1
|
Sussman CR, Holmes HL, Stiller A, Thao K, Gregory AV, Anaam D, Meloche R, Mkhaimer Y, Wells HH, Vasconcelos LD, Urban MW, Macura SI, Harris PC, Kline TL, Romero MF. Robotic Ultrasound and Novel Collagen Analyses for Polycystic Kidney Disease Research Using Mice. KIDNEY360 2024; 5:1543-1552. [PMID: 39145639 PMCID: PMC11556928 DOI: 10.34067/kid.0000000000000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Key Points Robotic ultrasound performed favorably compared with magnetic resonance imaging for evaluating total kidney volume. Collagen evaluation by two novel methods of picrosirius red imaging were more informative than the standard method by brightfield imaging. Findings can improve research by increasing speed and access to total kidney volume determination and sensitivity of collagen assessment. Background 3D imaging and histology are critical tools for assessing polycystic kidney disease (PKD) in patients and animal models. Magnetic resonance (MR) imaging provides micron resolution but is time consuming and expensive, and access to equipment and expertise is limited. Robotic ultrasound (US) imaging has lower spatial resolution but is faster, more cost-effective, and accessible. Similarly, picrosirius red (PSR) staining and brightfield microscopy are commonly used to assess fibrosis; however, alternative methods have been shown in non-kidney tissues to provide greater sensitivity and more detailed structural characterization. Methods In this study, we evaluated the utility of robotic US and alternative methods of quantifying PSR staining for PKD research. We compared longitudinal total kidney volume measurements using US and MR imaging. We additionally compared PSR imaging and quantification using standard brightfield microscopy with that by circularly polarized light with hue analysis and fluorescence imaging analyzed using curvelet transform fiber extraction software for automatic detection of individual collagen fibers. Results Increased total kidney volume was detected by US in Pkd1 RC/RC versus wild-type (WT) at time points spanning from early to established disease. US interobserver variability was greater but allowed scanning in 2–5 minutes/mouse, whereas MR imaging required 20–30 minutes/mouse. While no change in fibrotic index was detected in this cohort of relatively mild disease using brightfield microscopy, polarized light showed fibers skewed thinner in Pkd1 RC/RC versus WT. Fluorescence imaging showed a higher density of collagen fibers in Pkd1 RC/RC versus WT, and fibers were thinner and curvier with no change in length. In addition, fiber density was higher in both glomeruli and tubules in Pkd1 RC/RC , and glomeruli had a higher fiber density than tubules in Pkd1 RC/RC and trended higher in WT. Conclusions These studies show robotic US is a rigorous imaging tool for preclinical PKD research. In addition, they demonstrate the increased sensitivity of polarized and fluorescence analysis of PSR-stained collagen.
Collapse
Affiliation(s)
- Caroline R. Sussman
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Heather L. Holmes
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Alison Stiller
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Ka Thao
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Adriana V. Gregory
- Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Deema Anaam
- Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Ryan Meloche
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Yaman Mkhaimer
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Harrison H. Wells
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Luiz D. Vasconcelos
- Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Matthew W. Urban
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Slobodan I. Macura
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Peter C. Harris
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Timothy L. Kline
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Michael F. Romero
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
2
|
Guo T, Song Y, Tong J, Jiao S, Shen C, Wang H, Cui J, Dai D, Ma J, Chen M. Collagen degradation assessment with an in vitro rotator cuff tendinopathy model using multiparametric ultrashort-TE magnetization transfer (UTE-MT) imaging. Magn Reson Med 2024; 92:1658-1669. [PMID: 38725197 DOI: 10.1002/mrm.30144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE This study aims to assess ultrashort-TE magnetization transfer (UTE-MT) imaging of collagen degradation using an in vitro model of rotator cuff tendinopathy. METHODS Thirty-six supraspinatus tendon specimens were divided into three groups and treated with 600 U collagenase (Group 1), 150 U collagenase (Group 2), and phosphate buffer saline (Group 3). UTE-MT imaging was performed to assess changes in macromolecular fraction (MMF), macromolecule transverse relaxation time (T2m), water longitudinal relaxation rate constant (R1m), the magnetization exchange rate from the macromolecular to water pool (Rm0 w) and from water to the macromolecular pool (Rm0 m), and magnetization transfer ratio (MTR) at baseline and following digestion and their differences between groups. Biochemical and histological studies were conducted to determine the extent of collagen degradation. Correlation analyses were performed with MMF, T2m, R1m, Rm0 w, Rm0 m, and MTR, respectively. Univariate and multivariate linear regression analyses were performed to evaluate combinations of UTE-MT parameters to predict collagen degradation. RESULTS MMF, T2m, R1m, Rm0 m, and MTR decreased after digestion. MMF (r = -0.842, p < 0.001), MTR (r = -0.78, p < 0.001), and Rm0 m (r = -0.662, p < 0.001) were strongly negatively correlated with collagen degradation. The linear regression model of differences in MMF and Rm0 m before and after digestion explained 68.9% of collagen degradation variation in the tendon. The model of postdigestion in MMF and T2m and the model of MTR explained 54.2% and 52.3% of collagen degradation variation, respectively. CONCLUSION This study highlighted the potential of UTE-MT parameters for evaluation of supraspinatus tendinopathy.
Collapse
Affiliation(s)
- Tan Guo
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Song
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinlian Tong
- Biotherapy Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Sheng Jiao
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Cheng Shen
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Wang
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Dapeng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jie Ma
- Biotherapy Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Kruithof BPT, Mousavi Gourabi B, van de Merbel AF, DeRuiter MC, Goumans MJ. A New Ex Vivo Model to Study Cardiac Fibrosis in Whole Mouse Hearts. JACC Basic Transl Sci 2024; 9:1005-1022. [PMID: 39297130 PMCID: PMC11405901 DOI: 10.1016/j.jacbts.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 09/21/2024]
Abstract
Fibrosis is a characteristic of many cardiac diseases for which no effective treatment exists. We have developed an ex vivo flow system, which allows induction of cardiac fibrosis in intact adult mouse hearts. Lineage-tracing studies indicated that the collagen-producing myofibroblasts originated from the resident fibroblasts. The extent of fibrosis was flow rate dependent, and pharmacological inhibition of the transforming growth factor beta signaling pathway prevented fibrosis. Therefore, in this powerful system, the cellular and molecular mechanisms underlying cardiac fibrosis can be studied. In addition, new targets can be tested on organ level for their ability to inhibit fibrosis.
Collapse
Affiliation(s)
- Boudewijn P T Kruithof
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Babak Mousavi Gourabi
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
4
|
Spörlein A, Hirche C, Berner JE, Kneser U, Will PA. Characterization of Immune Cell Infiltration and Collagen Type III Disorganization in Human Secondary Lymphedema: A Case-control Study. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5906. [PMID: 38911579 PMCID: PMC11191027 DOI: 10.1097/gox.0000000000005906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/17/2024] [Indexed: 06/25/2024]
Abstract
Background Secondary lymphedema (SL) affects 120 million people globally, posing a lifelong burden for up to 37% of cancer survivors. Chronic inflammation and progressive fibrosis are key drivers of SL, yet detailed characterization of immune cell subpopulations across lymphedema stages is lacking. This study aimed to investigate the immunologic profile of lymphedematous skin and its association with extracellular matrix changes, which could serve as clinical biomarkers or therapeutic targets. Methods This case-control study analyzed the skin from 36 patients with and without SL, using immunofluorescence to quantify T cells, B cells, macrophages, and their subpopulations. Collagen quantity and composition were examined using picrosirius red staining, and mast cell infiltration was assessed with toluidine blue staining. Early and late SL stages were compared to identify histomorphological and immunologic correlates of stage progression. Results We found a predominance of CD4+ T cells and mast cells in SL skin (1.4/mm² versus 1.0/mm², P < 0.01; 1.2/mm² versus 0.2/mm², P < 0.0001) and a higher ratio of collagen III to collagen I fibers (51.6% versus 75.0%, P < 0.001). M2 macrophages were more abundant in late-stage than in early-stage lymphedema (1.7/mm² versus 1.0/mm², P = 0.02). Conclusions This study demonstrated a shift toward CD4+ T cell and mast cell infiltration in SL skin, correlating with extracellular matrix disorganization and an altered collagen III/I ratio. These findings enhance our understanding of the cellular and morphological changes in SL, potentially guiding future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Andreas Spörlein
- From the Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG Unfallklinik Ludwigshafen, University of Heidelberg, Ludwigshafen am Rhein, Germany
- Department of Otorhinolaryngology—Head and Neck Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Hirche
- From the Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG Unfallklinik Ludwigshafen, University of Heidelberg, Ludwigshafen am Rhein, Germany
- Department of Plastic, Hand, and Reconstructive Microsurgery, BG Unfallklinik Frankfurt am Main, Affiliated Hospital of Goethe-University, Frankfurt am Main, Germany
| | - Juan Enrique Berner
- Department of Plastic Surgery, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
- Kellogg College, University of Oxford, Oxford, United Kingdom
| | - Ulrich Kneser
- From the Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG Unfallklinik Ludwigshafen, University of Heidelberg, Ludwigshafen am Rhein, Germany
| | - Patrick A. Will
- From the Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG Unfallklinik Ludwigshafen, University of Heidelberg, Ludwigshafen am Rhein, Germany
- Department of Plastic and Hand Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TU University Dresden, Dresden, Germany
| |
Collapse
|
5
|
Huang S, Rao Y, Zhou M, Blocki AM, Chen X, Wen C, Ker DFE, Tuan RS, Wang DM. Engineering an extracellular matrix-functionalized, load-bearing tendon substitute for effective repair of large-to-massive tendon defects. Bioact Mater 2024; 36:221-237. [PMID: 38481565 PMCID: PMC10933390 DOI: 10.1016/j.bioactmat.2024.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 11/02/2024] Open
Abstract
A significant clinical challenge in large-to-massive rotator cuff tendon injuries is the need for sustaining high mechanical demands despite limited tissue regeneration, which often results in clinical repair failure with high retear rates and long-term functional deficiencies. To address this, an innovative tendon substitute named "BioTenoForce" is engineered, which uses (i) tendon extracellular matrix (tECM)'s rich biocomplexity for tendon-specific regeneration and (ii) a mechanically robust, slow degradation polyurethane elastomer to mimic native tendon's physical attributes for sustaining long-term shoulder movement. Comprehensive assessments revealed outstanding performance of BioTenoForce, characterized by robust core-shell interfacial bonding, human rotator cuff tendon-like mechanical properties, excellent suture retention, biocompatibility, and tendon differentiation of human adipose-derived stem cells. Importantly, BioTenoForce, when used as an interpositional tendon substitute, demonstrated successful integration with regenerative tissue, exhibiting remarkable efficacy in repairing large-to-massive tendon injuries in two animal models. Noteworthy outcomes include durable repair and sustained functionality with no observed breakage/rupture, accelerated recovery of rat gait performance, and >1 cm rabbit tendon regeneration with native tendon-like biomechanical attributes. The regenerated tissues showed tendon-like, wavy, aligned matrix structure, which starkly contrasts with the typical disorganized scar tissue observed after tendon injury, and was strongly correlated with tissue stiffness. Our simple yet versatile approach offers a dual-pronged, broadly applicable strategy that overcomes the limitations of poor regeneration and stringent biomechanical requirements, particularly essential for substantial defects in tendon and other load-bearing tissues.
Collapse
Affiliation(s)
- Shuting Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meng Zhou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anna M. Blocki
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Xiao Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Chunyi Wen
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Rocky S. Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| |
Collapse
|
6
|
Kugo H, Moriyama T, Zaima N. Nicotine induces vasa vasorum stenosis in the aortic wall. Biotech Histochem 2024; 99:197-203. [PMID: 38780082 DOI: 10.1080/10520295.2024.2352724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disease that involves aortic wall dilation. Cigarette smoking is an established risk factor and rupture, and nicotine may be a major contributor to the onset of AAA. In humans the condition is associated with stenosis of the vasa vasorum (VV), which may be caused by nicotine. In this study, we evaluated the effects of nicotine on VV pathology. After 4 weeks of nicotine administration to rats using an osmotic pump, the VV patency rate in the nicotine administration group was significantly lower than that in the control group. The levels of Ki-67, a cell proliferation marker, were significantly increased in the regions containing VV in the nicotine group, as were hypoxia inducible factor-α levels. Collagen levels around VV were significantly lower in the nicotine group than in the controls. Our data suggest that nicotine can cause VV stenosis by inducing abnormal proliferation of smooth muscle cells in the VV. The increased risk of AAA development due to cigarette smoking may be partially explained by nicotine-induced VV denaturation and collagen fiber degradation.
Collapse
Affiliation(s)
- Hirona Kugo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara City, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara City, Japan
| |
Collapse
|
7
|
Kammerer J, Cirnu A, Williams T, Hasselmeier M, Nörpel M, Chen R, Gerull B. Macro-based collagen quantification and segmentation in picrosirius red-stained heart sections using light microscopy. Biol Methods Protoc 2024; 9:bpae027. [PMID: 38800072 PMCID: PMC11116823 DOI: 10.1093/biomethods/bpae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Picrosirius red staining constitutes an important and broadly used tool to visualize collagen and fibrosis in various tissues. Although multiple qualitative and quantitative analysis methods to evaluate fibrosis are available, many require specialized devices and software or lack objectivity and scalability. Here, we aimed to develop a versatile and powerful "QuantSeg" macro in the FIJI image processing software capable of automated, robust, and quick collagen quantification in cardiac tissue from light micrographs. To examine different patterns of fibrosis, an optional segmentation algorithm was implemented. To ensure the method's validity, we quantified the collagen content in a set of wild-type versus plakoglobin-knockout murine hearts exhibiting extensive fibrosis using both the macro and an established, fluorescence microscopy-based method, and compared results. To demonstrate the capabilities of the segmentation feature, rat hearts were examined post-myocardial infarction. We found the QuantSeg macro to robustly detect the differences in fibrosis between knockout and control hearts. In sections with low collagen content, the macro yielded more consistent results than using the fluorescence microscopy-based technique. With its wide range of output parameters, ease of use, cost effectiveness, and objectivity, the QuantSeg macro has the potential to become an established method for analysis of PSR-stained tissue. The novel segmentation feature allows for automated evaluation of different patterns of cardiac fibrosis for the first time.
Collapse
Affiliation(s)
- Julian Kammerer
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, 97078, Germany
| | - Alexandra Cirnu
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, 97078, Germany
| | - Tatjana Williams
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, 97078, Germany
| | - Melanie Hasselmeier
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, 97078, Germany
| | - Mike Nörpel
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, 97078, Germany
| | - Ruping Chen
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, 97078, Germany
| | - Brenda Gerull
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, 97078, Germany
- Department of Medicine I, University Hospital Würzburg,Würzburg, 97078, Germany
| |
Collapse
|
8
|
Sharma VJ, Singh A, Grant JL, Raman J. Point-of-care diagnosis of tissue fibrosis: a review of advances in vibrational spectroscopy with machine learning. Pathology 2024; 56:313-321. [PMID: 38341306 DOI: 10.1016/j.pathol.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/24/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024]
Abstract
Histopathology is the gold standard for diagnosing fibrosis, but its routine use is constrained by the need for additional stains, time, personnel and resources. Vibrational spectroscopy is a novel technique that offers an alternative atraumatic approach, with short scan times, while providing metabolic and morphological data. This review evaluates vibrational spectroscopy for the assessment of fibrosis, with a focus on point-of-care capabilities. OVID Medline, Embase and Cochrane databases were systematically searched using PRISMA guidelines for search terms including vibrational spectroscopy, human tissue and fibrosis. Studies were stratified based on imaging modality and tissue type. Outcomes recorded included tissue type, machine learning technique, metrics for accuracy and author conclusions. Systematic review yielded 420 articles, of which 14 were relevant. Ten of these articles considered mid-infrared spectroscopy, three dealt with Raman spectroscopy and one with near-infrared spectroscopy. The metrics for detecting fibrosis were Pearson correlation coefficients ranging from 0.65-0.98; sensitivity from 76-100%; specificity from 90-99%; area under receiver operator curves from 0.83-0.98; and accuracy of 86-99%. Vibrational spectroscopy identified fibrosis in myeloproliferative neoplasms in bone, cirrhotic and hepatocellular carcinoma in liver, end-stage heart failure in cardiac tissue and following laser ablation for acne in skin. It also identified interstitial fibrosis as a predictor of early renal transplant rejection in renal tissue. Vibrational spectroscopic techniques can therefore accurately identify fibrosis in a range of human tissues. Emerging data show that it can be used to quantify, classify and provide data about the nature of fibrosis with a high degree of accuracy with potential scope for point-of-care use.
Collapse
Affiliation(s)
- Varun J Sharma
- Brian F. Buxton Department of Cardiac and Thoracic Aortic Surgery, Austin Health, Heidelberg, Melbourne, Vic, Australia; Department of Surgery (Austin Health), Melbourne Medical School, The University of Melbourne, Vic, Australia; Spectromix Laboratory, Melbourne, Vic, Australia
| | - Aashima Singh
- Department of Surgery (Austin Health), Melbourne Medical School, The University of Melbourne, Vic, Australia; Melbourne Medical School, The University of Melbourne, Vic, Australia
| | | | - Jaishankar Raman
- Brian F. Buxton Department of Cardiac and Thoracic Aortic Surgery, Austin Health, Heidelberg, Melbourne, Vic, Australia; Department of Surgery (Austin Health), Melbourne Medical School, The University of Melbourne, Vic, Australia; Spectromix Laboratory, Melbourne, Vic, Australia; Department of Cardiac Surgery, St Vincent's Hospital, Fitzroy, Melbourne, Vic, Australia.
| |
Collapse
|
9
|
Shi H, Yuan M, Cai J, Lan L, Wang Y, Wang W, Zhou J, Wang B, Yu W, Dong Z, Deng D, Qian Q, Li Y, Zhou X, Liu J. HTRA1-driven detachment of type I collagen from endoplasmic reticulum contributes to myocardial fibrosis in dilated cardiomyopathy. J Transl Med 2024; 22:297. [PMID: 38515161 PMCID: PMC10958933 DOI: 10.1186/s12967-024-05098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND The aberrant secretion and excessive deposition of type I collagen (Col1) are important factors in the pathogenesis of myocardial fibrosis in dilated cardiomyopathy (DCM). However, the precise molecular mechanisms underlying the synthesis and secretion of Col1 remain unclear. METHODS AND RESULTS RNA-sequencing analysis revealed an increased HtrA serine peptidase 1 (HTRA1) expression in patients with DCM, which is strongly correlated with myocardial fibrosis. Consistent findings were observed in both human and mouse tissues by immunoblotting, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, and immunofluorescence analyses. Pearson's analysis showed a markedly positive correlation between HTRA1 level and myocardial fibrosis indicators, including extracellular volume fraction (ECV), native T1, and late gadolinium enhancement (LGE), in patients with DCM. In vitro experiments showed that the suppression of HTRA1 inhibited the conversion of cardiac fibroblasts into myofibroblasts and decreased Col1 secretion. Further investigations identified the role of HTRA1 in promoting the formation of endoplasmic reticulum (ER) exit sites, which facilitated the transportation of Col1 from the ER to the Golgi apparatus, thereby increasing its secretion. Conversely, HTRA1 knockdown impeded the retention of Col1 in the ER, triggering ER stress and subsequent induction of ER autophagy to degrade misfolded Col1 and maintain ER homeostasis. In vivo experiments using adeno-associated virus-serotype 9-shHTRA1-green fluorescent protein (AAV9-shHTRA1-GFP) showed that HTRA1 knockdown effectively suppressed myocardial fibrosis and improved left ventricular function in mice with DCM. CONCLUSIONS The findings of this study provide valuable insights regarding the treatment of DCM-associated myocardial fibrosis and highlight the therapeutic potential of targeting HTRA1-mediated collagen secretion.
Collapse
Affiliation(s)
- Hongjie Shi
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Ming Yuan
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Jie Cai
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Lan Lan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yumou Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Wei Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Bin Wang
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenjun Yu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Zhe Dong
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Dawei Deng
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Qiaofeng Qian
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Xianwu Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China.
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China.
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China.
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China.
| |
Collapse
|
10
|
Casey DT, Lahue KG, Mori V, Herrmann J, Hall JK, Suki B, Janssen-Heininger YMW, Bates JHT. Local fractal dimension of collagen detects increased spatial complexity in fibrosis. Histochem Cell Biol 2024; 161:29-42. [PMID: 37938346 PMCID: PMC10794291 DOI: 10.1007/s00418-023-02248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Increase of collagen content and reorganization characterizes fibrosis but quantifying the latter remains challenging. Spatially complex structures are often analyzed via the fractal dimension; however, established methods for calculating this quantity either provide a single dimension for an entire object or a spatially distributed dimension that only considers binary images. These neglect valuable information related to collagen density in images of fibrotic tissue. We sought to develop a fractal analysis that can be applied to 3-dimensional (3D) images of fibrotic tissue. A fractal dimension map for each image was calculated by determining a single fractal dimension for a small area surrounding each image pixel, using fiber thickness as the third dimension. We found that this local fractal dimension increased with age and with progression of fibrosis regardless of collagen content. Our new method of distributed 3D fractal analysis can thus distinguish between changes in collagen content and organization induced by fibrosis.
Collapse
Affiliation(s)
- Dylan T Casey
- Department of Medicine, University of Vermont Larner College of Medicine, 149 Beaumont Ave, Burlington, VT, 05405, USA.
- Complex Systems Center, University of Vermont, Burlington, VT, USA.
| | - Karolyn G Lahue
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Vitor Mori
- Department of Medicine, University of Vermont Larner College of Medicine, 149 Beaumont Ave, Burlington, VT, 05405, USA
| | - Jacob Herrmann
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Joseph K Hall
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Jason H T Bates
- Department of Medicine, University of Vermont Larner College of Medicine, 149 Beaumont Ave, Burlington, VT, 05405, USA
| |
Collapse
|
11
|
Szász C, Pap D, Szebeni B, Bokrossy P, Őrfi L, Szabó AJ, Vannay Á, Veres-Székely A. Optimization of Sirius Red-Based Microplate Assay to Investigate Collagen Production In Vitro. Int J Mol Sci 2023; 24:17435. [PMID: 38139263 PMCID: PMC10744033 DOI: 10.3390/ijms242417435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Tissue fibrosis is characterized by chronic fibroblast activation and consequently excessive accumulation of collagen-rich extracellular matrix. In vitro microplate-based assays are essential to investigate the underlying mechanism and the effect of antifibrotic drugs. In this study, in the absence of a gold-standard method, we optimized a simple, cost-effective, Sirius Red-based colorimetric measurement to determine the collagen production of fibroblasts grown on 96-well tissue culture plates. Based on our findings, the use of a serum-free medium is recommended to avoid aspecific signals, while ascorbate supplementation increases the collagen production of fibroblasts. The cell-associated collagens can be quantified by Sirius Red staining in acidic conditions followed by alkaline elution. Immature collagens can be precipitated from the culture medium by acidic Sirius Red solution, and after subsequent centrifugation and washing steps, their amount can be also measured. Increased attention has been paid to optimizing the assay procedure, including incubation time, temperature, and solution concentrations. The resulting assay shows high linearity and sensitivity and could serve as a useful tool in fibrosis-related basic research as well as in preclinical drug screening.
Collapse
Affiliation(s)
- Csenge Szász
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Domonkos Pap
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- HUN-REN-SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- HUN-REN-SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Péter Bokrossy
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - László Őrfi
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary
- Vichem Chemie Research Ltd., 1022 Budapest, Hungary
| | - Attila J. Szabó
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- HUN-REN-SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Ádám Vannay
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- HUN-REN-SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Apor Veres-Székely
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- HUN-REN-SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
12
|
Song Z, Yu T, Ge C, Shen X, Li P, Wu J, Tang C, Liu T, Zhang D, Li S. Advantage effect of Dalbergia pinnata on wound healing and scar formation of burns. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116872. [PMID: 37393027 DOI: 10.1016/j.jep.2023.116872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dalbergia pinnata, as a natural and ethnic medicine in China, has been used for burns and wounds with a long history, which has the effect of invigorating blood and astringent sores. However, there were no reports on the advantage activity of burns. AIM OF STUDY The purpose of this study was to screen out the best active extract part of Dalbergia pinnata and investigate its therapeutic effect on wound healing and scar resolution. MATERIALS AND METHODS Rat burn model was established and the healing effects of extracts from Dalbergia pinnata on burn wounds were evaluated by the percentage of wound contraction and period of epithelialization. Histological observation, immunohistochemistry, immunofluorescence and ELISA were used for the examination of inflammatory factors, TGF-β1, neovascularization and collagen fibers through the period of epithelialization. In addition, the effect of the optimal extraction site on fibroblast cells was evaluated by cell proliferation and cell migration assays. The extracts of Dalbergia pinnata were analyzed by UPLC-Q/TOF-MS or GC-MS technique. RESULTS Compared to the model group, there were better wound healing, suppressed inflammatory factors, more neovascularization as well as newly formed collagen in the ethyl acetate extract (EAE) and petroleum ether extract (PEE) treatment groups. The ratio of Collagen I and Collagen III was lower in the EAE and PEE treatment groups, suggesting a potential for reduced scarring. Furthermore, EAE and PEE could repair wounds by up-regulating TGF-β1 in the early stage of wound repair and down-regulating TGF-β1 in the late stage. In vitro studies showed that both EAE and PEE were able to promote NIH/3T3 cells proliferation and migration compared with the control group. CONCLUSIONS In this study, EAE and PEE were found to significantly accelerate wound repair and might have an inhibitory effect on the generation of scars. It was also hypothesized that the mechanism might be related to the regulation of TGF-β1 secretion. This study provided an experimental basis for the development of topical drugs for the treatment of burns with Dalbergia pinnata.
Collapse
Affiliation(s)
- Zhuoyue Song
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510006, Guangdong, PR China; Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| | - Tian Yu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| | - Chengcheng Ge
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, PR China.
| | - Xiuting Shen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| | - Pan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| | - Jinchuan Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510006, Guangdong, PR China.
| | - Chunzhi Tang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| | - Tao Liu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| | - Danyan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| | - Shijie Li
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| |
Collapse
|
13
|
Sharma VJ, Green A, McLean A, Adegoke J, Gordon CL, Starkey G, D'Costa R, James F, Afara I, Lal S, Wood B, Raman J. Towards a point-of-care multimodal spectroscopy instrument for the evaluation of human cardiac tissue. Heart Vessels 2023; 38:1476-1485. [PMID: 37608153 PMCID: PMC10602956 DOI: 10.1007/s00380-023-02292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023]
Abstract
To demonstrate that point-of-care multimodal spectroscopy using Near-Infrared (NIR) and Raman Spectroscopy (RS) can be used to diagnose human heart tissue. We generated 105 spectroscopic scans, which comprised 4 NIR and 3 RS scans per sample to generate a "multimodal spectroscopic scan" (MSS) for each heart, done across 15 patients, 5 each from the dilated cardiomyopathy (DCM), Ischaemic Heart Disease (IHD) and Normal pathologies. Each of the MSS scans was undertaken in 3 s. Data were entered into machine learning (ML) algorithms to assess accuracy of MSS in diagnosing tissue type. The median age was 50 years (IQR 49-52) for IHD, 47 (IQR 45-50) for DCM and 36 (IQR 33-52) for healthy patients (p = 0.35), 60% of which were male. MSS identified key differences in IHD, DCM and normal heart samples in regions typically associated with fibrosis and collagen (NIR wavenumbers: 1433, 1509, 1581, 1689 and 1725 nm; RS wavelengths: 1658, 1450 and 1330 cm-1). In principal component (PC) analyses, these differences explained 99.2% of the variation in 4 PCs for NIR, 81.6% in 10 PCs for Raman, and 99.0% in 26 PCs for multimodal spectroscopic signatures. Using a stack machine learning algorithm with combined NIR and Raman data, our model had a precision of 96.9%, recall of 96.6%, specificity of 98.2% and Area Under Curve (AUC) of 0.989 (Table 1). NIR and Raman modalities alone had similar levels of precision at 94.4% and 89.8% respectively (Table 1). MSS combined with ML showed accuracy of 90% for detecting dilated cardiomyopathy, 100% for ischaemic heart disease and 100% for diagnosing healthy tissue. Multimodal spectroscopic signatures, based on NIR and Raman spectroscopy, could provide cardiac tissue scans in 3-s to aid accurate diagnoses of fibrosis in IHD, DCM and normal hearts. Table 1 Machine learning performance metrics for validation data sets of (a) Near-Infrared (NIR), (b) Raman and (c and d) multimodal data using logistic regression (LR), stochastic gradient descent (SGD) and support vector machines (SVM), with combined "stack" (LR + SGD + SVM) AUC Precision Recall Specificity (a) NIR model Logistic regression 0.980 0.944 0.933 0.967 SGD 0.550 0.281 0.400 0.700 SVM 0.840 0.806 0.800 0.900 Stack 0.933 0.794 0.800 0.900 (b) Raman model Logistic regression 0.985 0.940 0.929 0.960 SGD 0.892 0.869 0.857 0.932 SVM 0.992 0.940 0.929 0.960 Stack 0.954 0.869 0.857 0.932 (c) MSS: multimodal (NIR + Raman) to detect DCM vs. IHD vs. normal patients Logistic regression 0.975 0.841 0.828 0.917 SGD 0.847 0.803 0.793 0.899 SVM 0.971 0.853 0.828 0.917 Stack 0.961 0.853 0.828 0.917 (d) MSS: multimodal (NIR + Raman) to detect pathological vs. normal patients Logistic regression 0.961 0.969 0.966 0.984 SGD 0.944 0.967 0.966 0.923 SVM 1.000 1.000 1.000 1.000 Stack 1.000 0.944 0.931 0.969 Bold values indicate values obtained from the stack algorithm and used for analyses.
Collapse
Affiliation(s)
- Varun J Sharma
- Department of Surgery, Melbourne Medical School, University of Melbourne, Melbourne, Australia.
- Brian F. Buxton Department of Cardiac Surgery, Austin Hospital, Melbourne, Australia.
- Spectromix Laboratory, Melbourne, VIC, Australia.
| | - Alexander Green
- Spectromix Laboratory, Melbourne, VIC, Australia
- Monash Biospectroscopy, Monash University, Melbourne, Australia
| | - Aaron McLean
- Spectromix Laboratory, Melbourne, VIC, Australia
- Monash Biospectroscopy, Monash University, Melbourne, Australia
| | - John Adegoke
- Spectromix Laboratory, Melbourne, VIC, Australia
- Monash Biospectroscopy, Monash University, Melbourne, Australia
| | - Claire L Gordon
- Department of Infectious Diseases, Austin Health, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- North Eastern Public Health Unit, Austin Health, Melbourne, VIC, Australia
| | - Graham Starkey
- Liver Transplant Unit, Austin Hospital, Melbourne, Australia
| | - Rohit D'Costa
- DonateLife Victoria, Carlton, Melbourne, VIC, Australia
- Department of Intensive Care Medicine, Melbourne Health, Melbourne, VIC, Australia
| | - Fiona James
- Department of Infectious Diseases, Austin Health, Melbourne, VIC, Australia
- North Eastern Public Health Unit, Austin Health, Melbourne, VIC, Australia
| | - Isaac Afara
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Sean Lal
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Bayden Wood
- Spectromix Laboratory, Melbourne, VIC, Australia
- Monash Biospectroscopy, Monash University, Melbourne, Australia
| | - Jaishankar Raman
- Department of Surgery, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- Brian F. Buxton Department of Cardiac Surgery, Austin Hospital, Melbourne, Australia
- Spectromix Laboratory, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Sharma VJ, Adegoke JA, Fasulakis M, Green A, Goh SK, Peng X, Liu Y, Jackett L, Vago A, Poon EKW, Starkey G, Moshfegh S, Muthya A, D'Costa R, James F, Gordon CL, Jones R, Afara IO, Wood BR, Raman J. Point-of-care detection of fibrosis in liver transplant surgery using near-infrared spectroscopy and machine learning. Health Sci Rep 2023; 6:e1652. [PMID: 37920655 PMCID: PMC10618569 DOI: 10.1002/hsr2.1652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023] Open
Abstract
Introduction Visual assessment and imaging of the donor liver are inaccurate in predicting fibrosis and remain surrogates for histopathology. We demonstrate that 3-s scans using a handheld near-infrared-spectroscopy (NIRS) instrument can identify and quantify fibrosis in fresh human liver samples. Methods We undertook NIRS scans on 107 samples from 27 patients, 88 from 23 patients with liver disease, and 19 from four organ donors. Results Liver disease patients had a median immature fibrosis of 40% (interquartile range [IQR] 20-60) and mature fibrosis of 30% (10%-50%) on histopathology. The organ donor livers had a median fibrosis (both mature and immature) of 10% (IQR 5%-15%). Using machine learning, this study detected presence of cirrhosis and METAVIR grade of fibrosis with a classification accuracy of 96.3% and 97.2%, precision of 96.3% and 97.0%, recall of 96.3% and 97.2%, specificity of 95.4% and 98.0% and area under receiver operator curve of 0.977 and 0.999, respectively. Using partial-least square regression machine learning, this study predicted the percentage of both immature (R 2 = 0.842) and mature (R 2 = 0.837) with a low margin of error (root mean square of error of 9.76% and 7.96%, respectively). Conclusion This study demonstrates that a point-of-care NIRS instrument can accurately detect, quantify and classify liver fibrosis using machine learning.
Collapse
Affiliation(s)
- Varun J. Sharma
- Department of Surgery, Melbourne Medical SchoolUniversity of MelbourneMelbourneVictoriaAustralia
- Brian F. Buxton Department of Cardiac and Thoracic Aortic SurgeryAustin HospitalMelbourneVictoriaAustralia
| | - John A. Adegoke
- Centre for BiospectroscopyMonash UniversityMelbourneVictoriaAustralia
| | - Michael Fasulakis
- Department of EngineeringUniversity of MelbourneMelbourneVictoriaAustralia
| | - Alexander Green
- Centre for BiospectroscopyMonash UniversityMelbourneVictoriaAustralia
| | - Su K. Goh
- Department of Surgery, Melbourne Medical SchoolUniversity of MelbourneMelbourneVictoriaAustralia
- Liver & Intestinal Transplant UnitAustin HealthMelbourneVictoriaAustralia
| | - Xiuwen Peng
- Department of EngineeringUniversity of MelbourneMelbourneVictoriaAustralia
| | - Yifan Liu
- Department of EngineeringUniversity of MelbourneMelbourneVictoriaAustralia
| | - Louise Jackett
- Department of Anatomical PathologyAustin HealthMelbourneVictoriaAustralia
| | - Angela Vago
- Department of Surgery, Melbourne Medical SchoolUniversity of MelbourneMelbourneVictoriaAustralia
- Liver & Intestinal Transplant UnitAustin HealthMelbourneVictoriaAustralia
| | - Eric K. W. Poon
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVictoriaAustralia
| | - Graham Starkey
- Department of Surgery, Melbourne Medical SchoolUniversity of MelbourneMelbourneVictoriaAustralia
- Liver & Intestinal Transplant UnitAustin HealthMelbourneVictoriaAustralia
| | - Sarina Moshfegh
- Department of Surgery, Melbourne Medical SchoolUniversity of MelbourneMelbourneVictoriaAustralia
| | - Ankita Muthya
- Department of Surgery, Melbourne Medical SchoolUniversity of MelbourneMelbourneVictoriaAustralia
| | - Rohit D'Costa
- DonateLife VictoriaCarltonVictoriaAustralia
- Department of Intensive Care MedicineMelbourne HealthMelbourneVictoriaAustralia
| | - Fiona James
- Department of Infectious DiseasesAustin HealthMelbourneVictoriaAustralia
| | - Claire L. Gordon
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVictoriaAustralia
- Department of Infectious DiseasesAustin HealthMelbourneVictoriaAustralia
| | - Robert Jones
- Department of Surgery, Melbourne Medical SchoolUniversity of MelbourneMelbourneVictoriaAustralia
- Liver & Intestinal Transplant UnitAustin HealthMelbourneVictoriaAustralia
| | - Isaac O. Afara
- School of Information Technology and Electrical EngineeringFaculty of Engineering, Architecture, and Information TechnologyBrisbaneQueenslandAustralia
- Biomedical Spectroscopy Laboratory, Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Bayden R. Wood
- Centre for BiospectroscopyMonash UniversityMelbourneVictoriaAustralia
| | - Jaishankar Raman
- Department of Surgery, Melbourne Medical SchoolUniversity of MelbourneMelbourneVictoriaAustralia
- Brian F. Buxton Department of Cardiac and Thoracic Aortic SurgeryAustin HospitalMelbourneVictoriaAustralia
| |
Collapse
|
15
|
Pittman LA, Whittaker P, Milne ML, Chung CS. Collagenase treatment reduces the anisotropy of ultrasonic backscatter in rat myocardium by reducing collagen crosslinks. Physiol Rep 2023; 11:e15849. [PMID: 37960992 PMCID: PMC10643982 DOI: 10.14814/phy2.15849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Dysregulation of collagen deposition, degradation, and crosslinking in the heart occur in response to increased physiological stress. Collagen content has been associated with ultrasonic backscatter (brightness), and we have shown that the anisotropy of backscatter can be used to measure myofiber alignment, that is, variation in the brightness of a left ventricular short-axis ultrasound. This study investigated collagen's role in anisotropy of ultrasonic backscatter; female Sprague-Dawley rat hearts were treated with a collagenase-containing solution, for either 10 or 30 min, or control solution for 30 min. Serial ultrasound images were acquired at 2.5-min intervals throughout collagenase treatment. Ultrasonic backscatter was assessed from anterior and posterior walls, where collagen fibrils are predominately aligned perpendicular to the angle of insonification, and the lateral and septal walls, where collagen is predominately aligned parallel to the angle of insonification. Collagenase digestion reduced backscatter anisotropy within the myocardium. Collagen remains present in the myocardium throughout collagenase treatment, but crosslinking is altered within 10 min. These data suggest that crosslinking of collagen modulates the anisotropy of ultrasonic backscatter. An Anisotropy Index, derived from differences in backscatter from parallel and perpendicularly aligned fibers, may provide a noninvasive index to monitor the progression and state of myocardial fibrosis.
Collapse
Affiliation(s)
| | | | - Michelle L. Milne
- Department of PhysicsSt Mary's College of MarylandSt Mary's CityMarylandUSA
| | - Charles S. Chung
- Department of PhysiologyWayne State UniversityDetroitMichiganUSA
| |
Collapse
|
16
|
Dittfeld C, Winkelkotte M, Scheer A, Voigt E, Schmieder F, Behrens S, Jannasch A, Matschke K, Sonntag F, Tugtekin SM. Challenges of aortic valve tissue culture - maintenance of viability and extracellular matrix in the pulsatile dynamic microphysiological system. J Biol Eng 2023; 17:60. [PMID: 37770970 PMCID: PMC10538250 DOI: 10.1186/s13036-023-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) causes an increasing health burden in the 21st century due to aging population. The complex pathophysiology remains to be understood to develop novel prevention and treatment strategies. Microphysiological systems (MPSs), also known as organ-on-chip or lab-on-a-chip systems, proved promising in bridging in vitro and in vivo approaches by applying integer AV tissue and modelling biomechanical microenvironment. This study introduces a novel MPS comprising different micropumps in conjunction with a tissue-incubation-chamber (TIC) for long-term porcine and human AV incubation (pAV, hAV). RESULTS Tissue cultures in two different MPS setups were compared and validated by a bimodal viability analysis and extracellular matrix transformation assessment. The MPS-TIC conjunction proved applicable for incubation periods of 14-26 days. An increased metabolic rate was detected for pulsatile dynamic MPS culture compared to static condition indicated by increased LDH intensity. ECM changes such as an increase of collagen fibre content in line with tissue contraction and mass reduction, also observed in early CAVD, were detected in MPS-TIC culture, as well as an increase of collagen fibre content. Glycosaminoglycans remained stable, no significant alterations of α-SMA or CD31 epitopes and no accumulation of calciumhydroxyapatite were observed after 14 days of incubation. CONCLUSIONS The presented ex vivo MPS allows long-term AV tissue incubation and will be adopted for future investigation of CAVD pathophysiology, also implementing human tissues. The bimodal viability assessment and ECM analyses approve reliability of ex vivo CAVD investigation and comparability of parallel tissue segments with different treatment strategies regarding the AV (patho)physiology.
Collapse
Affiliation(s)
- Claudia Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany.
| | - Maximilian Winkelkotte
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Anna Scheer
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Emmely Voigt
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Florian Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Stephan Behrens
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Sems-Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| |
Collapse
|
17
|
Gassner C, Vongsvivut J, Ng SH, Ryu M, Tobin MJ, Juodkazis S, Morikawa J, Wood BR. Linearly Polarized Infrared Spectroscopy for the Analysis of Biological Materials. APPLIED SPECTROSCOPY 2023; 77:977-1008. [PMID: 37464791 DOI: 10.1177/00037028231180233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The analysis of biological samples with polarized infrared spectroscopy (p-IR) has long been a widely practiced method for the determination of sample orientation and structural properties. In contrast to earlier works, which employed this method to investigate the fundamental chemistry of biological systems, recent interests are moving toward "real-world" applications for the evaluation and diagnosis of pathological states. This focal point review provides an up-to-date synopsis of the knowledge of biological materials garnered through linearly p-IR on biomolecules, cells, and tissues. An overview of the theory with special consideration to biological samples is provided. Different modalities which can be employed along with their capabilities and limitations are outlined. Furthermore, an in-depth discussion of factors regarding sample preparation, sample properties, and instrumentation, which can affect p-IR analysis is provided. Additionally, attention is drawn to the potential impacts of analysis of biological samples with inherently polarized light sources, such as synchrotron light and quantum cascade lasers. The vast applications of p-IR for the determination of the structure and orientation of biological samples are given. In conclusion, with considerations to emerging instrumentation, findings by other techniques, and the shift of focus toward clinical applications, we speculate on the future directions of this methodology.
Collapse
Affiliation(s)
- Callum Gassner
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Soon Hock Ng
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Meguya Ryu
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mark J Tobin
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Junko Morikawa
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| |
Collapse
|
18
|
Pearce DP, Nemcek MT, Witzenburg CM. Don't go breakin' my heart: cardioprotective alterations to the mechanical and structural properties of reperfused myocardium during post-infarction inflammation. Biophys Rev 2023; 15:329-353. [PMID: 37396449 PMCID: PMC10310682 DOI: 10.1007/s12551-023-01068-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 07/04/2023] Open
Abstract
Myocardial infarctions (MIs) kickstart an intense inflammatory response resulting in extracellular matrix (ECM) degradation, wall thinning, and chamber dilation that leaves the heart susceptible to rupture. Reperfusion therapy is one of the most effective strategies for limiting adverse effects of MIs, but is a challenge to administer in a timely manner. Late reperfusion therapy (LRT; 3 + hours post-MI) does not limit infarct size, but does reduce incidences of post-MI rupture and improves long-term patient outcomes. Foundational studies employing LRT in the mid-twentieth century revealed beneficial reductions in infarct expansion, aneurysm formation, and left ventricle dysfunction. The mechanism by which LRT acts, however, is undefined. Structural analyses, relying largely on one-dimensional estimates of ECM composition, have found few differences in collagen content between LRT and permanently occluded animal models when using homogeneous samples from infarct cores. Uniaxial testing, on the other hand, revealed slight reductions in stiffness early in inflammation, followed soon after by an enhanced resistance to failure for cases of LRT. The use of one-dimensional estimates of ECM organization and gross mechanical function have resulted in a poor understanding of the infarct's spatially variable mechanical and structural anisotropy. To resolve these gaps in literature, future work employing full-field mechanical, structural, and cellular analyses is needed to better define the spatiotemporal post-MI alterations occurring during the inflammatory phase of healing and how they are impacted following reperfusion therapy. In turn, these studies may reveal how LRT affects the likelihood of rupture and inspire novel approaches to guide scar formation.
Collapse
Affiliation(s)
- Daniel P. Pearce
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Mark T. Nemcek
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Colleen M. Witzenburg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
19
|
Zhang Y, Yuan F, Yan K, Zhang M, Li Y, Wang G, Jiang H, Wang X, Zhu J, Sun J, Xu S, Hu J, Wang Y, Zhen R, Yan X. Long-term waterborne Cu 2+ exposure affects collagen metabolism in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106452. [PMID: 36863151 DOI: 10.1016/j.aquatox.2023.106452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Copper pollution might have a negative effect on collagen metabolism in fish. To test this hypothesis, we exposed an important economical fish, silver pomfret (Pampus argenteus), to three concentrations of Cu2+ for up to 21 days to simulate natural exposure to copper. With increasing copper exposure concentration and time, hematoxylin and eosin staining and picrosirius red staining revealed extensive vacuolization, cell necrosis, and tissue structure destruction, and a change of type and abnormal accumulation of collagen in the liver, intestine, and muscle tissues. To further study the mechanism of collagen metabolism disorder caused by copper exposure, we cloned and analyzed a key collagen metabolism regulation gene, timp, of silver pomfret. The full-length timp2b cDNA was 1035 bp with an open reading frame of 663 bp, encoding a protein of 220 amino acids. Copper treatment significantly increased the expression of akts, erks, and fgfs genes and decreased the mRNA and protein expression of Timp2b and MMPs. Finally, we constructed a silver pomfret muscle cell line (PaM) for the first time and used PaM Cu2+ exposure models (450 μM Cu2+ exposure for 9 h) to examine regulation function of the timp2b-mmps system. We knocked down or overexpressed timp2b in the model, and found that downregulation of mmps expression and upregulation of akt/erk/fgf were further aggravated in the timp2b- group (subjected to RNA interference), whereas some recovery was achieved in the timp2b+ group (overexpression). These results indicated that long-term excessive copper exposure can lead to tissue damage and abnormal collagen metabolism in fish, which might be caused by the alteration of akt/erk/fgf expression, which disrupts the effects of the timp2b-mmps system on extracellular matrix balance. The present study assessed the impact of copper on the collagen of fish and clarified its regulatory mechanism, providing a basis for toxicity of copper pollution study.
Collapse
Affiliation(s)
- Youyi Zhang
- College of marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Feirong Yuan
- College of marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Kaiheng Yan
- College of marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Man Zhang
- College of marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yaya Li
- College of marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Guanlin Wang
- College of marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Huan Jiang
- College of marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xiangbin Wang
- College of marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jiajie Zhu
- College of marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jiachu Sun
- College of marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Shanliang Xu
- College of marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jiabao Hu
- College of marine Sciences, Ningbo University, Ningbo, China; School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| | - Yajun Wang
- College of marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| | - Rongyue Zhen
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
| | - Xiaojun Yan
- College of marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
20
|
Tsui H, van Kampen SJ, Han SJ, Meraviglia V, van Ham WB, Casini S, van der Kraak P, Vink A, Yin X, Mayr M, Bossu A, Marchal GA, Monshouwer-Kloots J, Eding J, Versteeg D, de Ruiter H, Bezstarosti K, Groeneweg J, Klaasen SJ, van Laake LW, Demmers JAA, Kops GJPL, Mummery CL, van Veen TAB, Remme CA, Bellin M, van Rooij E. Desmosomal protein degradation as an underlying cause of arrhythmogenic cardiomyopathy. Sci Transl Med 2023; 15:eadd4248. [PMID: 36947592 DOI: 10.1126/scitranslmed.add4248] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/01/2023] [Indexed: 03/24/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited progressive cardiac disease. Many patients with ACM harbor mutations in desmosomal genes, predominantly in plakophilin-2 (PKP2). Although the genetic basis of ACM is well characterized, the underlying disease-driving mechanisms remain unresolved. Explanted hearts from patients with ACM had less PKP2 compared with healthy hearts, which correlated with reduced expression of desmosomal and adherens junction (AJ) proteins. These proteins were also disorganized in areas of fibrotic remodeling. In vitro data from human-induced pluripotent stem cell-derived cardiomyocytes and microtissues carrying the heterozygous PKP2 c.2013delC pathogenic mutation also displayed impaired contractility. Knockin mice carrying the equivalent heterozygous Pkp2 c.1755delA mutation recapitulated changes in desmosomal and AJ proteins and displayed cardiac dysfunction and fibrosis with age. Global proteomics analysis of 4-month-old heterozygous Pkp2 c.1755delA hearts indicated involvement of the ubiquitin-proteasome system (UPS) in ACM pathogenesis. Inhibition of the UPS in mutant mice increased area composita proteins and improved calcium dynamics in isolated cardiomyocytes. Additional proteomics analyses identified lysine ubiquitination sites on the desmosomal proteins, which were more ubiquitinated in mutant mice. In summary, we show that a plakophilin-2 mutation can lead to decreased desmosomal and AJ protein expression through a UPS-dependent mechanism, which preceded cardiac remodeling. These findings suggest that targeting protein degradation and improving desmosomal protein stability may be a potential therapeutic strategy for the treatment of ACM.
Collapse
Affiliation(s)
- Hoyee Tsui
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Sebastiaan Johannes van Kampen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Su Ji Han
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Willem B van Ham
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CM, Netherlands
| | - Simona Casini
- Department of Clinical and Experimental Cardiology, University Medical Center Amsterdam, 1105 AZ, Netherlands
| | - Petra van der Kraak
- Department of Pathology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Xiaoke Yin
- James Black Centre, King's College, University of London, WC2R 2LS London, UK
| | - Manuel Mayr
- James Black Centre, King's College, University of London, WC2R 2LS London, UK
| | - Alexandre Bossu
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CM, Netherlands
| | - Gerard A Marchal
- Department of Clinical and Experimental Cardiology, University Medical Center Amsterdam, 1105 AZ, Netherlands
| | - Jantine Monshouwer-Kloots
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Joep Eding
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Danielle Versteeg
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Hesther de Ruiter
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus Medical Center Rotterdam, 3015 CN, Netherlands
| | - Judith Groeneweg
- Department of Cardiology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Sjoerd J Klaasen
- Oncode Institute, Hubrecht Institute, Royal Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Linda W van Laake
- Department of Cardiology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus Medical Center Rotterdam, 3015 CN, Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute, Royal Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CM, Netherlands
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, University Medical Center Amsterdam, 1105 AZ, Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
- Department of Cardiology, University Medical Center Utrecht, 3584 CX, Netherlands
| |
Collapse
|
21
|
Becker L, Lu CE, Montes-Mojarro IA, Layland SL, Khalil S, Nsair A, Duffy GP, Fend F, Marzi J, Schenke-Layland K. Raman microspectroscopy identifies fibrotic tissues in collagen-related disorders via deconvoluted collagen type I spectra. Acta Biomater 2023; 162:278-291. [PMID: 36931422 DOI: 10.1016/j.actbio.2023.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Fibrosis is a consequence of the pathological remodeling of extracellular matrix (ECM) structures in the connective tissue of an organ. It is often caused by chronic inflammation, which over time, progressively leads to an excess deposition of collagen type I (COL I) that replaces healthy tissue structures, in many cases leaving a stiff scar. Increasing fibrosis can lead to organ failure and death; therefore, developing methods that potentially allow real-time monitoring of early onset or progression of fibrosis are highly valuable. In this study, the ECM structures of diseased and healthy human tissue from multiple organs were investigated for the presence of fibrosis using routine histology and marker-independent Raman microspectroscopy and Raman imaging. Spectral deconvolution of COL I Raman spectra allowed the discrimination of fibrotic and non-fibrotic COL I fibers. Statistically significant differences were identified in the amide I region of the spectral subpeak at 1608 cm-1, which was deemed to be representative for structural changes in COL I fibers in all examined fibrotic tissues. Raman spectroscopy-based methods in combination with this newly discovered spectroscopic biomarker potentially offer a diagnostic approach to non-invasively track and monitor the progression of fibrosis. STATEMENT OF SIGNIFICANCE: Current diagnosis of fibrosis still relies on histopathological examination with invasive biopsy procedures. Although, several non-invasive imaging techniques such as positron emission tomography, single-photon emission computed tomography and second harmonic generation are gradually employed in preclinical or clinical studies, these techniques are limited in spatial resolution and the morphological interpretation highly relies on individual experience and knowledge. In this study, we propose a non-destructive technique, Raman microspectroscopy, to discriminate fibrotic changes of collagen type I based on a molecular biomarker. The changes of the secondary structure of collagen type I can be identified by spectral deconvolution, which potentially can provide an automatic diagnosis for fibrotic tissues in the clinical applicaion.
Collapse
Affiliation(s)
- Lucas Becker
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Silcherstr. 7/1, Eberhard Karls University, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Silcherstr. 7/1, Eberhard Karls University, 72076 Tübingen, Germany
| | | | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Silcherstr. 7/1, Eberhard Karls University, 72076 Tübingen, Germany
| | - Suzan Khalil
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL 3645 Los Angeles, CA, USA
| | - Ali Nsair
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL 3645 Los Angeles, CA, USA
| | - Garry P Duffy
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 TK33, Galway, Ireland
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Silcherstr. 7/1, Eberhard Karls University, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Silcherstr. 7/1, Eberhard Karls University, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany.
| |
Collapse
|
22
|
Cuevas PL, Aellos F, Dawid IM, Helms JA. Wnt/β-Catenin Signaling in Craniomaxillofacial Osteocytes. Curr Osteoporos Rep 2023; 21:228-240. [PMID: 36807035 DOI: 10.1007/s11914-023-00775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 02/23/2023]
Abstract
PURPOSE OF REVIEW There is a growing appreciation within the scientific community that cells exhibit regional variation. Whether the variation is attributable to differences in embryonic origin or anatomical location and mechanical loading has not been elucidated; what is clear, however, is that adult cells carry positional information that ultimately affects their functions. The purpose of this review is to highlight the functions of osteocytes in the craniomaxillofacial (CMF) skeleton as opposed to elsewhere in the body, and in doing so gain mechanistic insights into genetic conditions and chemically-induced diseases that particularly affect this region of our anatomy. RECENT FINDINGS In the CMF skeleton, elevated Wnt/β-catenin signaling affects not only bone mass and volume, but also mineralization of the canalicular network and osteocyte lacunae. Aberrant elevation in the Wnt/β-catenin pathway can also produce micropetrosis and osteonecrosis of CMF bone, presumably due to a disruption in the signaling network that connects osteocytes to one another, and to osteoblasts on the bone surface.
Collapse
Affiliation(s)
- Pedro L Cuevas
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 1651 Page Mill Road, Palo Alto, CA, 94305, USA
| | - Fabiana Aellos
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 1651 Page Mill Road, Palo Alto, CA, 94305, USA
| | - Isaiah M Dawid
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 1651 Page Mill Road, Palo Alto, CA, 94305, USA
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 1651 Page Mill Road, Palo Alto, CA, 94305, USA.
| |
Collapse
|
23
|
Prawira AY, Novelina S, Farida WR, Darusman HS, Warita K, Hosaka YZ, Agungpriyono S. Determination of thick and thin fibres distribution in Sunda porcupine dorsal skin (Hystrix javanica) using Picrosirius red staining. Anat Histol Embryol 2022; 51:666-673. [PMID: 35899393 DOI: 10.1111/ahe.12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
The complexity of the Sunda porcupine skin has become an important topic due to the unique characteristics of its quill follicles. The structure and chemical composition of the skin has affected many physiological and other conditions. Generally, quills are larger, stronger and stiffer than hair; therefore, the skin structure needs to adapt to support their physiology. The strength of the skin is determined by its collagen composition and arrangement; therefore, this study aims to analyse the composition and distribution of thick and thin fibres based on the specific characteristics of Sunda porcupine skin under polarized light using picrosirius red staining. The skin samples used were from the thoracodorsal and lumbosacral regions of eight Sunda porcupine adults. The histological staining was carried out using the picrosirius red method, while the samples were observed under a polarized light microscope and analysed with software. The results showed that the skin is composed of 36%-65% thick fibres, 20%-35% thin fibres and small amounts of other types with the lumbosacral region having higher compositions of thick and thin fibres than those in the thoracodorsal region. Furthermore, the thoracodorsal and lumbosacral regions have the highest composition of thick fibre in the deeper dermis and quill follicle, respectively. These demonstrated that the complexity of the skin structure of Sunda porcupine due to its quill derivates correlated with its collagen composition and distribution.
Collapse
Affiliation(s)
- Andhika Yudha Prawira
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia.,Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Savitri Novelina
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Wartika Rosa Farida
- Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Huda Shalahudin Darusman
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia.,Primate Research Center, IPB University, Bogor, Indonesia
| | - Katsuhiko Warita
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yoshinao Z Hosaka
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Srihadi Agungpriyono
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| |
Collapse
|
24
|
Karagiannis F, Peukert K, Surace L, Michla M, Nikolka F, Fox M, Weiss P, Feuerborn C, Maier P, Schulz S, Al B, Seeliger B, Welte T, David S, Grondman I, de Nooijer AH, Pickkers P, Kleiner JL, Berger MM, Brenner T, Putensen C, Kato H, Garbi N, Netea MG, Hiller K, Placek K, Bode C, Wilhelm C. Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19. Nature 2022; 609:801-807. [PMID: 35901960 PMCID: PMC9428867 DOI: 10.1038/s41586-022-05128-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 07/20/2022] [Indexed: 01/08/2023]
Abstract
Anorexia and fasting are host adaptations to acute infection, inducing a metabolic switch towards ketogenesis and the production of ketone bodies, including β-hydroxybutyrate (BHB) 1-6. However, whether ketogenesis metabolically influences the immune response in pulmonary infections remains unclear. Here we report impaired production of BHB in humans with SARS-CoV-2-induced but not influenza-induced acute respiratory distress syndrome (ARDS). CD4+ T cell function is impaired in COVID-19 and BHB promotes both survival and production of Interferon-γ from CD4+ T cells. Using metabolic tracing analysis, we uncovered that BHB provides an alternative carbon source to fuel oxidative phosphorylation (OXPHOS) and the production of bioenergetic amino acids and glutathione, which is important for maintaining the redox balance. T cells from patients with SARS-CoV-2-induced ARDS were exhausted and skewed towards glycolysis, but can be metabolically reprogrammed by BHB to perform OXPHOS, thereby increasing their functionality. Finally, we demonstrate that ketogenic diet (KD) and delivery of BHB as ketone ester drink restores CD4+ T cell metabolism and function in respiratory infections, ultimately reducing the mortality of SARS-CoV-2 infected mice. Altogether, our data reveal BHB as alternative carbon source promoting T cell responses in pulmonary viral infections, highlighting impaired ketogenesis as a potential confounder of severe COVID-19.
Collapse
Affiliation(s)
- Fotios Karagiannis
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Konrad Peukert
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Laura Surace
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.,Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Marcel Michla
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fabian Nikolka
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology, Technische Universität Braunschweig, Brunswick, Germany
| | - Mario Fox
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Patricia Weiss
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Caroline Feuerborn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Paul Maier
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Susanne Schulz
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Burcu Al
- Immunology and Metabolism Unit, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Benjamin Seeliger
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Inge Grondman
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aline H de Nooijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan Lukas Kleiner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Marc Moritz Berger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | | | - Hiroki Kato
- Institute of Experimental Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Natalio Garbi
- Institute of Innate Immunity, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Mihai G Netea
- Immunology and Metabolism Unit, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology, Technische Universität Braunschweig, Brunswick, Germany
| | - Katarzyna Placek
- Immunology and Metabolism Unit, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany.
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
25
|
Gao K, Luo Z, Han S, Li Z, Choe HM, Paek HJ, Quan B, Kang J, Yin X. Analysis of meat color, meat tenderness and fatty acid composition of meat in second filial hybrid offspring of MSTN mutant pigs. Meat Sci 2022; 193:108929. [DOI: 10.1016/j.meatsci.2022.108929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
|
26
|
Mankar R, Gajjela CC, Bueso-Ramos CE, Yin CC, Mayerich D, Reddy RK. Polarization Sensitive Photothermal Mid-Infrared Spectroscopic Imaging of Human Bone Marrow Tissue. APPLIED SPECTROSCOPY 2022; 76:508-518. [PMID: 35236126 PMCID: PMC10074826 DOI: 10.1177/00037028211063513] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Collagen quantity and integrity play an important role in understanding diseases such as myelofibrosis (MF). Label-free mid-infrared spectroscopic imaging (MIRSI) has the potential to quantify collagen while minimizing the subjective variance observed with conventional histopathology. Infrared (IR) spectroscopy with polarization sensitivity provides chemical information while also estimating tissue dichroism. This can potentially aid MF grading by revealing the structure and orientation of collagen fibers. Simultaneous measurement of collagen structure and biochemical properties can translate clinically into improved diagnosis and enhance our understanding of disease progression. In this paper, we present the first report of polarization-dependent spectroscopic variations in collagen from human bone marrow samples. We build on prior work with animal models and extend it to human clinical biopsies with a practical method for high-resolution chemical and structural imaging of bone marrow on clinical glass slides. This is done using a new polarization-sensitive photothermal mid-infrared spectroscopic imaging scheme that enables sample and source independent polarization control. This technology provides 0.5 µm spatial resolution, enabling the identification of thin (≈1 µm) collagen fibers that were not separable using Fourier Transform Infrared (FT-IR) imaging in the fingerprint region at diffraction-limited resolution ( ≈ 5 µm). Finally, we propose quantitative metrics to identify fiber orientation from discrete band images (amide I and amide II) measured under three polarizations. Previous studies have used a pair of orthogonal polarization measurements, which is insufficient for clinical samples since human bone biopsies contain collagen fibers with multiple orientations. Here, we address this challenge and demonstrate that three polarization measurements are necessary to resolve orientation ambiguity in clinical bone marrow samples. This is also the first study to demonstrate the ability to spectroscopically identify thin collagen fibers (≈1 µm diameter) and their orientations, which is critical for accurate grading of human bone marrow fibrosis.
Collapse
Affiliation(s)
- Rupali Mankar
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Chalapathi C. Gajjela
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Carlos E. Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Mayerich
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Rohith K. Reddy
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
27
|
Bejleri D, Robeson MJ, Brown ME, Hunter J, Maxwell JT, Streeter BW, Brazhkina O, Park HJ, Christman KL, Davis ME. In vivo evaluation of bioprinted cardiac patches composed of cardiac-specific extracellular matrix and progenitor cells in a model of pediatric heart failure. Biomater Sci 2022; 10:444-456. [PMID: 34878443 PMCID: PMC8772587 DOI: 10.1039/d1bm01539g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pediatric patients with congenital heart defects (CHD) often present with heart failure from increased load on the right ventricle (RV) due to both surgical methods to treat CHD and the disease itself. Patients with RV failure often require transplantation, which is limited due to lack of donor availability and rejection. Previous studies investigating the development and in vitro assessment of a bioprinted cardiac patch composed of cardiac extracellular matrix (cECM) and human c-kit + progenitor cells (hCPCs) showed that the construct has promise in treating cardiac dysfunction. The current study investigates in vivo cardiac outcomes of patch implantation in a rat model of RV failure. Patch parameters including cECM-inclusion and hCPC-inclusion are investigated. Assessments include hCPC retention, RV function, and tissue remodeling (vascularization, hypertrophy, and fibrosis). Animal model evaluation shows that both cell-free and neonatal hCPC-laden cECM-gelatin methacrylate (GelMA) patches improve RV function and tissue remodeling compared to other patch groups and controls. Inclusion of cECM is the most influential parameter driving therapeutic improvements, with or without cell inclusion. This study paves the way for clinical translation in treating pediatric heart failure using bioprinted GelMA-cECM and hCPC-GelMA-cECM patches.
Collapse
Affiliation(s)
- Donald Bejleri
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Matthew J Robeson
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Milton E Brown
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Jervaughn Hunter
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 2880 Torrey Pines Scenic Dr, La Jolla, CA, 92037, USA
| | - Joshua T Maxwell
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA
| | - Benjamin W Streeter
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Olga Brazhkina
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Hyun-Ji Park
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Karen L Christman
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 2880 Torrey Pines Scenic Dr, La Jolla, CA, 92037, USA
| | - Michael E Davis
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA
| |
Collapse
|
28
|
Tripathy S, VinayKumar D, Mohsina S, Sharma R, Bhatia A. Histological analysis of the effect of nanofat grafting in scar rejuvenation. J Cutan Aesthet Surg 2022; 15:147-153. [PMID: 35965912 PMCID: PMC9364463 DOI: 10.4103/jcas.jcas_106_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introduction: Aims: Materials and Methods: Results: Conclusion:
Collapse
|
29
|
Lindsey ML, Brunt KR, Kirk JA, Kleinbongard P, Calvert JW, de Castro Brás LE, DeLeon-Pennell KY, Del Re DP, Frangogiannis NG, Frantz S, Gumina RJ, Halade GV, Jones SP, Ritchie RH, Spinale FG, Thorp EB, Ripplinger CM, Kassiri Z. Guidelines for in vivo mouse models of myocardial infarction. Am J Physiol Heart Circ Physiol 2021; 321:H1056-H1073. [PMID: 34623181 PMCID: PMC8834230 DOI: 10.1152/ajpheart.00459.2021] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Despite significant improvements in reperfusion strategies, acute coronary syndromes all too often culminate in a myocardial infarction (MI). The consequent MI can, in turn, lead to remodeling of the left ventricle (LV), the development of LV dysfunction, and ultimately progression to heart failure (HF). Accordingly, an improved understanding of the underlying mechanisms of MI remodeling and progression to HF is necessary. One common approach to examine MI pathology is with murine models that recapitulate components of the clinical context of acute coronary syndrome and subsequent MI. We evaluated the different approaches used to produce MI in mouse models and identified opportunities to consolidate methods, recognizing that reperfused and nonreperfused MI yield different responses. The overall goal in compiling this consensus statement is to unify best practices regarding mouse MI models to improve interpretation and allow comparative examination across studies and laboratories. These guidelines will help to establish rigor and reproducibility and provide increased potential for clinical translation.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - John W Calvert
- Carlyle Fraser Heart Center of Emory University Hospital Midtown, Atlanta, Georgia
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Lisandra E de Castro Brás
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Nikolaos G Frangogiannis
- Division of Cardiology, Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Richard J Gumina
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, Florida
| | - Steven P Jones
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Victoria, Australia
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Medical Center, Columbia, South Carolina
| | - Edward B Thorp
- Department of Pathology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Membrane curvature and connective fiber alignment in guinea pig round window membrane. Acta Biomater 2021; 136:343-362. [PMID: 34563725 DOI: 10.1016/j.actbio.2021.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The round window membrane (RWM) covers an opening between the perilymph fluid-filled inner ear space and the air-filled middle ear space. As the only non-osseous barrier between these two spaces, the RWM is an ideal candidate for aspiration of perilymph for diagnostics purposes and delivery of medication for treatment of inner ear disorders. Routine access across the RWM requires the development of new surgical tools whose design can only be optimized with a thorough understanding of the RWM's structure and properties. The RWM possesses a layer of collagen and elastic fibers so characterization of the distribution and orientation of these fibers is essential. Confocal and two-photon microscopy were conducted on intact RWMs in a guinea pig model to characterize the distribution of collagen and elastic fibers. The fibers were imaged via second-harmonic-generation, autofluorescence, and Rhodamine B staining. Quantitative analyses of both fiber orientation and geometrical properties of the RWM uncovered a significant correlation between mean fiber orientations and directions of zero curvature in some portions of the RWM, with an even more significant correlation between the mean fiber orientations and linear distance along the RWM in a direction approximately parallel to the cochlear axis. The measured mean fiber directions and dispersions can be incorporated into a generalized structure tensor for use in the development of continuum anisotropic mechanical constitutive models that in turn will enable optimization of surgical tools to access the cochlea. STATEMENT OF SIGNIFICANCE: The Round Window Membrane (RWM) is the only non-osseous barrier separating the middle and inner ear spaces, and thus is an ideal portal for medical access to the cochlea. An understanding of RWM structure and mechanical response is necessary to optimize the design of surgical tools for this purpose. The RWM geometry and the connective fiber orientation and dispersion are measured via confocal and 2-photon microscopy. A region of the RWM geometry is characterized as a hyperbolic paraboloid and another region as a tapered parabolic cylinder. Predominant fiber directions correlate well with directions of zero curvature in the hyperbolic paraboloid region. Overall fiber directions correlate well with position along a line approximately parallel to the central axis of the cochlea's spiral.
Collapse
|
31
|
Yang T, Minami M, Yoshida K, Nagata M, Yamamoto Y, Takayama N, Suzuki K, Miyata T, Okawa M, Miyamoto S. Niclosamide downregulates LOX-1 expression in mouse vascular smooth muscle cells and changes the composition of atherosclerotic plaques in ApoE -/- mice. Heart Vessels 2021; 37:517-527. [PMID: 34807278 DOI: 10.1007/s00380-021-01983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022]
Abstract
Genetic lineage tracing studies have shown that phenotypic switching of vascular smooth muscle cells (VSMCs) results in less-differentiated cells, including macrophage-like cells that lack traditional VSMC markers. This switching contributes to the formation of necrotic core in plaques and promotes atherosclerosis, which is important for plaque stability. Niclosamide, a commonly used anti-helminthic drug, has recently attracted attention as an anti-cancer drug that inhibits multiple signaling pathways. The expression of the S100A4 protein is upregulated in synthetic VSMCs and inhibited by niclosamide on metastatic progression in colon cancer. We aimed to test the effect of niclosamide on VSMC phenotype switching and plaque stability. To examine murine atherosclerosis, we induced experimental lesions by blood flow cessation in apolipoprotein E knockout mice fed a high-fat diet. Oral administration of niclosamide changed 4-week-old plaques to collagen-rich and less-necrotic core phenotypes and downregulated the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in vivo. In vitro analysis indicated that niclosamide reduced LOX-1 expression in VSMCs in a concentration-dependent and S100A4-independent manner. The inhibitory effect of niclosamide on LOX-1 and collagen type I was associated with the inactivation of the nuclear factor-κB signaling pathway. We demonstrated that the administration of niclosamide reduced LOX-1 expression and altered the composition of murine carotid plaques. Our results highlight the potential of niclosamide as an atheroprotective agent that enhances atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Tao Yang
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Manabu Minami
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Manabu Nagata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yu Yamamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Naoki Takayama
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Keita Suzuki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takeshi Miyata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masakazu Okawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogun, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
32
|
Boss CK, Gibson DJ, Schultz G, Whitley RD, Hernandez JA, Abbott JR, Plummer CE. Therapeutic effects of equine amniotic membrane suspension on corneal re-epithelialization and haze in a modified lagomorph ex vivo wound healing model. Vet Ophthalmol 2021; 25:153-164. [PMID: 34787351 DOI: 10.1111/vop.12953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the therapeutic effects of topical equine amniotic membrane (eAM) suspension following corneal wounding in a controlled experimental setting. PROCEDURES Equine amniotic membrane was collected, gamma irradiated, homogenized for topical suspension preparation, and cryopreserved. Corneoscleral rims harvested from fresh rabbit globes were wounded via keratectomy and were maintained in an air-liquid interface ex vivo corneal culture model. Treatment groups included topical gamma irradiated eAM suspension (n = 20) and a control group (n = 20). Re-epithelialization of the wound was assessed with daily photographic evaluation of area of fluorescein uptake (mm2 ). Corneal wound haze after a 21-day period was assessed by photographic analysis of haze area (mm2 ) and pixel intensity (0-255). Histologic processing of corneal tissue was performed, and protein identification of eAM suspension using Liquid chromatography-mass spectrometry (LC-MS). RESULTS The average day of complete corneal re-epithelialization in controls (5.5 ± 1.1) and topically treated (5.5 ± 0.6) corneas, and rates of reduction in area of fluorescein uptake over time did not significantly differ (p = .44). The corneal wound haze was significantly reduced in mean area by approximately 52% and intensity by 57% in corneas treated with topical eAM suspension (p < .05), compared to controls 21 days following wounding. Protein analysis identified numerous proteins, specifically decorin, dermatopontin, and lumican, which have previously been documented in eAM. CONCLUSIONS Area and intensity of corneal wound haze were significantly reduced in corneas treated with gamma irradiated eAM suspension, which may be due to previously identified therapeutic proteins which promote corneal clarity.
Collapse
Affiliation(s)
- Christine K Boss
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Daniel J Gibson
- College of Nursing, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregory Schultz
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - R David Whitley
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Jorge A Hernandez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Caryn E Plummer
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.,Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
33
|
Chong SY, Zharkova O, Yatim SMJ, Wang X, Lim XC, Huang C, Tan CY, Jiang J, Ye L, Tan MS, Angeli V, Versteeg HH, Dewerchin M, Carmeliet P, Lam CS, Chan MY, de Kleijn DP, Wang JW. Tissue factor cytoplasmic domain exacerbates post-infarct left ventricular remodeling via orchestrating cardiac inflammation and angiogenesis. Am J Cancer Res 2021; 11:9243-9261. [PMID: 34646369 PMCID: PMC8490508 DOI: 10.7150/thno.63354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 01/14/2023] Open
Abstract
The coagulation protein tissue factor (TF) regulates inflammation and angiogenesis via its cytoplasmic domain in infection, cancer and diabetes. While TF is highly abundant in the heart and is implicated in cardiac pathology, the contribution of its cytoplasmic domain to post-infarct myocardial injury and adverse left ventricular (LV) remodeling remains unknown. Methods: Myocardial infarction was induced in wild-type mice or mice lacking the TF cytoplasmic domain (TF∆CT) by occlusion of the left anterior descending coronary artery. Heart function was monitored with echocardiography. Heart tissue was collected at different time-points for histological, molecular and flow cytometry analysis. Results: Compared with wild-type mice, TF∆CT had a higher survival rate during a 28-day follow-up after myocardial infarction. Among surviving mice, TF∆CT mice had better cardiac function and less LV remodeling than wild-type mice. The overall improvement of post-infarct cardiac performance in TF∆CT mice, as revealed by speckle-tracking strain analysis, was attributed to reduced myocardial deformation in the peri-infarct region. Histological analysis demonstrated that TF∆CT hearts had in the infarct area greater proliferation of myofibroblasts and better scar formation. Compared with wild-type hearts, infarcted TF∆CT hearts showed less infiltration of proinflammatory cells with concomitant lower expression of protease-activated receptor-1 (PAR1) - Rac1 axis. In particular, infarcted TF∆CT hearts displayed markedly lower ratios of inflammatory M1 macrophages and reparative M2 macrophages (M1/M2). In vitro experiment with primary macrophages demonstrated that deletion of the TF cytoplasmic domain inhibited macrophage polarization toward the M1 phenotype. Furthermore, infarcted TF∆CT hearts presented markedly higher peri-infarct vessel density associated with enhanced endothelial cell proliferation and higher expression of PAR2 and PAR2-associated pro-angiogenic pathway factors. Finally, the overall cardioprotective effects observed in TF∆CT mice could be abolished by subcutaneously infusing a cocktail of PAR1-activating peptide and PAR2-inhibiting peptide via osmotic minipumps. Conclusions: Our findings demonstrate that the TF cytoplasmic domain exacerbates post-infarct cardiac injury and adverse LV remodeling via differential regulation of inflammation and angiogenesis. Targeted inhibition of the TF cytoplasmic domain-mediated intracellular signaling may ameliorate post-infarct LV remodeling without perturbing coagulation.
Collapse
|
34
|
López De Padilla CM, Coenen MJ, Tovar A, De la Vega RE, Evans CH, Müller SA. Picrosirius Red Staining: Revisiting Its Application to the Qualitative and Quantitative Assessment of Collagen Type I and Type III in Tendon. J Histochem Cytochem 2021; 69:633-643. [PMID: 34549650 DOI: 10.1369/00221554211046777] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Collagen has a major role in the structural organization of tendons. Picrosirius red (PSR) staining viewed under polarized light microscopy is the standard method to evaluate the organization of collagen fibers in tissues. It is also used to distinguish between type I and type III collagen in tissue sections. However, accurate analysis and interpretation of PSR images are challenging because of technical factors and historical misconceptions. The aim of this study was to clarify whether collagen types I and III can be distinguished by PSR staining in rat Achilles tendons, using double immunohistochemistry as the positive control. Our findings showed that PSR staining viewed with polarized light microscopy was suitable for qualitative and quantitative assessment of total collagen but was not able to distinguish collagen types. We found it critical to use a polarizing microscope equipped with a rotating stage; tendon section orientation at 45° with respect to crossed polarizers was optimal for the qualitative and quantitative assessment of collagen organization. Immunohistochemistry was superior to PSR staining for detection of collagen type III. We also compared formalin and Bouin solution as fixatives. Both produced similar birefringence, but formalin-fixed tendons provided higher quality histological detail with both hematoxylin-eosin and immunostaining.
Collapse
Affiliation(s)
| | - Michael J Coenen
- Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Alejandro Tovar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Rodolfo E De la Vega
- Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, Minnesota.,Department cBITE, MERLN Institute, Maastricht University, The Netherlands
| | - Christopher H Evans
- Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Sebastian A Müller
- Department of Orthopedic Surgery, Kantonsspital Baselland, University of Basel, Basel, Switzerland (Research Collaborator [limited tenure], Mayo Clinic, Rochester, Minnesota)
| |
Collapse
|
35
|
Gao Y, Yue Y, Xiong S. An Albumin-Binding Domain Peptide Confers Enhanced Immunoprotection Against Viral Myocarditis by CVB3 VP1 Vaccine. Front Immunol 2021; 12:666594. [PMID: 34630378 PMCID: PMC8492941 DOI: 10.3389/fimmu.2021.666594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Coxsackievirus B3 (CVB3)-induced viral myocarditis is a common clinical cardiovascular disease without effective available vaccine. In this study, we tried to potentiate the immunoprotection efficacy of our previous CVB3-specific VP1 protein vaccine by introducing a streptococcal protein G-derived, draining lymph nodes (dLNs)-targeting albumin-binding domain (ABD) peptide. We found that compared with the original VP1 vaccine, ABD-fused VP1 (ABD-VP1) vaccine gained the new ability to efficiently bind murine albumin both in vitro and in vivo, possessed a much longer serum half-life in serum and exhibited more abundance in the dLNs after immunization. Accordingly, ABD-VP1 immunization not only significantly facilitated the enrichment and maturation of dendritic cells (DCs), induced higher percentages of IFN-γ+ CD8 + cells in the dLNs, but also robustly promoted VP1-induced T cell proliferation and cytotoxic T lymphocyte (CTL) responses in the spleens. More importantly, ABD-VP1 also elicited higher percentages of protective CD44hi CD62Lhi memory T cells in dLNs and spleens. Consequently, obvious protective effect against viral myocarditis was conferred by ABD-VP1 vaccine compared to the VP1 vaccine, reflected by the less body weight loss, improved cardiac function, alleviated cardiac histomorphological changes and an increased 28-day survival rate. Our results indicated that the ABD might be a promising immune-enhancing regime for vaccine design and development.
Collapse
Affiliation(s)
| | - Yan Yue
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| |
Collapse
|
36
|
Chang YC, Li J, Mirhaidari G, Zbinden J, Barker J, Blum K, Reinhardt J, Best C, Kelly J, Shoji T, Yi T, Breuer C. Zoledronate alters natural progression of tissue-engineered vascular grafts. FASEB J 2021; 35:e21849. [PMID: 34473380 DOI: 10.1096/fj.202001606rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/11/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022]
Abstract
Macrophages are a critical driver of neovessel formation in tissue-engineered vascular grafts (TEVGs), but also contribute to graft stenosis, a leading clinical trial complication. Macrophage depletion via liposomal delivery of clodronate, a first-generation bisphosphonate, mitigates stenosis, but simultaneously leads to a complete lack of tissue development in TEVGs. This result and the associated difficulty of utilizing liposomal delivery means that clodronate may not be an ideal means of preventing graft stenosis. Newer generation bisphosphonates, such as zoledronate, may have differential effects on graft development with more facile drug delivery. We sought to examine the effect of zoledronate on TEVG neotissue formation and its potential application for mitigating TEVG stenosis. Thus, mice implanted with TEVGs received zoledronate or no treatment and were monitored by serial ultrasound for graft dilation and stenosis. After two weeks, TEVGs were explanted for histological examination. The overall graft area and remaining graft material (polyglycolic-acid) were higher in the zoledronate treatment group. These effects were associated with a corresponding decrease in macrophage infiltration. In addition, zoledronate affected the deposition of collagen in TEVGs, specifically, total and mature collagen. These differences may be, in part, explained by a depletion of leukocytes within the bone marrow that subsequently led to a decrease in the number of tissue-infiltrating macrophages. TEVGs from zoledronate-treated mice demonstrated a significantly greater degree of smooth muscle cell presence. There was no statistical difference in graft patency between treatment and control groups. While zoledronate led to a decrease in the number of macrophages in the TEVGs, the severity of stenosis appears to have increased significantly. Zoledronate treatment demonstrates that the process of smooth muscle cell-mediated neointimal hyperplasia may occur separately from a macrophage-mediated mechanism.
Collapse
Affiliation(s)
- Yu-Chun Chang
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Junlang Li
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Gabriel Mirhaidari
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jacob Zbinden
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, Ohio, USA
| | - Jenny Barker
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Plastic and Reconstructive Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Kevin Blum
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, Ohio, USA
| | - James Reinhardt
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Cameron Best
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - John Kelly
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Toshihiro Shoji
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tai Yi
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Christopher Breuer
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
37
|
Ferraz AP, Seara FAC, Baptista EF, Barenco TS, Sottani TBB, Souza NSC, Domingos AE, Barbosa RAQ, Takiya CM, Couto MT, Resende GO, Campos de Carvalho AC, Ponte CG, Nascimento JHM. BK Ca Channel Activation Attenuates the Pathophysiological Progression of Monocrotaline-Induced Pulmonary Arterial Hypertension in Wistar Rats. Cardiovasc Drugs Ther 2021; 35:719-732. [PMID: 33245463 DOI: 10.1007/s10557-020-07115-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE In the present study, the therapeutic efficacy of a selective BKCa channel opener (compound X) in the treatment of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) was investigated. METHODS PAH was induced in male Wistar rats by a single injection of MCT. After two weeks, the MCT-treated group was divided into two groups that were either treated with compound X or vehicle. Compound X was administered daily at 28 mg/kg. Electrocardiographic, echocardiographic, and haemodynamic analyses were performed; ex vivo evaluations of pulmonary artery reactivity, right ventricle (RV) and lung histology as well as expression levels of α and β myosin heavy chain, brain natriuretic peptide, and cytokines (TNFα and IL10) in heart tissue were performed. RESULTS Pulmonary artery rings of the PAH group showed a lower vasodilatation response to acetylcholine, suggesting endothelial dysfunction. Compound X promoted strong vasodilation in pulmonary artery rings of both control and MCT-induced PAH rats. The untreated hypertensive rats presented remodelling of pulmonary arterioles associated with increased resistance to pulmonary flow; increased systolic pressure, hypertrophy and fibrosis of the RV; prolongation of the QT and Tpeak-Tend intervals (evaluated during electrocardiogram); increased lung and liver weights; and autonomic imbalance with predominance of sympathetic activity. On the other hand, treatment with compound X reduced pulmonary vascular remodelling, pulmonary flow resistance and RV hypertrophy and afterload. CONCLUSION The use of a selective and potent opener to activate the BKCa channels promoted improvement of haemodynamic parameters and consequent prevention of RV maladaptive remodelling in rats with MCT-induced PAH.
Collapse
Affiliation(s)
- Ana Paula Ferraz
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando A C Seara
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropedica, RJ, Brazil
| | - Emanuelle F Baptista
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thais S Barenco
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thais B B Sottani
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Natalia S C Souza
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ainá E Domingos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raiana A Q Barbosa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina M Takiya
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcos T Couto
- Campus Rio de Janeiro, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel O Resende
- Campus Rio de Janeiro, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Cristiano G Ponte
- Campus Rio de Janeiro, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jose Hamilton M Nascimento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
38
|
Caggiano LR, Holmes JW. A Comparison of Fiber Based Material Laws for Myocardial Scar. JOURNAL OF ELASTICITY 2021; 145:321-337. [PMID: 35095176 PMCID: PMC8797542 DOI: 10.1007/s10659-021-09845-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/10/2021] [Indexed: 06/14/2023]
Abstract
The mechanics of most soft tissues in the human body are determined by the organization of their collagen fibers. Predicting how mechanics will change during growth and remodeling of those tissues requires constitutive laws that account for the density and dispersion of collagen fibers. Post-infarction scar in the heart, a mechanically and structurally complex material, does not yet have a validated fiber-based constitutive model. In this study, we tested four different constitutive laws employing exponential or polynomial strain-energy functions and accounting for either mean fiber orientation alone or the details of the fiber distribution about that mean. We quantified the goodness of fit of each law to mechanical testing data from 6-week-old myocardial scar in the rat using both sum of squared error (SSE) and the Akaike Information Criterion (AIC) to account for differences in the number of material parameters within the constitutive laws. We then compared their ability to prospectively predict the mechanics of independent myocardial scar samples from other time points during healing. Our analysis suggests that a constitutive law with a polynomial form that incorporates detailed information about collagen fiber distribution using a structure tensor provides excellent fits with just two parameters and reasonable predictions of myocardial scar mechanics from measured structure alone in scars containing sufficiently high collagen content.
Collapse
Affiliation(s)
- Laura R. Caggiano
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey W. Holmes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
Palano G, Foinquinos A, Müllers E. In vitro Assays and Imaging Methods for Drug Discovery for Cardiac Fibrosis. Front Physiol 2021; 12:697270. [PMID: 34305651 PMCID: PMC8298031 DOI: 10.3389/fphys.2021.697270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
As a result of stress, injury, or aging, cardiac fibrosis is characterized by excessive deposition of extracellular matrix (ECM) components resulting in pathological remodeling, tissue stiffening, ventricular dilatation, and cardiac dysfunction that contribute to heart failure (HF) and eventually death. Currently, there are no effective therapies specifically targeting cardiac fibrosis, partially due to limited understanding of the pathological mechanisms and the lack of predictive in vitro models for high-throughput screening of antifibrotic compounds. The use of more relevant cell models, three-dimensional (3D) models, and coculture systems, together with high-content imaging (HCI) and machine learning (ML)-based image analysis, is expected to improve predictivity and throughput of in vitro models for cardiac fibrosis. In this review, we present an overview of available in vitro assays for cardiac fibrosis. We highlight the potential of more physiological 3D cardiac organoids and coculture systems and discuss HCI and automated artificial intelligence (AI)-based image analysis as key methods able to capture the complexity of cardiac fibrosis in vitro. As 3D and coculture models will soon be sufficiently mature for application in large-scale preclinical drug discovery, we expect the combination of more relevant models and high-content analysis to greatly increase translation from in vitro to in vivo models and facilitate the discovery of novel targets and drugs against cardiac fibrosis.
Collapse
Affiliation(s)
- Giorgia Palano
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ariana Foinquinos
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Erik Müllers
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
40
|
Tang M, Chen Y, Li B, Sugimoto H, Yang S, Yang C, LeBleu VS, McAndrews KM, Kalluri R. Therapeutic targeting of STAT3 with small interference RNAs and antisense oligonucleotides embedded exosomes in liver fibrosis. FASEB J 2021; 35:e21557. [PMID: 33855751 PMCID: PMC10851328 DOI: 10.1096/fj.202002777rr] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Hepatic fibrosis is a wound healing response that results in excessive extracellular matrix (ECM) accumulation in response to chronic hepatic injury. Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor associated with the pathogenesis of liver fibrosis. Though a promising potential therapeutic target, there are no specific drug candidates for STAT3. Exosomes are extracellular vesicles generated by all cell types with a capacity to efficiently enter cells across different biological barriers. Here, we utilize exosomes as delivery conduit to specifically target STAT3 in liver fibrosis. Exosomes derived from clinical grade fibroblast-like mesenchymal stem cells (MSCs) were engineered to carry siRNA or antisense oligonucleotide (ASO) targeting STAT3 (iExosiRNA-STAT3 or iExomASO-STAT3 ). Compared to scrambled siRNA control, siRNA-STAT3, or ASO-STAT3, iExosiRNA-STAT3 or iExomASO-STAT3 showed enhanced STAT3 targeting efficiency. iExosiRNA-STAT3 or iExomASO-STAT3 treatments suppressed STAT3 levels and ECM deposition in established liver fibrosis in mice, and significantly improved liver function. iExomASO-Stat3 restored liver function more efficiently when compared to iExosiRNA-STAT3 . Our results identify a novel anti-fibrotic approach for direct targeting of STAT3 with exosomes with immediate translational potential.
Collapse
Affiliation(s)
- Min Tang
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yang Chen
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bingrui Li
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sujuan Yang
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Changqing Yang
- Division of Gastroenterology and Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Valerie S. LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kathleen M. McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Bioengineering, Rice University, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
41
|
Brazile BL, Butler JR, Patnaik SS, Claude A, Prabhu R, Williams LN, Perez KL, Nguyen KT, Zhang G, Bajona P, Peltz M, Yang Y, Hong Y, Liao J. Biomechanical properties of acellular scar ECM during the acute to chronic stages of myocardial infarction. J Mech Behav Biomed Mater 2021; 116:104342. [PMID: 33516128 PMCID: PMC8245054 DOI: 10.1016/j.jmbbm.2021.104342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 02/08/2023]
Abstract
After myocardial infarction (MI), the infarcted tissue undergoes dynamic and time-dependent changes. Previous knowledge on MI biomechanical alterations has been obtained by studying the explanted scar tissues. In this study, we decellularized MI scar tissue and characterized the biomechanics of the obtained pure scar ECM. By thoroughly removing the cellular content in the MI scar tissue, we were able to avoid its confounding effects. Rat MI hearts were obtained from a reliable and reproducible model based on permanent left coronary artery ligation (PLCAL). MI heart explants at various time points (15 min, 1 week, 2 weeks, 4 weeks, and 12 weeks) were subjected to decellularization with 0.1% sodium dodecyl sulfate solution for ~1-2 weeks to obtain acellular scar ECM. A biaxial mechanical testing system was used to characterize the acellular scar ECM under physiologically relevant loading conditions. After decellularization, large decrease in wall thickness was observed in the native heart ECM and 15 min scar ECM, implying the collapse of cardiomyocyte lacunae after removal of heart muscle fibers. For scar ECM 1 week, 2 weeks, and 4 weeks post infarction, the decrease in wall thickness after decellularization was small. For scar ECM 12 weeks post infarction, the reduction amount of wall thickness due to decellularization was minimal. We found that the scar ECM preserved the overall mechanical anisotropy of the native ventricle wall and MI scar tissue, in which the longitudinal direction is more extensible. Acellular scar ECM from 15 min to 12 weeks post infarction showed an overall stiffening trend in biaxial behavior, in which longitudinal direction was mostly affected and manifested with a decreased extensibility and increased modulus. This reduction trend of longitudinal extensibility also led to a decreased anisotropy index in the scar ECM from the acute to chronic stages of MI. The post-MI change in biomechanical properties of the scar ECM reflected the alterations of collagen fiber network, confirmed by the histology of scar ECM. In short, the reported structure-property relationship reveals how scar ECM biophysical properties evolve from the acute to chronic stages of MI. The obtained information will help establish a knowledge basis about the dynamics of scar ECM to better understand post-MI cardiac remodeling.
Collapse
Affiliation(s)
- Bryn L Brazile
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - J Ryan Butler
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Sourav S Patnaik
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Andrew Claude
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Raj Prabhu
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Lakiesha N Williams
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, MS, 39762, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Karla L Perez
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Akron, OH, 44325, USA
| | - Pietro Bajona
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthias Peltz
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yong Yang
- Department of Biomedical Engineering, University of Northern Texas, Denton, TX, 76203, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
42
|
Pradeep L, Kokila G, Gopinathan PA, Guruswamy S, Nazir SH, Chatterjee A. Age Estimation with Cemental Annulation Using Light, Phase Contrast and Polarized Microscopy. J Microsc Ultrastruct 2021; 9:55-60. [PMID: 34350100 PMCID: PMC8291094 DOI: 10.4103/jmau.jmau_3_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/15/2020] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION In forensic science, the determination of age plays a vital role in the identification of bodies and persons associated with crimes. Teeth are frequently better conserved than any other human remains, so their use for identifying age at death is vital. The root portion of the teeth is covered by a thin calcified layer called cementum, the annulations of which is considered to be helpful in age estimation. The objective of the study was to ascertain and compare the accuracy and efficiency of age estimation between light, polarized, and phase-contrast microscopy in the ground and decalcified sections of the tooth stained with hematoxylin and eosin by light microscopy and picrosirius red (PSR) by polarized microscopy. MATERIALS AND METHODS Fifty extracted teeth were collected and stored in a solution of 10% formalin. The middle one-third portion of the root was used, later sectioned into two halves using carborundum disc. One-half of it was used to prepare ground sections, which was studied with light, polarized, and phase-contrast microscopy. The other half was decalcified with 10% formic acid, processed, and two sections of 5 -μm thickness were prepared. One was stained with PSR stain and the second section was stained with hematoxylin and eosin (H and E) stain, One was stained with PSR stain and the second section was stained with hematoxylin and eosin (H and E) stain. Statistical analysis was performed using Z-test and Karl Pearson's correlation coefficient. RESULTS No statistically significant difference was observed between actual and calculated age in the ground sections, while there was a statistically significant difference observed between actual and calculated age in decalcified sections stained with H and E and PSR. A strong positive correlation was observed between actual and calculated age by Karl Pearson correlation coefficient test. CONCLUSION Cemental annulation and phase contrast microscopy can be reliably utilized in forensic science to establishing age, especially among young and middle age group individuals.
Collapse
Affiliation(s)
- L. Pradeep
- Department of Dentistry, Sapthagiri Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India
| | - Ganganna Kokila
- Department of Oral Pathology and Microbiology, Sri Siddhartha Dental College, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, India
| | - Pillai Arun Gopinathan
- Department of Oral Pathology and Microbiology, Sri Sankara Dental College, Varkala, Akathumuri, Kerala, India
| | - Shwetha Guruswamy
- Department of Pedodontics, Faculty of Dental sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Salroo Humaira Nazir
- Department of Oral Pathology and Microbiology, Government Dental College and Hospital, Srinagar, Jammu and Kashmir, India
| | - Ananjan Chatterjee
- Department of Oral Pathology and Microbiology, Buddha Institute of Dental Sciences and Research, Patna, Bihar, India
| |
Collapse
|
43
|
Zimmermann E, Mukherjee SS, Falahkheirkhah K, Gryka MC, Kajdacsy-Balla A, Hasan W, Giraud G, Tibayan F, Raman J, Bhargava R. Detection and Quantification of Myocardial Fibrosis Using Stain-Free Infrared Spectroscopic Imaging. Arch Pathol Lab Med 2021; 145:1526-1535. [PMID: 33755723 DOI: 10.5858/arpa.2020-0635-oa] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Myocardial fibrosis underpins a number of cardiovascular conditions and is difficult to identify with standard histologic techniques. Challenges include imaging, defining an objective threshold for classifying fibrosis as mild or severe, as well as understanding the molecular basis for these changes. OBJECTIVE.— To develop a novel, rapid, label-free approach to accurately measure and quantify the extent of fibrosis in cardiac tissue using infrared spectroscopic imaging. DESIGN.— We performed infrared spectroscopic imaging and combined that with advanced machine learning-based algorithms to assess fibrosis in 15 samples from patients belonging to the following 3 classes: (1) nonpathologic (control) donor hearts; (2) patients receiving transplant; and (3) tissue from patients undergoing implantation of ventricular assist device. RESULTS.— Our results show excellent sensitivity and accuracy for detecting myocardial fibrosis as demonstrated by high area under the curve of 0.998 in the receiver-operating characteristic curve measured from infrared imaging. Fibrosis of various morphologic subtypes are then demonstrated with virtually generated picrosirius red images, which show good visual and quantitative agreement (correlation coefficient = 0.92, ρ = 7.76 × 10-15) with stained images of the same sections. Underlying molecular composition of the different subtypes were investigated with infrared spectra showing reproducible differences presumably arising from differences in collagen subtypes and/or crosslinking. CONCLUSIONS.— Infrared imaging can be a powerful tool in studying myocardial fibrosis and gleaning insights into the underlying chemical changes that accompany it. Emerging methods suggest that the proposed approach is compatible with conventional optical microscopy and its consistency makes it translatable to the clinical setting for real-time diagnoses as well as for objective and quantitative research.
Collapse
Affiliation(s)
- Eric Zimmermann
- From the Center for Developmental Health, Oregon Health & Science University, Portland (Zimmermann, Giraud, Tibayan, Raman)
| | - Sudipta S Mukherjee
- Beckman Institute for Advanced Science and Technology (Mukherjee, Falahkheirkhah, Gryka, Bhargava), University of Illinois at Urbana-Champaign, Urbana
| | - Kianoush Falahkheirkhah
- Department of Chemical and Biomolecular Engineering (Falahkheirkhah, Bhargava).,Beckman Institute for Advanced Science and Technology (Mukherjee, Falahkheirkhah, Gryka, Bhargava), University of Illinois at Urbana-Champaign, Urbana
| | - Mark C Gryka
- Department of Bioengineering (Gryka, Bhargava).,Beckman Institute for Advanced Science and Technology (Mukherjee, Falahkheirkhah, Gryka, Bhargava), University of Illinois at Urbana-Champaign, Urbana
| | - Andre Kajdacsy-Balla
- Department of Pathology (Kajdacsy-Balla), University of Illinois at Chicago, Chicago
| | - Wohaib Hasan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai, Los Angeles, California (Hasan)
| | - George Giraud
- From the Center for Developmental Health, Oregon Health & Science University, Portland (Zimmermann, Giraud, Tibayan, Raman)
| | - Fred Tibayan
- From the Center for Developmental Health, Oregon Health & Science University, Portland (Zimmermann, Giraud, Tibayan, Raman)
| | - Jai Raman
- From the Center for Developmental Health, Oregon Health & Science University, Portland (Zimmermann, Giraud, Tibayan, Raman).,The Department of Surgery, Austin & St Vincent's Hospitals, University of Melbourne, Fitzroy, Victoria, Australia (Raman)
| | - Rohit Bhargava
- Department of Chemical and Biomolecular Engineering (Falahkheirkhah, Bhargava).,Department of Bioengineering (Gryka, Bhargava).,Department of Electrical and Computer Engineering (Bhargava).,Mechanical Science and Engineering (Bhargava).,Cancer Center at Illinois (Bhargava).,Beckman Institute for Advanced Science and Technology (Mukherjee, Falahkheirkhah, Gryka, Bhargava), University of Illinois at Urbana-Champaign, Urbana
| |
Collapse
|
44
|
Greiner C, Grainger S, Farrow S, Davis A, Su JL, Saybolt MD, Wilensky R, Madden S, Sum ST. Robust quantitative assessment of collagen fibers with picrosirius red stain and linearly polarized light as demonstrated on atherosclerotic plaque samples. PLoS One 2021; 16:e0248068. [PMID: 33735190 PMCID: PMC7971522 DOI: 10.1371/journal.pone.0248068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Collagen is an important component in maintaining structural integrity and functionality of tissues and is modulated in various biological processes. Its visualization and possible quantification using histopathological stains can be important for understanding disease progression or therapeutic response. Visualization of collagen fiber with the histological stain picrosirius red (PSR) is enhanced with polarized light and quantitative analysis is possible using circular polarizers. However, linear polarizers are more commonly available and easier to optically align. The objective of the present study is to demonstrate a novel image acquisition technique and analysis method using linearly polarized light. The proposed imaging technique is based on image acquisition at multiple slide rotation angles, which are co-registered to form a composite image used for quantitative analysis by pixel intensity or pixel counting. The technique was demonstrated on multiple human coronary samples with varying histopathologies and developed specifically to analyze cap collagen in atherosclerotic plaque. Pixel counting image analysis was found to be reproducible across serial tissue sections and across different users and sufficiently sensitive to detect differences in cap structural integrity that are likely relevant to prediction of rupture risk. The benefit of slide rotation angle under linear polarization to acquire images represents a feasible and practical implementation for expanding the general utility of PSR for quantitative analysis.
Collapse
Affiliation(s)
- Cherry Greiner
- Infraredx, Bedford, Massachusetts, United States of America
| | | | | | - Alena Davis
- Cytiva, Marlborough, Massachusetts, United States of America
| | - Jimmy L Su
- Philips Healthcare, Cambridge, Massachusetts, United States of America
| | - Matthew D Saybolt
- Hackensack Meridian Jersey Shore University Medical Center, Neptune, New Jersey, United States of America
| | - Robert Wilensky
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sean Madden
- Lumicell, Newton, Massachusetts, United States of America
| | - Stephen T Sum
- Infraredx, Bedford, Massachusetts, United States of America
| |
Collapse
|
45
|
Liu J, Xu MY, Wu J, Zhang H, Yang L, Lun DX, Hu YC, Liu B. Picrosirius-Polarization Method for Collagen Fiber Detection in Tendons: A Mini-Review. Orthop Surg 2021; 13:701-707. [PMID: 33689233 PMCID: PMC8126917 DOI: 10.1111/os.12627] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/31/2022] Open
Abstract
Although the structure and composition of collagen have been studied by polarized light microscopy since the early 19th century, many studies and reviews have paid little or no attention to the morphological problems of histopathological diagnosis. The morphology of collagen fibers is critical in guiding mechanical and biological properties in both normal and pathological tendons. Highlighting the organization and spatial distribution of tendon‐containing collagen fibers can be very useful for visualizing a tendon's ultrastructure, biochemical and indirect mechanical properties, which benefits other researchers and clinicians. Picrosirius red (PSR) staining, relying on the birefringence of collagen fibers, is one of the best understood histochemical methods that can highly and specifically underline fibers better than other common staining techniques when combined with polarized light microscopy (PLM). Polarized light microscopy provides complementary information about collagen fibers, such as orientation, type and spatial distribution, which is important for a comprehensive assessment of collagen alteration in a tendon. Here, this brief review serves as a simplistic and important primer to research developments in which differential staining of collagen types by the Picrosirius‐polarization method is increasing in diverse studies of the medical field, mainly in the assessment of the morphology, spatial distribution, and content of collagen in tendons.
Collapse
Affiliation(s)
- Jie Liu
- Tianjin Medical University, Tianjin, China
| | | | - Jing Wu
- Center for Medical Device Evaluation NMPA, Beijing, China
| | | | - Li Yang
- Tianjin Hospital, Tianjin, China
| | | | | | - Bin Liu
- Center for Medical Device Evaluation NMPA, Beijing, China
| |
Collapse
|
46
|
Yang J, Song W, Li C, Fang C, Zhang Y, Wang Q, Zhang M, Qian G. Comparative study of collagen distribution in the dermis of the embryonic carapace of soft- and hard-shelled cryptodiran turtles. J Morphol 2021; 282:543-552. [PMID: 33491791 DOI: 10.1002/jmor.21327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/06/2022]
Abstract
Turtles are characterized by their typical carapace, which is primarily composed of corneous beta proteins in the horny part and collagen in the dermal part. The formation of the extracellular matrix in the dermis of the carapace in a hard-shelled and a soft-shelled turtle has been compared. The study examines carapace development, with an emphasis on collagen accumulation, in the soft-shelled turtle Pelodiscus sinensis and hard-shelled turtle Trachemys scripta elegans, using comparative morphological and embryological analyses. The histological results showed that collagen deposition in the turtle carapace increased as the embryos developed. However, significant differences were observed between the two turtle species at the developmental stages examined. The microstructure of the dermis of the carapace of P. sinensis showed light and dark banding of collagen bundles, with a higher overall collagen content, whereas the carapacial matrix of T. scripta was characterized by loosely packed and thinner collagenous fiber bundles with a lower percentage of type I collagen. Overall, the formation and distribution of collagen fibrils at specific developmental stages are different between the soft-and hard-shelled turtles. These results indicate that the pliable epidermis of the soft-shelled turtle is supported by a strong dermis that is regularly distributed with collagen and that it allows improved maneuvering, whereas a strong but inflexible epidermis as observed in case of hard-shelled turtles limits movement.
Collapse
Affiliation(s)
- Jie Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Wei Song
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Caiyan Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Chanlin Fang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yuting Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qingqing Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | | | - Guoying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
47
|
Thavapalachandran S, Grieve SM, Hume RD, Le TYL, Raguram K, Hudson JE, Pouliopoulos J, Figtree GA, Dye RP, Barry AM, Brown P, Lu J, Coffey S, Kesteven SH, Mills RJ, Rashid FN, Taran E, Kovoor P, Thomas L, Denniss AR, Kizana E, Asli NS, Xaymardan M, Feneley MP, Graham RM, Harvey RP, Chong JJH. Platelet-derived growth factor-AB improves scar mechanics and vascularity after myocardial infarction. Sci Transl Med 2021; 12:12/524/eaay2140. [PMID: 31894101 DOI: 10.1126/scitranslmed.aay2140] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
Therapies that target scar formation after myocardial infarction (MI) could prevent ensuing heart failure or death from ventricular arrhythmias. We have previously shown that recombinant human platelet-derived growth factor-AB (rhPDGF-AB) improves cardiac function in a rodent model of MI. To progress clinical translation, we evaluated rhPDGF-AB treatment in a clinically relevant porcine model of myocardial ischemia-reperfusion. Thirty-six pigs were randomized to sham procedure or balloon occlusion of the proximal left anterior descending coronary artery with 7-day intravenous infusion of rhPDGF-AB or vehicle. One month after MI, rhPDGF-AB improved survival by 40% compared with vehicle, and cardiac magnetic resonance imaging showed left ventricular (LV) ejection fraction improved by 11.5%, driven by reduced LV end-systolic volumes. Pressure volume loop analyses revealed improved myocardial contractility and energetics after rhPDGF-AB treatment with minimal effect on ventricular compliance. rhPDGF-AB enhanced angiogenesis and increased scar anisotropy (high fiber alignment) without affecting overall scar size or stiffness. rhPDGF-AB reduced inducible ventricular tachycardia by decreasing heterogeneity of the ventricular scar that provides a substrate for reentrant circuits. In summary, we demonstrated that rhPDGF-AB promotes post-MI cardiac wound repair by altering the mechanics of the infarct scar, resulting in robust cardiac functional improvement, decreased ventricular arrhythmias, and improved survival. Our findings suggest a strong translational potential for rhPDGF-AB as an adjunct to current MI treatment and possibly to modulate scar in other organs.
Collapse
Affiliation(s)
- Sujitha Thavapalachandran
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.,Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Stuart M Grieve
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Robert D Hume
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Thi Yen Loan Le
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kalyan Raguram
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Jim Pouliopoulos
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Gemma A Figtree
- Kolling Institute of Medical Research, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Rafael P Dye
- Kolling Institute of Medical Research, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Anthony M Barry
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Paula Brown
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Juntang Lu
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Sean Coffey
- Kolling Institute of Medical Research, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.,Department of Medicine, Dunedin School of Medicine, Dunedin Hospital, Dunedin 9016, New Zealand
| | - Scott H Kesteven
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Fairooj N Rashid
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Elena Taran
- Australian National Fabrication Facility-Queensland Node, The University of Queensland, St. Lucia, QLD 4072, Australia.,School of Chemical Engineering, University of Melbourne, VIC 3010, Australia
| | - Pramesh Kovoor
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Liza Thomas
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | | | - Eddy Kizana
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.,Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Naisana S Asli
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.,Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia.,Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Munira Xaymardan
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Michael P Feneley
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, Kensington, NSW 2052, Australia.,School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, NSW 2052, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia. .,Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
48
|
Zhang Y, Tian Z, Gerard D, Yao L, Shofer FS, Cs-Szabo G, Qin L, Pacifici M, Enomoto-Iwamoto M. Elevated inflammatory gene expression in intervertebral disc tissues in mice with ADAM8 inactivated. Sci Rep 2021; 11:1804. [PMID: 33469101 PMCID: PMC7815795 DOI: 10.1038/s41598-021-81495-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
We found ADAM8 enzymatic activity elevated in degenerative human intervertebral disc (IVD). Here, we examined the discs in ADAM8-inactivation mice that carry a mutation preventing self-activation of the enzyme. Surprisingly, elevated gene expression for inflammatory markers (Cxcl1, IL6) was observed in injured discs of ADAM8 mutant mice, along with elevated expression of type 2 collagen gene (Col2a1), compared with wild type controls. Injured annulus fibrosus of mutant and wild type mice contained a higher proportion of large collagen fibers compared with intact discs, as documented by microscopic examination under circular polarized light. In the intact IVDs, Adam8EQ mouse AF contained lower proportion of yellow (intermediate) fiber than WT mice. This suggests that ADAM8 may regulate inflammation and collagen fiber assembly. The seemingly contradictory findings of elevated inflammatory markers in mutant mice and excessive ADAM8 activity in human degenerative discs suggest that ADAM8 may interact with other enzymatic and pro-inflammatory processes needed for tissue maintenance and repair. As a future therapeutic intervention to retard intervertebral disc degeneration, partial inhibition of ADAM8 proteolysis may be more desirable than complete inactivation of this enzyme.
Collapse
Affiliation(s)
- Yejia Zhang
- Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
| | - Zuozhen Tian
- Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - David Gerard
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Lutian Yao
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Department of Orthopaedics/Sports Medicine and Joint Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Frances S Shofer
- Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Gabriella Cs-Szabo
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Ling Qin
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Maurizio Pacifici
- Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, USA
| | | |
Collapse
|
49
|
Sahu SP, Liu Q, Prasad A, Hasan SMA, Liu Q, Rodriguez MXB, Mukhopadhyay O, Burk D, Francis J, Mukhopadhyay S, Fu X, Gartia MR. Characterization of fibrillar collagen isoforms in infarcted mouse hearts using second harmonic generation imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:604-618. [PMID: 33520391 PMCID: PMC7818962 DOI: 10.1364/boe.410347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
We utilized collagen specific second harmonic generation (SHG) signatures coupled with correlative immunofluorescence imaging techniques to characterize collagen structural isoforms (type I and type III) in a murine model of myocardial infarction (MI). Tissue samples were imaged over a four week period using SHG, transmitted light microscopy and immunofluorescence imaging using fluorescently-labeled collagen antibodies. The post-mortem cardiac tissue imaging using SHG demonstrated a progressive increase in collagen deposition in the left ventricle (LV) post-MI. We were able to monitor structural morphology and LV remodeling parameters in terms of extent of LV dilation, stiffness and fiber dimensions in the infarcted myocardium.
Collapse
Affiliation(s)
- Sushant P Sahu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Qianglin Liu
- LSU AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Alisha Prasad
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Syed Mohammad Abid Hasan
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Qun Liu
- Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | - David Burk
- Shared Instrumentation Facility and Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Joseph Francis
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Supratik Mukhopadhyay
- Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xing Fu
- LSU AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
50
|
Pizzi GLBL, Valente ALS, Rechsteiner SMEF, Bruhn FRP, Cruz LAX, Silva PM, Barbosa AA, Ribeiro PF, Martins CF. Macroscopic and Histological Morphology of the Equine Digital Cushion and Its Association with Subcutaneous Fat Thickness. J Equine Vet Sci 2020; 95:103283. [PMID: 33276921 DOI: 10.1016/j.jevs.2020.103283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/29/2022]
Abstract
This study evaluated the influence of the Body Condition Score (BCS) and subcutaneous fat thickness on the tissue composition of the digital cushion in horses. Sixty mixed breeds of Criollo horses (21 males and 39 females) were sent for slaughter. All animals were submitted to BCS analysis, through visual antemortem evaluation, and then ultrasound evaluation to estimate the subcutaneous fat thickness. Macroscopic analyses of the thoracic and a pelvic limb (weight, volume, and density of the hooves and digital cushions) were performed. In addition, measurements of the area of internal structures to the hoof and histological analyzes were carried out to measure the areas of adipose, fibroelastic, and collagen fibers of the digital cushion. There were no macroscopic differences in the digital cushion between thoracic and pelvic limbs or between genders (P > .05). Likewise, the histological characteristics between the limbs and the genders were similar (P > .05). There was no correlation between the weight, volume, and density of the digital cushion with the BCS (P > .05). A positive correlation was observed with the area of adipose tissue (P = .038, R2 = 0.28) and a negative correlation with area of fibroelastic tissue (P = .005, R2 = -0.37) and collagen fibers (P = .003, R2 = -0.39). In conclusion, the adipose tissue, fibroelastic tissue, and collagen fibers of equine digital cushion alter their areas in the functions of the various subcutaneous fat patterns in horses.
Collapse
Affiliation(s)
- Gino L B L Pizzi
- Programa de Pós-Graduação em Zootecnia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ana L S Valente
- Departamento de Morfologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Sandra M E F Rechsteiner
- Departamento de Morfologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fabio R P Bruhn
- Departamento de Veterinária Preventiva, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luís A X Cruz
- Departamento de Morfologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Paula M Silva
- Programa de Pós-Graduação em Zootecnia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Antônio A Barbosa
- Departamento de Clínicas Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Priscila F Ribeiro
- Programa de Pós-Graduação em Zootecnia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Charles F Martins
- Departamento de Clínicas Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|