1
|
Bagheri A, Nazari H, Shams-Esfandabadi N, Ahmadi E, Afzali A, Davoodian N, Nazifi S, Shirian S. Vitamin C Synergistically Enhances Protective Effects of Vitamin E Against Preantral Follicle Degeneration of Ovine Vitrified/Warmed Ovarian Tissue. Biopreserv Biobank 2025; 23:89-98. [PMID: 38905140 DOI: 10.1089/bio.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024] Open
Abstract
This study aimed to evaluate whether the addition of vitamins E and C as two conventional antioxidants improves the cryotolerance of preantral follicles enclosed in ovine ovarian tissue slices. For this purpose, ovarian slices were obtained from abattoired juvenile lambs and randomly distributed to the following groups: fresh, toxicity, vitrified (control), and three treatment groups in two experiments. Vitamin E, vitamin C, or vitamin E + C was added to the vitrification media alone in the first experiment and added to all vitrification, warming, and culture media in the second experiment. Finally, the treated tissues were cultured in vitro for 12 hours. The histological analysis showed that single or combined use of vitamins E and C increases intact preantral follicles in comparison to the control in two experiments (p < 0.05), and simultaneous use of vitamins E and C had a synergistic effect on increasing the percentage of normal preantral follicles in experiment 2 (p < 0.05). Due to the better results in Experiment 2, stromal cell density, antioxidant activity, and molecular evaluation were followed only in this experiment. The vitamin E + C group had higher stromal cell density compared with control group (p < 0.05). Vitamin E strengthened antioxidant capacity compared with the control and vitamin C groups (p < 0.05). This effect was exacerbated when used in combination with vitamin C (p < 0.05). The expression of all evaluated genes (BMP4, BMP15, GDF9, and KITLG) was significantly increased in ovarian tissue treated with vitamin E + C compared with the control group (p < 0.05). This increase was also observed in BMP4, GDF9, and KITLG genes compared with the vitamin C group (p < 0.05). In conclusion, this study revealed the positive effects of vitamins E and C on preantral follicle viability and to some extent a synergistic action of vitamin C on the protective effects of vitamin E against preantral follicle degeneration and increasing antioxidant capacity and development of preantral follicles after ovine ovarian tissue vitrification.
Collapse
Affiliation(s)
- Azita Bagheri
- Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Hassan Nazari
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Naser Shams-Esfandabadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Ebrahim Ahmadi
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Azita Afzali
- Faculty of Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Davoodian
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Sina Nazifi
- Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Sadegh Shirian
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
2
|
Hosseini-Monfared P, Mirahmadi A, Sarzaeem MM, Pourshahryari S, Aminnia P, Poursalehian M, Kazemi SM. Ascorbic Acid Reduces the Blood Boss After Total Knee Arthroplasty: Insights From a Randomized Controlled Trial. Arthroplast Today 2025; 32:101618. [PMID: 39974338 PMCID: PMC11836488 DOI: 10.1016/j.artd.2025.101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/24/2024] [Accepted: 12/25/2024] [Indexed: 02/21/2025] Open
Abstract
Background Blood loss is among the main complications of total knee arthroplasty (TKA) and oxidative stress, and hemolysis caused by reactive oxygen species are one of the causes of hemoglobin (Hb) drop. Ascorbic acid is a potent antioxidant that can protect against reactive oxygen species. In this study, we aim to explore the antioxidant effect of ascorbic acid on blood loss and patient-reported outcomes following outpatient TKA. Methods Patients scheduled for outpatient primary TKA were enrolled in this randomized, double-blind clinical trial and were assigned to 1 of the 2 groups. The patients in the ascorbic acid group received intravenous vitamin C perioperatively. Patients in the placebo group received only normal saline. We calculated the blood loss using the Hb drop. Patient-reported outcomes such as Oxford Knee Score, Western Ontario and McMaster Universities Osteoarthritis Index, Knee Injury and Osteoarthritis Outcome Score, and Forgotten Joint Score were used to evaluate the postoperative pain and function in the 6-month follow-up. Results The patients who have received ascorbic acid had lower Hb drop (g/dL) (1.30 ± 0.72 vs 1.91 ± 0.84, P value < .001) and total blood loss in the first postoperative day (463.60 ± 274.37 vs 732.11 ± 347.78, P value < .001). Also, fewer patients reached the minimum clinically important difference level for Hb drop in the ascorbic acid group. The patients' postoperative functional and pain scores were not different between the 2 groups. Conclusions Our findings demonstrated that perioperative use of ascorbic acid can reduce blood loss by nearly 36% on the first postoperative day and should be considered as an effective blood-preserving agent in conjunction with tranexamic acid during TKA.
Collapse
Affiliation(s)
- Pooya Hosseini-Monfared
- Bone Joint and Related Tissues Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mirahmadi
- Bone Joint and Related Tissues Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soheil Pourshahryari
- Bone Joint and Related Tissues Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Aminnia
- Bone Joint and Related Tissues Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Poursalehian
- Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Kazemi
- Bone Joint and Related Tissues Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Lankin VZ, Shumaev KB, Medvedeva VA, Tikhaze AK, Konovalova GG. Mechanisms of Antioxidant Protection of Low-Density Lipoprotein Particles Against Free Radical Oxidation. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:107-119. [PMID: 40058977 DOI: 10.1134/s0006297924603381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 05/13/2025]
Abstract
It was found out that when the patients with atherosclerosis are orally administered ubiquinone Q10 (CoQ10), oxidation (lipid hydroperoxide content) of the low-density lipoprotein (LDL) particles sharply decreases, which confirms important role of this natural antioxidant in protecting LDL particles from free radical oxidation in vivo. Influence of the lipophilic natural antioxidants ubiquinol Q10 (CoQ10H2) and α-tocopherol (α-TOH) on the kinetic parameters of Cu2+-induced free radical oxidation of LDL particles was investigated. In this model system, possible synergism of the antioxidant action of CoQ10H2 and α-TOH has been shown. Putative mechanisms of bioregeneration of lipophilic antioxidants in LDL particles, including regeneration of α-TOH from the tocopheroxyl radical (α-TO•) with participation of CoQ10H2 and/or ascorbate, are discussed.
Collapse
Affiliation(s)
- Vadim Z Lankin
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia.
| | - Konstantin B Shumaev
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Valeria A Medvedeva
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Alla K Tikhaze
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Galina G Konovalova
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| |
Collapse
|
4
|
Gonçalves S, Peixoto F, da Silveria TFF, Barros L, Gaivão I. Antigenotoxic and cosmetic potential of elderberry ( Sambucus nigra) extract: protection against oxidative DNA damage. Food Funct 2024; 15:10795-10810. [PMID: 39400280 DOI: 10.1039/d4fo03217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The integrity of the genome is under constant threat from both endogenous and exogenous factors that induce oxidative stress and accelerate ageing. The demand for natural and organic cosmetics is rising due to the harmful effects of synthetic genotoxic agents on human health and the environment. Elderberry (Sambucus nigra L.), a fruit rich in bioactive compounds such as polyphenols, has demonstrated significant antioxidant properties. This study aimed to evaluate elderberry extract's chemical characterization and biological activities in peripheral blood mononuclear cells exposed to streptonigrin and H2O2, both known for causing DNA damage. The antigenotoxic evaluation and antioxidant assays (ABTS and DPPH) were conducted to assess its biological properties. Using the Comet assay enhanced with formamidopyrimidine-DNA glycosylase (Fpg) to detect oxidized purines, we found that elderberry extract significantly reduced DNA damage. These findings suggest that elderberry has potential as a natural alternative to synthetic ingredients in cosmetics, offering protective benefits against DNA damage and contributing to anti-ageing and skin health.
Collapse
Affiliation(s)
- Sara Gonçalves
- Centre for Animal Sciences and Veterinary Studies (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Francisco Peixoto
- Centro de Química de Vila Real (CQVR), Biology and Environment Department, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Tayse F F da Silveria
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel Gaivão
- Centre for Animal Sciences and Veterinary Studies (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
5
|
Masannagari P, Rajashekaraiah V. Attenuation of Oxidative Stress in Erythrocytes Stored with Vitamin C and l-Carnitine in Additive Solution-7. Biopreserv Biobank 2024; 22:497-505. [PMID: 38452159 DOI: 10.1089/bio.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Background: Blood transfusion has advanced toward component therapy for specific requirements during trauma and surgery. Oxidative stress is induced in erythrocytes during storage. Hence, antioxidants as additives can be employed to counteract oxidative stress and enhance antioxidant defenses. Therefore, this study investigates the combinatorial effects of vitamin C and l-carnitine on erythrocytes during storage. Methodology: Erythrocyte samples were categorized into control and experimental groups-vitamin C (10 mM) and l-carnitine (10 mM) and stored under blood bank conditions (at 4°C) for 35 days. Hemoglobin (Hb), antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT] and glutathione peroxidase [GPX]), lipid peroxidation products (conjugate dienes and thiobarbituric acid reactive substances [TBARSs]), protein oxidation products, metabolic markers (glucose, lactate dehydrogenase), glutathione (GSH), superoxides, and hemolysis were assessed at weekly intervals. Results: SOD activity increased on day 7 in the controls, whereas it increased on days 7 and 14 in the experimental groups. CAT activity increased on day 35 in both the groups. GPX activity increased on day 7 in the controls. Hb levels decreased on days 14 and 35 in the controls and on day 35 in the experimental groups. Hemolysis increased from day 7 onward in both the groups. Protein oxidation products were maintained throughout the storage. GSH levels increased on day 21 in the controls and on days 14 and 21 in the experimental groups. Superoxides and conjugate dienes decreased from day 14 in both the groups. TBARSs decreased on day 7 in the experimental groups. Conclusion: Vitamin C and l-carnitine have synergistically enhanced the efficacy of stored erythrocytes in terms of Hb, antioxidant enzymes, and lipid peroxidation.
Collapse
Affiliation(s)
- Pallavi Masannagari
- Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be University), Bangalore, India
| | - Vani Rajashekaraiah
- Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be University), Bangalore, India
| |
Collapse
|
6
|
Patra A, Arora A, Ghosh SS, Kaur Saini G. Beauvericin Reverses Epithelial-to-Mesenchymal Transition in Triple-Negative Breast Cancer Cells through Regulation of Notch Signaling and Autophagy. ACS Pharmacol Transl Sci 2024; 7:2878-2893. [PMID: 39296261 PMCID: PMC11406685 DOI: 10.1021/acsptsci.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
Metastasis stands as a prime contributor to triple-negative breast cancer (TNBC) associated mortality worldwide, presenting heightened severity and significant challenges due to limited treatment options. Addressing TNBC metastasis necessitates innovative approaches and novel therapeutics to specifically target its propensity for dissemination to distant organs. Targeted therapies capable of reversing epithelial-to-mesenchymal transition (EMT) play a crucial role in suppressing metastasis and enhancing the treatment response. Beauvericin, a promising fungal secondary metabolite, exhibits significant potential in diminishing the viability of EMT-induced TNBC cells by triggering intracellular oxidative stress, as evidenced by an enhanced reactive oxygen species level and reduced mitochondrial transmembrane potential. In monolayer cultures, it has exhibited an IC50 of 2.3 μM in both MDA-MB-468 and MDA-MB-231 cells, while in 3D spheroids, the IC50 values are 9.7 and 7.1 μM, respectively. Beauvericin has also reduced the migratory capability of MDA-MB-468 and MDA-MB-231 cells by 1.5- and 1.7-fold, respectively. Both qRT-PCR and Western blot analysis have shown significant upregulation in the expression of epithelial marker (E-cadherin) and downregulation in the expression of mesenchymal markers (N-cadherin, vimentin, Snail, Slug, and β-catenin), following treatment, indicating reversal of EMT. Furthermore, beauvericin has suppressed the Notch signaling pathway by substantially downregulating Notch-1, Notch-3, Hes-1, and cyclinD3 expression and induced autophagy as observed by elevated expression of autophagy markers LC3 and Beclin-1. In conclusion, beauvericin has successfully downregulated TNBC cell survival by inducing oxidative stress and suppressed their migratory potential by reversing EMT through the inhibition of Notch signaling and activation of autophagy.
Collapse
Affiliation(s)
- Arupam Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Arisha Arora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Gurvinder Kaur Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
7
|
Kishimoto S, Crooks DR, Yasunori O, Kota Y, Yamamoto K, Linehan WM, Levine M, Krishna MC, Brender JR. Pharmacologic ascorbate induces transient hypoxia sensitizing pancreatic ductal adenocarcinoma to a hypoxia activated prodrug. Free Radic Biol Med 2024; 222:579-587. [PMID: 38992394 DOI: 10.1016/j.freeradbiomed.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Hypoxic tumor microenvironments pose a significant challenge in cancer treatment. Hypoxia-activated prodrugs like evofosfamide aim to specifically target and eliminate these resistant cells. However, their effectiveness is often limited by reoxygenation after cell death. We hypothesized that ascorbate's pro-oxidant properties could be harnessed to induce transient hypoxia, enhancing the efficacy of evofosfamide by overcoming reoxygenation. To test this hypothesis, we investigated the sensitivity of MIA Paca-2 and A549 cancer cells to ascorbate in vitro and in vivo. Ascorbate induced a cytotoxic effect at 5 mM that could be alleviated by endogenous administration of catalase, suggesting a role for hydrogen peroxide in its cytotoxic mechanism. In vitro, Seahorse experiments indicated that the generation of hydrogen peroxide consumes oxygen, which is offset at later time points by a reduction in oxygen consumption due to hydrogen peroxide's cytotoxic effect. In vivo, photoacoustic imaging showed pharmacologic ascorbate treatment at sublethal levels triggered a complex, multi-phasic response in tumor oxygenation across both cell lines. Initially, ascorbate generated transient hypoxia within minutes through hydrogen peroxide production, via reactions that consume oxygen. This initial hypoxic phase peaked at around 150 s and then gradually subsided. However, at longer time scales (approximately 300 s) a vasodilation effect triggered by ascorbate resulted in increased blood flow and subsequent reoxygenation. Combining sublethal levels of i. p. Ascorbate with evofosfamide significantly prolonged tumor doubling time in MIA Paca-2 and A549 xenografts compared to either treatment alone. This improvement, however, was only observed in a subpopulation of tumors, highlighting the complexity of the oxygenation response.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Clinical Cancer Metabolism Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Otowa Yasunori
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yamashita Kota
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Clinical Cancer Metabolism Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jeffrey R Brender
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Zhang L, Li G, Lin B, He H, Zhou R, Jiang W. Ascorbyl palmitate ameliorates inflammatory diseases by inhibition of NLRP3 inflammasome. Int Immunopharmacol 2024; 131:111915. [PMID: 38522141 DOI: 10.1016/j.intimp.2024.111915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
The aberrant activation of NLRP3 inflammasome contributes to pathogenesis of multiple inflammation-driven human diseases. However, the medications targeting NLRP3 inflammasome are not approved for clinic use to date. Here, we show that ascorbyl palmitate (AP), a lipophilic derivative of ascorbic acid (AA) and a safe food additive, is a potent inhibitor of NLRP3 inflammasome. Compared with AA, AP inhibited the activation of NLRP3 inflammasome with increased potency and specificity. Mechanistically, AP directly scavenged mitochondrial reactive oxygen species (mitoROS) by its antioxidant activity and blocked NLRP3-NEK7 interaction and NLRP3 inflammasome assembly. Moreover, AP showed more significant preventive effects than AA in LPS-induced systemic inflammation, dextran sulfate sodium (DSS)-induced colitis and experimental autoimmune encephalomyelitis (EAE). Thus, our results suggest that AP is a potential therapeutic combating NLRP3-driven diseases.
Collapse
Affiliation(s)
- Luchen Zhang
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China, Hefei, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guoyang Li
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China, Hefei, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bolong Lin
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China, Hefei, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongbin He
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China, Hefei, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Wei Jiang
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China, Hefei, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
9
|
Owens CD, Bonin Pinto C, Detwiler S, Olay L, Pinaffi-Langley ACDC, Mukli P, Peterfi A, Szarvas Z, James JA, Galvan V, Tarantini S, Csiszar A, Ungvari Z, Kirkpatrick AC, Prodan CI, Yabluchanskiy A. Neurovascular coupling impairment as a mechanism for cognitive deficits in COVID-19. Brain Commun 2024; 6:fcae080. [PMID: 38495306 PMCID: PMC10943572 DOI: 10.1093/braincomms/fcae080] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Components that comprise our brain parenchymal and cerebrovascular structures provide a homeostatic environment for proper neuronal function to ensure normal cognition. Cerebral insults (e.g. ischaemia, microbleeds and infection) alter cellular structures and physiologic processes within the neurovascular unit and contribute to cognitive dysfunction. COVID-19 has posed significant complications during acute and convalescent stages in multiple organ systems, including the brain. Cognitive impairment is a prevalent complication in COVID-19 patients, irrespective of severity of acute SARS-CoV-2 infection. Moreover, overwhelming evidence from in vitro, preclinical and clinical studies has reported SARS-CoV-2-induced pathologies in components of the neurovascular unit that are associated with cognitive impairment. Neurovascular unit disruption alters the neurovascular coupling response, a critical mechanism that regulates cerebromicrovascular blood flow to meet the energetic demands of locally active neurons. Normal cognitive processing is achieved through the neurovascular coupling response and involves the coordinated action of brain parenchymal cells (i.e. neurons and glia) and cerebrovascular cell types (i.e. endothelia, smooth muscle cells and pericytes). However, current work on COVID-19-induced cognitive impairment has yet to investigate disruption of neurovascular coupling as a causal factor. Hence, in this review, we aim to describe SARS-CoV-2's effects on the neurovascular unit and how they can impact neurovascular coupling and contribute to cognitive decline in acute and convalescent stages of the disease. Additionally, we explore potential therapeutic interventions to mitigate COVID-19-induced cognitive impairment. Given the great impact of cognitive impairment associated with COVID-19 on both individuals and public health, the necessity for a coordinated effort from fundamental scientific research to clinical application becomes imperative. This integrated endeavour is crucial for mitigating the cognitive deficits induced by COVID-19 and its subsequent burden in this especially vulnerable population.
Collapse
Affiliation(s)
- Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sam Detwiler
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Lauren Olay
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Ana Clara da C Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Judith A James
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Veronica Galvan
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
10
|
Oshizaka T, Takeuchi I, Mukae K, Mori K, Sugibayashi K. Enhanced Physical Stability of L-Ascorbic Acid in an Ionic Liquid. Chem Pharm Bull (Tokyo) 2024; 72:209-212. [PMID: 38281765 DOI: 10.1248/cpb.c23-00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Ionic liquid (IL) technology was used to enhance the stability of L-ascorbic acid (AA). Pyridoxine was selected as the counter cation for anionic AA in IL. After AA was dissolved in water at 40 °C, its ratio decreased to 3.2% after 7 d. In contrast, the IL formulation showed negligible degradation, with almost no loss of AA even after 28 d. These results suggest that the use of IL enhances the stability of AA.
Collapse
Affiliation(s)
- Takeshi Oshizaka
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Katsuya Mukae
- Department of Industrial Chemistry, Kyushu Sangyo University
| | - Kenji Mori
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Kenji Sugibayashi
- Faculty of Pharmaceutical Sciences, Josai International University
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
11
|
Tasaki E, Yamamoto Y, Iuchi Y. Higher levels of the lipophilic antioxidants coenzyme Q 10 and vitamin E in long-lived termite queens than in short-lived workers. INSECT SCIENCE 2024; 31:201-210. [PMID: 37279723 DOI: 10.1111/1744-7917.13217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 06/08/2023]
Abstract
Termite queens and kings live longer than nonreproductive workers. Several molecular mechanisms contributing to their long lifespan have been investigated; however, the underlying biochemical explanation remains unclear. Coenzyme Q (CoQ), a component of the mitochondrial electron transport chain, plays an essential role in the lipophilic antioxidant defense system. Its beneficial effects on health and longevity have been well studied in several organisms. Herein, we demonstrated that long-lived termite queens have significantly higher levels of the lipophilic antioxidant CoQ10 than workers. Liquid chromatography analysis revealed that the levels of the reduced form of CoQ10 were 4 fold higher in the queen's body than in the worker's body. In addition, queens showed 7 fold higher levels of vitamin E, which plays a role in antilipid peroxidation along with CoQ, than workers. Furthermore, the oral administration of CoQ10 to termites increased the CoQ10 redox state in the body and their survival rate under oxidative stress. These findings suggest that CoQ10 acts as an efficient lipophilic antioxidant along with vitamin E in long-lived termite queens. This study provides essential biochemical and evolutionary insights into the relationship between CoQ10 concentrations and termite lifespan extension.
Collapse
Affiliation(s)
- Eisuke Tasaki
- Department of Biological Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Yoshihito Iuchi
- Department of Biological Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
12
|
Kagan VE, Straub AC, Tyurina YY, Kapralov AA, Hall R, Wenzel SE, Mallampalli RK, Bayir H. Vitamin E/Coenzyme Q-Dependent "Free Radical Reductases": Redox Regulators in Ferroptosis. Antioxid Redox Signal 2024; 40:317-328. [PMID: 37154783 PMCID: PMC10890965 DOI: 10.1089/ars.2022.0154] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/10/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023]
Abstract
Significance: Lipid peroxidation and its products, oxygenated polyunsaturated lipids, act as essential signals coordinating metabolism and physiology and can be deleterious to membranes when they accumulate in excessive amounts. Recent Advances: There is an emerging understanding that regulation of polyunsaturated fatty acid (PUFA) phospholipid peroxidation, particularly of PUFA-phosphatidylethanolamine, is important in a newly discovered type of regulated cell death, ferroptosis. Among the most recently described regulatory mechanisms is the ferroptosis suppressor protein, which controls the peroxidation process due to its ability to reduce coenzyme Q (CoQ). Critical Issues: In this study, we reviewed the most recent data in the context of the concept of free radical reductases formulated in the 1980-1990s and focused on enzymatic mechanisms of CoQ reduction in different membranes (e.g., mitochondrial, endoplasmic reticulum, and plasma membrane electron transporters) as well as TCA cycle components and cytosolic reductases capable of recycling the high antioxidant efficiency of the CoQ/vitamin E system. Future Directions: We highlight the importance of individual components of the free radical reductase network in regulating the ferroptotic program and defining the sensitivity/tolerance of cells to ferroptotic death. Complete deciphering of the interactive complexity of this system may be important for designing effective antiferroptotic modalities. Antioxid. Redox Signal. 40, 317-328.
Collapse
Affiliation(s)
- Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Radiation Oncology and Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexandr A. Kapralov
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert Hall
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sally E. Wenzel
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, Children's Hospital Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, Columbia University, New York, New York, USA
| |
Collapse
|
13
|
Khan AH, Hassan S, Aamir M, Khan MW, Haq F, Hayat J, Rizwan M, Ullah A, Ullah I, Zengin G, Farid A. Exploring the Therapeutic Properties of Alga-Based Silver Nanoparticles: Anticancer, Antibacterial, and Free Radical Scavenging Capabilities. Chem Biodivers 2023; 20:e202301068. [PMID: 37647307 DOI: 10.1002/cbdv.202301068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
The current study was designed to evaluate the antioxidant, anticancer and antimicrobial activities of silver nanoparticles (AgNPs) biosynthesized by Spirulina platensis extract. The biosynthesized silver nanoparticles were characterized using Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The antioxidant activity of the biosynthesized AgNPs were determined via DPPH radical scavenging assay while its anticancer activity was determined using the MTT assay. The antimicrobial activity of the biosynthesized AgNPs were analyzed by disc diffusion method. Spirulina platensis acts as a reducing and capping agent. The efficacy of silver nanoparticles (AgNPs) in inhibiting the growth of Gram-negative bacteria, specifically Acetobacter, Klebsiella, Proteus vulgaris, and Pseudomonas aeruginosa, was assessed by the utilisation of the diffusion method. The study aimed to evaluate the efficacy of biosynthesized silver nanoparticles (AgNPs) against many strains of Pseudomonas aeruginosa bacteria. The findings of the study revealed that when administered in doses of 50 μl, 75 μl, and 100 μl, the largest observed zone of inhibition corresponded to measurements of 10.5 mm, 14 mm, and 16 mm, respectively. A zone of inhibition with dimensions of 8 mm, 10.5 mm, and 12 mm was detected during testing against Acetobacter at concentrations of 50 μl, 75 μl, and 100 μl, respectively. The findings also indicate that there is a positive correlation between the concentration of AgNP and the DPPH scavenging ability of silver nanoparticles. The percentage of inhibition observed at concentrations of 500 μg/ml, 400 μg/ml, 300 μg/ml, 200 μg/ml, and 100 μg/ml were recorded as 80±1.98, 61±1.98, 52±1.5, 42±1.99, and 36±1.97, respectively. In addition, it was observed that the silver nanoparticles exhibited the greatest antioxidant activity at a concentration of 500 g/ml, with a measured value of 80.89±1.99. The IC-50 values, representing the inhibitory concentration required to achieve 50 % inhibition, were found to be 8.16, 19.15, 30.14, 41.13, and 63.11 at inhibition levels of 36±1.97, 42±1.99, 52±1.5, 61±1.98, and 80±1.98, respectively.
Collapse
Affiliation(s)
- Amir Hamza Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University Charsadda-KP, Pakistan
| | - Said Hassan
- Institute of Biotechnology and Microbiology, Bacha Khan University Charsadda-KP, Pakistan
| | - Muhammad Aamir
- Institute of Biotechnology and Microbiology, Bacha Khan University Charsadda-KP, Pakistan
| | - Muhammad Waseem Khan
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, 25000, Pakistan
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Junaid Hayat
- Rehman College of Allied Health Science, Peshawar, 25000, Pakistan
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology, University of Swat-KP, Pakistan
| | - Amin Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Khyber Pakh-tunkhwa, Pakistan
| | - Izzat Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Khyber Pakh-tunkhwa, Pakistan
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050, Pakistan
| |
Collapse
|
14
|
Podolska K, Mazankova D, Goboova M, Vano I. Ascorbic acid intake during pregnancy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023; 167:213-218. [PMID: 37691531 DOI: 10.5507/bp.2023.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
The continuing global increase in allergic conditions and diseases in children is now a serious public health and scientific issue. Amongst other concerns is the maternal antenatal diet as intake of essential nutrients. Even small deficits in essential vitamin C can permanently impair the developing brain for example. In this article, we first review ascorbic acid deficiency in different organs of both mother and foetus. However, major emphasis is on the importance of vitamin C in foetal immunity with studies showing an inverse relationship between maternal intake of fresh fruit and vegetables and allergic conditions in childhood, inter alia. Other review results are included.
Collapse
Affiliation(s)
- Kristina Podolska
- Department of Applied Pharmacy, Faculty of Pharmacy, Masaryk University, 612 00 Brno, Czech Republic
| | - Dana Mazankova
- Department of Applied Pharmacy, Faculty of Pharmacy, Masaryk University, 612 00 Brno, Czech Republic
| | - Maria Goboova
- Department of Internal Medicine, Teaching Hospital Nitra, 949 01 Nitra, Slovak Republic
| | - Ivan Vano
- Department of Internal Medicine, Teaching Hospital Nitra, 949 01 Nitra, Slovak Republic
| |
Collapse
|
15
|
Plascencia-Villa G, Perry G. Roles of Oxidative Stress in Synaptic Dysfunction and Neuronal Cell Death in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:1628. [PMID: 37627623 PMCID: PMC10451948 DOI: 10.3390/antiox12081628] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a brain disorder that progressively undermines memory and thinking skills by affecting the hippocampus and entorhinal cortex. The main histopathological hallmarks of AD are the presence of abnormal protein aggregates (Aβ and tau), synaptic dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. However, oxidative stress or oxidative damage is also evident and commonly overlooked or considered a consequence of the advancement of dementia symptoms. The control or onset of oxidative stress is linked to the activity of the amyloid-β peptide, which may serve as both antioxidant and pro-oxidant molecules. Furthermore, oxidative stress is correlated with oxidative damage to proteins, nucleic acids, and lipids in vulnerable cell populations, which ultimately lead to neuronal death through different molecular mechanisms. By recognizing oxidative stress as an integral feature of AD, alternative therapeutic or preventive interventions are developed and tested as potential or complementary therapies for this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA;
| | | |
Collapse
|
16
|
Staiano C, García-Corzo L, Mantle D, Turton N, Millichap LE, Brea-Calvo G, Hargreaves I. Biosynthesis, Deficiency, and Supplementation of Coenzyme Q. Antioxidants (Basel) 2023; 12:1469. [PMID: 37508007 PMCID: PMC10375973 DOI: 10.3390/antiox12071469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Originally identified as a key component of the mitochondrial respiratory chain, Coenzyme Q (CoQ or CoQ10 for human tissues) has recently been revealed to be essential for many different redox processes, not only in the mitochondria, but elsewhere within other cellular membrane types. Cells rely on endogenous CoQ biosynthesis, and defects in this still-not-completely understood pathway result in primary CoQ deficiencies, a group of conditions biochemically characterised by decreased tissue CoQ levels, which in turn are linked to functional defects. Secondary CoQ deficiencies may result from a wide variety of cellular dysfunctions not directly linked to primary synthesis. In this article, we review the current knowledge on CoQ biosynthesis, the defects leading to diminished CoQ10 levels in human tissues and their associated clinical manifestations.
Collapse
Affiliation(s)
- Carmine Staiano
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Laura García-Corzo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | | | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| | - Lauren E Millichap
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Iain Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| |
Collapse
|
17
|
Ferreira V, Folgueira C, García-Altares M, Guillén M, Ruíz-Rosario M, DiNunzio G, Garcia-Martinez I, Alen R, Bookmeyer C, Jones JG, Cigudosa JC, López-Larrubia P, Correig-Blanchar X, Davis RJ, Sabio G, Rada P, Valverde ÁM. Hypothalamic JNK1-hepatic fatty acid synthase axis mediates a metabolic rewiring that prevents hepatic steatosis in male mice treated with olanzapine via intraperitoneal: Additional effects of PTP1B inhibition. Redox Biol 2023; 63:102741. [PMID: 37230004 DOI: 10.1016/j.redox.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Olanzapine (OLA), a widely used second-generation antipsychotic (SGA), causes weight gain and metabolic alterations when administered orally to patients. Recently, we demonstrated that, contrarily to the oral treatment which induces weight gain, OLA administered via intraperitoneal (i.p.) in male mice resulted in body weight loss. This protection was due to an increase in energy expenditure (EE) through a mechanism involving the modulation of hypothalamic AMPK activation by higher OLA levels reaching this brain region compared to those of the oral treatment. Since clinical studies have shown hepatic steatosis upon chronic treatment with OLA, herein we further investigated the role of the hypothalamus-liver interactome upon OLA administration in wild-type (WT) and protein tyrosine phosphatase 1B knockout (PTP1B-KO) mice, a preclinical model protected against metabolic syndrome. WT and PTP1B-KO male mice were fed an OLA-supplemented diet or treated via i.p. Mechanistically, we found that OLA i.p. treatment induces mild oxidative stress and inflammation in the hypothalamus in a JNK1-independent and dependent manner, respectively, without features of cell dead. Hypothalamic JNK activation up-regulated lipogenic gene expression in the liver though the vagus nerve. This effect concurred with an unexpected metabolic rewiring in the liver in which ATP depletion resulted in increased AMPK/ACC phosphorylation. This starvation-like signature prevented steatosis. By contrast, intrahepatic lipid accumulation was observed in WT mice treated orally with OLA; this effect being absent in PTP1B-KO mice. We also demonstrated an additional benefit of PTP1B inhibition against hypothalamic JNK activation, oxidative stress and inflammation induced by chronic OLA i.p. treatment, thereby preventing hepatic lipogenesis. The protection conferred by PTP1B deficiency against hepatic steatosis in the oral OLA treatment or against oxidative stress and neuroinflammation in the i.p. treatment strongly suggests that targeting PTP1B might be also a therapeutic strategy to prevent metabolic comorbidities in patients under OLA treatment in a personalized manner.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - María García-Altares
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain; Rovira I Virgili University, Department of Electronic Engineering, Tarragona, Spain
| | - Maria Guillén
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | | | - Giada DiNunzio
- Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Irma Garcia-Martinez
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Rosa Alen
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Christoph Bookmeyer
- Rovira I Virgili University, Department of Electronic Engineering, Tarragona, Spain
| | - John G Jones
- Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | | | - Pilar López-Larrubia
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Xavier Correig-Blanchar
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain; Rovira I Virgili University, Department of Electronic Engineering, Tarragona, Spain; Institut D'Investigacio Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Roger J Davis
- Program in Molecular Medicine, Chan Medical School, University of Massachusetts, Worcester, USA
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain.
| |
Collapse
|
18
|
Pati SG, Panda F, Samanta L, Paital B. Spatio-temporal changes in oxidative stress physiology parameters in apple snail Pila globosa as a function of soil Mg, Ca, organic carbon and aquatic physico-chemical factors. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2591-2610. [PMID: 36063241 DOI: 10.1007/s10653-022-01376-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Information on the oxidative stress physiology parameters (OSPP) in general and as a function of the fluctuation of Mg, Ca and organic carbon present in soil and aquatic physico-chemical factors such as pH, temperature and salinity in particular are scanty in the amphibious snail Pila globosa. A spatio-temporal analysis of redox metabolism (as OSPP) followed by discriminant function analysis of the obtained data were performed in P. globosa sampled from the east-coasts of Odisha state, India (mostly along the Bay of Bengal) for environmental health assessment purposes. Results revealed that the OSPP are susceptible to seasonal synergistic variation of soil and physico-chemical factors. Overall, lipid peroxidation, total antioxidant capacity, activities of catalase, glutathione reductase had positive correlation whereas ascorbic acid, the reduced glutathione and the activity of superoxide dismutase had non-significant correlation with the soil Mg, Ca, organic carbon, and pH, temperature and salinity of water. In the summer season, the snails had a marked 51.83% and 26.41% higher lipid peroxidation level and total antioxidative activity as compared to the other seasons. Spatial variation of OSPP indicates that snails residing away from the Bay of Bengal coast had at least 4.4% lower antioxidant level in winter and 30% higher lipid peroxide levels in summer as compared to the rest of the sampling sites. Results on OSPP in P. globosa may be useful for monitoring the ecotoxic effects of environment using molluscs in general and P. globosa in particular.
Collapse
Affiliation(s)
- Samar Gourav Pati
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, 753003, India
| | - Falguni Panda
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, 753003, India
| | - Luna Samanta
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, 753003, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India.
| |
Collapse
|
19
|
Antioxidant Activity, Stability in Aqueous Medium and Molecular Docking/Dynamics Study of 6-Amino- and N-Methyl-6-amino-L-ascorbic Acid. Int J Mol Sci 2023; 24:ijms24021410. [PMID: 36674926 PMCID: PMC9862502 DOI: 10.3390/ijms24021410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
The antioxidant activity and chemical stability of 6-amino-6-deoxy-L-ascorbic acid (D1) and N-methyl-6-amino-6-deoxy-L-ascorbic acid (D2) were examined with ABTS and DPPH assays and compared with the reference L-ascorbic acid (AA). In addition, the optimal storing conditions, as well as the pH at which the amino derivatives maintain stability, were determined using mass spectrometry. Comparable antioxidant activities were observed for NH-bioisosteres and AA. Moreover, D1 showed higher stability in an acidic medium than the parent AA. In addition, AA, D1, and D2 share the same docking profile, with wild-type human peroxiredoxin as a model system. Their docking scores are similar to those of dithiothreitol (DTT). This suggests a similar binding affinity to the human peroxiredoxin binding site.
Collapse
|
20
|
Holton K. The potential role of dietary intervention for the treatment of neuroinflammation. TRANSLATIONAL NEUROIMMUNOLOGY, VOLUME 7 2023:239-266. [DOI: 10.1016/b978-0-323-85841-0.00022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Hall R, Yuan S, Wood K, Katona M, Straub AC. Cytochrome b5 reductases: Redox regulators of cell homeostasis. J Biol Chem 2022; 298:102654. [PMID: 36441026 PMCID: PMC9706631 DOI: 10.1016/j.jbc.2022.102654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The cytochrome-b5 reductase (CYB5R) family of flavoproteins is known to regulate reduction-oxidation (redox) balance in cells. The five enzyme members are highly compartmentalized at the subcellular level and function as "redox switches" enabling the reduction of several substrates, such as heme and coenzyme Q. Critical insight into the physiological and pathophysiological significance of CYB5R enzymes has been gleaned from several human genetic variants that cause congenital disease and a broad spectrum of chronic human diseases. Among the CYB5R genetic variants, CYB5R3 is well-characterized and deficiency in expression and activity is associated with type II methemoglobinemia, cancer, neurodegenerative disorders, diabetes, and cardiovascular disease. Importantly, pharmacological and genetic-based strategies are underway to target CYB5R3 to circumvent disease onset and mitigate severity. Despite our knowledge of CYB5R3 in human health and disease, the other reductases in the CYB5R family have been understudied, providing an opportunity to unravel critical function(s) for these enzymes in physiology and disease. In this review, we aim to provide the broad scientific community an up-to-date overview of the molecular, cellular, physiological, and pathophysiological roles of CYB5R proteins.
Collapse
Affiliation(s)
- Robert Hall
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mate Katona
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Microvascular Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
22
|
Abstract
Ascorbic acid, as one of the basic exogenous vitamins, is known for its tremendous antioxidant properties. This review has been prepared to show not only the importance of ascorbic acid as a free radical scavenger, but also to summarize its antioxidant action based on other mechanisms, including activation of intracellular antioxidant systems. Ascorbic acid interacts with small molecule antioxidants, including tocopherol, glutathione and thioredoxin, but also can stimulate the biosynthesis and activation of antioxidant enzymes, such as superoxide dismutase, catalase or glutathione peroxidase. Moreover, ascorbic acid promotes the activity of several transcription factors (Nrf2, Ref-1, AP-1), which enables the expression of genes encoding antioxidant proteins. Additionally, it supports the action of other exogenous antioxidants, mainly polyphenols. In this connection, both DNA, protein and lipids are protected against oxidation. Although ascorbic acid has strong antioxidant properties, it can also have pro-oxidant effects in the presence of free transition metals. However, its role in prevention of DNA mutation and cellular apoptosis, especially in relation to cancer cells is controversial.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
23
|
Gęgotek A, Skrzydlewska E. Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants (Basel) 2022; 11:1993. [PMID: 36290716 PMCID: PMC9598715 DOI: 10.3390/antiox11101993] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 07/24/2023] Open
Abstract
Ascorbic acid, as a one of the basic exogenous vitamins, occurs in the body in the form of ascorbate, known for its strong antioxidant and anti-inflammatory properties. The presented review shows not only the importance of ascorbate as a free radical scavenger but also summarizes its antioxidant action based on other mechanisms, including the activation of intracellular antioxidant systems and its effect on the NFκB/TNFα pathway and apoptosis. Ascorbate interacts with small-molecule antioxidants, including tocopherol, glutathione, and thioredoxin; it can also stimulate biosynthesis and the activation of antioxidant enzymes, such as superoxide dismutase, catalase, or glutathione peroxidase. Moreover, ascorbate promotes the activity of transcription factors (Nrf2, Ref-1, AP-1), which enables the expression of genes encoding antioxidant proteins. Additionally, it supports the action of other exogenous antioxidants, mainly polyphenols. In this regard, both DNA, proteins, and lipids are protected against oxidation, leading to an inflammatory reaction and even cell death. Although ascorbate has strong antioxidant properties, it can also have pro-oxidant effects in the presence of free transition metals. However, its role in the prevention of DNA mutation, inflammation, and cell apoptosis, especially in relation to cancer cells, is controversial.
Collapse
|
24
|
Dicarbonyl-Dependent Modification of LDL as a Key Factor of Endothelial Dysfunction and Atherosclerotic Vascular Wall Damage. Antioxidants (Basel) 2022; 11:antiox11081565. [PMID: 36009284 PMCID: PMC9405452 DOI: 10.3390/antiox11081565] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 12/05/2022] Open
Abstract
The review presents evidence that the main damage to the vascular wall occurs not from the action of “oxidized” LDL, which contain hydroperoxy acyls in the phospholipids located in their outer layer, but from the action of LDL particles whose apoprotein B-100 is chemically modified with low molecular weight dicarbonyls, such as malondialdehyde, glyoxal, and methylglyoxal. It has been argued that dicarbonyl-modified LDL, which have the highest cholesterol content, are particularly “atherogenic”. High levels of dicarbonyl-modified LDL have been found to be characteristic of some mutations of apoprotein B-100. Based on the reviewed data, we hypothesized a common molecular mechanism underlying vascular wall damage in atherosclerosis and diabetes mellitus. The important role of oxidatively modified LDL in endothelial dysfunction is discussed in detail. In particular, the role of the interaction of the endothelial receptor LOX-1 with oxidatively modified LDL, which leads to the expression of NADPH oxidase, which in turn generates superoxide anion radical, is discussed. Such hyperproduction of ROS can cause destruction of the glycocalyx, a protective layer of endotheliocytes, and stimulation of apoptosis in these cells. On the whole, the accumulated evidence suggests that carbonyl modification of apoprotein B-100 of LDL is a key factor responsible for vascular wall damage leading to atherogenesis and endothelial dysfunction. Possible ways of pharmacological correction of free radical processes in atherogenesis and diabetogenesis are also discussed.
Collapse
|
25
|
Gombár G, Ungor D, Samu GF, Dömötör O, Csapó E. Synthesis and characterization of novel blue-emitting nicotinamide-gold nanoclusters with “chain-breaker” antioxidant property. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Ferroptosis: A Promising Therapeutic Target for Neonatal Hypoxic-Ischemic Brain Injury. Int J Mol Sci 2022; 23:ijms23137420. [PMID: 35806425 PMCID: PMC9267109 DOI: 10.3390/ijms23137420] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a type of programmed cell death caused by phospholipid peroxidation that has been implicated as a mechanism in several diseases resulting from ischemic-reperfusion injury. Most recently, ferroptosis has been identified as a possible key injury mechanism in neonatal hypoxic-ischemic brain injury (HIBI). This review summarizes the current literature regarding the different ferroptotic pathways, how they may be activated after neonatal HIBI, and which current or investigative interventions may attenuate ferroptotic cell death associated with neonatal HIBI.
Collapse
|
27
|
Chio JCT, Punjani N, Hejrati N, Zavvarian MM, Hong J, Fehlings MG. Extracellular Matrix and Oxidative Stress Following Traumatic Spinal Cord Injury: Physiological and Pathophysiological Roles and Opportunities for Therapeutic Intervention. Antioxid Redox Signal 2022; 37:184-207. [PMID: 34465134 DOI: 10.1089/ars.2021.0120] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Traumatic spinal cord injury (SCI) causes significant disruption to neuronal, glial, vascular, and extracellular elements. The spinal cord extracellular matrix (ECM) comprises structural and communication proteins that are involved in reparative and regenerative processes after SCI. In the healthy spinal cord, the ECM helps maintain spinal cord homeostasis. After SCI, the damaged ECM limits plasticity and contributes to inflammation through the expression of damage-associated molecules such as proteoglycans. Recent Advances: Considerable insights have been gained by characterizing the origins of the gliotic and fibrotic scars, which not only reduce the spread of injury but also limit neuroregeneration. These properties likely limit the success of therapies used to treat patients with SCI. The ECM, which is a major contributor to the scars and normal physiological functions of the spinal cord, represents an exciting therapeutic target to enhance recovery post-SCI. Critical Issue: Various ECM-based preclinical therapies have been developed. These include disrupting scar components, inhibiting activity of ECM metalloproteinases, and maintaining iron homeostasis. Biomaterials have also been explored. However, the majority of these treatments have not experienced successful clinical translation. This could be due to the ECM and scars' polarizing roles. Future Directions: This review surveys the complexity involved in spinal ECM modifications, discusses new ECM-based combinatorial strategies, and explores the biomaterials evaluated in clinical trials, which hope to introduce new treatments that enhance recovery after SCI. These topics will incorporate oxidative species, which are both beneficial and harmful in reparative and regenerative processes after SCI, and not often assessed in pertinent literature. Antioxid. Redox Signal. 37, 184-207.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Nayaab Punjani
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Nader Hejrati
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Mohammad-Masoud Zavvarian
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James Hong
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery and Spine Program, University of Toronto, Toronto, Canada
| |
Collapse
|
28
|
Effects of ergo-nutritional strategies on recovery in combat sports disciplines. NUTR HOSP 2022; 39:652-662. [PMID: 35076252 DOI: 10.20960/nh.03886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction In order to improve the recovery process in combat sports disciplines, ergo-nutritional strategies could be an effective option in training and competition. Some of these ergo-nutritional aids could improve performance but literature references are scarce, with controversial results regarding actual recovery effects. This systematic review aimed to examine which ergo-nutritional methods are most effective for assisting in the recovery process in combat sports, and to determine the appropriate training stimuli. This systematic review was carried out following the Preferred Reporting Items for Systematic Review (PRISMA) guidelines. A computerized search was performed in PubMed, Web of Science, the Cochrane Collaboration Database, Evidence Database, Evidence Based Medicine Search review, National Guidelines, EM-BASE, Scopus and Google Scholar system (from 1995 to April 30, 2021). The PICOS model was used to define inclusion and exclusion criteria. Out of 123 studies initially found, 18 met the eligibility criteria and were included in the review. Data from 367 athletes from different disciplines were examined. The evidence was grouped in 4 areas: oxidative stress, muscle and energy recovery, muscle repair, and metabolic acidosis. Evidence showed that vitamins, minerals, and some natural ergo-nutritional products are effective as antioxidants. Carbohydrates and protein determine the recovery effect. Sodium bicarbonate has a role as primary acidosis metabolic delayer. Accordingly, ergo-nutritional aids can help in the recovery process. Considering the effects outlined in the literature, more studies are needed to provide firm evidence.
Collapse
|
29
|
Das D, Sen S, Bhakta S, Sen K. Preclusion of methemoglobinemia caused by nitrate drugs in diabetics and nondiabetics: Possible role of Vitamin C. Blood Cells Mol Dis 2022; 94:102643. [PMID: 35033940 DOI: 10.1016/j.bcmd.2021.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022]
Abstract
The drugs containing nitrates like isosorbide dinitrate, isosorbide mononitrate and glyceryl trinitrate, etc., trigger the oxidation of hemoglobin which is manifested in the pathological disorder named methemoglobinemia. It was considered interesting to investigate the preventive roles of vitamin C towards the toxic effects of nitrate containing drugs used for the treatment of angina. The aim is to find whether these drugs need to be administered with special care to diabetic patients who are more prone to develop methemoglobinemia. Vitamin C (500 mg/day) was administered orally to reduce the methemoglobin (metHb) level in both the diabetic and nondiabetic patients consuming nitrate containing drugs regularly, keeping diabetic and nondiabetic patients not on nitrate drugs as control. Concentration of metHb and hemoglobin A (HbA) was estimated spectrophotometrically assuming the molar extinction coefficient values of metHb as 3.78 mM--1 cm--1 at 630 nm and HbA as 125,000 M --1 cm --1 at 415 nm. MetHb level was found to be lower after the treatment with vitamin C for 30 consecutive days than that before the trial with statistically significant two tailed p value. Additionally, fasting insulin level was also found to decrease after 4 weeks of consumption of vitamin C with moderate lowering of fasting serum glucose level as well, indicating a higher insulin sensitivity for the treated patients.
Collapse
Affiliation(s)
- Debashree Das
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Souvik Sen
- KPC Medical College & Hospital, 1F, Raja Subodh Chandra Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Santanu Bhakta
- KPC Medical College & Hospital, 1F, Raja Subodh Chandra Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Kamalika Sen
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700009, India.
| |
Collapse
|
30
|
Pucci C, Martinelli C, De Pasquale D, Battaglini M, di Leo N, Degl’Innocenti A, Belenli Gümüş M, Drago F, Ciofani G. Tannic Acid-Iron Complex-Based Nanoparticles as a Novel Tool against Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15927-15941. [PMID: 35352893 PMCID: PMC9011352 DOI: 10.1021/acsami.1c24576] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Accumulation of reactive oxygen species in cells leads to oxidative stress, with consequent damage for cellular components and activation of cell-death mechanisms. Oxidative stress is often associated with age-related conditions, as well as with several neurodegenerative diseases. For this reason, antioxidant molecules have attracted a lot of attention, especially those derived from natural sources─like polyphenols and tannins. The main issue related to the use of antioxidants is their inherent tendency to be oxidized, their quick enzymatic degradation in biological fluids, and their poor bioavailability. Nanomedicine, in this sense, has helped in finding new solutions to deliver and protect antioxidants; however, the concentration of the encapsulated molecule in conventional nanosystems could be very low and, therefore, less effective. We propose to exploit the properties of tannic acid, a known plant-derived antioxidant, to chelate iron ions, forming hydrophobic complexes that can be coated with a biocompatible and biodegradable phospholipid to improve stability in biological media. By combining nanoprecipitation and hot sonication procedures, we obtained three-dimensional networks composed of tannic acid-iron with a hydrodynamic diameter of ≈200 nm. These nanostructures show antioxidant properties and scavenging activity in cells after induction of an acute chemical pro-oxidant insult; moreover, they also demonstrated to counteract damage induced by oxidative stress both in vitro and on an in vivo model organism (planarians).
Collapse
Affiliation(s)
- Carlotta Pucci
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Chiara Martinelli
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Daniele De Pasquale
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Nicoletta di Leo
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- The
Biorobotics Institute, Scuola Superiore
Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Andrea Degl’Innocenti
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Melike Belenli Gümüş
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- The
Biorobotics Institute, Scuola Superiore
Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Filippo Drago
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Gianni Ciofani
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
31
|
Fang X, Tanga BM, Bang S, Seong G, Saadeldin IM, Qamar AY, Shim J, Choi K, Lee S, Cho J. Vitamin C enhances porcine cloned embryo development and improves the derivation of embryonic stem-like cells. Reprod Biol 2022; 22:100632. [PMID: 35334451 DOI: 10.1016/j.repbio.2022.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022]
Abstract
Porcine cloning through somatic cell nuclear transfer (SCNT) has been widely used in biotechnology for generating animal disease models and genetically modified animals for xenotransplantation. Vitamin C is a multifunctional factor that reacts with several enzymes. In this study, we used porcine oocytes to investigate the effects of different concentrations of vitamin C on in vitro maturation (IVM), in vitro culture (IVC), and the derivation of nuclear transfer embryonic stem-like cells (NT-ESCs). We demonstrated that vitamin C promoted the cleavage and blastocyst rate of genetically modified cloned porcine embryos and improved the derivation of NT-ESCs. Vitamin C integrated into IVM and IVC enhanced cleavage and blastocyst formation (P < 0.05) in SCNT embryos. Glutathione level was increased, and reactive oxygen species levels were decreased (P < 0.05) due to vitamin C treatment. Vitamin C decreased the gene expression of apoptosis (BAX) and increased the expression of genes associated with nuclear reprogramming (NANOG, POU5F1, SOX2, c-Myc, Klf4, and TEAD4), antioxidation (SOD1), anti-apoptotic (Bcl2), and trophectoderm (CDX2). Moreover, vitamin C improved the attachment, derivation, and passaging of NT-ESCs, while the control group showed no outgrowths beyond the primary culture. In conclusion, supplementation of vitamin C at a dose of 50 µg/ml to the IVM and IVC culture media was appropriate to improve the outcomes of porcine IVM and IVC and for the derivation of NT-ESCs as a model to study the pre- and post-implantation embryonic development in cloned transgenic embryos. Therefore, we recommend the inclusion of vitamin C as a supplementary factor to IVM and IVC to improve porcine in vitro embryonic development.
Collapse
Affiliation(s)
- Xun Fang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Gyeonghwan Seong
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ahmad Yar Qamar
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
32
|
Lau M, Sealy B, Combes V, Morsch M, Garcia-Bennett AE. Enhanced Antioxidant Effects of the Anti-Inflammatory Compound Probucol when Released from Mesoporous Silica Particles. Pharmaceutics 2022; 14:pharmaceutics14030502. [PMID: 35335878 PMCID: PMC8953917 DOI: 10.3390/pharmaceutics14030502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022] Open
Abstract
Brain endothelial cells mediate the function and integrity of the blood brain barrier (BBB) by restricting its permeability and exposure to potential toxins. However, these cells are highly susceptible to cellular damage caused by oxidative stress and inflammation. Consequent disruption to the integrity of the BBB can lead to the pathogenesis of neurodegenerative diseases. Drug compounds with antioxidant and/or anti-inflammatory properties therefore have the potential to preserve the structure and function of the BBB. In this work, we demonstrate the enhanced antioxidative effects of the compound probucol when loaded within mesoporous silica particles (MSP) in vitro and in vivo zebrafish models. The dissolution kinetics were significantly enhanced when released from MSPs. An increased reduction in lipopolysaccharide (LPS)-induced reactive oxygen species (ROS), cyclooxygenase (COX) enzyme activity and prostaglandin E2 production was measured in human brain endothelial cells treated with probucol-loaded MSPs. Furthermore, the LPS-induced permeability across an endothelial cell monolayer by paracellular and transcytotic mechanisms was also reduced at lower concentrations compared to the antioxidant ascorbic acid. Zebrafish pre-treated with probucol-loaded MSPs reduced hydrogen peroxide-induced ROS to control levels after 24-h incubation, at significantly lower concentrations than ascorbic acid. We provide compelling evidence that the encapsulation of antioxidant and anti-inflammatory compounds within MSPs can enhance their release, enhance their antioxidant effects properties, and open new avenues for the accelerated suppression of neuroinflammation.
Collapse
Affiliation(s)
- Michael Lau
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Benjamin Sealy
- Malaria and Microvesicles Research Group, School of Life Science, Faculty of Science, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia; (B.S.); (V.C.)
| | - Valery Combes
- Malaria and Microvesicles Research Group, School of Life Science, Faculty of Science, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia; (B.S.); (V.C.)
| | - Marco Morsch
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Alfonso E. Garcia-Bennett
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Macquarie University, Sydney, NSW 2109, Australia
- Correspondence:
| |
Collapse
|
33
|
Cold atmospheric plasma differentially affects cell renewal and differentiation of stem cells and APC-deficient-derived tumor cells in intestinal organoids. Cell Death Dis 2022; 8:66. [PMID: 35169122 PMCID: PMC8847667 DOI: 10.1038/s41420-022-00835-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022]
Abstract
Cold atmospheric plasma (CAP) treatment has been proposed as a potentially innovative therapeutic tool in the biomedical field, notably for cancer due to its proposed toxic selectivity on cancer cells versus healthy cells. In the present study, we addressed the relevance of three-dimensional organoid technology to investigate the biological effects of CAP on normal epithelial stem cells and tumor cells isolated from mouse small intestine. CAP treatment exerted dose-dependent cytotoxicity on normal organoids and induced major transcriptomic changes associated with the global response to oxidative stress, fetal-like regeneration reprogramming, and apoptosis-mediated cell death. Moreover, we explored the potential selectivity of CAP on tumor-like Apc-deficient versus normal organoids in the same genetic background. Unexpectedly, tumor organoids exhibited higher resistance to CAP treatment, correlating with higher antioxidant activity at baseline as compared to normal organoids. This pilot study suggests that the ex vivo culture system could be a relevant alternative model to further investigate translational medical applications of CAP technology.
Collapse
|
34
|
Chaudhary A, Gour JK, Rizvi SI. Capsaicin has potent anti-oxidative effects in vivo through a mechanism which is non-receptor mediated. Arch Physiol Biochem 2022; 128:141-147. [PMID: 31566018 DOI: 10.1080/13813455.2019.1669056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Capsaicin (8-methyl-N-vanillyl-trans-6-nonenamide) is the active ingredient of chilli peppers and is responsible for the characteristic pungency. The ubiquitous human consumption of chilli peppers indicates their influence on human health. The effect of capsaicin through sensory neurons via TRPV1 activation has been well studied, but its non-neuronal effects are still not extensively explored. The purpose of this study was to investigate the in vivo antioxidant effect of capsaicin on erythrocytes of male Wistar rats. Markers of oxidative stress in blood were determined by assessing the plasma total antioxidant potential, activity of plasma membrane redox system, intracellular glutathione (GSH) level, ROS level, protein oxidation and lipid peroxidation. Results of this study suggest a significant protective effect of capsaicin against oxidative stress by enhancing FRAP, GSH level, PMRS activity and ameliorating ROS, MDA, PCO and AOPP.
Collapse
Affiliation(s)
- Ankita Chaudhary
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Jalaj Kumar Gour
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | |
Collapse
|
35
|
Mesa T, Polo J, Arabia A, Caselles V, Munné-Bosch S. Differential physiological response to heat and cold stress of tomato plants and its implication on fruit quality. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153581. [PMID: 34915351 DOI: 10.1016/j.jplph.2021.153581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
The upcoming climate change presents a great challenge for plant growth and development being extremes temperatures among the major environmental limitations to crop productivity. Understanding the repercussions of these extreme temperatures is of high importance to elaborate future strategies to confront crop damages. Tomato plants (Solanum lycopersicum L.) are one of the most cultivated crops and their fruits are consumed worldwide standing out for their organoleptic characteristics and nutritional value. Tomato plants are sensitive to temperatures below 12 °C and above 32 °C. In this study, Micro-Tom cultivar was used to evaluate the effects of extreme temperatures on the plant of tomato and the fruit productivity and quality from the stressed plants, either exposed to cold (4 °C for three nights per week) or heat (32 °C during the day, seven days per week) treatments. Total productivity and the percentage of ripe fruits per plant were evaluated together with foliar stress markers and the contents of photosynthetic pigments and tocochromanols. Fruit quality was also assessed determining lycopene contents, total soluble solids, total acidity and ascorbate contents. High temperatures altered multiple physiological parameters indicating a moderate stress, particularly decreasing fruit yield. As a response to this stress, plants enhanced their antioxidant contents both at leaf and fruit level. Low temperatures did not negatively affect the physiology of plants with similar yields as compared to controls, suggesting chilling acclimation. Both high and low temperatures, but most particularly the former, increased total soluble solids contents indicating that temperature control may be used as a strategy to modulate fruit quality.
Collapse
Affiliation(s)
- Tania Mesa
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain
| | - Javier Polo
- R&D Department, APC Europe S.L., Granollers, Spain
| | - Alba Arabia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain
| | - Vicent Caselles
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain; R&D Department, APC Europe S.L., Granollers, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain.
| |
Collapse
|
36
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:619-645. [DOI: 10.1093/jpp/rgab175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022]
|
37
|
Wang Q, Chen Z, Zhang X, Xin Y, Xia Y, Xun L, Liu H. Rhodanese Rdl2 produces reactive sulfur species to protect mitochondria from reactive oxygen species. Free Radic Biol Med 2021; 177:287-298. [PMID: 34748908 DOI: 10.1016/j.freeradbiomed.2021.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 01/31/2023]
Abstract
Mitochondria damage is related to a broad spectrum of pathologies including Alzheimer's, Parkinson's disease, and carcinogenesis. Recently, it has been found that reactive sulfur species (RSS) has a close connection with mitochondrial health. However, the enzyme involving in mitochondrial RSS generation and the mechanism of how RSS affects mitochondrial health are not well understood. In this study, we discovered that rhodanese 2 (Rdl2) is the main enzyme responsible for RSS generation in S. cerevisiae mitochondria, in which no sulfide:quinone oxidoreductase (Sqr) is present. Rdl2 releases sulfane sulfur atoms (S0) from stable S0 carriers (thiosulfate and dialkyl polysulfide) to produce RSS. Rdl2 deletion leads to morphological change, dysfunction, and DNA degradation of mitochondria. Rdl2-generated RSS can protect DNA from HO• attack. The reaction rate between RSS and HO• is ∼1010 M-1s-1, two magnitudes higher than that of HO• reacting with DNA. Surprisingly, hydrogen sulfide (H2S) promotes HO• production through stimulating the Fenton reaction, leading to increased DNA damage. This study highlights the antioxidation function of RSS in vivo and sheds a light on the elusive connection between RSS biogenesis and mitochondrial health.
Collapse
Affiliation(s)
- Qingda Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Zhigang Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Xi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Yuping Xin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China; Department of Chemistry, School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-4630, USA.
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
38
|
Franzoni F, Scarfò G, Guidotti S, Fusi J, Asomov M, Pruneti C. Oxidative Stress and Cognitive Decline: The Neuroprotective Role of Natural Antioxidants. Front Neurosci 2021; 15:729757. [PMID: 34720860 PMCID: PMC8548611 DOI: 10.3389/fnins.2021.729757] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Free- radicals (Oxygen and Nitrogen species) are formed in mitochondria during the oxidative phosphorylation. Their high reactivity, due to not-engaged electrons, leads to an increase of the oxidative stress. This condition affects above all the brain, that usually needs a large oxygen amount and in which there is the major possibility to accumulate "Reacting Species." Antioxidant molecules are fundamental in limiting free-radical damage, in particular in the central nervous system: the oxidative stress, in fact, seems to worsen the course of neurodegenerative diseases. The aim of this review is to sum up natural antioxidant molecules with the greatest neuroprotective properties against free radical genesis, understanding their relationship with the Central Nervous System.
Collapse
Affiliation(s)
- Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgia Scarfò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara Guidotti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Jonathan Fusi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Muzaffar Asomov
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carlo Pruneti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
39
|
Rathor R, Suryakumar G, Singh SN. Diet and redox state in maintaining skeletal muscle health and performance at high altitude. Free Radic Biol Med 2021; 174:305-320. [PMID: 34352371 DOI: 10.1016/j.freeradbiomed.2021.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
High altitude exposure leads to compromised physical performance with considerable weight loss. The major stressor at high altitude is hypobaric hypoxia which leads to disturbance in redox homeostasis. Oxidative stress is a well-known trigger for many high altitude illnesses and regulates several key signaling pathways under stressful conditions. Altered redox homeostasis is considered the prime culprit of high altitude linked skeletal muscle atrophy. Hypobaric hypoxia disturbs redox homeostasis through increased RONS production and compromised antioxidant system. Increased RONS disturbs the cellular homeostasis via multiple ways such as inflammation generation, altered protein anabolic pathways, redox remodeling of RyR1 that contributed to dysregulated calcium homeostasis, enhanced protein degradation pathways via activation calcium-regulated protein, calpain, and apoptosis. Ultimately, all the cellular signaling pathways aggregately result in skeletal muscle atrophy. Dietary supplementation of phytochemicals could become a safe and effective intervention to ameliorate skeletal muscle atrophy and enhance the physical performance of the personnel who are staying at high altitude regions. The present evidence-based review explores few dietary supplementations which regulate several signaling mechanisms and ameliorate hypobaric hypoxia induced muscle atrophy and enhances physical performance. However, a clinical research trial is required to establish proof-of-concept.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India.
| | - Geetha Suryakumar
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Som Nath Singh
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| |
Collapse
|
40
|
Venancio-Brochi JC, Pereira LM, Calil FA, Teixeira O, Baroni L, Abreu-Filho PG, Braga GÚL, Nonato MC, Yatsuda AP. Glutathione reductase: A cytoplasmic antioxidant enzyme and a potential target for phenothiazinium dyes in Neospora caninum. Int J Biol Macromol 2021; 187:964-975. [PMID: 34310993 DOI: 10.1016/j.ijbiomac.2021.07.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/21/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022]
Abstract
Neospora caninum causes heavy losses related to abortions in bovine cattle. This parasite developed a complex defense redox system, composed of enzymes as glutathione reductase (GR). Methylene blue (MB) impairs the activity of recombinant form of Plasmodium GR and inhibits the parasite proliferation in vivo and in vitro. Likewise, MB and its derivatives inhibits Neospora caninum proliferation, however, whether the MB mechanism of action is correlated to GR function remains unclear. Therefore, here, N. caninum GR (NcGR) was characterized and its potential inhibitors were determined. NcGR was found in the tachyzoite cytosol and has a similar structure and sequence compared to its homologs. We verified the in vitro activity of rNcGR (875 nM) following NADPH absorbance at 340 nM (100 mM KH2PO4, pH 7.5, 1 mM EDTA, ionic strength: 600 mM, 25 °C). rNcGR exhibited a Michaelian behavior (Km(GSSG):0.10 ± 0.02 mM; kcat(GSSG):0.076 ± 0.003 s-1; Km(NADPH):0.006 ± 0.001 mM; kcat(NADPH): 0.080 ± 0.003 s-1). The IC50 of MB,1,9-dimethyl methylene blue, new methylene blue, and toluidine blue O on rNcGR activity were 2.1 ± 0.2 μM, 11 ± 2 μM, 0.7 ± 0.1 μM, and 0.9 ± 0.2 μM, respectively. Our results suggest the importance of NcGR in N. caninum biology and antioxidant mechanisms. Moreover, data presented here strongly suggest that NcGR is an important target of phenothiazinium dyes in N. caninum proliferation inhibition.
Collapse
Affiliation(s)
- Jade Cabestre Venancio-Brochi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil
| | - Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil
| | - Felipe Antunes Calil
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil; Ludwig Institute for Cancer Research, University of California, School of Medicine, 92093-0669 La Jolla, CA, USA
| | - Olívia Teixeira
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil
| | - Péricles Gama Abreu-Filho
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil
| | - Gilberto Úbida Leite Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil.
| |
Collapse
|
41
|
Holton KF. Micronutrients May Be a Unique Weapon Against the Neurotoxic Triad of Excitotoxicity, Oxidative Stress and Neuroinflammation: A Perspective. Front Neurosci 2021; 15:726457. [PMID: 34630015 PMCID: PMC8492967 DOI: 10.3389/fnins.2021.726457] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Excitotoxicity has been implicated in many neurological disorders and is a leading cause of oxidative stress and neuroinflammation in the nervous system. Most of the research to date has focused on each of these conditions individually; however, excitotoxicity, oxidative stress, and neuroinflammation have the ability to influence one another in a self-sustaining manner, thus functioning as a "neurotoxic triad." This perspective article re-introduces the concept of the neurotoxic triad and reviews how specific dietary micronutrients have been shown to protect against not only oxidative stress, but also excitotoxicity and neuroinflammation. Future dietary interventions for neurological disorders could focus on the effects on all three aspects of the neurotoxic triad.
Collapse
Affiliation(s)
- Kathleen F Holton
- Nutritional Neuroscience Lab, Department of Health Studies, Center for Neuroscience and Behavior, American University, Washington, DC, United States
| |
Collapse
|
42
|
Snyder NA, Silva GM. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J Biol Chem 2021; 297:101077. [PMID: 34391779 PMCID: PMC8424594 DOI: 10.1016/j.jbc.2021.101077] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitin signaling is a conserved, widespread, and dynamic process in which protein substrates are rapidly modified by ubiquitin to impact protein activity, localization, or stability. To regulate this process, deubiquitinating enzymes (DUBs) counter the signal induced by ubiquitin conjugases and ligases by removing ubiquitin from these substrates. Many DUBs selectively regulate physiological pathways employing conserved mechanisms of ubiquitin bond cleavage. DUB activity is highly regulated in dynamic environments through protein-protein interaction, posttranslational modification, and relocalization. The largest family of DUBs, cysteine proteases, are also sensitive to regulation by oxidative stress, as reactive oxygen species (ROS) directly modify the catalytic cysteine required for their enzymatic activity. Current research has implicated DUB activity in human diseases, including various cancers and neurodegenerative disorders. Due to their selectivity and functional roles, DUBs have become important targets for therapeutic development to treat these conditions. This review will discuss the main classes of DUBs and their regulatory mechanisms with a particular focus on DUB redox regulation and its physiological impact during oxidative stress.
Collapse
Affiliation(s)
- Nathan A Snyder
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Gustavo M Silva
- Department of Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
43
|
Takahashi A, Takahashi R, Hiromori K, Shibasaki‐Kitakawa N. Quantitative Evaluation of Oxidative Stability of Biomembrane Lipids in the Presence of Vitamin E. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Atsushi Takahashi
- Department of Chemical Engineering Tohoku University Sendai 980‐8579 Japan
| | - Ryota Takahashi
- Department of Chemical Engineering Tohoku University Sendai 980‐8579 Japan
| | - Kousuke Hiromori
- Department of Chemical Engineering Tohoku University Sendai 980‐8579 Japan
| | | |
Collapse
|
44
|
Jameel S, Hameed A, Shah TM. Biochemical Profiling for Antioxidant and Therapeutic Potential of Pakistani Chickpea ( Cicer arietinum L.) Genetic Resource. FRONTIERS IN PLANT SCIENCE 2021; 12:663623. [PMID: 33927742 PMCID: PMC8076736 DOI: 10.3389/fpls.2021.663623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 05/05/2023]
Abstract
In Pakistan, chickpeas (Cicer arietinum L.) are the largest grown legume crops, especially in desert areas. Along with an excellent source of nutrition, chickpea seeds have discernible medicinal and antioxidant characteristics. The diverse set of 90 chickpea genotypes (66 desi and 24 kabuli) were collected from different research zones in Pakistan, and seed flour was used for biochemical profiling. Genotypes were significantly different (Tukey HSD test, P < 0.05) for the traits under investigation. In non-enzymatic antioxidants, highest seed total phenolic contents (TPC) (34725 ± 275 μM/g s. wt.) was found in CM-98 (desi), ascorbic acid (AsA) (69.23 ± 2.25 μg/g s. wt.) in WH-3 (desi), and total flavonoid content (TFC) (394.98 ± 13.06 μg/mL sample) was detected in WH-11 (desi). In the class of enzymatic antioxidants, the highest seed ascorbate peroxidase (APX) (1680 ± 40 Units/g s. wt.) was detected in Tamman-2013 (kabuli), peroxidases (POD) (2564.10 ± 233.10 Units/g s. wt.) activity in CM1235/08 (desi), and superoxide dismutase (SOD) (279.76 ± 50 Units/g s. wt.) was detected in CH24/11 (desi). Highest seed catalase activity (CAT) (893 ± 50 Units/g s. wt.) and proline content (272.50 ± 20.82 μg/g s. wt.) was detected in an ICC-4951 (desi). In hydrolytic enzymes, the highest activity of esterase (37.05 μM/min/g s. wt) was found in, CH56/09(Kabuli), protease (11080 ± 10 Units/g s. wt.) in Karak-2 (desi), and α-amylase (213.02 ± 3.20 mg/g s. wt.) was observed in CH74/08 (kabuli). In other biochemical parameters, the highest seed total oxidant status (TOS) (356 ± 17.50 μM/g s. wt.) was detected in CM3457/91 (desi); malondialdehyde (MDA) content (295.74 ± 3.097 uM/g s. wt.) was observed in CM-2008 (kabuli), and total antioxidant capacity (TAC) (8.36 ± 0.082 μM/g s. wt.) was found in CM-72 (desi). In case of pigment analysis, Sheenghar-2000 (desi) depicted highest lycopene (12.579 ± 0.313 μg/g s. wt.) and total carotenoids (58.430.23 ± 0.569 μg/g s. wt.) contents. For seed therapeutic potential, the highest seed α-amylase inhibition (82.33 ± 8.06%) was observed in CM-88 (desi), while WH-1, WH-6, and ICCV-96030 (desi) depicted the highest value for seed anti-inflammatory potential (78.88 ± 0.55%). Genotypes with the highest antioxidant and therapeutic potential can be utilized as a natural antioxidant source and in breeding programs aimed at improving these traits in new breeding lines.
Collapse
Affiliation(s)
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | | |
Collapse
|
45
|
Stovall AK, Knowles CM, Kalem MC, Panepinto JC. A Conserved Gcn2-Gcn4 Axis Links Methionine Utilization and the Oxidative Stress Response in Cryptococcus neoformans. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:640678. [PMID: 34622246 PMCID: PMC8494424 DOI: 10.3389/ffunb.2021.640678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022]
Abstract
The fungal pathogen Cryptococcus neoformans relies on post-transcriptional mechanisms of gene regulation to adapt to stressors it encounters in the human host, such as oxidative stress and nutrient limitation. The kinase Gcn2 regulates translation in response to stress by phosphorylating the initiation factor eIF2, and it is a crucial factor in withstanding oxidative stress in C. neoformans, and amino acid limitation in many fungal species. However, little is known about the role of Gcn2 in nitrogen limitation in C. neoformans. In this study, we demonstrate that Gcn2 is required for C. neoformans to utilize methionine as a source of nitrogen, and that the presence of methionine as a sole nitrogen source induces eIF2 phosphorylation. The stress imposed by methionine leads to an oxidative stress response at both the levels of transcription and translation, as seen through polysome profiling as well as increased abundance of select oxidative stress response transcripts. The transcription factor Gcn4 is also required for methionine utilization and oxidative stress resistance, and RT-qPCR data suggests that it regulates expression of certain transcripts in response to oxidative stress. The results of this study suggest a connection between nitrogen metabolism and oxidative stress in C. neoformans that is mediated by Gcn4, possibly indicating the presence of a compound stress response in this clinically important fungal pathogen.
Collapse
Affiliation(s)
| | | | | | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY, United States
| |
Collapse
|
46
|
Reactive Oxygen Species and Their Involvement in Red Blood Cell Damage in Chronic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6639199. [PMID: 33708334 PMCID: PMC7932781 DOI: 10.1155/2021/6639199] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) released in cells are signaling molecules but can also modify signaling proteins. Red blood cells perform a major role in maintaining the balance of the redox in the blood. The main cytosolic protein of RBC is hemoglobin (Hb), which accounts for 95-97%. Most other proteins are involved in protecting the blood cell from oxidative stress. Hemoglobin is a major factor in initiating oxidative stress within the erythrocyte. RBCs can also be damaged by exogenous oxidants. Hb autoxidation leads to the generation of a superoxide radical, of which the catalyzed or spontaneous dismutation produces hydrogen peroxide. Both oxidants induce hemichrome formation, heme degradation, and release of free iron which is a catalyst for free radical reactions. To maintain the redox balance, appropriate antioxidants are present in the cytosol, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and peroxiredoxin 2 (PRDX2), as well as low molecular weight antioxidants: glutathione, ascorbic acid, lipoic acid, α-tocopherol, β-carotene, and others. Redox imbalance leads to oxidative stress and may be associated with overproduction of ROS and/or insufficient capacity of the antioxidant system. Oxidative stress performs a key role in CKD as evidenced by the high level of markers associated with oxidative damage to proteins, lipids, and DNA in vivo. In addition to the overproduction of ROS, a reduced antioxidant capacity is observed, associated with a decrease in the activity of SOD, GPx, PRDX2, and low molecular weight antioxidants. In addition, hemodialysis is accompanied by oxidative stress in which low-biocompatibility dialysis membranes activate phagocytic cells, especially neutrophils and monocytes, leading to a respiratory burst. This review shows the production of ROS under normal conditions and CKD and its impact on disease progression. Oxidative damage to red blood cells (RBCs) in CKD and their contribution to cardiovascular disease are also discussed.
Collapse
|
47
|
Tjahjono E, McAnena AP, Kirienko NV. The evolutionarily conserved ESRE stress response network is activated by ROS and mitochondrial damage. BMC Biol 2020; 18:74. [PMID: 32600387 PMCID: PMC7322875 DOI: 10.1186/s12915-020-00812-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Mitochondrial dysfunction causes or contributes to a wide variety of pathologies, including neurodegenerative diseases, cancer, metabolic diseases, and aging. Cells actively surveil a number of mitochondrial readouts to ensure that cellular homeostasis is maintained. Results In this article, we characterize the role of the ethanol and stress response element (ESRE) pathway in mitochondrial surveillance and show that it is robustly activated when the concentration of reactive oxygen species (ROS) in the cell increases. While experiments were mostly performed in Caenorhabditis elegans, we observed similar gene activation profile in human cell lines. The linear relationship between ROS and ESRE activation differentiates ESRE from known mitochondrial surveillance pathways, such as the mitochondrial unfolded protein response (UPRmt), which monitor mitochondrial protein import. The ability of the ESRE network to be activated by increased ROS allows the cell to respond to oxidative and reductive stresses. The ESRE network works in tandem with other mitochondrial surveillance mechanisms as well, in a fashion that suggests a partially redundant hierarchy. For example, mutation of the UPRmt pathway results in earlier and more robust activation of the ESRE pathway. Interestingly, full expression of ATFS-1, a key transcription factor for the UPRmt, requires the presence of an ESRE motif in its promoter region. Conclusion The ESRE pathway responds to mitochondrial damage by monitoring ROS levels. This response is conserved in humans. The ESRE pathway is activated earlier when other mitochondrial surveillance pathways are unavailable during mitochondrial crises, potentially to mitigate stress and restore health. However, the exact mechanisms of pathway activation and crosstalk remain to be elucidated. Ultimately, a better understanding of this network, and its role in the constellation of mitochondrial and cellular stress networks, will improve healthspan.
Collapse
Affiliation(s)
- Elissa Tjahjono
- Department of BioSciences, Rice University, 6100 Main St, MS140, Houston, TX, 77005, USA
| | - Aidan P McAnena
- Department of BioSciences, Rice University, 6100 Main St, MS140, Houston, TX, 77005, USA
| | - Natalia V Kirienko
- Department of BioSciences, Rice University, 6100 Main St, MS140, Houston, TX, 77005, USA.
| |
Collapse
|
48
|
CHANGES IN ANTIOXIDANT CAPACITY OF KOALAS ( PHASCOLARCTOS CINEREUS) BASED ON HEALTH STATUS AND MEASUREMENT OF THE ANTIOXIDANT ASCORBATE IN EUCALYPT LEAVES. J Zoo Wildl Med 2020; 50:861-867. [PMID: 31926516 DOI: 10.1638/2018-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 11/21/2022] Open
Abstract
Antioxidants have a crucial role in protecting the body from oxidative stress, which would otherwise result in cellular damage and possibly predispose animals to disease. The antioxidant capacity of koalas (Phascolarctos cinereus) and its association with health or disease status is currently unknown. Ascorbate, a dietary antioxidant, has previously been identified in a few eucalypt species eaten by koalas. This study aimed to determine 1) differences between the antioxidant capacity of healthy and diseased koalas, and 2) concentration of the antioxidant ascorbate in Eucalyptus spp. leaves eaten by koalas. To determine differences in antioxidant capacity of koalas, plasma samples from clinically healthy koalas in Kangaroo Island, South Australia (SA) (n = 23), euthanized koalas with oxalate nephrosis from Mount Lofty Ranges, SA (n = 11), and euthanized koalas with chlamydiosis from Moggill, Queensland (n = 11) were analyzed for the three antioxidants α-tocopherol, ascorbate, and retinol and for two measures of antioxidant capacity, ferric reducing ability of plasma (FRAP), and trolox equivalent antioxidant capacity (TEAC). The thiobarbituric acid reactive substance (TBARS) measured formation of oxidants, and an oxidative stress index (OSI) was calculated by TBARS/(TEAC + FRAP). Ascorbate concentration was measured in dietary eucalypt leaves from Mount Lofty Ranges and Moggill. Results showed that in diseased Mount Lofty Ranges and Moggill koalas, plasma α-tocopherol concentrations were significantly lower, and ascorbate, TBARS, and OSI was significantly higher compared with clinically healthy koalas from Kangaroo Island. Ascorbate was high in eucalypt leaves, particularly young leaves from the Mount Lofty Ranges. This study showed that disease was associated with some measures of poor antioxidant capacity in koalas and also found that ascorbate is high in the dietary eucalypts of koalas.
Collapse
|
49
|
Baghcheghi Y, Mansouri S, Beheshti F, Shafei MN, Salmani H, Reisi P, Anaeigoudari A, Bideskan AE, Hosseini M. Neuroprotective and long term potentiation improving effects of vitamin E in juvenile hypothyroid rats. INT J VITAM NUTR RES 2020; 90:156-168. [PMID: 31017555 DOI: 10.1024/0300-9831/a000533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Protective effects of vitamin E (Vit E) on long term potentiation (LTP) impairment, neuronal apoptosis and increase of nitric oxide (NO) metabolites in the hippocampus of juvenile rats were examined. The rats were grouped (n=13) as: (1) control; (2) hypothyroid (Hypo) and (3) Hypo-Vit E. Propylthiouracil (PTU) was given in drinking water (0.05%) during 6 weeks. Vit E (20 mg/ kg) was daily injected (IP). To evaluate synaptic plasticity, LTP from the CA1 area of the hippocampus followed by high frequency stimulation to the ipsilateral Schafer collateral pathway was carried out. The cortical and hippocampal tissues were then removed to measure NO metabolites. The brains of 5 animals in each group were removed for apoptosis study. The hypothyroidism status decreased the slope, 10-90% slope and amplitude of field excitatory post synaptic potential (fEPSP) compared to the control group (P<0.01-P<0.001). Injection of Vit E increased the slope, 10-90% slope and amplitude of the fEPSP in the Hypo-Vit E group in comparison to the Hypo group (P<0.05-P<0.01). TUNEL positive neurons and NO metabolites were higher in the hippocampus of the Hypo rats, as compared to those in the hippocampus of the control ones (P<0.001). Treatment of the Hypo rats by Vit E decreased apoptotic neurons (P<0.01-P<0.001) and NO metabolites (P<0.001) in the hippocampus compared to the Hypo rats. The results of the present study showed that Vit E prevented the LTP impairment and neuronal apoptosis in the hippocampus of juvenile hypothyroid rats.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaieh Mansouri
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossien Salmani
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | | | - Mahmoud Hosseini
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
50
|
XIA HL, HUA X, LONG YT. Coupled Time-of-Flight Secondary Ion Mass Spectrometry-Electrochemical Analysis of Electrode-Electrolyte Interface at High Vacuum of 10−5 Pa. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|