1
|
Ireland D, Rabeler C, Gong T, Collins EMS. Bioactivation and detoxification of organophosphorus pesticides in freshwater planarians shares similarities with humans. Arch Toxicol 2022; 96:3233-3243. [PMID: 36173421 PMCID: PMC10729609 DOI: 10.1007/s00204-022-03387-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
Abstract
Organophosphorus pesticides (OPs) are a chemically diverse class of insecticides that inhibit acetylcholinesterase (AChE). Many OPs require bioactivation to their active oxon form via cytochrome P450 to effectively inhibit AChE. OP toxicity can be mitigated by detoxification reactions performed by carboxylesterase and paraoxonase. The relative extent of bioactivation to detoxification varies among individuals and between species, leading to differential susceptibility to OP toxicity. Because of these species differences, it is imperative to characterize OP metabolism in model systems used to assess OP toxicity. We have shown that the asexual freshwater planarian Dugesia japonica is a suitable model to assess OP neurotoxicity and developmental neurotoxicity via rapid, automated testing of adult and developing organisms in parallel using morphological and behavioral endpoints. D. japonica has two cholinesterase enzymes with intermediate properties between AChE and butyrylcholinesterase that are sensitive to OP inhibition. Here, we demonstrate that D. japonica contains the major OP metabolic machinery to be a relevant model for OP neurotoxicity studies. Adult and regenerating D. japonica can bioactivate chlorpyrifos and diazinon into their respective oxons. Significant AChE inhibition was only observed after in vivo metabolic activation but not when the parent OPs were directly added to planarian homogenate using the same concentrations and timing. Using biochemical assays, we found that D. japonica has both carboxylesterase (24 nmol/(min*mg protein)) and paraoxonase (60 pmol/(min*mg protein)) activity. We show that planarian carboxylesterase activity is distinct from cholinesterase activity using benzil and tacrine. These results further support the use of D. japonica for OP toxicity studies.
Collapse
Affiliation(s)
| | | | - TaiXi Gong
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, USA.
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA, USA.
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Della Vechia JF, Van Leeuwen T, Rossi GD, Andrade DJ. The role of detoxification enzymes in the susceptibility of Brevipalpus californicus exposed to acaricide and insecticide mixtures. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104855. [PMID: 33993973 DOI: 10.1016/j.pestbp.2021.104855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
The intense spraying of pesticides to control different arthropod pests has resulted in negative side effects for the management of pests. It was previously discovered that exposure to non-acaricidal insecticides alone or in a mixture, results in lower efficiency of the acaricide spirodiclofen used for Brevipalpus spp. control. We investigate here whether the induced expression of detoxification enzymes by non-lethal insecticides may antagonize spirodiclofen toxicity. Brevipalpus californicus mites exposed to the insecticide phosmet alone or in combination with spirodiclofen showed increased activity of P450 monooxygenases (P450s). No antagonistic effects in mite mortality were observed by the combination of phosmet and spirodiclofen. On the other hand, mites exposed to the insecticide imidacloprid alone or in combination with spirodiclofen showed an increase in the activity of P450s, carboxylcholinesterases (CCE), and glutathione-S-transferases (GST). An antagonistic effect on mite mortality was observed when mites were exposed to the LC25 of spirodiclofen combined with the field rate treatment of imidacloprid. The addition of PBO (a P450 monooxygenase inhibitor) to the mixture of spirodiclofen and imidacloprid resulted in a synergistic effect over mite mortality but the addition of DEM (a GST inhibitor) resulted in an antagonist effect. Taken together, this study showed that the combination of imidacloprid with spirodiclofen is antagonistic for the control of B. californicus, and this results from the induction of detoxification enzymes, such as P450s, CCE, and GST. The use of inhibitors highlights the role of these enzymes in the antagonism of the mixture.
Collapse
Affiliation(s)
- Jaqueline F Della Vechia
- Department of Agricultural Sciences, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane S/N. Zip code: 14, 884-900 Jaboticabal, SP, Brazil.
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Guilherme D Rossi
- Department of Agricultural Sciences, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane S/N. Zip code: 14, 884-900 Jaboticabal, SP, Brazil
| | - Daniel J Andrade
- Department of Agricultural Sciences, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane S/N. Zip code: 14, 884-900 Jaboticabal, SP, Brazil
| |
Collapse
|
3
|
Moreira DR, Sinópolis Gigliolli AA, Falco JRP, Julio AHF, Volnistem EA, Chagas FD, Toledo VDAAD, Ruvolo-Takasusuki MCC. Toxicity and effects of the neonicotinoid thiamethoxam on Scaptotrigona bipunctata lepeletier, 1836 (Hymenoptera: Apidae). ENVIRONMENTAL TOXICOLOGY 2018; 33:463-475. [PMID: 29377569 DOI: 10.1002/tox.22533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
The neonicotinoid thiamethoxam is widely used in different agricultural crops, and it has a spectrum of action against insects, affecting both pests and pollinators, such as bees. In this study, the effects of exposure to sublethal concentrations of thiamethoxam on stingless bees Scaptotrigona bipunctata were evaluated. Foragers bees were exposed to the insecticide and subjected to genetic biochemical, histochemical, and morphological analyses after 24, 48, and 72 h of ingestion. Analysis of isoenzyme esterases revealed significant alterations in the relative activity of EST-4, a type II cholinesterase. Evaluation of the S. bipunctata brain revealed changes in the state of chromatin condensation according to the exposure time and concentration of neonicotinoid compared with the control. Morphological changes were observed in the midgut of this species at all concentrations and exposure times, which may interfere with various physiological processes of these insects. We can conclude that, although thiamethoxam at the concentrations evaluated did not cause high mortality, it induced concentration-dependent changes in bees by activating enzymes related with the protection for xenobiotic, internal morphology and probably these changes may lead to alterations in the activity of bees.
Collapse
Affiliation(s)
- Daiani Rodrigues Moreira
- Departament of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Paraná, Brazil
| | | | | | | | | | - Francieli das Chagas
- Departament of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Paraná, Brazil
| | | | | |
Collapse
|
4
|
Fitness differences due to allelic variation at Esterase-4 locus in Drosophila ananassae. J Genet 2017; 96:625-631. [DOI: 10.1007/s12041-017-0814-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Gigliolli AAS, Lapenta AS, Ruvolo-Takasusuki MCC, Abrahão J, Conte H. Morpho-functional characterization and esterase patterns of the midgut of Tribolium castaneum Herbst, 1797 (Coleoptera: Tenebrionidae) parasitized by Gregarina cuneata (Apicomplexa: Eugregarinidae). Micron 2015; 76:68-78. [DOI: 10.1016/j.micron.2015.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 04/14/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
|
6
|
Palaksha, Shakunthala V. Variations in the esterase expression pattern with respect to different light regimes in Drosophila agumbensisand Drosophila nagarholensis. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1026677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Balakirev ES, Chechetkin VR, Lobzin VV, Ayala FJ. Computational methods of identification of pseudogenes based on functionality: entropy and GC content. Methods Mol Biol 2014; 1167:41-62. [PMID: 24823770 DOI: 10.1007/978-1-4939-0835-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Spectral entropy and GC content analyses reveal comprehensive structural features of DNA sequences. To illustrate the significance of these features, we analyze the β-esterase gene cluster, including the Est-6 gene and the ψEst-6 putative pseudogene, in seven species of the Drosophila melanogaster subgroup. The spectral entropies show distinctly lower structural ordering for ψEst-6 than for Est-6 in all species studied. However, entropy accumulation is not a completely random process for either gene and it shows to be nucleotide dependent. Furthermore, GC content in synonymous positions is uniformly higher in Est-6 than in ψEst-6, in agreement with the reduced GC content generally observed in pseudogenes and nonfunctional sequences. The observed differences in entropy and GC content reflect an evolutionary shift associated with the process of pseudogenization and subsequent functional divergence of ψEst-6 and Est-6 after the duplication event. The data obtained show the relevance and significance of entropy and GC content analyses for pseudogene identification and for the comparative study of gene-pseudogene evolution.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA,
| | | | | | | |
Collapse
|
8
|
Cantagalli LB, Lopes DA, Stuchi ALPB, Colla Ruvolo Takasusuki MC. LEAF-CUTTING ANTS Acromyrmex niger SMITH, 1858 (HYMENOPTERA; FORMICIDAE) USED AS BIOINDICATORS OF AGROTOXICS RESIDUES. ACTA BIOLÓGICA COLOMBIANA 2013. [DOI: 10.15446/abc.v19n2.38343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
9
|
Jackson CJ, Liu JW, Carr PD, Younus F, Coppin C, Meirelles T, Lethier M, Pandey G, Ollis DL, Russell RJ, Weik M, Oakeshott JG. Structure and function of an insect α-carboxylesterase (αEsterase7) associated with insecticide resistance. Proc Natl Acad Sci U S A 2013; 110:10177-82. [PMID: 23733941 PMCID: PMC3690851 DOI: 10.1073/pnas.1304097110] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insect carboxylesterases from the αEsterase gene cluster, such as αE7 (also known as E3) from the Australian sheep blowfly Lucilia cuprina (LcαE7), play an important physiological role in lipid metabolism and are implicated in the detoxification of organophosphate (OP) insecticides. Despite the importance of OPs to agriculture and the spread of insect-borne diseases, the molecular basis for the ability of α-carboxylesterases to confer OP resistance to insects is poorly understood. In this work, we used laboratory evolution to increase the thermal stability of LcαE7, allowing its overexpression in Escherichia coli and structure determination. The crystal structure reveals a canonical α/β-hydrolase fold that is very similar to the primary target of OPs (acetylcholinesterase) and a unique N-terminal α-helix that serves as a membrane anchor. Soaking of LcαE7 crystals in OPs led to the capture of a crystallographic snapshot of LcαE7 in its phosphorylated state, which allowed comparison with acetylcholinesterase and rationalization of its ability to protect insects against the effects of OPs. Finally, inspection of the active site of LcαE7 reveals an asymmetric and hydrophobic substrate binding cavity that is well-suited to fatty acid methyl esters, which are hydrolyzed by the enzyme with specificity constants (∼10(6) M(-1) s(-1)) indicative of a natural substrate.
Collapse
Affiliation(s)
- Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chertemps T, François A, Durand N, Rosell G, Dekker T, Lucas P, Maïbèche-Coisne M. A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral response dynamics to pheromone in Drosophila. BMC Biol 2012; 10:56. [PMID: 22715942 PMCID: PMC3414785 DOI: 10.1186/1741-7007-10-56] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/21/2012] [Indexed: 12/16/2022] Open
Abstract
Background Insects respond to the spatial and temporal dynamics of a pheromone plume, which implies not only a strong response to 'odor on', but also to 'odor off'. This requires mechanisms geared toward a fast signal termination. Several mechanisms may contribute to signal termination, among which odorant-degrading enzymes. These enzymes putatively play a role in signal dynamics by a rapid inactivation of odorants in the vicinity of the sensory receptors, although direct in vivo experimental evidences are lacking. Here we verified the role of an extracellular carboxylesterase, esterase-6 (Est-6), in the sensory physiological and behavioral dynamics of Drosophila melanogaster response to its pheromone, cis-vaccenyl acetate (cVA). Est-6 was previously linked to post-mating effects in the reproductive system of females. As Est-6 is also known to hydrolyze cVA in vitro and is expressed in the main olfactory organ, the antenna, we tested here its role in olfaction as a putative odorant-degrading enzyme. Results We first confirm that Est-6 is highly expressed in olfactory sensilla, including cVA-sensitive sensilla, and we show that expression is likely associated with non-neuronal cells. Our electrophysiological approaches show that the dynamics of olfactory receptor neuron (ORN) responses is strongly influenced by Est-6, as in Est-6° null mutants (lacking the Est-6 gene) cVA-sensitive ORN showed increased firing rate and prolonged activity in response to cVA. Est-6° mutant males had a lower threshold of behavioral response to cVA, as revealed by the analysis of two cVA-induced behaviors. In particular, mutant males exhibited a strong decrease of male-male courtship, in association with a delay in courtship initiation. Conclusions Our study presents evidence that Est-6 plays a role in the physiological and behavioral dynamics of sex pheromone response in Drosophila males and supports a role of Est-6 as an odorant-degrading enzyme (ODE) in male antennae. Our results also expand the role of Est-6 in Drosophila biology, from reproduction to olfaction, and highlight the role of ODEs in insect olfaction.
Collapse
Affiliation(s)
- Thomas Chertemps
- Université Pierre et Marie Curie, UMR, Physiologie de l'Insecte, Signalisation et Communication, Paris, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Montella IR, Schama R, Valle D. The classification of esterases: an important gene family involved in insecticide resistance - A review. Mem Inst Oswaldo Cruz 2012; 107:437-49. [DOI: 10.1590/s0074-02762012000400001] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Renata Schama
- Fiocruz, Brasil; Instituto de Biologia do Exército, Brasil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| | - Denise Valle
- Fiocruz, Brasil; Instituto de Biologia do Exército, Brasil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| |
Collapse
|
12
|
Subramani T, Chandrashekharaiah KS, Swamy NR, Murthy KRS. Purification and characterization of carboxylesterase from the seeds of Jatropha curcas. Protein J 2012; 31:120-8. [PMID: 22173274 DOI: 10.1007/s10930-011-9380-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Carboxylesterases are hydrolases which catalyze the hydrolysis of various types of esters. Carboxylesterase from the seeds of Jatropha curcas has been purified to homogeneity using ammonium sulfate fractionation, CM-cellulose chromatography, Sephadex G-100 chromatography and preparative polyacrylamide gel electrophoresis (PAGE). The homogeneity of the purified enzyme was confirmed by PAGE, iso-electrofocusing and SDS-PAGE. The molecular weight of the purified enzyme was determined by both gel-permeation chromatography on Sephadex G-150 and SDS-PAGE. The molecular weight determined by Sephadex G-150 chromatography and SDS-PAGE both in the presence and absence of 2-mercaptoethanol was 31 kDa. The isoelectric point of the purified enzyme was found to be 8.9. JCSE-I (J. curcas seed esterase-I) was classified as carboxylesterase on the basis of substrate and inhibitor specificity. The K(m) of JCSE-I with 1-naphthyl acetate, 1-naphthyl propionate, 1-naphthyl butyrate and 2-naphthyl acetate as substrates were found to be 0.0,794, 0.0,658, 0.0,567 and 0.1 mM, respectively. The enzyme exhibited an optimum temperature of 45 °C and an optimum pH of 6.5. The enzyme was stable up to 15 min at 65 °C. The enzyme was resistant towards carbamates (carbaryl and eserine sulfate) and sulphydryl inhibitors (p-chloromercuricbenzoate, PCMB) and inhibited by organophosphates (dichlorvos, parathion and phosphamidon).
Collapse
Affiliation(s)
- T Subramani
- Department of Biochemistry, Bangalore University, Bangalore, Karnataka, India
| | | | | | | |
Collapse
|
13
|
Birner-Gruenberger R, Bickmeyer I, Lange J, Hehlert P, Hermetter A, Kollroser M, Rechberger GN, Kühnlein RP. Functional fat body proteomics and gene targeting reveal in vivo functions of Drosophila melanogaster α-Esterase-7. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:220-229. [PMID: 22198472 DOI: 10.1016/j.ibmb.2011.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 05/31/2023]
Abstract
Carboxylesterases constitute a large enzyme family in insects, which is involved in diverse functions such as xenobiotic detoxification, lipid metabolism and reproduction. Phylogenetically, many insect carboxylesterases are represented by multienzyme clades, which are encoded by evolutionarily ancient gene clusters such as the α-Esterase cluster. Much in contrast to the vital importance attributed to carboxylesterases in general, the in vivo function of individual α-Esterase genes is largely unknown. This study employs a functional proteomics approach to identify esterolytic enzymes of the vinegar fly Drosophila melanogaster fat body. One of the fat body carboxylesterases, α-Esterase-7, was selected for mutational analysis by gene targeting to generate a deletion mutant fly. Phenotypic characterization of α-Esterase-7 null mutants and transgenic flies, which overexpress a chimeric α-Esterase-7:EGFP gene, reveals important functions of α-Esterase-7 in insecticide tolerance, lipid metabolism and lifespan control. The presented first deletion mutant of any α-Esterase in the model insect D. melanogaster generated by gene targeting not only provides experimental evidence for the endogenous functions of this gene family. It also offers an entry point for in vivo structure-function analyses of α-Esterase-7, which is of central importance for naturally occurring insecticide resistance in wild populations of various dipteran insect species.
Collapse
Affiliation(s)
- Ruth Birner-Gruenberger
- Research Group Functional Proteomics, Institute of Pathology, and Proteomics Core Facility, Center of Medical Research, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chandrashekharaiah KS, Swamy NR, Murthy KRS. Carboxylesterases from the seeds of an underutilized legume, Mucuna pruriens; isolation, purification and characterization. PHYTOCHEMISTRY 2011; 72:2267-2274. [PMID: 21968056 DOI: 10.1016/j.phytochem.2011.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 09/06/2011] [Accepted: 09/08/2011] [Indexed: 05/31/2023]
Abstract
Two carboxylesterases (ME-III and ME-IV) have been purified to apparent homogeneity from the seeds of Mucuna pruriens employing ammonium sulfate fractionation, cation exchange chromatography on CM-cellulose, gel-permeation chromatography on Sephadex G-100 and preparative PAGE. The homogeneity of the purified preparations was confirmed by polyacrylamide gel electrophoresis (PAGE), gel-electrofocussing and SDS-PAGE. The molecular weights determined by gel-permeation chromatography on Sephadex G-200 were 20.89 kDa (ME-III) and 31.62 kDa (ME-IV). The molecular weights determined by SDS-PAGE both in the presence and absence of 2-mercaptoethanol were 21 kDa (ME-III) and 30.2 kDa (ME-IV) respectively, suggesting a monomeric structure for both the enzymes. The enzymes were found to have Stokes radius of 2.4 nm (ME-III) and 2.7 nm (ME-IV). The isoelectric pH values of the enzymes, ME-III and ME-IV, were 6.8 and 7.4, respectively. ME-III and ME-IV were classified as carboxylesterases employing PAGE in conjunction with substrate and inhibitor specificity. The K(m) of ME-III and ME-IV with 1-naphthyl acetate as substrate was 0.1 and 0.166 mM while with 1-naphthyl propionate as substrate the K(m) was 0.052 and 0.0454 mM, respectively. As the carbon chain length of the acyl group increased, the affinity of the substrate to the enzyme increased indicating hydrophobic nature of the acyl group binding site. The enzymes exhibited an optimum temperature of 45°C (ME-III) and 37°C (ME-IV), an optimum pH of 7.0 (ME-III) and 7.5 (ME-IV) and both the enzymes (ME-III and ME-IV) were stable up to 120 min at 35°C. Both the enzymes were inhibited by organophosphates (dichlorvos and phosphamidon), but resistant towards carbamates (carbaryl and eserine sulfate) and sulphydryl inhibitors (p-chloromercuricbenzoate, PCMB).
Collapse
Affiliation(s)
- K S Chandrashekharaiah
- Department of Biotechnology, PES Institute of Technology, BSK III Stage, Hosakerahalli, Bangalore, Karnataka, India.
| | | | | |
Collapse
|
15
|
de Carvalho VM, Marochio CA, Mangolin CA, da Silva Machado MDFP. The use of esterase polymorphism for analysis of the genetic diversity and structure of stevia (Stevia rebaudiana Bert. Bertoni) populations. BIOCHEM SYST ECOL 2011. [DOI: 10.1016/j.bse.2011.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Silva GAR, Lapenta AS. Genetic variability in esterases and the insecticide resistance in brazilian strains of Oryzaephilus mercator and Oryzaephilus surinamensis (Coleoptera: Silvanidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2011; 101:177-185. [PMID: 21034518 DOI: 10.1017/s0007485310000325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oryzaephilus mercator and O. surinamensis are stored grains and processed food pests, the latter being responsible for major economical losses. Polyacrylamide gel electrophoresis was used to analyse esterase patterns during insect development. Seven esterases, three cholinesterases, two carboxylesterases and two acetylesterases, were identified in O. mercator, one of which was proper to adults. Five esterases, of which four were cholinesterases, occurred in O. surinamensis. Strains of O. mercator and O. surinamensis were also exposed to malathion and chlorpyrifos-methyl. According to the LC50 estimates, OmLC-M and OmLA strains of O. mercator and OsLB strain of O. surinamensis were the most resistant to both insecticides. However, higher sensitivity to malathion and chlorpyrifos-methyl has also been verified in some of its esterases. Cholinesterases OmEST-1 and OsEST-5 seem to be involved in this resistance. These results suggest that organophosphate tolerance may be related to genetic variability in esterase isoenzymes.
Collapse
Affiliation(s)
- G A R Silva
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá-Pr, Brazil.
| | | |
Collapse
|
17
|
Sala J, Mangolin CA, Franzoni J, de Fátima Pires da Silva Machado M. Esterase Polymorphism and the Analysis of Genetic Diversity and Structure in Cactus Populations Descended from Cereus peruvianus Plants Regenerated In Vitro. Biochem Genet 2011; 49:270-82. [DOI: 10.1007/s10528-010-9405-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
|
18
|
Variability of esterase patterns in adult flies of the saltans species group of Drosophila (subgenus Sophophora). Genetica 2009; 137:111-24. [PMID: 19301127 DOI: 10.1007/s10709-009-9357-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
Abstract
Esterases are known for their involvement in several physiological processes and high degree of polymorphism, in many organisms. Such polymorphism has been used to characterize species and species groups and to study genetic changes occurred in their evolutionary history. In the present study, the esterase patterns of 19 strains from 10 species representative of the five subgroups of the saltans species group were analyzed using polyacrylamide gel electrophoresis and alpha- and beta- naphthyl acetates as substrates. Fifty-one esterase bands were detected and classified as 31 alpha-esterases, 18 beta-esterases and two alpha/beta-esterases. On the basis of the inhibition patterns using Malathion and eserine sulfate, 34 bands were classified as carboxylesterases, 14 as acethylesterases and three as cholinesterases. Ten gene loci were tentatively established on the basis of data on band position in the gel, substrate preference and inhibition pattern. Twenty bands were species-specific, the remaining being shared by species from the same or different subgroups. Bands detected exclusively in males and bands with a different frequency or degree of expression between sexes were also detected. In the gels prepared for analysis of gene expression in the body parts (head, thorax and abdomen), the degree of expression of the beta-esterases was higher in the thorax, while the alpha-esterases were expressed predominantly in the abdomen and thorax. A global view of the data available at present on the esterases of the species from the saltans group and their degree of polymorphism are presented, as well as the possibility of using some beta-esterases, because of their characteristics in the gels, as markers for species identification.
Collapse
|
19
|
Stoltz DA, Ozer EA, Taft PJ, Barry M, Liu L, Kiss PJ, Moninger TO, Parsek MR, Zabner J. Drosophila are protected from Pseudomonas aeruginosa lethality by transgenic expression of paraoxonase-1. J Clin Invest 2008; 118:3123-31. [PMID: 18704198 DOI: 10.1172/jci35147] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 07/09/2008] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa uses quorum sensing, an interbacterial communication system, to regulate gene expression. The signaling molecule N-3-oxododecanoyl homoserine lactone (3OC12-HSL) is thought to play a central role in quorum sensing. Since 3OC12-HSL can be degraded by paraoxonase (PON) family members, we hypothesized that PONs regulate P. aeruginosa virulence in vivo. We chose Drosophila melanogaster as our model organism because it has been shown to be a tractable model for investigating host-pathogen interactions and lacks PONs. By using quorum-sensing-deficient P. aeruginosa, synthetic acyl-HSLs, and transgenic expression of human PON1, we investigated the role of 3OC12-HSL and PON1 on P. aeruginosa virulence. We found that P. aeruginosa virulence in flies was dependent upon 3OC12-HSL. PON1 transgenic flies expressed enzymatically active PON1 and thereby exhibited arylesterase activity and resistance to organophosphate toxicity. Moreover, PON1 flies were protected from P. aeruginosa lethality, and protection was dependent on the lactonase activity of PON1. Our findings show that PON1 can interfere with quorum sensing in vivo and provide insight into what we believe is a novel role for PON1 in the innate immune response to quorum-sensing-dependent pathogens. These results raise intriguing possibilities about human-pathogen interactions, including potential roles for PON1 as a modifier gene and for PON1 protein as a regulator of normal bacterial florae, a link between infection/inflammation and cardiovascular disease, and a potential therapeutic modality.
Collapse
Affiliation(s)
- David A Stoltz
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Orasmo GR, Oliveira-Collet SA, Lapenta AS, de Fátima P S Machado M. Biochemical and genetic polymorphisms for carboxylesterase and acetylesterase in grape clones of Vitis vinifera L. (Vitaceae) cultivars. Biochem Genet 2007; 45:663-70. [PMID: 17710528 DOI: 10.1007/s10528-007-9103-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 03/22/2007] [Indexed: 10/22/2022]
Abstract
Native polyacrylamide gel electrophoresis (PAGE) was employed to show the highest number of esterase loci and to detect alpha- and beta-esterase polymorphisms in leaf buds of Vitis vinifera cultivars. A total of 16 esterase isozymes were detected in leaf buds from 235 plants including Italia, Rubi, Benitaka, and Brasil cultivars. Biochemical characterization of the grape esterases using ester substrates revealed alpha-, beta-, and alpha/beta-esterases with inhibitor tests distinguishing both carboxylesterases (EST-2, EST-3, EST-5, EST-6, EST-7, EST-8, EST-9, EST-10, and EST-16 isozymes) and acetylesterases (EST-4, EST-11, EST-12, EST-13, EST-14, EST-15 isozymes). No allele variation for alpha-, beta-, and alpha/beta-esterases was detected; however, EST-3 alpha-carboxylesterase was absent in 61.7% of vines, and EST-4 alpha/beta-acetylesterase was absent in one vine of Rubi cv. Null EST-3 carboxylesterase phenotype (61.7%) cannot be explained in this article, but the high genetic polymorphism in four V. vinifera clones is a positive aspect for genetic selection and development of new clones with different characteristics.
Collapse
Affiliation(s)
- Gleice Ribeiro Orasmo
- Department of Cell Biology and Genetics, State University of Maringá, Maringa, Paraná, 87020-900, Brazil
| | | | | | | |
Collapse
|
21
|
Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. INSECT MOLECULAR BIOLOGY 2006; 15:615-36. [PMID: 17069637 PMCID: PMC1761136 DOI: 10.1111/j.1365-2583.2006.00672.x] [Citation(s) in RCA: 471] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The honeybee genome has substantially fewer protein coding genes ( approximately 11 000 genes) than Drosophila melanogaster ( approximately 13 500) and Anopheles gambiae ( approximately 14 000). Some of the most marked differences occur in three superfamilies encoding xenobiotic detoxifying enzymes. Specifically there are only about half as many glutathione-S-transferases (GSTs), cytochrome P450 monooxygenases (P450s) and carboxyl/cholinesterases (CCEs) in the honeybee. This includes 10-fold or greater shortfalls in the numbers of Delta and Epsilon GSTs and CYP4 P450s, members of which clades have been recurrently associated with insecticide resistance in other species. These shortfalls may contribute to the sensitivity of the honeybee to insecticides. On the other hand there are some recent radiations in CYP6, CYP9 and certain CCE clades in A. mellifera that could be associated with the evolution of the hormonal and chemosensory processes underpinning its highly organized eusociality.
Collapse
Affiliation(s)
- C Claudianos
- Research School of Biological Sciences, Australian National University, Canberra, ACT, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Coppin CW, Odgers WA, Oakeshott JG. Latitudinal clines for nucleotide polymorphisms in the Esterase 6 gene of Drosophila melanogaster. Genetica 2006; 129:259-71. [PMID: 16955332 DOI: 10.1007/s10709-006-0006-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 03/31/2006] [Indexed: 11/27/2022]
Abstract
Previous studies have found non-neutral patterns of nucleotide polymorphism in the promoter and coding regions of Est6 in D. melanogaster. Coding region polymorphism peaks around two closely linked replacement differences associated with the EST6-F/EST6-S allozyme polymorphism. The promoter contains two common, highly diverged haplotype groups, P1 and P7, that differentially affect Est6 expression. Allozyme studies have also revealed latitudinal clines in EST6-F and EST6-S frequencies that recur across continents. Here we analyse nucleotide polymorphisms across the promoter and the region of peak coding sequence polymorphism in 10 Australian populations along a 25 degrees latitudinal gradient in order to examine the basis for the allozyme clines. As with the earlier studies, we find an excess of intermediate to high frequency variants in both the P1/P7 region and around the two EST6-F/EST6-S replacements in some populations. The two EST6-F/EST6-S replacement polymorphisms show latitudinal clines whereas the P1 and P7 groups of promoter haplotypes do not. However the strongest clines are for three co-segregating silent site polymorphisms in a 4 bp stretch at the 3' end of the sequenced region. Monte Carlo simulations show that the clines for those three sites can explain all others in the data but none of the others can explain those three. Thus the allozyme clines may not reflect selection on either the P1/P7 polymorphism or the two replacements previously associated with the EST6-F/EST-S difference.
Collapse
|
23
|
Nascimento AP, Bicudo HEMDC. Further study on the esterase patterns of sibling species in the Drosophila saltans subgroup (saltans group): intraspecific and interspecific variations in the development. Genetica 2006; 126:265-76. [PMID: 16636921 DOI: 10.1007/s10709-005-8459-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 05/11/2005] [Indexed: 10/24/2022]
Abstract
Twenty of the 32 esterase bands previously detected in the adults of D. prosaltans, D. saltans and D. austrosaltans were found in larvae and pupae studied in this work. The results showed that, in addition to expressing the highest number of esterase bands, the adult stage of the three species exhibited the highest degree of expression (amount of synthesis) for most of the bands. Differences between larval and pupal stages were detected in the degree of expression (amount of synthesis) of the bands and in the frequency of samples expressing them. The frequencies of expression of the bands corresponding to genes in loci 1-3 were greater in pupae than in larvae while the frequencies of expression of the bands corresponding to genes in loci 4-9 were predominantly expressed in larvae or were equal in both developmental stages. Like the adults, larvae, pupae and empty pupal cases (which were also studied in this work) showed specific esterases. Taken together, the observations showed that, in the species studied, every developmental stage is characterized by specific bands and by specific frequency and degree of expression of the bands shared with other stages.
Collapse
Affiliation(s)
- Adriana Pasqueto Nascimento
- Instituto de Biociências, Letras e Ciências Exatas, Rua Cristóvão Colombo, 2265, CEP 15054-000, São José do Rio Preto, SP, Brasil
| | | |
Collapse
|
24
|
Balakirev ES, Chechetkin VR, Lobzin VV, Ayala FJ. Entropy and GC Content in the beta-esterase gene cluster of the Drosophila melanogaster subgroup. Mol Biol Evol 2005; 22:2063-72. [PMID: 15972847 DOI: 10.1093/molbev/msi197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We perform spectral entropy and GC content analyses in the beta-esterase gene cluster, including the Est-6 gene and the psiEst-6 putative pseudogene, in seven species of the Drosophila melanogaster species subgroup. psiEst-6 combines features of functional and nonfunctional genes. The spectral entropies show distinctly lower structural ordering for psiEst-6 than for Est-6 in all species studied. Our observations agree with previous results for D. melanogaster and provide additional support to our hypothesis that after the duplication event Est-6 retained the esterase-coding function and its role during copulation, while psiEst-6 lost that function but now operates in conjunction with Est-6 as an intergene. Entropy accumulation is not a completely random process for either gene. Structural entropy is nucleotide dependent. The relative normalized deviations for structural entropy are higher for G than for C nucleotides. The entropy values are similar for Est-6 and psiEst-6 in the case of A and T but are lower for Est-6 in the case of G and C. The GC content in synonymous positions is uniformly higher in Est-6 than in psiEst-6, which agrees with the reduced GC content generally observed in pseudogenes and nonfunctional sequences. The observed differences in entropy and GC content reflect an evolutionary shift associated with the process of pseudogenization and subsequent functional divergence of psiEst-6 and Est-6 after the duplication event.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Pseudogenes have been defined as nonfunctional sequences of genomic DNA originally derived from functional genes. It is therefore assumed that all pseudogene mutations are selectively neutral and have equal probability to become fixed in the population. Rather, pseudogenes that have been suitably investigated often exhibit functional roles, such as gene expression, gene regulation, generation of genetic (antibody, antigenic, and other) diversity. Pseudogenes are involved in gene conversion or recombination with functional genes. Pseudogenes exhibit evolutionary conservation of gene sequence, reduced nucleotide variability, excess synonymous over nonsynonymous nucleotide polymorphism, and other features that are expected in genes or DNA sequences that have functional roles. We first review the Drosophila literature and then extend the discussion to the various functional features identified in the pseudogenes of other organisms. A pseudogene that has arisen by duplication or retroposition may, at first, not be subject to natural selection if the source gene remains functional. Mutant alleles that incorporate new functions may, nevertheless, be favored by natural selection and will have enhanced probability of becoming fixed in the population. We agree with the proposal that pseudogenes be considered as potogenes, i.e., DNA sequences with a potentiality for becoming new genes.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | |
Collapse
|
26
|
Balakirev ES, Ayala FJ. Molecular population genetics of theβ-esterase gene cluster ofDrosophila melanogaster. J Genet 2003; 82:115-31. [PMID: 15133190 DOI: 10.1007/bf02715813] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We have investigated nucleotide polymorphism at the beta-esterase gene cluster including the Est-6 gene and psiEst-6 putative pseudogene in four samples of Drosophila melanogaster derived from natural populations of southern Africa (Zimbabwe), Europe (Spain), North America (USA: California), and South America (Venezuela). A complex haplotype structure is revealed in both Est-6 and psiEst-6. Total nucleotide diversity is twice in psiEst-6 as in Est-6; diversity is higher in the African sample than in the non-African ones. Strong linkage disequilibrium occurs within the beta-esterase gene cluster in non-African samples, but not in the African one. Intragenic gene conversion events are detected within Est-6 and, to a much greater extent, within psiEst-6; intergenic gene conversion events are rare. Tests of neutrality with recombination are significant for the beta-esterase gene cluster in the non-African samples but not significant in the African one. We suggest that the demographic history (bottleneck and admixture of genetically differentiated populations) is the major factor shaping the pattern of nucleotide polymorphism in the beta-esterase gene cluster. However there are some 'footprints' of directional and balancing selection shaping specific distribution of nucleotide polymorphism within the cluster. Intergenic epistatic selection between Est-6 and psiEst-6 may play an important role in the evolution of the beta-esterase gene cluster preserving the putative pseudogene from degenerative destruction and reflecting possible functional interaction between the functional gene and the putative pseudogene. Est-6 and psiEst-6 may represent an indivisible intergenic complex ('intergene') in which each single component (Est-6 or psiEst-6) cannot separately carry out the full functional role.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA
| | | |
Collapse
|
27
|
Campbell PM, de Q Robin GC, Court LN, Dorrian SJ, Russell RJ, Oakeshott JG. Developmental expression and gene/enzyme identifications in the alpha esterase gene cluster of Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2003; 12:459-471. [PMID: 12974951 DOI: 10.1046/j.1365-2583.2003.00430.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here we show how the 10 genes of the alpha esterase cluster of Drosophila melanogaster have diverged substantially in their expression profiles. Together with previously described sequence divergence this suggests substantial functional diversification. By peptide mass fingerprinting and in vitro gene expression we have also shown that two of the genes encode the isozymes EST9 (formerly ESTC) and EST23. EST9 is the major 'alpha staining' esterase in zymograms of gut tissues in feeding stages while orthologues of EST23 confer resistance to organophosphorus insecticides in other higher Diptera. The results for EST9 and EST23 concur with previous suggestions that the products of the alpha esterase cluster function in digestion and detoxification of xenobiotic esters. However, many of the other genes in the cluster show developmental or tissue-specific expression that seems inconsistent with such roles. Furthermore, there is generally poor correspondence between the mRNA expression patterns of the remaining eight genes and isozymes previously characterized by standard techniques of electrophoresis and staining, suggesting that the alpha cluster might only account for a small minority of the esterase isozyme profile.
Collapse
Affiliation(s)
- P M Campbell
- Division of Entomology, Commonwealth Scientific & Industrial Research Organization, ACT, Australia.
| | | | | | | | | | | |
Collapse
|
28
|
Balakirev ES, Chechetkin VR, Lobzin VV, Ayala FJ. DNA polymorphism in the beta-Esterase gene cluster of Drosophila melanogaster. Genetics 2003; 164:533-44. [PMID: 12807774 PMCID: PMC1462603 DOI: 10.1093/genetics/164.2.533] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have analyzed nucleotide polymorphism within a 5.3-kb region encompassing the functional Est-6 gene and the psiEst-6 putative pseudogene in 28 strains of Drosophila melanogaster and one of D. simulans. Two divergent sequence types were detected, which are not perfectly associated with Est-6 allozyme variation. The level of variation (pi) is very close in the 5'-flanking region (0.0059) and Est-6 gene (0.0057), but significantly higher in the intergenic region (0.0141) and putative pseudogene (0.0122). The variation in the 3'-flanking region is intermediate (0.0083). These observations may reflect different levels of purifying selection in the different regions. Strong linkage disequilibrium occurs within the region studied, with the largest values revealed in the putative pseudogene and 3'-flanking region. Moreover, recombination is restricted within psiEst-6. Gene conversion is detected both within and (to a lesser extent) between Est-6 and psiEst-6. The data indicate that psiEst-6 exhibits some characteristics that are typical of nonfunctional genes, while other characteristics are typically attributed to functional genes; the same situation has been observed in other pseudogenes (including Drosophila). The results of structural entropy analysis demonstrate higher structural ordering in Est-6 than in psiEst-6, in accordance with expectations if psiEst-6 is indeed a pseudogene. Taking into account that the function of psiEst-6 is not known (but could exist) and following the terminology of J. Brosius and S. J. Gould, we suggest that the term "potogene" may be appropriate for psiEst-6, indicating that it is a potential gene that may have acquired some distinctive but unknown function.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California, Irvine 92697-2525, USA
| | | | | | | |
Collapse
|
29
|
Carvalho VMD, Marques RM, Lapenta AS, Machado MDFP. Functional classification of esterases from leaves of Aspidosperma polyneuron M. Arg. (Apocynaceae). Genet Mol Biol 2003. [DOI: 10.1590/s1415-47572003000200013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Martins E, Contel EP. African dung beetle Onthophagus gazella Fabricius (Coleoptera: Scarabaeidae) esterase isozymes. BRAZ J BIOL 2001; 61:645-50. [PMID: 12071321 DOI: 10.1590/s1519-69842001000400014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
African beetles Onthophagus gazella from both sexes were analyzed by electrophoresis for an investigation of esterase isozymes using alpha-naphthyl propionate and methylumbelliferyl propionate as substrates. Only one of the esterases (Est. 6) reacted with one of the substrates (alpha-naphthyl propionate). Six areas of activity were found, two of them being polymorphic (Est. 3 and Est. 4). For presence of Est. 3, 337 individuals were analyzed, including descendants of 32 controlled crossings: two alleles were identified, whose frequencies are Est. 3A = 0.447 and Est. 3B = 0.553. The population is in equilibrium for this locus (qui-square = 4.18; 0.2 > P > 0.1). For Est. 4, 338 individuals, descendants of 32 controlled crossings, were analysed. In this case, three alleles were identified whose frequencies are: Est. 4A = 0.277; Est. 4B = 0.661; and Est. 4C = 0.062. The population is not in equilibrium for this locus (qui-square = 40.259; p < 0.001). Two esterases were detected only in the pupal stage and another one in larvae. Of the 23 loci analyzed in these insects up to now, 3 are polymorphic (13%), which indicates very low variability in the population here studied.
Collapse
Affiliation(s)
- E Martins
- School of Medicine of the Triângulo Mineiro, Praça Manoel Terra, Uberaba, MG, Brazil.
| | | |
Collapse
|
31
|
Valles SM, Oi FM, Strong CA. Purification and characterization of trans-permethrin metabolizing microsomal esterases from workers of the eastern subterranean termite, Reticulitermes flavipes (Kollar). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:715-25. [PMID: 11267909 DOI: 10.1016/s0965-1748(00)00179-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Three alpha-naphthyl acetate hydrolyzing esterase isozymes were purified from microsomes prepared from Reticulitermes flavipes workers. The two step process involved sequential preparative IEF followed by continuous elution preparative electrophoresis on a 5% non-denaturing polyacrylamide gel. The first IEF run resulted in 5.4-fold purification with a yield of 46.1%. Subsequent IEF further purified the esterases 14.3-fold and 12% yield. Preparative electrophoresis of the pooled IEF fractions produced three major peaks of alpha-naphthyl acetate hydrolyzing activity. The esterases were correspondingly designated microsomal esterase (ME) 1, ME 2, and ME 3 based on increasing molecular retention on a native PAGE gel. ME 1, ME 2, and ME 3 were acidic proteins with pI values of 4.61, 4.70, and 4.77, respectively. Molecular mass as determined by gel filtration chromatography of ME 1, ME 2, and ME 3 was 69, 64, and 62 kDa, respectively. SDS-PAGE gels produced a single band for each of the isozymes with a molecular mass of 63 kDa indicating that the esterases were monomers. Specific activities of ME 1, ME 2, and ME 3 increased with increasing pH and the enzymes were active over a broad temperature range (25-55 degrees C). The three purified isozymes were inhibited at low concentration by paraoxon (10(-10) M), chlorpyrifos (10(-6) M), DEF (10(-6) M), and PMSF (10(-6) M) indicating that they were "B" type serine esterases. Conversely, inhibition was not observed at 10(-4) M eserine, PHMB, or CaCl(2), further supporting the conclusion that the microsomal esterases were of the "B" type. None of the isozymes was inhibited by 10(-4) M imidacloprid, fipronil, or PBO. Quantitatively, ME 1, ME 2 and ME 3 metabolized t-permethrin at 21.8, 21.0, and 38.8 nmol/h/mg protein, representing a purification factor of 333-, 318-, and 591-fold over microsomes, respectively. The three isozymes produced the same type and number of t-permethrin metabolites.
Collapse
Affiliation(s)
- S M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | | | | |
Collapse
|
32
|
Robin GC, Russell RJ, Cutler DJ, Oakeshott JG. The evolution of an alpha-esterase pseudogene inactivated in the Drosophila melanogaster lineage. Mol Biol Evol 2000; 17:563-75. [PMID: 10742048 DOI: 10.1093/oxfordjournals.molbev.a026336] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous analyses of the alpha-esterase cluster of Drosophila melanogaster revealed 10 active genes and the DmalphaE4a-Psi pseudogene. Here, we reconstruct the evolution of the pseudogene from the sequences of 12 alleles from widely scattered D. melanogaster populations and single alleles from Drosophila simulans and Drosophila yakuba. All of the DmalphaE4a-Psi alleles contain numerous inactivating mutations, suggesting that pseudogene alleles are fixed in natural populations. Several lines of evidence also suggest that DmalphaE4a is now evolving without selective constraint in the D. melanogaster lineage. There are three polymorphic indels which result in frameshifts; a key nucleotide of the intron splice acceptor is polymorphic; the neutral mutation parameter is the same for replacement and silent sites; one of the nonsilent polymorphisms results in a stop codon; only 1 of the 13 replacement polymorphisms is biochemically conservative; residues that are conserved among active esterases have different states in DmalphaE4a-Psi; and there are about half as many transitional polymorphisms as transversional ones. In contrast, the D. simulans and D. yakuba orthologs DsalphaE4a and DyalphaE4a do not have the inactivating mutations of DmalphaE4a-Psi and appear to be evolving under the purifying selection typical of protein- encoding genes. For instance, there have been more substitutions in the introns than in the exons, and more in silent sites than in replacement sites. Furthermore, most of the amino acid substitutions that have occurred between DyalphaE4a and DsalphaE4a are located in sites that typically vary among active alpha-esterases rather than those that are usually conserved. We argue that the original alphaE4a gene had a function which it has lost since the divergence of the D. melanogaster and D. simulans lineages.
Collapse
Affiliation(s)
- G C Robin
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia.
| | | | | | | |
Collapse
|
33
|
Oakeshott JG, Claudianos C, Russell RJ, Robin GC. Carboxyl/cholinesterases: a case study of the evolution of a successful multigene family. Bioessays 1999; 21:1031-42. [PMID: 10580988 DOI: 10.1002/(sici)1521-1878(199912)22:1<1031::aid-bies7>3.0.co;2-j] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolution of organismal diversity among the Metazoa is dependent on the proliferation of genes and diversification of functions in multigene families. Here we analyse these processes for one highly successful family, the carboxyl/cholinesterases. One key to the expansion of the functional niche of this group of enzymes is associated with versatile substrate binding and catalytic machinery. Qualitatively new functions can be obtained by substitution of one or a very few amino acids. This crudely adapted new functionality is then refined rapidly by a pulse of change elsewhere in the molecule; in one case about 13% amino acid divergence occurred in 5-10 million years. Furthermore, we postulate that the versatility of the substrate binding motifs underpins the recruitment of several family members to additional noncatalytic signal transduction functions.
Collapse
|
34
|
Tavares MG, Azeredo-Oliveira MTVD, Ceron CR. Tissue-specific expression of esterases in Triatoma infestans (Triatominae, Heteroptera). Genet Mol Biol 1998. [DOI: 10.1590/s1415-47571998000400009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the esterases present in the hemolymph and Malpighian tubules of "Kissing bug", Triatoma infestans (Triatominae, Heteroptera) by polyacrylamide gel electrophoresis. Six esterase bands were observed and were designated EST 1 to EST 6. EST 1, 4, 5 and 6 were exclusive to hemolymph, whereas EST 2 and 3 were found only in Malpighian tubules. Each tissue had a characteristic esterase pattern, which may be related to its functional role. The four hemolymph esterases hydrolyzed a-naphthyl acetate. One of these enzymes was classified as a carboxylesterase (EST 4), and another was an acetylesterase (EST 6). The other two enzymes (EST 1 and 5) could be either carboxylesterases or serino-proteases with an esterolytic function, as they were selectively inhibited by phenylmethylsulfonyl fluoride (PMSF). Absence of genetic variability could be due to high inbreeding.
Collapse
|
35
|
Robin C, Russell RJ, Medveczky KM, Oakeshott JG. Duplication and divergence of the genes of the alpha-esterase cluster of Drosophila melanogaster. J Mol Evol 1996; 43:241-52. [PMID: 8703090 DOI: 10.1007/bf02338832] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The alpha-esterase cluster of D. melanogaster contains 11 esterase genes dispersed over 60 kb. Embedded in the cluster are two unrelated open reading frames that have sequence similarity with genes encoding ubiquitin-conjugating enzyme and tropomyosin. The esterase amino acid sequences show 37-66% identity with one another and all but one have all the motifs characteristic of functional members of the carboxyl/cholinesterase multigene family. The exception has several frameshift mutations and appears to be a pseudogene. Patterns of amino acid differences among cluster members in relation to generic models of carboxyl/cholinesterase protein structure are broadly similar to those among other carboxyl/cholinesterases sequenced to date. However the alpha-esterases differ from most other members of the family in: their lack of a signal peptide; the lack of conservation in cysteines involved in disulfide bridges; and in four indels, two of which occur in or adjacent to regions that align with proposed substrate-binding sites of other carboxyl/cholinesterases. Phylogenetic analyses clearly identify three simple gene duplication events within the cluster. The most recent event involved the pseudogene which is located in an intron of another esterase gene. However, relative rate tests suggest that the pseudogene remained functional after the duplication event and has become inactive relatively recently. The distribution of indels also suggests a deeper node in the gene phylogeny that separates six genes at the two ends of the cluster from a block of five in the middle.
Collapse
Affiliation(s)
- C Robin
- CSIRO Division of Entomology, GPO Box 1700, Canberra ACT 2601, Australia
| | | | | | | |
Collapse
|
36
|
Myers MA, Healy MJ, Oakeshott JG. Mutational analysis of N-linked glycosylation of esterase 6 in Drosophila melanogaster. Biochem Genet 1996; 34:201-18. [PMID: 8813053 DOI: 10.1007/bf02407020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The primary sequence of the esterase 6 (EST6) enzyme of Drosophila melanogaster contains four potential N-linked glycosylation sites, at residues 21, 399, 435, and 485. Here we determine the extent to which EST6 is glycosylated and how the glycosylation affects the biochemistry and physiology of the enzyme. We have abolished each of the four potential glycosylation sites by replacing the required Asn residues with Gln by in vitro mutagenesis. Five mutant genes were made, four containing mutations of each site individually and the fifth site containing all four mutations. Germline transformation was used to introduce the mutant genes into a strain of D. melanogaster null for EST6. Electrophoretic and Western blot comparisons of the mutant strains and wild-type controls showed that each of the four potential N-linked glycosylation sites in the wild-type protein is glycosylated. However, the fourth site is not utilized on all EST6 molecules, resulting in two molecular forms of the enzyme. Digestion with specific endoglycosidases showed that the glycan attached at the second site is of the high-mannose type, while the other three sites carry more complex oligosaccharides. The thermostability of the enzyme is not affected by abolition of the first, third, or fourth glycosylation sites but is reduced by abolition of the second site. Anomalously, abolition of all four sites together does not reduce thermostability. Quantitative comparisons of EST6 activities showed that abolition of glycosylation does not affect the secretion of the enzyme into the male sperm ejaculatory duct, its transfer to the female vagina during mating, or its subsequent translocation into her hemolymph. However, the activity of the mutant enzymes does not persist in the female's hemolymph for as long as wild-type esterase 6. The latter effect may compromise the role of the transferred enzyme in stimulating egg-laying and delaying receptivity to remating.
Collapse
Affiliation(s)
- M A Myers
- CSIRO Division of Entomology, Canberra, Australia
| | | | | |
Collapse
|
37
|
Myers MA, Healy MJ, Oakeshott JG. Mutational analysis ofN-linked glycosylation of esterase 6 inDrosophila melanogaster. Biochem Genet 1996. [DOI: 10.1007/bf00553667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Parker AG, Pinot F, Grant DF, Spearow J, Hammock BD. Regulation of mouse liver microsomal esterases by clofibrate and sexual hormones. Biochem Pharmacol 1996; 51:677-85. [PMID: 8615905 DOI: 10.1016/s0006-2952(95)02254-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carboxylesterase activity was measured using six different substrates in microsomal preparations from female and ovariectomized female mice in order to evaluate the effects of female sex hormones on esterase expression. With three of the substrates (alpha-naphthyl acetate and esters 2 and 3), esterase activity was the same in both groups; however, with the others (rho-nitrophenyl acetate and esters 1 and 4), there was a small increase in activity in ovariectomized females, compared with intact females. Castration of males followed by treatment with testosterone caused only transient increases in activity for four of the substrates (alpha-naphthyl acetate and esters 1, 2, and 3) and no change in activity for the other two (rho-nitrophenyl acetate and ester 4). Treatment of male and female mice with the peroxisome proliferator clofibrate, with or without testosterone, resulted in increased hydrolysis of alpha-naphthyl acetate and rho-nitrophenyl acetate, but little change for the other substrates. Clofibrate also induced alpha-naphthyl acetate and rho-nitrophenyl acetate hydrolysis in castrated males, but clofibrate and testosterone administrated together resulted in significant increases of activity with all substrates, which were greater than the additive effects of the two compounds administered separately. These results indicate that clofibrate causes significant alterations in the regulation of esterase activity, whereas sex hormones only cause small changes. However, it would seem that testosterone can synergize the effect of clofibrate in castrated males, resulting in higher levels of activity than with clofibrate alone. Finally, an overall increase in esterase activity might be due to a large increase in the activity of a few esterases or to a small increase in many esterases. Enzyme staining of native polyacrylamide gels reveals that the latter is true, with the majority of esterases present in mouse liver microsomes being induced to a small degree by clofibrate.
Collapse
Affiliation(s)
- A G Parker
- Department of Entomology and Environmental Toxicology, University of California, Davis 95616-8584, USA
| | | | | | | | | |
Collapse
|
39
|
Russell RJ, Robin GC, Kostakos P, Newcomb RD, Boyce TM, Medveczky KM, Oakeshott JG. Molecular cloning of an alpha-esterase gene cluster on chromosome 3r of Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1996; 26:235-247. [PMID: 8900595 DOI: 10.1016/0965-1748(95)00081-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
All or part of the alpha-esterase gene cluster in Drosophila melanogaster has been isolated by screening a YAC clone that spans cytological region 84D3-10 with consensus carboxyl/cholinesterase oligonucleotides. The cluster encompasses 11 putative esterase genes within 65 kb of genomic DNA and is one of the largest clusters of related protein-coding genes yet reported in Drosophila. The cluster must include the gene encoding the major alpha-esterase isozyme, EST9, which has previously been mapped to 84D3-5. It probably also includes the genes encoding the EST23, MCE and ALI esterases that have previously been mapped to 84D3-E2. The latter three are homologs of genes involved in organophosphate insecticide resistance in the sheep blowfly, Lucilia cuprina and the housefly, Musca domestica. Sequencing of one of the putative esterase genes in the Drosophila cluster, alpha E1, shows that it would encode features characteristic of an active carboxyl/cholinesterase, including the so-called catalytic triad, the nucleophilic elbow and oxyanion hole. It also shows that the closest relative of alpha E1 amongst previously published esterase sequences is ESTB1, which confers organophosphate resistance in Culex mosquitoes. We argue that we have cloned the D. melanogaster version of a major cluster of esterase genes which have variously mutated to confer organophosphate resistance in diverse Diptera.
Collapse
Affiliation(s)
- R J Russell
- CSIRO Division of Entomology, Canberra, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Whyard S, Downe AE, Walker VK. Characterization of a novel esterase conferring insecticide resistance in the mosquito Culex tarsalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1995; 29:329-342. [PMID: 7655057 DOI: 10.1002/arch.940290402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Resistance to the organophosphate insecticide, malathion, in a strain of Culex tarsalis mosquitoes is due to increased activity of a malathion carboxylesterase (MCE). To determine whether resistance was due to a qualitative or quantitative change in the MCE, the enzyme was purified from both malathion-resistant and -susceptible mosquitoes. Enzyme kinetic measurements revealed that the two strains have one MCE in common, but resistant mosquitoes also have a unique MCE which hydrolyses malathion 18 times faster. Interestingly, this MCE does not hydrolyse alpha-naphthyl acetate, a substrate commonly used to detect increased levels of esterases in other organophosphate-resistant insects. Unlike the over-produced esterase of some related mosquito species, each MCE in C. tarsalis accounts for only a small fraction (0.015%) of the total extractable protein in either strain. Therefore, resistance in these insects is due to the presence of a qualitatively different enzyme, and not to a quantitative increase of a non-specific esterase. This study therefore demonstrates that the underlying biochemical mechanisms of insecticide resistance in one insect cannot necessarily be predicted from those of another, even closely related species.
Collapse
Affiliation(s)
- S Whyard
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
41
|
Smyth KA, Russell RJ, Oakeshott JG. A cluster of at least three esterase genes in Lucilia cuprina includes malathion carboxylesterase and two other esterases implicated in resistance to organophosphates. Biochem Genet 1994; 32:437-53. [PMID: 7748160 DOI: 10.1007/bf00566064] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Three distinct malathion carboxylesterase (MCE) phenotypes have been identified among strains of Lucilia cuprina. The high-activity phenotype shows 1.6- and 33-fold more MCE specific activity than the intermediate- and low-activity phenotypes, respectively. Flies with high MCE activity are 1000-fold more resistant to malathion than flies with either low or intermediate MCE phenotypes, which are equally susceptible. High and low MCE specific activity are allelic and encoded by the Rmal gene on chromosome 4. Rmal is clustered within one map unit of two other esterase genes, Rop1 and E9, which are implicated in resistance to other organophosphate insecticides. Intermediate MCE specific activity is also inherited within the cluster, although its allelism to Rmal, Rop1, or E9 is unclear. The cluster does not contain the gene for the hemolymph esterase E4, which maps 6.1 map units from Rop1, on the other side of the bubbled wing marker. The cluster appears to be homologous to part of a tandem array of 11 esterase genes on chromosome 3R of Drosophila melanogaster.
Collapse
Affiliation(s)
- K A Smyth
- CSIRO Division of Entomology, Canberra, ACT, Australia
| | | | | |
Collapse
|
42
|
Whyard S, Downe AE, Walker VK. Isolation of an esterase conferring insecticide resistance in the mosquito Culex tarsalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1994; 24:819-827. [PMID: 7981729 DOI: 10.1016/0965-1748(94)90110-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Malathion resistance in a strain of Culex tarsalis mosquitoes is due primarily to the activity of a malathion carboxylesterase (MCE). The resistant strain was 150 times more resistant to malathion than the susceptible strain and was weakly resistant to malaoxon and carbaryl, but not to any other insecticide tested. The phenotype could be reversed with the carboxylesterase inhibitor triphenylphosphate, but no synergism was observed with either the phosphatase or polysubstrate monooxygenase inhibitors, NaF and piperonyl butoxide. MCE is expressed throughout development and is most concentrated in the gut tissues of the larvae. Subcellular fractionation indicated that MCE was localized primarily in the mitochondria of resistant insects and the cytoplasm of susceptible insects. The enzyme was purified to homogeneity from both strains, and has a molecular weight of 59,000. However, chromatofocusing indicated that resistant insects have two MCEs with pIs of 6.8 and 6.2, while susceptible insects possessed only one MCE with a pI of 6.8. The MCE unique to the resistant strain hydrolysed malathion 18 times faster than the MCE common to both strains, suggesting that malathion resistance in C. tarsalis is due to the presence of a qualitatively different esterase in the resistant strain.
Collapse
Affiliation(s)
- S Whyard
- Department of Biology and Insect Biotech Canada, Queen's University, Kingston, Ontario
| | | | | |
Collapse
|
43
|
Oakeshott JG, Saad M, Game AY, Healy MJ. Causes and consequences of esterase 6 enzyme activity variation in pre-adult Drosophila melanogaster. Heredity (Edinb) 1994; 73 ( Pt 2):160-9. [PMID: 7915261 DOI: 10.1038/hdy.1994.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We report heritable threefold differences in both larval and pupal esterase 6 activity among 17 isoallelic lines of D. melanogaster extracted from a natural population. The activity differences in the two stages are only weakly correlated with each other or with previously determined values for esterase 6 activity in adults of these lines. The pre-adult activity variation is also unrelated to polymorphisms among the lines for six esterase 6 allozymes and six restriction sites in a region encompassing the esterase 6 coding DNA and the first kbp of 5' flanking DNA. However, two insertions, of 8.0 and 6.8 kbp, located about 1.4 kbp 5' of the esterase 6 coding region are associated with low activity in larvae and, to a lesser extent, in pupae, albeit not in adults. Restriction mapping reveals similarity between the 8.0 kbp insert and the 7.4 kbp retrotransposon 17.6. The differences in larval activity among lines are positively correlated with fitness as assessed from assays of pre-adult viability and development time but no significant associations between pupal esterase 6 activity and these measures are detected. Some effects of esterase 6 allozyme differences are also found for viability and development time but these effects could be explained by linkage disequilibrium between the 8.0 kbp insert and the EST6-9 allozyme.
Collapse
|
44
|
Spackman ME, Oakeshott JG, Smyth KA, Medveczky KM, Russell RJ. A cluster of esterase genes on chromosome 3R of Drosophila melanogaster includes homologues of esterase genes conferring insecticide resistance in Lucilia cuprina. Biochem Genet 1994; 32:39-62. [PMID: 8031294 DOI: 10.1007/bf00557238] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We identify an esterase isozyme in Drosophila melanogaster, EST 23, which shares biochemical, physiological, and genetic properties with esterase E3, which is involved in resistance to organophosphate insecticides in Lucilia cuprina. Like E3, the D. melanogaster EST 23 is a membrane-bound alpha-esterase which migrates slowly toward the anode at pH 6.8. Both enzymes have similar preferences for substrates with shorter acid side chain lengths. Furthermore, on the basis of their high sensitivity to inhibition by paraoxon and their insensitivity to inhibition by eserine sulfate, both enzymes were classified as subclass I carboxylesterases. The activity of each enzyme peaks early in development and, again, in the adult stage. Both enzymes are found in the male reproductive system and larval and adult digestive tissues, the latter being consistent with a role for these enzymes in organophosphate resistance. Fine structure deficiency mapping localized Est 23 to cytological region 84D3 to E1-2 on the right arm of chromosome 3. Moreover, we show that the genes encoding three other esterase phenotypes also map to the same region; these phenotypes involve allozymic differences in EST 9 (formerly EST C), ali-esterase activity, defined by the hydrolysis of methyl butyrate, and malathion carboxylesterase activity, defined by hydrolysis of the organophosphate malathion. This cluster corresponds closely to that encompassing E3 and malathion carboxylesterase on chromosome 4 in L. cuprina, the homologue of chromosome 3R in D. melanogaster.
Collapse
|
45
|
Saad M, Game AY, Healy MJ, Oakeshott JG. Associations of esterase 6 allozyme and activity variation with reproductive fitness in Drosophila melanogaster. Genetica 1994; 94:43-56. [PMID: 7729696 DOI: 10.1007/bf01429219] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous studies have shown that the esterase 6 (EST6) enzyme of D. melanogaster is mainly produced in the sperm ejaculatory duct of the adult male and comparisons of wild-type males with laboratory null mutants have suggested that the enzyme plays a role in reproductive fitness. In this study we have compared 18 field-derived lines each isoallelic for Est6 for differences in five components of male reproductive fitness. No consistent fitness differences were found among lines differing in respect of the two major allozyme classes EST6-F and EST6-S, despite other evidence that these two classes are not selectively equivalent in the field. However, differences in reproductive fitness were found among lines differing in the minor mobility variants that segregate within EST6-F and EST6-S. A failure to distinguish among these minor forms may explain the discrepancies in previous studies on the effects of the major EST6 allozymes on reproductive fitness. The most significant associations we have found between EST6 and reproductive fitness were due to variation in EST6 activity levels. Male EST6 activity levels were found to be positively correlated with their time to first mating, negatively correlated with the numbers of eggs laid and progeny produced by their mates, and negatively correlated with the frequency with which their mates remate. We conclude that some EST6 variants differ in components of male reproductive fitness operative in laboratory cultures. However, the evidence for fitness differences is stronger for variants affecting the amount, rather than the structure of the enzyme, and the direction of the differences varies between some of the fitness components tested.
Collapse
Affiliation(s)
- M Saad
- CSIRO Division of Entomology, Canberra ACT, Australia
| | | | | | | |
Collapse
|
46
|
Karotam J, Oakeshott JG. Regulatory aspects of esterase 6 activity variation in sibling Drosophila species. Heredity (Edinb) 1993; 71 ( Pt 1):41-50. [PMID: 8360077 DOI: 10.1038/hdy.1993.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Esterase 6 in Drosophila melanogaster, Drosophila simulans and Drosophila mauritiana is produced in several life stages and diverse tissues, but the major pulse of expression is in the sperm ejaculatory duct of adult males. Comparison of EST6 activity levels among several lines of D. melanogaster, D. simulans and D. mauritiana reveals two major quantitative differences among the species. First, newly eclosed females of both D. simulans and D. mauritiana show significantly higher EST6 activity than those of D. melanogaster. Secondly, 5-day-old adult D. simulans have significantly higher activities than D. mauritiana in both sexes and significantly higher activity than D. melanogaster in males. The genetic bases of the differences between D. melanogaster and the other species are investigated through germ line transfer of the D. simulans and D. mauritiana Est-6 genes plus 1.2 kb of 5' and 0.2 kb of their 3' flanking sequences into D. melanogaster. The newly eclosed female activities of the transformants resemble those of the two donor species, suggesting that the interspecific differences in this aspect of expression are due to cis-inherited factors contained within the transferred DNA. In contrast, the 5-day adult activity of the D. simulans transgene resembles the recipient species, D. melanogaster, suggesting that the difference between D. simulans and D. melanogaster in this aspect of expression is due to trans-acting factors. We also find that third instar larval activities of the D. simulans transgene and 5-day male activities of the D. mauritiana transgene are lower than those of either parental species, suggesting that not all the promoter elements relevant to these aspects of expression are included in the transferred DNA.
Collapse
Affiliation(s)
- J Karotam
- CSIRO Division of Entomology, Canberra, Australia
| | | |
Collapse
|
47
|
Ludwig MZ, Tamarina NA, Richmond RC. Localization of sequences controlling the spatial, temporal, and sex-specific expression of the esterase 6 locus in Drosophila melanogaster adults. Proc Natl Acad Sci U S A 1993; 90:6233-7. [PMID: 8327503 PMCID: PMC46902 DOI: 10.1073/pnas.90.13.6233] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The esterase 6 gene (Est-6) of Drosophila melanogaster is expressed in a variety of tissues that differ between larval and adult stages and among related species. Variability in the level of expression of this locus among different species and strains and its species- and tissue-specific patterns of expression make it a useful system for studying the evolution of gene regulation in Drosophila. We have begun to determine the location of the regulatory regions of Est-6 by constructing deletion mutants of the 5' regions of the gene and transforming them back into flies. Deletion mutants of the putative 5' promoter regions of Est-6 were fused to the bacterial beta-galactosidase gene (lacZ) and assayed for their ability to direct tissue-specific expression in transformed D. melanogaster adults. We have identified four independently acting Est-6 regulatory regions that direct the expression of lacZ in (i) the ejaculatory duct; (ii) the adult salivary glands; (iii) the respiratory system, prefrons, antennae, and maxillary palps; and (iv) the ejaculatory bulb and prefrons. We also found a region near the start of transcription that directed expression of Est-6 in the cardia or proventriculus in some transformed lines.
Collapse
Affiliation(s)
- M Z Ludwig
- Department of Biology, University of South Florida, Tampa 33620
| | | | | |
Collapse
|
48
|
Oakeshott JG, van Papenrecht EA, Boyce TM, Healy MJ, Russell RJ. Evolutionary genetics of Drosophila esterases. Genetica 1993; 90:239-68. [PMID: 8119594 DOI: 10.1007/bf01435043] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Over 30 carboxylester hydrolases have been identified in D. melanogaster. Most are classified as acetyl, carboxyl or cholinesterases. Sequence similarities among most of the carboxyl and all the cholinesterases so far characterised from D. melanogaster and other eukaryotes justify recognition of a carboxyl/cholinesterase multigene family. This family shows minimal sequence similarities with other esterases but crystallographic data for a few non-drosophilid enzymes show that the family shares a distinctive overall structure with some other carboxyl and aryl esterases, so they are all put in one superfamily of/beta hydrolases. Fifteen esterase genes have been mapped in D. melanogaster and twelve are clustered at two chromosomal sites. The constitution of each cluster varies across Drosophila species but two carboxyl esterases in one cluster are sufficiently conserved that their homologues can be identified among enzymes conferring insecticide resistance in other Diptera. Sequence differences between two other esterases, the EST6 carboxyl esterase and acetylcholinesterase, have been interpreted against the consensus super-secondary structure for the carboxyl/cholinesterase multigene family; their sequence differences are widely dispersed across the structure and include substantial divergence in substrate binding sites and the active site gorge. This also applies when EST6 is compared across species where differences in its expression indicate a difference in function. However, comparisons within and among species where EST6 expression is conserved show that many aspects of the predicted super-secondary structure are tightly conserved. Two notable exceptions are a pair of polymorphisms in the substrate binding site of the enzyme in D. melanogaster. These polymorphisms are associated with differences in substrate interactions in vitro and demographic data indicate that the alternative forms are not selectively equivalent in vivo.
Collapse
Affiliation(s)
- J G Oakeshott
- CSIRO Division of Entomology, Canberra ACT, Australia
| | | | | | | | | |
Collapse
|
49
|
Genetics of the hemolymph esterases ofLucilia cuprina (Diptera: Calliphoridae). Biochem Genet 1992. [DOI: 10.1007/pl00020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Lai-Fook J, Smith PH. Genetics of the hemolymph esterases of Lucilia cuprina (Diptera: Calliphoridae). Biochem Genet 1992; 30:123-30. [PMID: 1590744 DOI: 10.1007/bf02399703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
When hemolymph from adults of Lucilia cuprina was partitioned on native polyacrylamide gels, nonspecific esterase staining demonstrated 10 bands with up to six bands in an individual. The bands derive from alleles at two loci, EHA (five alleles) and EHB (four alleles). EHA is located on chromosome 4, 16.3 map units from sv (singed vibrissae) and 22.1 map units from ra (radial vein gaps). EHB is located on chromosome 5, 34.0 map units from to2 (topaz2 eyes) and 7.2 map units from mv (M1-veinless).
Collapse
Affiliation(s)
- J Lai-Fook
- Division of Entomology, CSIRO, Canberra, ACT, Australia
| | | |
Collapse
|