1
|
Maciá Valero A, Tabatabaeifar F, Billerbeck S. Screening a 681-membered yeast collection for the secretion of proteins with antifungal activity. N Biotechnol 2025; 86:55-72. [PMID: 39875071 DOI: 10.1016/j.nbt.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Fungal pathogens pose a threat to human health and food security. Few antifungals are available and resistance to all has been reported. Novel strategies to control plant and human pathogens as well as food spoilers are urgently required. Environmental yeasts provide a functionally diverse, yet underexploited potential for fungal control based on their natural competition via the secretion of proteins and other small molecules such as iron chelators, volatile organic compounds or biosurfactants. However, there is a lack of standardized workflows to systematically access application-relevant yeast-based compounds and understand their molecular functioning. Towards this goal, we developed a workflow to identify and characterize yeast isolates that are active against spoilage yeasts and relevant human and plant pathogens, herein focusing on discovering yeasts that secrete antifungal proteins. The workflow includes the classification of the secreted molecules and cross-comparison of their antifungal capacity using an independent synthetic calibrant. Our workflow delivered a collection of 681 yeasts of which 212 isolates (31 %) displayed antagonism against at least one target strain. While 57.5 % of the active yeasts showed iron-depended antagonism, likely due to pulcherrimin-like iron chelators, 31.7 % secreted antifungal proteins. Those yeast candidates clustered within twelve OTUs, showed narrow and broad target spectra, and several showed a broad pH and temperature activity profile. Given the tools for yeast biotechnology and protein engineering available, our collection can serve as a rich starting point for genetic and molecular characterization of the various antifungal phenotypes, their mode of action and their future exploitation.
Collapse
Affiliation(s)
- Alicia Maciá Valero
- Department for Molecular Microbiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Fatemehalsadat Tabatabaeifar
- Department for Molecular Microbiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Sonja Billerbeck
- Department for Molecular Microbiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands; Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
2
|
Tan C, Wang L, Xue Y, Lin S, Yu G, Yang S. Purification and molecular characterization of a Metschnikowia saccharicola killer toxin lethal to a crab pathogenic yeast. FEMS Microbiol Lett 2019; 365:4862471. [PMID: 29462299 DOI: 10.1093/femsle/fny038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/14/2018] [Indexed: 01/06/2023] Open
Abstract
The marine yeast strain Metschnikowia saccharicola DD21-2, isolated from sediments in the Yalu River, produces a killer toxin with a lethal effect on Metschnikowia bicuspidate strain WCY, a pathogenic yeast strain that infects crabs. In this study, the killer toxin was purified and characterized. After sequential purification, the purity of the killer toxin was increased 72.2-fold over the purity of the yeast cell culture supernatant. The molecular weight of the purified killer toxin was 47.0 kDa. The optimal pH and temperature for killing activity were 5.5°C and 16°C, respectively. The killing activity was stable over a pH range of 4.0-6.5 and temperature range of 0°C-40°C. The purified killer toxin was only effective against toxin-sensitive integral cells and had no killing effect on the protoplasts of toxin-sensitive cells. When exerting the killing effect, the toxin bind to a cell wall receptor of the treated strain, disrupted cell wall integrity and eventually caused death. The amino acid sequence identified by mass spectroscopy indicated that the purified killer toxin might be a protein kinase, but did not show β-1,3-glucanase activity, consistent with the laminarin hydrolysis results. These findings provide a basis for disease prevention and control in marine aquaculture.
Collapse
Affiliation(s)
- Chunming Tan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, National Research and Development Center for Aquatic Product Processing, Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, Guangzhou 510300, China.,College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lin Wang
- Beihang-goertec Microelectronics Institute, Beihang Qingdao Research Institute, Qingdao 266041, China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Shuo Lin
- Department of Quality and Regulatory Affairs, Air Liquide Medical Systems, 92182 Antony CEDEX, France
| | - Gang Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, National Research and Development Center for Aquatic Product Processing, Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, Guangzhou 510300, China
| | - Shaoling Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, National Research and Development Center for Aquatic Product Processing, Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, Guangzhou 510300, China
| |
Collapse
|
3
|
Belda I, Ruiz J, Alonso A, Marquina D, Santos A. The Biology of Pichia membranifaciens Killer Toxins. Toxins (Basel) 2017; 9:toxins9040112. [PMID: 28333108 PMCID: PMC5408186 DOI: 10.3390/toxins9040112] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
The killer phenomenon is defined as the ability of some yeast to secrete toxins that are lethal to other sensitive yeasts and filamentous fungi. Since the discovery of strains of Saccharomyces cerevisiae capable of secreting killer toxins, much information has been gained regarding killer toxins and this fact has substantially contributed knowledge on fundamental aspects of cell biology and yeast genetics. The killer phenomenon has been studied in Pichia membranifaciens for several years, during which two toxins have been described. PMKT and PMKT2 are proteins of low molecular mass that bind to primary receptors located in the cell wall structure of sensitive yeast cells, linear (1→6)-β-d-glucans and mannoproteins for PMKT and PMKT2, respectively. Cwp2p also acts as a secondary receptor for PMKT. Killing of sensitive cells by PMKT is characterized by ionic movements across plasma membrane and an acidification of the intracellular pH triggering an activation of the High Osmolarity Glycerol (HOG) pathway. On the contrary, our investigations showed a mechanism of killing in which cells are arrested at an early S-phase by high concentrations of PMKT2. However, we concluded that induced mortality at low PMKT2 doses and also PMKT is indeed of an apoptotic nature. Killer yeasts and their toxins have found potential applications in several fields: in food and beverage production, as biocontrol agents, in yeast bio-typing, and as novel antimycotic agents. Accordingly, several applications have been found for P. membranifaciens killer toxins, ranging from pre- and post-harvest biocontrol of plant pathogens to applications during wine fermentation and ageing (inhibition of Botrytis cinerea, Brettanomyces bruxellensis, etc.).
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Ruiz
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Alejandro Alonso
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Domingo Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Antonio Santos
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Chessa R, Landolfo S, Ciani M, Budroni M, Zara S, Ustun M, Cakar ZP, Mannazzu I. Biotechnological exploitation of Tetrapisispora phaffii killer toxin: heterologous production in Komagataella phaffii (Pichia pastoris). Appl Microbiol Biotechnol 2016; 101:2931-2942. [PMID: 28032192 DOI: 10.1007/s00253-016-8050-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 01/27/2023]
Abstract
The use of natural antimicrobials from plants, animals and microorganisms to inhibit the growth of pathogenic and spoilage microorganisms is becoming more frequent. This parallels the increased consumer interest towards consumption of minimally processed food and 'greener' food and beverage additives. Among the natural antimicrobials of microbial origin, the killer toxin produced by the yeast Tetrapisispora phaffii, known as Kpkt, appears to be a promising natural antimicrobial agent. Kpkt is a glycoprotein with β-1,3-glucanase and killer activity, which induces ultrastructural modifications to the cell wall of yeast of the genera Kloeckera/Hanseniaspora and Zygosaccharomyces. Moreover, Kpkt maintains its killer activity in grape must for at least 14 days under winemaking conditions, thus suggesting its use against spoilage yeast in wine making and the sweet beverage industry. Here, the aim was to explore the possibility of high production of Kpkt for biotechnological exploitation. Molecular tools for heterologous production of Kpkt in Komagataella phaffii GS115 were developed, and two recombinant clones that produce up to 23 mg/L recombinant Kpkt (rKpkt) were obtained. Similar to native Kpkt, rKpkt has β-glucanase and killer activities. Moreover, it shows a wider spectrum of action with respect to native Kpkt. This includes effects on Dekkera bruxellensis, a spoilage yeast of interest not only in wine making, but also for the biofuel industry, thus widening the potential applications of this rKpkt.
Collapse
Affiliation(s)
- Rossella Chessa
- Department of Agriculture, University of Sassari, Sassari, Italy
| | - Sara Landolfo
- Department of Agriculture, University of Sassari, Sassari, Italy
| | - Maurizio Ciani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Marilena Budroni
- Department of Agriculture, University of Sassari, Sassari, Italy
- Enology and Viticulture Research Group, University of Sassari, Sassari, Italy
| | - Severino Zara
- Department of Agriculture, University of Sassari, Sassari, Italy
- Enology and Viticulture Research Group, University of Sassari, Sassari, Italy
| | - Murat Ustun
- Department of Agriculture, University of Sassari, Sassari, Italy
- Department of Molecular Biology and Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Ocalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Zeynep Petek Cakar
- Department of Molecular Biology and Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Ocalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Ilaria Mannazzu
- Department of Agriculture, University of Sassari, Sassari, Italy.
- Enology and Viticulture Research Group, University of Sassari, Sassari, Italy.
| |
Collapse
|
5
|
Lukša J, Serva S, Servienė E. Saccharomyces cerevisiae K2 toxin requires acidic environment for unidirectional folding into active state. MYCOSCIENCE 2016. [DOI: 10.1016/j.myc.2015.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Labbani FZK, Turchetti B, Bennamoun L, Dakhmouche S, Roberti R, Corazzi L, Meraihi Z, Buzzini P. A novel killer protein from Pichia kluyveri isolated from an Algerian soil: purification and characterization of its in vitro activity against food and beverage spoilage yeasts. Antonie van Leeuwenhoek 2015; 107:961-70. [PMID: 25618417 DOI: 10.1007/s10482-015-0388-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
Abstract
A novel killer protein (Pkkp) secreted by a Pichia kluyveri strain isolated from an Algerian soil was active against food and beverage spoilage yeasts of the genera Dekkera, Kluyveromyces, Pichia, Saccharomyces, Torulaspora, Wickerhamomyces and Zygosaccharomyces. After purification by gel filtration chromatography Pkkp revealed an apparent molecular mass of 54 kDa with SDS-PAGE. Minimum inhibitory concentrations (MICs) of purified Pkkp exhibited a high in vitro activity against Dekkera bruxellensis (MICs from 64,000- to 256,000-fold lower than that exhibited by potassium metabisulphite) and Saccharomyces cerevisiae (MICs from 32,000- to 64,000- fold lower than potassium sorbate). No in vitro synergistic interactions (calculated by FIC index - Σ FIC) were observed when Pkkp was used in combination with potassium metabisulphite, potassium sorbate, or ethanol. Pkkp exhibited a dose-response effect against D. bruxellensis and S. cerevisiae in a low-alcoholic drink and fruit juice, respectively. The results of the present study suggest that Pkkp could be proposed as a novel food-grade compound useful for the control of food and beverage spoilage yeasts.
Collapse
Affiliation(s)
- Fatima-Zohra Kenza Labbani
- Department of Molecular and Cellular Biology, Natural and Life Sciences Faculty, Abbes Laghrour University of Khenchela, Route Batna, 40004, Khenchela, Algeria,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Santos A, Alonso A, Belda I, Marquina D. Cell cycle arrest and apoptosis, two alternative mechanisms for PMKT2 killer activity. Fungal Genet Biol 2012; 50:44-54. [PMID: 23137543 DOI: 10.1016/j.fgb.2012.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/12/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
Pichia membranifaciens CYC 1086 secretes a unique 30kDa killer toxin (PMKT2) that inhibits a variety of spoilage yeasts and fungi of agronomical interest. The cytocidal effect of PMKT2 on Saccharomyces cerevisiae cells was studied. Metabolic events associated with the loss of S. cerevisiae viability caused by PMKT2 were qualitatively identical to those reported for K28 killer toxin activity, but different to those reported for PMKT. At higher doses, none of the cellular events accounting for the action of PMKT, the killer toxin secreted by P. membranifaciens CYC 1106, was observed for PMKT2. Potassium leakage, sodium influx and the decrease of intracellular pH were not among the primary effects of PMKT2. We report here that this protein is unable to form ion-permeable channels in liposome membranes, suggesting that channel formation is not the mechanism of cytotoxic action of PMKT2. Nevertheless, flow cytometry studies have revealed a cell cycle arrest at an early S-phase with an immature bud and pre-replicated 1n DNA content. By testing the sensitivity of cells arrested at different stages in the cell cycle, we hoped to identify the execution point for lethality more precisely. Cells arrested at the G1-phase by α-factor or arrested at G2-phase by the spindle poison methyl benzimidazol-2-yl-carbamate (MBC) were protected against the toxin. Cells released from the arrest in both cases were killed by PMKT2 at a similar rate. Nevertheless, cells released from MBC-arrest were able to grow for a short time, and then viability dropped rapidly. These findings suggest that cells released from G2-phase are initially able to divide, but die in the presence of PMKT2 after initiating the S-phase in a new cycle, adopting a terminal phenotype within that cycle. By contrast, low doses of PMKT and PMKT2 were able to generate the same cellular response. The evidence presented here shows that treating yeast with low doses of PMKT2 leads to the typical membranous, cytoplasmic, mitochondrial and nuclear markers of apoptosis, namely, the production of reactive oxygen species, DNA strand breaks, metacaspase activation and cytochrome c release.
Collapse
Affiliation(s)
- Antonio Santos
- Department of Microbiology, Complutense University of Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
8
|
Santos A, San Mauro M, Bravo E, Marquina D. PMKT2, a new killer toxin from Pichia membranifaciens, and its promising biotechnological properties for control of the spoilage yeast Brettanomyces bruxellensis. MICROBIOLOGY-SGM 2009; 155:624-634. [PMID: 19202111 DOI: 10.1099/mic.0.023663-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pichia membranifaciens CYC 1086 secretes a killer toxin (PMKT2) that is inhibitory to a variety of spoilage yeasts and fungi of agronomical interest. The killer toxin in the culture supernatant was concentrated by ultrafiltration and purified to homogeneity by two successive steps, including native electrophoresis and HPLC gel filtration. Biochemical characterization of the toxin showed it to be a protein with an apparent molecular mass of 30 kDa and an isoelectric point of 3.7. At pH 4.5, optimal killer activity was observed at temperatures up to 20 degrees C. Above approximately this pH, activity decreased sharply and was barely noticeable at pH 6. The toxin concentrations present in the supernatant during optimal production conditions exerted a fungicidal effect on a variety of fungal and yeast strains. The results obtained suggest that PMKT2 has different physico-chemical properties from PMKT as well as different potential uses in the biocontrol of spoilage yeasts. PMKT2 was able to inhibit Brettanomyces bruxellensis while Saccharomyces cerevisiae was fully resistant, indicating that PMKT2 could be used in wine fermentations to avoid the development of the spoilage yeast without deleterious effects on the fermentative strain. In small-scale fermentations, PMKT2, as well as P. membranifaciens CYC 1086, was able to inhibit B. bruxellensis, verifying the biocontrol activity of PMKT2 in simulated winemaking conditions.
Collapse
Affiliation(s)
- A Santos
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - M San Mauro
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - E Bravo
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - D Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
9
|
Pichia anomala DBVPG 3003 secretes a ubiquitin-like protein that has antimicrobial activity. Appl Environ Microbiol 2008; 75:1129-34. [PMID: 19114528 DOI: 10.1128/aem.01837-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast strain Pichia anomala DBVPG 3003 secretes a killer toxin (Pikt) that has antifungal activity against Brettanomyces/Dekkera sp. yeasts. Pikt interacts with beta-1,6-glucan, consistent with binding to the cell wall of sensitive targets. In contrast to that of toxin K1, secreted by Saccharomyces cerevisiae, Pikt killer activity is not mediated by an increase in membrane permeability. Purification of the toxin yielded a homogeneous protein of about 8 kDa, which showed a marked similarity to ubiquitin in terms of molecular mass and N-terminal sequences. Pikt is also specifically recognized by anti-bovine ubiquitin antibodies and, similar to ubiquitin-like peptides, is not absorbed by DEAE-cellulose. However, Pikt differs from ubiquitin in its sensitivity to proteolytic enzymes. Therefore, Pikt appears to be a novel ubiquitin-like peptide that has killer activity.
Collapse
|
10
|
Comitini F, Pietro ND, Zacchi L, Mannazzu I, Ciani M. Kluyveromyces phaffii killer toxin active against wine spoilage yeasts: purification and characterization. MICROBIOLOGY-SGM 2004; 150:2535-2541. [PMID: 15289550 DOI: 10.1099/mic.0.27145-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The killer toxin secreted by Kluyveromyces phaffii (KpKt) is active against spoilage yeast under winemaking conditions and thus has potential applications in the biocontrol of undesired micro-organisms in the wine industry. Biochemical characterization and N-terminal sequencing of the purified toxin show that KpKt is a glycosylated protein with a molecular mass of 33 kDa. Moreover, it shows 93% and 80% identity to a beta-1,3-glucanase of Saccharomyces cerevisiae and a beta-1,3-glucan transferase of Candida albicans, respectively, and it is active on laminarin and glucan, thus showing a beta-glucanase activity. Competitive inhibition of killer activity by cell-wall polysaccharides suggests that glucan (beta-1,3 and beta-1,6 branched glucans) represents the first receptor site of the toxin on the envelope of the sensitive target. Flow cytometry analysis of the sensitive target after treatment with KpKt and K1 toxin of S. cerevisiae, known to cause loss of cell viability via formation of pores in the cell membrane, suggests a different mode of action for KpKt.
Collapse
Affiliation(s)
- Francesca Comitini
- Dipartimento di Scienze degli Alimenti, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Natalia Di Pietro
- Dipartimento di Scienze degli Alimenti, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Laura Zacchi
- Dipartimento di Scienze degli Alimenti, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Ilaria Mannazzu
- Dipartimento di Scienze degli Alimenti, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maurizio Ciani
- Dipartimento di Scienze degli Alimenti, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
11
|
Santos A, Marquina D. Killer toxin of Pichia membranifaciens and its possible use as a biocontrol agent against grey mould disease of grapevine. MICROBIOLOGY-SGM 2004; 150:2527-2534. [PMID: 15289549 DOI: 10.1099/mic.0.27071-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of Pichia membranifaciens CYC 1106 killer toxin against Botrytis cinerea was investigated. This strain exerted a broad-specificity killing action against other yeasts and fungi. At pH 4, optimal killer activity was observed at temperatures up to 20 degrees C. At 25 degrees C the toxic effect was reduced to 70%. The killer activity was higher in acidic medium. Above about pH 4.5 activity decreased sharply and was barely noticeable at pH 6. The killer toxin protein from P. membranifaciens CYC 1106 was purified to electrophoretic homogeneity. SDS-PAGE of the purified killer protein indicated an apparent molecular mass of 18 kDa. Killer toxin production was stimulated in the presence of non-ionic detergents. The toxin concentrations present in the supernatant during optimal production conditions exerted a fungicidal effect on a strain of B. cinerea. The symptoms of infection and grey mould observed in Vitis vinifera plants treated with B. cinerea were prevented in the presence of purified P. membranifaciens killer toxin. The results obtained suggest that P. membranifaciens CYC 1106 killer toxin is of potential use in the biocontrol of B. cinerea.
Collapse
Affiliation(s)
- A Santos
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, Madrid 28040, Spain
| | - D Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, Madrid 28040, Spain
| |
Collapse
|
12
|
Marquina D, Barroso J, Santos A, Peinado JM. Production and characteristics of Debaryomyces hansenii killer toxin. Microbiol Res 2002; 156:387-91. [PMID: 11770858 DOI: 10.1078/0944-5013-00117] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The optimal conditions for the production of the killer toxin of Debaryomyces hansenii CYC 1021 have been studied. The lethal activity of the killer toxin increased with the presence of NaCl in the medium used for testing the killing action. Production of the killer toxin was stimulated in the presence of proteins of complex culture media. Addition of nonionic detergents and other additives, such as dimethylsulfoxide enhanced killer toxin production significantly. Killer toxin secretion pattern followed the growth curve and reached its maximum activity at the early stationary phase. Optimal stability was observed at pH 4.5 and temperatures up to 20 degrees C. Above pH 4.5 a steep decrease of the stability was noted. The activity was hardly detectable at pH 5.1.
Collapse
Affiliation(s)
- D Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
13
|
Ciani M, Fatichenti F. Killer toxin of Kluyveromyces phaffii DBVPG 6076 as a biopreservative agent to control apiculate wine Yeasts. Appl Environ Microbiol 2001; 67:3058-63. [PMID: 11425722 PMCID: PMC92981 DOI: 10.1128/aem.67.7.3058-3063.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of Kluyveromyces phaffii DBVPG 6076 killer toxin against apiculate wine yeasts has been investigated. The killer toxin of K. phaffii DBVPG 6076 showed extensive anti-Hanseniaspora activity against strains isolated from grape samples. The proteinaceous killer toxin was found to be active in the pH range of 3 to 5 and at temperatures lower than 40 degrees C. These biochemical properties would allow the use of K. phaffii killer toxin in wine making. Fungicidal or fungistatic effects depend on the toxin concentration. Toxin concentrations present in the supernatant during optimal conditions of production (14.3 arbitrary units) exerted a fungicidal effect on a sensitive strain of Hanseniaspora uvarum. At subcritical concentrations (fungistatic effect) the saturation kinetics observed with the increased ratio of killer toxin to H. uvarum cells suggest the presence of a toxin receptor. The inhibitory activity exerted by the killer toxin present in grape juice was comparable to that of sulfur dioxide. The findings presented suggest that the K. phaffii DBVPG 6076 killer toxin has potential as a biopreservative agent in wine making.
Collapse
Affiliation(s)
- M Ciani
- Dipartimento di Biotecnologie Agrarie e Ambientali, Università di Ancona, Ancona 60131, Italy.
| | | |
Collapse
|
14
|
Chen WB, Han YF, Jong SC, Chang SC. Isolation, purification, and characterization of a killer protein from Schwanniomyces occidentalis. Appl Environ Microbiol 2000; 66:5348-52. [PMID: 11097913 PMCID: PMC92467 DOI: 10.1128/aem.66.12.5348-5352.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Schwanniomyces occidentalis produces a killer toxin lethal to sensitive strains of Saccharomyces cerevisiae. Killer activity is lost after pepsin and papain treatment, suggesting that the toxin is a protein. We purified the killer protein and found that it was composed of two subunits with molecular masses of approximately 7.4 and 4.9 kDa, respectively, but was not detectable with periodic acid-Schiff staining. A BLAST search revealed that residues 3 to 14 of the 4.9-kDa subunit had 75% identity and 83% similarity with killer toxin K2 from S. cerevisiae at positions 271 to 283. Maximum killer activity was between pH 4.2 and 4.8. The protein was stable between pH 2.0 and 5.0 and inactivated at temperatures above 40 degrees C. The killer protein was chromosomally encoded. Mannan, but not beta-glucan or laminarin, prevented sensitive yeast cells from being killed by the killer protein, suggesting that mannan may bind to the killer protein. Identification and characterization of a killer strain of S. occidentalis may help reduce the risk of contamination by undesirable yeast strains during commercial fermentations.
Collapse
Affiliation(s)
- W B Chen
- Department of Biochemistry, National Yang-Ming University, Taipei 112, Taiwan, Republic of China
| | | | | | | |
Collapse
|
15
|
Abstract
The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed.
Collapse
Affiliation(s)
- W Magliani
- Istituto di Microbiologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Parma, Italy
| | | | | | | | | |
Collapse
|
16
|
Abranches J, Morais PB, Rosa CA, Mendonça-Hagler LC, Hagler AN. The incidence of killer activity and extracellular proteases in tropical yeast communities. Can J Microbiol 1997; 43:328-36. [PMID: 9115090 DOI: 10.1139/m97-046] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The presence of killer and proteolytic yeasts was studied among 944 isolates representing 105 species from tropical yeast communities. We found 13 killer toxin producing species, with Pichia kluyveri being the most frequent. Other killer yeast isolates were Candida apis, Candida bombicola, Candida fructus, Candida krusei, Candida sorbosa, Hanseniaspora uvarum, Issatchenkia occidentalis, Kloeckera apis, Kluyveromyces marxianus, Pichia membranaefaciens, Pichia ohmeri-like, and Sporobolomyces roseus. The communities from which killer yeasts were isolated had strains sensitive to them, and there were interspecific and intraspecific differences in the spectra of their killer activities. Pichia kluyveri had the broadest spectra of activity against sensitive isolates, and it apparently produced different toxins. The coexistence of sensitive and killer yeasts using the same substrate suggests that there is spatial separation in microhabitats or temporal separation in different stages of successions. Basidiomycetous yeasts were more frequently proteolytic than ascomycetous yeasts. Extracellular proteases could be important for the yeasts to have access to more nitrogen nutrients and obtain a better balance with available carbon sources.
Collapse
Affiliation(s)
- J Abranches
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
17
|
Hodgson VJ, Button D, Walker GM. Anti-Candida activity of a novel killer toxin from the yeast Williopsis mrakii. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 8):2003-2012. [PMID: 7551063 DOI: 10.1099/13500872-141-8-2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A screening of putative killer yeast strains showed that spore-forming ascomycetous yeasts of the genera Pichia and Williopsis displayed the broadest range of activity against sensitive strains of Candida spp. and Saccharomyces cerevisiae. Williopsis mrakii (NCYC 500) showed extensive anti-Candida activity against strains isolated from clinical specimens. W. mrakii killer factor was produced in minimal media as a function of growth and its activity reached constant levels as cells entered stationary phase. The proteinaceous killer toxin was found to be unstable without a specific range of temperature and pH (above 30 degrees C and pH 4.0), and further analysis showed that the active toxin molecule was an acidic polypeptide with a relative molecular mass between 1.8-5.0 kDa. At critical concentrations the killer factor exerted a greater effect on stationary phase cells of Candida than cells from an exponential phase of growth. At low concentrations, the killer toxin produced a fungistatic effect on sensitive yeasts but at higher concentrations there was evidence to suggest that membrane damage accounted for the zymocidal effects of the killer factor. the cidal nature of the toxin was reflected in a rapid decrease in sensitive cell viability. Findings presented suggest that W. mrakii killer toxin has potential as a novel antimycotic agent in combatting medically important strains of Candida.
Collapse
|
18
|
Abstract
A total of 17 presumptive killer yeast strains were tested in vitro for growth inhibitory and killing activity against a range of fungal pathogens of agronomic, environmental and clinical significance. Several yeasts were identified which displayed significant activity against important pathogenic fungi. For example, isolates of the opportunistic human pathogen, Candida albicans, were generally very sensitive to Williopsis mrakii killer yeast activity, whilst killer strains of Saccharomyces cerevisiae and Pichia anomala markedly inhibited the growth of certain wood decay basidiomycetes and plant pathogenic fungi. Results indicate that such yeasts, together with their killer toxins, may have potential as novel antimycotic biocontrol agents.
Collapse
Affiliation(s)
- G M Walker
- Department of Molecular and Life Sciences, University of Abertay Dundee, UK
| | | | | |
Collapse
|
19
|
Starmer WT, Ganter PF, Aberdeen V. Geographic distribution and genetics of killer phenotypes for the yeast Pichia kluyveri across the United States. Appl Environ Microbiol 1992; 58:990-7. [PMID: 1575502 PMCID: PMC195367 DOI: 10.1128/aem.58.3.990-997.1992] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Representative strains (n = 61) of the yeast Pichia kluyveri from across the United States were studied for their ability to kill 71 other strains (representing 25 species) of yeast. This survey showed killing activity in 69% of the P. kluyveri strains tested. More extensive analysis of killer activity of 197 P. kluyveri strains against strains of five tester species showed comparable activity (67% of strains tested). This activity was shown to be equally variable within localities, within regions, and across the continent. The genetic basis of the variability was ascertained by tetrad analysis and is most likely due to alleles segregating at three epistatic loci. Evidence for the idea that killer toxins have a role in excluding other yeasts from particular habitats is discussed.
Collapse
Affiliation(s)
- W T Starmer
- Department of Biology, Syracuse University, New York 13244-1270
| | | | | |
Collapse
|
20
|
Palpacelli V, Ciani M, Rosini G. Activity of different âkillerâ yeasts on strains of yeast species undesirable in the food industry. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04572.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Sawant AD, Abdelal AT, Ahearn DG. Purification and characterization of the anti-Candida toxin of Pichia anomala WC 65. Antimicrob Agents Chemother 1989; 33:48-52. [PMID: 2653213 PMCID: PMC171419 DOI: 10.1128/aac.33.1.48] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pichia anomala WC 65 secretes a toxin that is inhibitory to a variety of yeasts, including strains of the animal pathogen Candida albicans. The toxin was purified to homogeneity by ultrafiltration, ethanol precipitation, ion-exchange chromatography with a Mono Q column, and gel permeation chromatography with a Superose 12 column. The toxin had a molecular weight of 83,300 as determined by electrophoresis on sodium dodecyl sulfate-polyacrylamide gradient gels and a molecular weight of 85,290 as determined by gel permeation chromatography. The isoelectric point of the toxin was pH 5.0. The toxin was stable between pH 2.0 and 5.0. Chemical analysis of the purified toxin indicated that the toxin was a glycoprotein composed of about 86% protein and 14% carbohydrate. At high concentrations, the toxin showed a tendency to aggregate, with loss of biological activity against C. albicans, Pichia bimundalis, and Saccharomycodes ludwigii. Purified toxin expressed killing activity against C. albicans in contrast to the static activity of the crude toxin.
Collapse
Affiliation(s)
- A D Sawant
- Laboratory for Microbial and Biochemical Sciences, Georgia State University, Atlanta 30303
| | | | | |
Collapse
|
22
|
Rosini G, Cantini M. Killer character inKluyveromycesyeasts: Activity onKloeckera apiculata. FEMS Microbiol Lett 1987. [DOI: 10.1111/j.1574-6968.1987.tb02247.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
23
|
el-Sherbeini M, Bostian KA, Levitre J, Mitchell DJ. Gene-protein assignments within the yeast Yarrowia lipolytica dsRNA viral genome. Curr Genet 1987; 11:483-90. [PMID: 3502458 DOI: 10.1007/bf00384610] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Some strains of the yeast Yarrowia lipolytica possess virus-like particles (VLPs) which encapsidate a double-stranded RNA (dsRNA) genome designated Ly. We report here that these VLPs have two associated polypeptides of molecular weights 83 kd (VLy-P1) and 77 kd (VLy-P2). Denatured Ly-dsRNA was used to program a cell-free rabbit reticulocyte translation system, resulting in the appearance of four major products, viz. Ly-P1 (83 kd); Ly-P2 (77 kd); Ly-P3 (74 kd) and Ly-P4 (68 kd). The in vivo viral-associated protein VLy-P1 co-migrated on SDS-polyacrylamide gels with the in vitro product Ly-P1 and, similarly, VLy-P2 co-migrated with Ly-P2. Peptide mapping data confirm the identity of the in vivo products (VLy-P1 and VLy-P2) and their in vitro counterparts. The conclusion made is that VLy-P1 and VLy-P2 are almost identical primary translation products of the Ly genome, derived from a single or multiple species of Ly-dsRNA. RNA blot hybridizations using L1A M1 and separately, L2A M2 probes prepared from appropriate K1 and K2 Saccharomyces cerevisiae killer strains, failed to show any detectable homology to Ly-dsRNA, substantiating the uniqueness of the Ly genome with respect to the K1 and K2 S. cerevisiae dsRNA killer systems.
Collapse
Affiliation(s)
- M el-Sherbeini
- Section of Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912
| | | | | | | |
Collapse
|
24
|
|
25
|
|
26
|
Yamamoto T, Hiratani T, Hirata H, Imai M, Yamaguchi H. Killer toxin from Hansenula mrakii selectively inhibits cell wall synthesis in a sensitive yeast. FEBS Lett 1986; 197:50-4. [PMID: 3512308 DOI: 10.1016/0014-5793(86)80296-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hansenula mrakii secretes extracellularly a killer toxin which kills sensitive Saccharomyces cerevisiae. In protoplasts of this yeast, the killer toxin selectively inhibited the synthesis of alkali-insoluble acid-insoluble polysaccharides consisting mainly of beta-glucan, but did not inhibit either the synthesis of other cell wall polysaccharides, such as mannan, chitin and alkali-insoluble acid-soluble polysaccharides, or the synthesis of protein. Consistent with these results, the toxin was inhibitory to the beta-(1,3)-glucan synthetase activity of a cell-free extract from sensitive S. cerevisiae.
Collapse
|
27
|
Yamamoto T, Imai M, Tachibana K, Mayumi M. Application of monoclonal antibodies to the isolation and characterization of a killer toxin secreted by Hansenula mrakii. FEBS Lett 1986; 195:253-7. [PMID: 3943610 DOI: 10.1016/0014-5793(86)80170-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A strain of yeast, Hansenula mrakii, secretes a toxin that kills sensitive yeasts, such as Saccharomyces cerevisiae Monoclonal antibodies raised against the toxin had both binding and neutralizing activities. The toxin in culture media was isolated by an affinity column of monoclonal antibody. The toxin is a basic polypeptide with an isoelectric point at pH 9.1, and devoid of mannosides. It is composed of 88 amino acid residues with a molecular size of 10 721 Da. The monoclonal antibodies could be applicable to the analysis of biologically active sites on the toxin, in an attempt to synthesize chemically a small peptide with killer activity and little immunogenicity.
Collapse
|
28
|
|
29
|
|
30
|
Pfeiffer P, Radler F. Comparison of the killer toxin of several yeasts and the purification of a toxin of type K2. Arch Microbiol 1984; 137:357-61. [PMID: 6375620 DOI: 10.1007/bf00410734] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A total of 13 killer toxin producing strains belonging to the genera Saccharomyces, Candida and Pichia were tested against each other and against a sensitive yeast strain. Based on the activity of the toxins 4 different toxins of Saccharomyces cerevisiae, 2 different toxins of Pichia and one toxin of Candida were recognized. The culture filtrate of Pichia and Candida showed a much smaller activity than the strains of Saccharomyces. Extracellular killer toxins of 3 types of Saccharomyces were concentrated and partially purified. The pH optimum and the isoelectric point were determined. The killer toxins of S. cerevisiae strain NCYC 738, strain 399 and strain 28 were glycoproteins and had a molecular weight of Mr = 16,000. The amino acid composition of the toxin type K2 of S. cerevisiae strain 399 was determined and compared with the composition of two other toxins.
Collapse
|
31
|
Bostian KA, Elliott Q, Bussey H, Burn V, Smith A, Tipper DJ. Sequence of the preprotoxin dsRNA gene of type I killer yeast: multiple processing events produce a two-component toxin. Cell 1984; 36:741-51. [PMID: 6697395 DOI: 10.1016/0092-8674(84)90354-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The preprotoxin gene of the 1.9 kb M1 dsRNA genome from type I killer yeast has been sequenced employing a partial-length cDNA derived from an in vivo transcript. A single open reading frame, commencing with AUG at M1 dsRNA bases 14-16, terminates with UAG at 963-965 and codes for a 316 amino acid protein, believed to be identical to the 34 kd preprotoxin species, M1-P1, synthesized by in vitro translation of denatured M1 dsRNA. N-terminal sequencing of M1-P1 confirms this prediction. Secreted toxin is shown to consist of two dissimilar, disulfide-bonded subunits, alpha and beta, of apparent size 9.5 and 9.0 kd, respectively, whose N-terminal sequences are also found in the predicted preprotoxin sequence. Its proposed domains consist of delta, a 44 amino acid N-terminal segment, followed by alpha and beta, which are separated by gamma, a large central glycosylated segment. Processing sites, domain functions, and the potential role of gamma in immunity are discussed.
Collapse
|
32
|
Abstract
The toxic action of yeast killer proteins seems to involve selective functional damage to the plasma membrane of the sensitive cell. Physiological effects include leakage of K+ (refs 1, 2), inhibition of active transport of amino acids and acidification of the cell interior. These effects are strikingly similar to the effects of certain bacterial colicins which have been demonstrated previously to form channels in membranes. Proposed mechanisms of action have usually postulated a limited permeability change induced by the toxin in the plasma membrane. We report here that a killer toxin from the yeast Pichia kluyveri forms ion-permeable channels in phospholipid bilayer membranes, and we propose that the in vitro electrophysiological properties of these channels account for the morbid effects observed in intoxicated cells. A preliminary account of this work has appeared elsewhere.
Collapse
|
33
|
Immobilization of yeast cells with retention of cell division and extracellular production of macromolecules. Biotechnol Lett 1980. [DOI: 10.1007/bf00129548] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Middelbeek EJ, Crützen QH, Vogels GD. Effects of potassium and sodium ions on the killing action of a Pichia kluyveri toxin in cells of Saccharomyces cerevisiae. Antimicrob Agents Chemother 1980; 18:519-24. [PMID: 7004340 PMCID: PMC284041 DOI: 10.1128/aac.18.4.519] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Loss of viability of toxin-treated cells of Saccharomyces cerevisiae SCF 1717 could be prevented in the period before they altered physiologically if cells were incubated in media with a suitable concentration of potassium (0.08 to 0.13 M) and hydrogen ions (pH 6.2 to 6.7). Incorporation of higher amounts of potassium chloride in the media had a pronounced negative effect on cell survival, particularly when the pH of the medium was lowered. Replacement of KCl by NaCl in the plate media was even more deleterious to toxin-treated cells and, in contrast with potassium, low concentrations of sodium ions could not sustain recovery of cells. Complete recovery of a toxin-treated cell suspension required an incubation of 3 h in a suitable medium. The recovery process was blocked by cycloheximide.
Collapse
|
35
|
Middelbeek E, Peters J, Stumm C, Vogels G. Properties of aCryptococcus laurentiikiller toxin and conditional killing effect of the toxin onCryptococcus albidus. FEMS Microbiol Lett 1980. [DOI: 10.1111/j.1574-6968.1980.tb05611.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Middelbeek EJ, van de Laar HH, Hermans JM, Stumm C, Vogels GD. Physiological conditions affecting the sensitivity of Saccharomyces cerevisiae to a Pichia kluyveri killer toxin and energy requirement for toxin action. Antonie Van Leeuwenhoek 1980; 46:483-97. [PMID: 6453558 DOI: 10.1007/bf00395829] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The interaction between the killer toxin of Pichia kluyveri 1002 and cells of Saccharomyces cerevisiae SCF 1717 is strongly affected by the physiological state of sensitive cells. The killing effect is maximal for cells in the lag and early exponential phase of growth, whereas stationary cells are completely resistant. Furthermore, sensitivity is markedly enhanced by a rise of the pH (from 3.2 to 6.8) at which cells are cultured. Three successive stages can be distinguished in the killing process: (I) binding of the toxin to the primary binding site; (II) transmission of the toxin to its reactive site in the plasma membrane; (III) occurrence of functional damage (K+-leakage; decrease of intracellular pH). The transition from stage I to II is prevented in the absence of metabolic energy or at low temperature (below 10 degrees C). Sensitive cells in stage I can be rescued from toxin-induced killing by a short incubation at pH 7.0, which treatment is not effective for cells in stage II. Cells in stage II are able to resume growth when plated in a rich medium containing suitable concentrations of potassium and hydrogen ions. Rescue was not observed for cells in stage III of the killing process.
Collapse
|
37
|
Middelbeek EJ, Hermans JM, Stumm C, Muytjens HL. High incidence of sensitivity to yeast killer toxins among Candida and Torulopsis isolates of human origin. Antimicrob Agents Chemother 1980; 17:350-4. [PMID: 7191690 PMCID: PMC283789 DOI: 10.1128/aac.17.3.350] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Among yeast strains of human origin belonging to the genera Candida, Cryptococcus, Torulopsis, and Rhodotorula which were examined for killer and sensitive characteristics with killer and sensitive strains of Cryptococcus, Hansenula, Kluyveromyces, Pichia, Saccharomyces, and Torulopsis as screening organisms, a high incidence of sensitivity to killer toxins was observed within the genera Candida and Torulopsis. Of 142 strains tested, 116 strains distributed over all Candida and Torulopsis species examined were sensitive to one or more killers. Several new intergeneric killer-sensitive relationships are described. Furthermore, killing activity was exhibited by six strains of Candida (C. krusei, C. guilliermondii) and three strains of Torulopsis (T. glabrata).
Collapse
|
38
|
Middelbeek EJ, Stumm C, Vogels GD. Effects of Pichia kluyveri killer toxin on sensitive cells. Antonie Van Leeuwenhoek 1980; 46:205-20. [PMID: 7436405 DOI: 10.1007/bf00444075] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The killer toxin produced by Pichia kluyveri 1002 kills yeast strains of the genera Candida, Saccharomyces and Torulopsis, including several S. cerevisiae killer strains. Binding of a lethal amount of the toxin to cells of S. cerevisiae SCF 1717 occurs rapidly after toxin addition. After treatment with the toxin for 10 min sensitive cells partially recovered when incubated under conditions that favor protein synthesis. Only after a lag time of 50--90 min sensitive cells changed physiologically. Killing of sensitive cells was characterized by leakage of potassium and adenosine 5'-triphosphate, decrease of intracellular pH, and inhibition of the active uptake of amino acids. These effects coincided with cell shrinkage and varied with incubation conditions. Uptake of the amino acid leucine in sensitive cells involved two apparently distinct transport systems (Km1 = 0.04 mM; Km2 = 0.46 mM). The toxin showed different effects on these transport systems.
Collapse
|