
Collapse
|
3
|
Kopania EEK, Watson EM, Rathje CC, Skinner BM, Ellis PJI, Larson EL, Good JM. The contribution of sex chromosome conflict to disrupted spermatogenesis in hybrid house mice. Genetics 2022; 222:iyac151. [PMID: 36194004 PMCID: PMC9713461 DOI: 10.1093/genetics/iyac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/27/2022] [Indexed: 12/13/2022] Open
Abstract
Incompatibilities on the sex chromosomes are important in the evolution of hybrid male sterility, but the evolutionary forces underlying this phenomenon are unclear. House mice (Mus musculus) lineages have provided powerful models for understanding the genetic basis of hybrid male sterility. X chromosome-autosome interactions cause strong incompatibilities in M. musculus F1 hybrids, but variation in sterility phenotypes suggests a more complex genetic basis. In addition, XY chromosome conflict has resulted in rapid expansions of ampliconic genes with dosage-dependent expression that is essential to spermatogenesis. Here, we evaluated the contribution of XY lineage mismatch to male fertility and stage-specific gene expression in hybrid mice. We performed backcrosses between two house mouse subspecies to generate reciprocal Y-introgression strains and used these strains to test the effects of XY mismatch in hybrids. Our transcriptome analyses of sorted spermatid cells revealed widespread overexpression of the X chromosome in sterile F1 hybrids independent of Y chromosome subspecies origin. Thus, postmeiotic overexpression of the X chromosome in sterile F1 mouse hybrids is likely a downstream consequence of disrupted meiotic X-inactivation rather than XY gene copy number imbalance. Y chromosome introgression did result in subfertility phenotypes and disrupted expression of several autosomal genes in mice with an otherwise nonhybrid genomic background, suggesting that Y-linked incompatibilities contribute to reproductive barriers, but likely not as a direct consequence of XY conflict. Collectively, these findings suggest that rapid sex chromosome gene family evolution driven by genomic conflict has not resulted in strong male reproductive barriers between these subspecies of house mice.
Collapse
Affiliation(s)
- Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Eleanor M Watson
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Claudia C Rathje
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | | | - Peter J I Ellis
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
4
|
Mukaj A, Piálek J, Fotopulosova V, Morgan AP, Odenthal-Hesse L, Parvanov ED, Forejt J. Prdm9 Intersubspecific Interactions in Hybrid Male Sterility of House Mouse. Mol Biol Evol 2020; 37:3423-3438. [PMID: 32642764 PMCID: PMC7743643 DOI: 10.1093/molbev/msaa167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The classical definition posits hybrid sterility as a phenomenon when two parental taxa each of which is fertile produce a hybrid that is sterile. The first hybrid sterility gene in vertebrates, Prdm9, coding for a histone methyltransferase, was identified in crosses between two laboratory mouse strains derived from Mus mus musculus and M. m. domesticus subspecies. The unique function of PRDM9 protein in the initiation of meiotic recombination led to the discovery of the basic molecular mechanism of hybrid sterility in laboratory crosses. However, the role of this protein as a component of reproductive barrier outside the laboratory model remained unclear. Here, we show that the Prdm9 allelic incompatibilities represent the primary cause of reduced fertility in intersubspecific hybrids between M. m. musculus and M. m. domesticus including 16 musculus and domesticus wild-derived strains. Disruption of fertility phenotypes correlated with the rate of failure of synapsis between homologous chromosomes in meiosis I and with early meiotic arrest. All phenotypes were restored to normal when the domesticus Prdm9dom2 allele was substituted with the Prdm9dom2H humanized variant. To conclude, our data show for the first time the male infertility of wild-derived musculus and domesticus subspecies F1 hybrids controlled by Prdm9 as the major hybrid sterility gene. The impairment of fertility surrogates, testes weight and sperm count, correlated with increasing difficulties of meiotic synapsis of homologous chromosomes and with meiotic arrest, which we suppose reflect the increasing asymmetry of PRDM9-dependent DNA double-strand breaks.
Collapse
Affiliation(s)
- Amisa Mukaj
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Vladana Fotopulosova
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | | | - Linda Odenthal-Hesse
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Emil D Parvanov
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | - Jiri Forejt
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| |
Collapse
|
5
|
Balard A, Jarquín-Díaz VH, Jost J, Martincová I, Ďureje Ľ, Piálek J, Macholán M, Goüy de Bellocq J, Baird SJE, Heitlinger E. Intensity of infection with intracellular Eimeria spp. and pinworms is reduced in hybrid mice compared to parental subspecies. J Evol Biol 2020; 33:435-448. [PMID: 31834960 DOI: 10.1111/jeb.13578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 11/27/2022]
Abstract
Genetic diversity in animal immune systems is usually beneficial. In hybrid recombinants, this is less clear, as the immune system could also be impacted by genetic conflicts. In the European house mouse hybrid zone, the long-standing impression that hybrid mice are more highly parasitized and less fit than parentals persists despite the findings of recent studies. Working across a novel transect, we assessed infections by intracellular protozoans, Eimeria spp., and infections by extracellular macroparasites, pinworms. For Eimeria, we found lower intensities in hybrid hosts than in parental mice but no evidence of lowered probability of infection or increased mortality in the centre of the hybrid zone. This means ecological factors are very unlikely to be responsible for the reduced load of infected hybrids. Focusing on parasite intensity (load in infected hosts), we also corroborated reduced pinworm loads reported for hybrid mice in previous studies. We conclude that intensity of diverse parasites, including the previously unstudied Eimeria, is reduced in hybrid mice compared to parental subspecies. We suggest caution in extrapolating this to differences in hybrid host fitness in the absence of, for example, evidence for a link between parasitemia and health.
Collapse
Affiliation(s)
- Alice Balard
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V., Berlin, Germany
| | - Víctor Hugo Jarquín-Díaz
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V., Berlin, Germany
| | - Jenny Jost
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V., Berlin, Germany
| | - Iva Martincová
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Ľudovít Ďureje
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Miloš Macholán
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Joëlle Goüy de Bellocq
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Stuart J E Baird
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V., Berlin, Germany
| |
Collapse
|
6
|
Abstract
Over the 180 My since their origin, the sex chromosomes of mammals have evolved a gene repertoire highly specialized for function in the male germline. The mouse Y chromosome is unique among mammalian Y chromosomes characterized to date in that it is large, gene-rich and euchromatic. Yet, little is known about its diversity in natural populations. Here, we take advantage of published whole-genome sequencing data to survey the diversity of sequence and copy number of sex-linked genes in three subspecies of house mice. Copy number of genes on the repetitive long arm of both sex chromosomes is highly variable, but sequence diversity in nonrepetitive regions is decreased relative to expectations based on autosomes. We use simulations and theory to show that this reduction in sex-linked diversity is incompatible with neutral demographic processes alone, but is consistent with recent positive selection on genes active during spermatogenesis. Our results support the hypothesis that the mouse sex chromosomes are engaged in ongoing intragenomic conflict.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | | |
Collapse
|
7
|
Chang PL, Kopania E, Keeble S, Sarver BAJ, Larson E, Orth A, Belkhir K, Boursot P, Bonhomme F, Good JM, Dean MD. Whole exome sequencing of wild-derived inbred strains of mice improves power to link phenotype and genotype. Mamm Genome 2017; 28:416-425. [PMID: 28819774 DOI: 10.1007/s00335-017-9704-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022]
Abstract
The house mouse is a powerful model to dissect the genetic basis of phenotypic variation, and serves as a model to study human diseases. Despite a wealth of discoveries, most classical laboratory strains have captured only a small fraction of genetic variation known to segregate in their wild progenitors, and existing strains are often related to each other in complex ways. Inbred strains of mice independently derived from natural populations have the potential to increase power in genetic studies with the addition of novel genetic variation. Here, we perform exome-enrichment and high-throughput sequencing (~8× coverage) of 26 wild-derived strains known in the mouse research community as the "Montpellier strains." We identified 1.46 million SNPs in our dataset, approximately 19% of which have not been detected from other inbred strains. This novel genetic variation is expected to contribute to phenotypic variation, as they include 18,496 nonsynonymous variants and 262 early stop codons. Simulations demonstrate that the higher density of genetic variation in the Montpellier strains provides increased power for quantitative genetic studies. Inasmuch as the power to connect genotype to phenotype depends on genetic variation, it is important to incorporate these additional genetic strains into future research programs.
Collapse
Affiliation(s)
- Peter L Chang
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA
| | - Emily Kopania
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA.,Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Sara Keeble
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA.,Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Brice A J Sarver
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Erica Larson
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.,Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Annie Orth
- Institut des Sciences de l'Evolution, CNRS UMR554, Université de Montpellier, Montpellier, France
| | - Khalid Belkhir
- Institut des Sciences de l'Evolution, CNRS UMR554, Université de Montpellier, Montpellier, France
| | - Pierre Boursot
- Institut des Sciences de l'Evolution, CNRS UMR554, Université de Montpellier, Montpellier, France
| | - François Bonhomme
- Institut des Sciences de l'Evolution, CNRS UMR554, Université de Montpellier, Montpellier, France
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Matthew D Dean
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA.
| |
Collapse
|
8
|
Prokop JW, Deschepper CF. Chromosome Y genetic variants: impact in animal models and on human disease. Physiol Genomics 2015; 47:525-37. [PMID: 26286457 DOI: 10.1152/physiolgenomics.00074.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chromosome Y (chrY) variation has been associated with many complex diseases ranging from cancer to cardiovascular disorders. Functional roles of chrY genes outside of testes are suggested by the fact that they are broadly expressed in many other tissues and correspond to regulators of basic cellular functions (such as transcription, translation, and protein stability). However, the unique genetic properties of chrY (including the lack of meiotic crossover and the presence of numerous highly repetitive sequences) have made the identification of causal variants very difficult. Despite the prior lack of reliable sequences and/or data on genetic polymorphisms, earlier studies with animal chrY consomic strains have made it possible to narrow down the phenotypic contributions of chrY. Some of the evidence so far indicates that chrY gene variants associate with regulatory changes in the expression of other autosomal genes, in part via epigenetic effects. In humans, a limited number of studies have shown associations between chrY haplotypes and disease traits. However, recent sequencing efforts have made it possible to greatly increase the identification of genetic variants on chrY, which promises that future association of chrY with disease traits will be further refined. Continuing studies (both in humans and in animal models) will be critical to help explain the many sex-biased disease states in human that are contributed to not only by the classical sex steroid hormones, but also by chrY genetics.
Collapse
Affiliation(s)
- J W Prokop
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama; and
| | - C F Deschepper
- Institut de recherches cliniques de Montréal (IRCM) and Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Abstract
Today’s laboratory mouse, Mus musculus, has its origins as the ‘house mouse’ of North America and Europe. Beginning with mice bred by mouse fanciers, laboratory stocks (outbred) derived from M. musculus musculus from eastern Europe and M. m. domesticus from western Europe were developed into inbred strains. Since the mid-1980s, additional strains have been developed from Asian mice (M. m. castaneus from Thailand and M. m. molossinus from Japan) and from M. spretus which originated from the western Mediterranean region.
Collapse
|
10
|
McCormick H, Cursons R, Wilkins RJ, King CM. Location of a contact zone between Mus musculus domesticus and M. m. domesticus with M. m. castaneus mtDNA in southern New Zealand. Mamm Biol 2014. [DOI: 10.1016/j.mambio.2014.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Didion JP, de Villena FPM. Deconstructing Mus gemischus: advances in understanding ancestry, structure, and variation in the genome of the laboratory mouse. Mamm Genome 2013; 24:1-20. [PMID: 23223940 PMCID: PMC4034049 DOI: 10.1007/s00335-012-9441-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/05/2012] [Indexed: 01/26/2023]
Abstract
The laboratory mouse is an artificial construct with a complex relationship to its natural ancestors. In 2002, the mouse became the first mammalian model organism with a reference genome. Importantly, the mouse genome sequence was assembled from data on a single inbred laboratory strain, C57BL/6. Several large-scale genetic variant discovery efforts have been conducted, resulting in a catalog of tens of millions of SNPs and structural variants. High-density genotyping arrays covering a subset of those variants have been used to produce hundreds of millions of genotypes in laboratory stocks and a small number of wild mice. These landmark resources now enable us to determine relationships among laboratory mice, assign local ancestry at fine scale, resolve important controversies, and identify a new set of challenges-most importantly, the troubling scarcity of genetic data on the very natural populations from which the laboratory mouse was derived. Our aim with this review is to provide the reader with an historical context for the mouse as a model organism and to explain how practical decisions made in the past have influenced both the architecture of the laboratory mouse genome and the design and execution of current large-scale resources. We also provide examples on how the accomplishments of the past decade can be used by researchers to streamline the use of mice in their experiments and correctly interpret results. Finally, we propose future steps that will enable the mouse community to extend its successes in the decade to come.
Collapse
Affiliation(s)
- John P. Didion
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Ďureje Ľ, Macholán M, Baird SJE, Piálek J. The mouse hybrid zone in Central Europe: from morphology to molecules. FOLIA ZOOLOGICA 2012. [DOI: 10.25225/fozo.v61.i3.a13.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ľudovít Ďureje
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic
| | - Miloš Macholán
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, v.v.i., Veveří 97, 602 00 Brno, Czech Republic
| | - Stuart J. E. Baird
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic
- CIBIO, University of Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Jaroslav Piálek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic
| |
Collapse
|
13
|
Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, Bonhomme F, Yu AHT, Nachman MW, Pialek J, Tucker P, Boursot P, McMillan L, Churchill GA, de Villena FPM. Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet 2011; 43:648-55. [PMID: 21623374 PMCID: PMC3125408 DOI: 10.1038/ng.847] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 05/05/2011] [Indexed: 11/09/2022]
Abstract
Here we provide a genome-wide, high-resolution map of the phylogenetic origin of the genome of most extant laboratory mouse inbred strains. Our analysis is based on the genotypes of wild-caught mice from three subspecies of Mus musculus. We show that classical laboratory strains are derived from a few fancy mice with limited haplotype diversity. Their genomes are overwhelmingly Mus musculus domesticus in origin, and the remainder is mostly of Japanese origin. We generated genome-wide haplotype maps based on identity by descent from fancy mice and show that classical inbred strains have limited and non-randomly distributed genetic diversity. In contrast, wild-derived laboratory strains represent a broad sampling of diversity within M. musculus. Intersubspecific introgression is pervasive in these strains, and contamination by laboratory stocks has played a role in this process. The subspecific origin, haplotype diversity and identity by descent maps can be visualized using the Mouse Phylogeny Viewer (see URLs).
Collapse
Affiliation(s)
- Hyuna Yang
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pertile MD, Graham AN, Choo KHA, Kalitsis P. Rapid evolution of mouse Y centromere repeat DNA belies recent sequence stability. Genome Res 2009; 19:2202-13. [PMID: 19737860 DOI: 10.1101/gr.092080.109] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Y centromere sequence of house mouse, Mus musculus, remains unknown despite our otherwise significant knowledge of the genome sequence of this important mammalian model organism. Here, we report the complete molecular characterization of the C57BL/6J chromosome Y centromere, which comprises a highly diverged minor satellite-like sequence (designated Ymin) with higher-order repeat (HOR) sequence organization previously undescribed at mouse centromeres. The Ymin array is approximately 90 kb in length and resides within a single BAC clone that provides sequence information spanning an endogenous animal centromere for the first time. By exploiting direct patrilineal inheritance of the Y chromosome, we demonstrate stability of the Y centromere DNA structure spanning at least 175 inbred generations to beyond the time of domestication of the East Asian M.m. molossinus "fancy" mouse through which the Y chromosome was first introduced into the classical inbred laboratory mouse strains. Despite this stability, at least three unequal genetic exchange events have altered Ymin HOR unit length and sequence structure since divergence of the ancestral Mus musculus subspecies around 900,000 yr ago, with major turnover of the HOR arrays driving rapid divergence of sequence and higher-order structure at the mouse Y centromere. A comparative sequence analysis between the human and chimpanzee centromeres indicates a similar rapid divergence of the primate Y centromere. Our data point to a unique DNA sequence and organizational architecture for the mouse Y centromere that has evolved independently of all other mouse centromeres.
Collapse
Affiliation(s)
- Mark D Pertile
- Murdoch Childrens Research Institute, Victoria, Australia
| | | | | | | |
Collapse
|
15
|
Anderson PD, Lam MY, Poirier C, Bishop CE, Nadeau JH. The role of the mouse y chromosome on susceptibility to testicular germ cell tumors. Cancer Res 2009; 69:3614-8. [PMID: 19351821 PMCID: PMC3375048 DOI: 10.1158/0008-5472.can-08-4881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Testicular germ cell tumors (TGCT) are sex limited, occurring only in males with a Y chromosome. Recently, the gr/gr deletion on the human Y chromosome was associated with increased risk of TGCTs. In addition, the presence of Y chromosome sequences is associated with TGCTs in cases of gonadal dysgenesis. TGCTs in strain 129 males recapitulate many aspects of testicular cancer in human infants and can be used to evaluate the role of the Y chromosome in TGCT risk. We used chromosome substitution strains and a sex-reversing mutant to test the role of the Y chromosome on TGCT susceptibility. Our results show that a Y-linked gene that does not differ among the tested strains is essential for tumorigenesis.
Collapse
Affiliation(s)
- Philip D. Anderson
- Department of Genetics and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Man-Yee Lam
- Department of Genetics and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | | | - Colin E. Bishop
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Joseph H. Nadeau
- Department of Genetics and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
16
|
Genetic conflict outweighs heterogametic incompatibility in the mouse hybrid zone? BMC Evol Biol 2008; 8:271. [PMID: 18834509 PMCID: PMC2576241 DOI: 10.1186/1471-2148-8-271] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 10/03/2008] [Indexed: 11/24/2022] Open
Abstract
Background The Mus musculus musculus/M. m. domesticus contact zone in Europe is characterised by sharp frequency discontinuities for sex chromosome markers at the centre of wider clines in allozyme frequencies. Results We identify a triangular area (approximately 330 km2) where the musculus Y chromosome introgresses across this front for up to 22 km into domesticus territory. Introgression of the Y chromosome is accompanied by a perturbation of the census sex ratio: the sex ratio is significantly female biased in musculus localities and domesticus localities lacking Y chromosome introgression. In contrast, where the musculus Y is detected in domesticus localities, the sex ratio is close to parity, and significantly different from both classes of female biased localities. The geographic position of an abrupt cline in an X chromosome marker, and autosomal clines centred on the same position, seem unaffected by the musculus Y introgression. Conclusion We conclude that sex ratio distortion is playing a role in the geographic separation of speciation genes in this section of the mouse hybrid zone. We suggest that clines for genes involved in sex-ratio distortion have escaped from the centre of the mouse hybrid zone, causing a decay in the barrier to gene flow between the two house mouse taxa.
Collapse
|
17
|
Yang H, Bell TA, Churchill GA, Pardo-Manuel de Villena F. On the subspecific origin of the laboratory mouse. Nat Genet 2007; 39:1100-7. [PMID: 17660819 DOI: 10.1038/ng2087] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 05/31/2007] [Indexed: 01/20/2023]
Abstract
The genome of the laboratory mouse is thought to be a mosaic of regions with distinct subspecific origins. We have developed a high-resolution map of the origin of the laboratory mouse by generating 25,400 phylogenetic trees at 100-kb intervals spanning the genome. On average, 92% of the genome is of Mus musculus domesticus origin, and the distribution of diversity is markedly nonrandom among the chromosomes. There are large regions of extremely low diversity, which represent blind spots for studies of natural variation and complex traits, and hot spots of diversity. In contrast with the mosaic model, we found that most of the genome has intermediate levels of variation of intrasubspecific origin. Finally, mouse strains derived from the wild that are supposed to represent different mouse subspecies show substantial intersubspecific introgression, which has strong implications for evolutionary studies that assume these are pure representatives of a given subspecies.
Collapse
Affiliation(s)
- Hyuna Yang
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | |
Collapse
|
18
|
Llamas B, Bélanger S, Picard S, Deschepper CF. Cardiac mass and cardiomyocyte size are governed by different genetic loci on either autosomes or chromosome Y in recombinant inbred mice. Physiol Genomics 2007; 31:176-82. [PMID: 17566079 DOI: 10.1152/physiolgenomics.00072.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Left ventricular hypertrophy is one of the main risk factors for cardiovascular mortality and morbidity. It has been proposed that hypertrophic stimuli act in great part by increasing the size of cardiomyocytes, and that the latter characteristic is a necessary condition to differentiate left ventricular hypertrophy from other benign forms of cardiac enlargement. To test whether the same genetic loci control the size of cardiomyocytes and left ventricular mass, we performed whole genome linkage analyses in a panel of 24 recombinant inbred AXB/BXA mouse strains. Whereas one major locus was linked to left ventricular mass in both males and females, loci linked to the size of cardiomyocytes were clearly distinct and showed sex-specific linkage. Moreover, the parental origin of chromosome Y had strong effects on the size of cardiomyocytes in male mice but did not affect left ventricular mass. In addition to showing that genetic loci that increase the size of cardiomyocytes are not necessarily linked to increased left ventricular mass, our findings have important consequences in evaluating cardiac phenotypes when performing genetic manipulations in mice, and in determining the cause of sex-specific differences when using models derived from C57BL/6J mice.
Collapse
MESH Headings
- Animals
- Body Weight
- Cell Size
- Crosses, Genetic
- Female
- Heart Ventricles/anatomy & histology
- Hemodynamics/genetics
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/pathology
- Lod Score
- Male
- Mice
- Mice, Inbred A/genetics
- Mice, Inbred A/physiology
- Mice, Inbred C57BL/genetics
- Mice, Inbred C57BL/physiology
- Models, Genetic
- Myocytes, Cardiac/cytology
- Organ Size
- Phenotype
- Quantitative Trait Loci/genetics
- Recombination, Genetic/genetics
- Sex Characteristics
- Specific Pathogen-Free Organisms
- Y Chromosome/genetics
Collapse
Affiliation(s)
- Bastien Llamas
- Experimental Cardiovascular Biology Research Unit, Institut de Recherches Cliniques de Montréal and Université de Montréal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
19
|
Oka A, Aoto T, Totsuka Y, Takahashi R, Ueda M, Mita A, Sakurai-Yamatani N, Yamamoto H, Kuriki S, Takagi N, Moriwaki K, Shiroishi T. Disruption of genetic interaction between two autosomal regions and the X chromosome causes reproductive isolation between mouse strains derived from different subspecies. Genetics 2006; 175:185-97. [PMID: 17057240 PMCID: PMC1775014 DOI: 10.1534/genetics.106.062976] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reproductive isolation that initiates speciation is likely caused by incompatibility among multiple loci in organisms belonging to genetically diverging populations. Laboratory C57BL/6J mice, which predominantly originated from Mus musculus domesticus, and a MSM/Ms strain derived from Japanese wild mice (M. m. molossinus, genetically close to M. m. musculus) are reproductively isolated. Their F1 hybrids are fertile, but successive intercrosses result in sterility. A consomic strain, C57BL/6J-ChrX(MSM), which carries the X chromosome of MSM/Ms in the C57BL/6J background, shows male sterility, suggesting a genetic incompatibility of the MSM/Ms X chromosome and other C57BL/6J chromosome(s). In this study, we conducted genomewide linkage analysis and subsequent QTL analysis using the sperm shape anomaly that is the major cause of the sterility of the C57BL/6J-ChrX(MSM) males. These analyses successfully detected significant QTL on chromosomes 1 and 11 that interact with the X chromosome. The introduction of MSM/Ms chromosomes 1 and 11 into the C57BL/6J-ChrX(MSM) background failed to restore the sperm-head shape, but did partially restore fertility. This result suggests that this genetic interaction may play a crucial role in the reproductive isolation between the two strains. A detailed analysis of the male sterility by intracytoplasmic sperm injection and zona-free in vitro fertilization demonstrated that the C57BL/6J-ChrX(MSM) spermatozoa have a defect in penetration through the zona pellucida of eggs.
Collapse
Affiliation(s)
- Ayako Oka
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Toranomon, Tokyo, Japan 105-0001
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Now that sequencing of the mouse genome has been completed, the function of each gene remains to be elucidated through phenotypic analysis. The "genetic background" (in which each gene functions) is defined as the genotype of all other related genes that may interact with the gene of interest, and therefore potentially influences the specific phenotype. To understand the nature and importance of genetic background on phenotypic expression of specific genes, it is necessary to know the origin and evolutionary history of the laboratory mouse genome. Molecular analysis has indicated that the fancy mice of Japan and Europe contributed significantly to the origin of today's laboratory mice. The genetic background of present-day laboratory mice varies by mouse strain, but is mainly derived from the European domesticus subspecies group and to a lesser degree from Asian mice, probably Japanese fancy mice, which belong to the musculus subspecies group. Inbred laboratory mouse strains are genetically uniform due to extensive inbreeding, and they have greatly contributed to the genetic analysis of many Mendelian traits. Meanwhile, for a variety of practical reasons, many transgenic and targeted mutant mice have been created in mice of mixed genetic backgrounds to elucidate the function of the genes, although efforts have been made to create inbred transgenic mice and targeted mutant mice with coisogenic embryonic stem cell lines. Inbred mouse strains have provided uniform genetic background for accurate evaluation of specific genes phenotypes, thus eliminating the phenotypic variations caused by mixed genetic backgrounds. However, the process of inbreeding and selection of various inbred strain characteristics has resulted in inadvertent selection of other undesirable genetic characteristics and mutations that may influence the genotype and preclude effective phenotypic analysis. Because many of the common inbred mouse stains have been established from relatively small gene pools, common inbred strains have limitations in their genetic polymorphisms and phenotypic variations. Wild-derived mouse strains can complement deficiencies of common inbred mouse strains, providing novel allelic variants and phenotypes. Although wild-derived strains are not as tame as the common laboratory strains, their genetic characteristics are attractive for the future study of gene function.
Collapse
Affiliation(s)
- Atsushi Yoshiki
- Experimental Animal Division, Department of Biological Systems, RIKEN BioResource Center
| | | |
Collapse
|
21
|
Sakai T, Kikkawa Y, Miura I, Inoue T, Moriwaki K, Shiroishi T, Satta Y, Takahata N, Yonekawa H. Origins of mouse inbred strains deduced from whole-genome scanning by polymorphic microsatellite loci. Mamm Genome 2005; 16:11-9. [PMID: 15674729 DOI: 10.1007/s00344-004-3013-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 09/09/2004] [Indexed: 10/25/2022]
Abstract
Microsatellite loci are uniformly distributed at approximately 100-kbp intervals on all chromosomes except the chromosome Y, and genetic information about more than 9000 loci and high-throughput polymorphism analysis are now available. Taking advantage of these properties, we carried out whole-genome scanning using eight common inbred strains (CIS) of laboratory mice, including A/J, C57BL/6J, CBA/J, DBA/2J, SM/J, SWR/J, NC/Nga, and 129/SvJ, and eight wild-derived inbred strains (WIS), BGL2/Ms, CAST/Ei, JF1/Ms, MSM/Ms, NJL/Ms, PGN2/Ms, SK/CamEi, and SWN/Ms. We selected and located 1226 informative loci at 1.2-cM average intervals on all of the chromosomes of the 16 strains and compared the polymorphisms of the eight CIS with those from the eight WIS as subspecies representatives. More than 50% of the loci can be identified as WIS (therefore, subspecies-specific) alleles in the CIS genomes. We also discovered that the CIS chromosomes form a mosaic structure with an average ratio of domesticus to non-domesticus alleles of 3:1. Furthermore, the domesticus alleles were present much more frequently on the CIS chromosome X than on their autosomes, suggesting that successive backcrossing of non-domesticus stocks to domesticus stocks had been undergone at the beginning of CIS history.
Collapse
Affiliation(s)
- Takahiro Sakai
- Department of Laboratory Animal Science, The Tokyo Metropolitan Institute of Medical Science (Rinshoken), Tokyo, 113-8613, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang J, Hunter KW, Gandolph M, Rowe WL, Finney RP, Kelley JM, Edmonson M, Buetow KH. A high-resolution multistrain haplotype analysis of laboratory mouse genome reveals three distinctive genetic variation patterns. Genome Res 2005; 15:241-9. [PMID: 15687287 PMCID: PMC546525 DOI: 10.1101/gr.2901705] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Understanding of the structure and the origin of genetic variation patterns in the laboratory inbred mouse provides insight into the utility of the mouse model for studying human complex diseases and strategies for disease gene mapping. In order to address this issue, we have constructed a multistrain, high-resolution haplotype map for the 99-Mb mouse Chromosome 16 using approximately 70,000 single nucleotide polymorphism (SNP) markers derived from whole-genome shotgun sequencing of five laboratory inbred strains. We discovered that large polymorphic blocks (i.e., regions where only two haplotypes, thus one SNP conformation, are found in the five strains), large monomorphic blocks (i.e., regions where the five strains share the same haplotype), and fragmented blocks (i.e., regions of greater complexity not resembling at all the first two categories) span 50%, 18%, and 32% of the chromosome, respectively. The haplotype map has 98% accuracy in predicting mouse genotypes in two other studies. Its predictions are also confirmed by experimental results obtained from resequencing of 40-kb genomic sequences at 21 distinct genomic loci in 13 laboratory inbred strains and 12 wild-derived strains. We demonstrate that historic recombination, intra-subspecies variations and inter-subspecies variations have all contributed to the formation of the three distinctive genetic signatures. The results suggest that the controlled complexity of the laboratory inbred strains may provide a means for uncovering the biological factors that have shaped genetic variation patterns.
Collapse
Affiliation(s)
- Jinghui Zhang
- Laboratory of Population Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-8302, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
VYSKOČILOVÁ MARTINA, TRACHTULEC ZDENĚK, FOREJT JIŘÍ, PIÁLEK JAROSLAV. Does geography matter in hybrid sterility in house mice? Biol J Linn Soc Lond 2005. [DOI: 10.1111/j.1095-8312.2005.00463.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Abe K, Noguchi H, Tagawa K, Yuzuriha M, Toyoda A, Kojima T, Ezawa K, Saitou N, Hattori M, Sakaki Y, Moriwaki K, Shiroishi T. Contribution of Asian mouse subspecies Mus musculus molossinus to genomic constitution of strain C57BL/6J, as defined by BAC-end sequence-SNP analysis. Genome Res 2004; 14:2439-47. [PMID: 15574823 PMCID: PMC534668 DOI: 10.1101/gr.2899304] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 09/27/2004] [Indexed: 11/24/2022]
Abstract
MSM/Ms is an inbred strain derived from the Japanese wild mouse, Mus musculus molossinus. It is believed that subspecies molossinus has contributed substantially to the genome constitution of common laboratory strains of mice, although the majority of their genome is derived from the west European M. m. domesticus. Information on the molossinus genome is thus essential not only for genetic studies involving molossinus but also for characterization of common laboratory strains. Here, we report the construction of an arrayed bacterial artificial chromosome (BAC) library from male MSM/Ms genomic DNA, covering approximately 1x genome equivalent. Both ends of 176,256 BAC clone inserts were sequenced, and 62,988 BAC-end sequence (BES) pairs were mapped onto the C57BL/6J genome (NCBI mouse Build 30), covering 2,228,164 kbp or 89% of the total genome. Taking advantage of the BES map data, we established a computer-based clone screening system. Comparison of the MSM/Ms and C57BL/6J sequences revealed 489,200 candidate single nucleotide polymorphisms (SNPs) in 51,137,941 bp sequenced. The overall nucleotide substitution rate was as high as 0.0096. The distribution of SNPs along the C57BL/6J genome was not uniform: The majority of the genome showed a high SNP rate, and only 5.2% of the genome showed an extremely low SNP rate (percentage identity = 0.9997); these sequences are likely derived from the molossinus genome.
Collapse
Affiliation(s)
- Kuniya Abe
- Technology and Development Team for Mammalian Cellular Dynamics, BioResource Center, RIKEN Tsukuba Institute, Tsukuba, Ibaraki 305-0074, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Munclinger P, Boursot P, Dod B. B1 insertions as easy markers for mouse population studies. Mamm Genome 2003; 14:359-66. [PMID: 12879357 DOI: 10.1007/s00335-002-3065-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Accepted: 02/05/2003] [Indexed: 10/26/2022]
Abstract
Few simple, easy-to-score PCR markers are available for studying genetic variation in wild mice populations belonging to Mus musculus at the population and subspecific levels. In this study, we show the abundant B1 family of short interspersed DNA elements (SINEs) is a very promising source of such markers. Thirteen B1 sequences from different regions of the genome were retrieved on the basis of their high degree of homology to a mouse consensus sequence, and the presence of these elements was screened for in wild derived mice representing M. spretus, macedonicus and spicilegus and the different subspecies of M. musculus. At five of these loci, varying degrees of insertion polymorphism were found in M. m. domesticus mice. These insertions were almost totally absent in the mice representing the other subspecies and species. Six other B1 elements were fixed in all the Mus species tested. At these loci, polymorphism associated with three restriction sites in the B1 consensus sequence was found in M. musculus. Most of these polymorphisms appear to be ancestral as they are shared by at least one of the other Mus species tested. Both insertion and restriction polymorphism revealed differences between five inbred laboratory strains considered to be of mainly domesticus origin, and at the six restriction loci a surprising number of these strains carried restriction variants that were either not found or very infrequent in domesticus. This suggests that in this particular group of loci, alleles of far Eastern origin are more frequent than expected.
Collapse
Affiliation(s)
- Pavel Munclinger
- Biodiversity Research Group, Department of Zoology, Faculty of Science, Charles University, Vinicná 7, CZ 128 44 Praha 2, Czech Republic.
| | | | | |
Collapse
|
26
|
Duplantier JM, Orth A, Catalan J, Bonhomme F. Evidence for a mitochondrial lineage originating from the Arabian peninsula in the Madagascar house mouse (Mus musculus). Heredity (Edinb) 2002; 89:154-8. [PMID: 12136419 DOI: 10.1038/sj.hdy.6800122] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Accepted: 04/18/2002] [Indexed: 11/09/2022] Open
Abstract
Various subspecies of the house mouse (Mus musculus sensu lato) are known to have contributed to its worldwide expansion. However, the origin of mice on some larger islands such as Madagascar has remained unknown, with several sources being possible. In order to classify the Malagasy house mouse, individuals were trapped in 13 different localities distributed throughout the island. For 33 individuals the control region (D-Loop) of the mitochondrial DNA was partially sequenced and 21 males were typed for a Zfy-2 polymorphism of the Y chromosome. Malagasy mt DNA lineages constitute a narrow monophyletic group which suggests a recent and probably single origin, and are very close to the gentilulus mitochondrial lineages from Yemen. This was supported by the fact that all the males have the domesticus type Y chromosome, like gentilulus. From these results, it can be inferred that the Malagasy house mice originate probably from the Arabian peninsula in a single colonisation wave, unlike its human population. Our results provide a better molecular description of the Yemeni-Malagasy mitochondrial clade which clearly belongs to the Mus musculus radiation.
Collapse
|
27
|
Tanooka H, Sasaki H, Shiroishi T, Moriwaki K. p53 Pseudogene dating: identification of the origin of laboratory mice. Gene 2001; 270:153-9. [PMID: 11404012 DOI: 10.1016/s0378-1119(01)00480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mutations were accumulated with a wide variety in the p53 pseudogene of various wild mouse species and subspecies captured at different localities, as extensively observed in the exon 4 - exon 5 region. The rate of mutation accumulation in the mouse p53 pseudogene was estimated to be 1.4-2.1x10(-8) mutations/bp/year, which is 20-30 times faster than that of the functional p53 and makes the dating possible for the time range of 10(6) years or more. From comparison of the mutation spectrum, the origin of laboratory mice was identified to one of two M. m. domesticus groups.
Collapse
Affiliation(s)
- H Tanooka
- Genetics Division, National Cancer Center Research Institute, Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan.
| | | | | | | |
Collapse
|
28
|
Kumagai T, Wada A, Tsudzuki M, Nishimura M, Kunieda T. Nucleotide sequence of endothelin-B receptor gene reveals origin of piebald mutation in laboratory mouse. Exp Anim 1998; 47:265-9. [PMID: 10067171 DOI: 10.1538/expanim.47.265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Piebald (Ednrbs) is a coat color mutation of laboratory mice caused by a decreased expression of endothelin-B receptor gene (Ednrb). The IITES and JF1 mouse strains, whose origins are believed to be different from those of the common laboratory inbred strains, also show a phenotype similar to Ednrbs. In the present study, we found that the nucleotide sequence of the Ednrb gene of the IITES and JF1 mice is identical to that of the Ednrbs allele, Ednrbs allele has an RFLP of the Ednrb gene identical with that of M. m. molossinus but different from other subspecies, and at least particular regions of chromosome 14 proximal to the Ednrb locus of the IITES and JF1 strains are derived from M. m. molossinus. These findings clearly indicate that the Ednrbs allele of the laboratory mice has its origin in M. m. molossinus.
Collapse
Affiliation(s)
- T Kumagai
- Faculty of Agriculture, Okayama University, Japan
| | | | | | | | | |
Collapse
|
29
|
Prager EM, Orrego C, Sage RD. Genetic variation and phylogeography of central Asian and other house mice, including a major new mitochondrial lineage in Yemen. Genetics 1998; 150:835-61. [PMID: 9755213 PMCID: PMC1460354 DOI: 10.1093/genetics/150.2.835] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial DNA (mtDNA) control region and flanking tRNAs were sequenced from 76 mice collected at 60 localities extending from Egypt through Turkey, Yemen, Iran, Afghanistan, Pakistan, and Nepal to eastern Asia. Segments of the Y chromosome and of a processed p53 pseudogene (Psip53) were amplified from many of these mice and from others collected elsewhere in Eurasia and North Africa. The 251 mtDNA types, including 54 new ones reported here, now identified from commensal house mice (Mus musculus group) by sequencing this segment can be organized into four major lineages-domesticus, musculus, castaneus, and a new lineage found in Yemen. Evolutionary tree analysis suggested the domesticus mtDNAs as the sister group to the other three commensal mtDNA lineages and the Yemeni mtDNAs as the next oldest lineage. Using this tree and the phylogeographic approach, we derived a new model for the origin and radiation of commensal house mice whose main features are an origin in west-central Asia (within the present-day range of M. domesticus) and the sequential spreading of mice first to the southern Arabian Peninsula, thence eastward and northward into south-central Asia, and later from south-central Asia to north-central Asia (and thence into most of northern Eurasia) and to southeastern Asia. Y chromosomes with and without an 18-bp deletion in the Zfy-2 gene were detected among mice from Iran and Afghanistan, while only undeleted Ys were found in Turkey, Yemen, Pakistan, and Nepal. Polymorphism for the presence of a Psip53 was observed in Georgia, Iran, Turkmenistan, Afghanistan, and Pakistan. Sequencing of a 128-bp Psip53 segment from 79 commensal mice revealed 12 variable sites and implicated >/=14 alleles. The allele that appeared to be phylogenetically ancestral was widespread, and the greatest diversity was observed in Turkey, Afghanistan, Pakistan, and Nepal. Two mice provided evidence for a second Psip53 locus in some commensal populations.
Collapse
Affiliation(s)
- E M Prager
- Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA.
| | | | | |
Collapse
|
30
|
Katoh-Fukui Y, Tsuchiya R, Shiroishi T, Nakahara Y, Hashimoto N, Noguchi K, Higashinakagawa T. Male-to-female sex reversal in M33 mutant mice. Nature 1998; 393:688-92. [PMID: 9641679 DOI: 10.1038/31482] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycomb genes in Drosophila maintain the repressed state of homeotic and other developmentally regulated genes by mediating changes in higher-order chromatin structure. M33, a mouse homologue of Polycomb, was isolated by means of the structural similarity of its chromodomain. The fifth exon of M33 contains a region of homology shared by Drosophila and Xenopus. In Drosophila, its deletion results in the loss of Polycomb function. Here we have disrupted M33 in mice by inserting a poly(A) capture-type neo(r) targeting vector into its fifth exon. More than half of the resultant M33cterm/M33cterm mutant mice died before weaning, and survivors showed male-to-female sex reversal. Formation of genital ridges was retarded in both XX and XY M33cterm/M33cterm embryos. Gonadal growth defects appeared near the time of expression of the Y-chromosome-specific Sry gene, suggesting that M33 deficiency may cause sex reversal by interfering with steps upstream of Sry. M33cterm/M33cterm mice may be a valuable model in which to test opposing views regarding sex determination.
Collapse
Affiliation(s)
- Y Katoh-Fukui
- Mitsubishi Kasei Institute of Life Sciences, Machida, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Orth A, Adama T, Din W, Bonhomme F. [Natural hybridization between two subspecies of the house mouse, Mus musculus domesticus and Mus musculus castaneus, near Lake Casitas, California]. Genome 1998; 41:104-10. [PMID: 9549063 DOI: 10.1139/g97-109] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The house mouse Mus musculus is a polytypic species, distributed worldwide, with three main subspecies: M. m. musculus in the North-East of Eurasia, M. m. castaneus in South-East Asia, and M. m. domesticus in Europe, the Near-East, and Africa. This last subspecies may also be found in Australia and the Americas, where it was brought by European colonization. Previous studies, however, have shown the presence of specific antiviral determinants of Asian origin in a mouse population at Lake Casitas, California. In this study, an analysis of the variability at 35 enzyme loci demonstrates the hybrid nature of this Californian population intermediate between M. m. castaneus and M. m. musculus. Restriction fragment length polymorphisms of two fragments of the mitochondrial DNA also confirm unambiguously the presence of two types of matrilines in comparable frequencies in our sample. Nevertheless, the study of a subspecies-specific Y chromosome microdeletion in the Zfy2 gene reveals only the M. m. domesticus haplotype at Lake Casitas, a phenomenon comparable with the one observed in other hybrid zones of the M. musculus complex. These findings testify once more that genetic exchanges between subspecies inside the broader M. musculus gene pool are still possible.
Collapse
Affiliation(s)
- A Orth
- Laboratoire Génome et populations, Centre national de la recherche scientifique, Université de Montpellier II, France.
| | | | | | | |
Collapse
|
32
|
Koide T, Moriwaki K, Uchida K, Mita A, Sagai T, Yonekawa H, Katoh H, Miyashita N, Tsuchiya K, Nielsen TJ, Shiroishi T. A new inbred strain JF1 established from Japanese fancy mouse carrying the classic piebald allele. Mamm Genome 1998; 9:15-9. [PMID: 9434939 DOI: 10.1007/s003359900672] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A new inbred strain JF1 (Japanese Fancy Mouse 1) was established from a strain of fancy mouse. Morphological and genetical analysis indicated that the mouse originated from the Japanese wild mouse, Mus musculus molossinus. JF1 has characteristic coat color, black spots on the white coat, with black eyes. The mutation appeared to be linked to an old mutation piebald (s). Characterization of the causative gene for piebald, endothelin receptor type B (ednrb), demonstrated that the allele in JF1 is same as that of classic piebald allele, suggesting an identical origin of these two mutants. Possibly, classic piebald mutation was introduced from the Japanese tame mouse, which was already reported at the end of the 1700s. We showed that JF1 is a useful strain for mapping of mutant genes on laboratory strains owing to a high level of polymorphisms in microsatellite markers between JF1 and laboratory strains. The clarified genotypes of JF1 for coat color are "aa BB CC DD ss".
Collapse
Affiliation(s)
- T Koide
- Mammalian Genetics Laboratory, National Institute of Genetics, Shizuoka-ken, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nagai K. Molecular basis governing primary sex in mammals. THE JAPANESE JOURNAL OF HUMAN GENETICS 1996; 41:363-79. [PMID: 9088107 DOI: 10.1007/bf01876327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The function of Sry for inducing a male gonad was identified due to a development of a transgenic XX male mouse with testes by introducing a single gene into an embryo. The intronless Sry encodes a putative transcriptional protein harboring an HMG motif. The sequence similarity within the HMG motif has been highly conserved despite less conservation in other domains. Hence, the HMG motif must play a critical role in the transcriptional regulation, leading to the development of a male gonad. However, a non HMG box C terminal domain of Sry protein may also be indispensable for inducing normal testicular development. Further, several autosomal genes, such as SF1, WT1, SOX and MIS, as well as a unique X chromosomal DAX1 were suggested to be associated with the development of gonadal sex in mammals. Therefore, the significance on the involvement of these genes in the molecular mechanism of mammalian sex determination should be also considered.
Collapse
Affiliation(s)
- K Nagai
- Department of Biochemistry, Tokyo Medical College, Japan
| |
Collapse
|
34
|
Reuss FU, Frankel WN, Moriwaki K, Shiroishi T, Coffin JM. Genetics of intracisternal-A-particle-related envelope-encoding proviral elements in mice. J Virol 1996; 70:6450-4. [PMID: 8709280 PMCID: PMC190678 DOI: 10.1128/jvi.70.9.6450-6454.1996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Intracisternal-A-particle-related envelope-encoding (IAPE) proviral elements in the mouse genome encode and express an envelope-like protein that may allow transmission of IAPEs as infectious agents. To test IAPE mobility and potential transmission in mice, we have analyzed the distribution of IAPE elements in the genomes of Mus spretus and Mus musculus inbred strains and wild-caught animals. Potential full-length (IAPE-A) proviral elements are present as repetitive copies in DNA from male but not female animals of M. musculus inbred strains and Mus musculus castaneus. Analysis of IAPE-cellular junction fragments indicates that fixation of most IAPEs in the germ line occurred in M. musculus and M. spretus after speciation but before M. musculus inbred strains were derived.
Collapse
Affiliation(s)
- F U Reuss
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
35
|
Sutou S. Entire nucleotide sequence of mitochondrial DNA of MS/Ae mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1996; 28:107-111. [PMID: 8844991 DOI: 10.1002/(sici)1098-2280(1996)28:2<107::aid-em6>3.0.co;2-c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The entire nucleotide sequence of mitochondrial DNA of MS/Ae mice was determined. It consists of 16,300 bases, with 15 sites being different from the known 16,295 base sequence of mitochondrial DNA derived from L cells of C3H mice (accession no. V00711). The MS/Ae strain is a derivative of CD-1 mice; these 15 sites in mitochondrial DNA from CD-1 mice were also determined. No difference was found, strongly suggesting that mitochondria of MS/Ae and CD-1 mice have the same DNA sequence and indicating that the high sensitivity of MS/Ae mice to mutagens compared to CD-1 mice is not dependent on genes coded by mitochondrial DNA. (The nucleotide sequence data in this article will appear in the DDBJ, EMBL, and GenBank nucleotide sequence database with the following accession number: D83491).
Collapse
Affiliation(s)
- S Sutou
- Itoham Central Research Institute, Ibaraki, Japan
| |
Collapse
|
36
|
Sex reversal in mammals. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1067-5701(96)80005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Miller KE, Lundrigan BL, Tucker PK. Length variation of CAG repeats in Sry across populations of Mus domesticus. Mamm Genome 1995; 6:206-8. [PMID: 7749230 DOI: 10.1007/bf00293015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- K E Miller
- Museum of Zoology, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
38
|
Abstract
The house mouse is one of the model organisms in genetics and more than 400 inbred strains have been established. However, many of the strains are related and their ancestry can be traced back to European fancy mice inbred in the 1920s. Recent molecular studies corroborate the early historical records that assert that Japanese fancy mice were introduced into European stocks and thus contributed to the development of "old" inbred strains. Consequently, many inbred strains have genomic DNA derived from more than one subspecies of Mus musculus. The subspecific hybrid origin of common inbred strains has important bearings on the interpretation of genetic data, and the limitations that history imposes upon the currently available strains make it necessary to establish new inbred strains representing specific wild populations.
Collapse
Affiliation(s)
- Y Nishioka
- Department of Biology, McGill University, Montréal, Canada
| |
Collapse
|
39
|
Nagamine CM. The testis-determining gene, SRY, exists in multiple copies in Old World rodents. Genet Res (Camb) 1994; 64:151-9. [PMID: 7698639 DOI: 10.1017/s001667230003281x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
SRY is a unique gene on the Y chromosome in most mammalian species including the laboratory mouse, Mus musculus, and the closely related European wild mouse species M. spicilegus, M. macedonicus, and M. spretus. In contrast, SRY is present in 2-6 copies in the more distantly related Asian mouse species M. caroli, M. cervicolor, and M. cookii and in 2-13 copies in the related murid species Pyromys saxicola, Coelomys pahari, Nannomys minutoides, Mastomys natalensis, and Rattus norvegicus. Copy numbers do not correlate with known phylogenetic relationships suggesting that SRY has undergone a rapid and complex evolution in these species. SRY was recently proposed as a molecular probe for phylogenetic inferences. The presence of multiple SRY genes in a wide range of murid species and genera, and at least one cricetid species, necessitates caution in the use of SRY for phylogenetic studies in the Rodentia unless it is ascertained that multiple SRY genes do not exist.
Collapse
Affiliation(s)
- C M Nagamine
- Department of Cell Biology, Vanderbilt University School of Medicine, Medical Center North, Nashville, TN 37232-2175
| |
Collapse
|
40
|
Kurihara Y, Suh DS, Suzuki H, Moriwaki K. Chromosomal locations of Ag-NORs and clusters of ribosomal DNA in laboratory strains of mice. Mamm Genome 1994; 5:225-8. [PMID: 8012113 DOI: 10.1007/bf00360550] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Y Kurihara
- Department of Cell Genetics, National Institute of Genetics, Mishima, Japan
| | | | | | | |
Collapse
|
41
|
Coward P, Nagai K, Chen D, Thomas HD, Nagamine CM, Lau YF. Polymorphism of a CAG trinucleotide repeat within Sry correlates with B6.YDom sex reversal. Nat Genet 1994; 6:245-50. [PMID: 8012385 DOI: 10.1038/ng0394-245] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Breeding the Y chromosome from certain Mus musculus domesticus strains onto the inbred laboratory mouse strain, C57BL/6J (B6), results in hermaphroditic progeny. This strain-dependent sex reversal suggests that there may be significant allelic variation in the murine sex determining gene, Sry. We have analysed the Sry genes from several domesticus-type Y chromosomes and show that they encode smaller proteins than the molossinus-type alleles SryB6 and Sry129. We have also identified a polymorphic stretch of trinucleotide repeats that is unique to strains causing sex reversal and show that specific changes in the predicted polyglutamine amino acid sequence at this site are associated with different degrees of sex reversal.
Collapse
Affiliation(s)
- P Coward
- Department of Medicine, VA Medical Center, University of California, San Francisco 94121
| | | | | | | | | | | |
Collapse
|
42
|
Santos J, Cole Y, Pellicer A. Phylogenetic relationships among laboratory and wild-origin Mus musculus strains on the basis of genomic DNA RFLPs. Mamm Genome 1993; 4:485-92. [PMID: 7906967 DOI: 10.1007/bf00364782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Genetic distance measures between the laboratory mouse strains C57BL/6J and RF/J and the wild-origin Mus musculus mouse strains CAST/Ei, MOLF/Ei, POSCH I, and CZECH II were estimated by allelic patterns revealed by RFLP analysis. These results suggest phylogenetic relationships indicating that the mouse strains related to the subspecies M.m. domesticus (RF/J, POSCH I and C57BL/6J) are more closely related to the CAST/Ei strain (derived from M.m. castaneus) than to the strains CZECH II (M.m. musculus) and MOLF/Ei (M.m. molossinus). Furthermore, the hybrid strain C57BL/6J is more closely related to POSCH I (M.m. poschiavinus) than to RF/J as calculated by the method distance measures of Cavalli-Sforza and Edwards (Evolution 21,550, 1967), Nei's minimum (Am. Natural. 106,283, 1972) and unbiased minimum (Genetics 89,583, 1978), Edwards (Biometrics 27,873, 1971; Genetic Distance, p. 41, 1974) and Rogers modified (1986).
Collapse
Affiliation(s)
- J Santos
- Department of Pathology, New York University School of Medicine, New York 10016
| | | | | |
Collapse
|
43
|
Wardell BB, Sudweeks JD, Meeker ND, Estes SS, Woodward SR, Teuscher C. The identification of Y chromosome-linked markers with random sequence oligonucleotide primers. Mamm Genome 1993; 4:109-12. [PMID: 8431634 DOI: 10.1007/bf00290435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The polymerase chain reaction (PCR)-based technique of random amplification of polymorphic DNA (RAPD) is extremely useful for developing DNA-based markers. We previously identified a linkage group of eight unmapped RAPD markers that distinguish C57BL/6J and DBA/2J mice (Mammalian Genome 3: Woodward et al., 73-78, 1992). In this study, we report that all eight markers are Y Chromosome (Chr)-linked. One additional Y-linked RAPD was discovered serendipitously during the screening of a C3H/HeJ x (C3H/HeJ x SJL/J)F1 BC1 population. The segregation of all nine markers was analyzed with a panel of 14 independent inbred strains of male mice. The nine markers could be divided into three distinct groups: (1) DYByu2, DYByu5, DYByu6, and DYByu8 identify both the M.m. musculus and M.m. domesticus type Y Chr; (2) DYByu1, DYByu3, DYByu4, and DYByu7 are specific for the M.m. musculus type; and (3) DYByu9 is specific for the M.m. domesticus type. The results clearly indicate that the RAPD technique can be used to identify Y Chr-linked, DNA-based markers in mammalian species.
Collapse
Affiliation(s)
- B B Wardell
- Department of Microbiology, Brigham Young University, Provo, Utah 84602
| | | | | | | | | | | |
Collapse
|