1
|
Abe J, Chau K, Mojiri A, Wang G, Oikawa M, Samanthapudi VSK, Osborn AM, Ostos-Mendoza KC, Mariscal-Reyes KN, Mathur T, Jain A, Herrmann J, Yusuf SW, Krishnan S, Deswal A, Lin SH, Kotla S, Cooke JP, Le NT. Impacts of Radiation on Metabolism and Vascular Cell Senescence. Antioxid Redox Signal 2025. [PMID: 40233257 DOI: 10.1089/ars.2024.0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Significance: This review investigates how radiation therapy (RT) increases the risk of delayed cardiovascular disease (CVD) in cancer survivors. Understanding the mechanisms underlying radiation-induced CVD is essential for developing targeted therapies to mitigate these effects and improve long-term outcomes for patients with cancer. Recent Advances: Recent studies have primarily focused on metabolic alterations induced by irradiation in various cancer cell types. However, there remains a significant knowledge gap regarding the role of chronic metabolic alterations in normal cells, particularly vascular cells, in the progression of CVD after RT. Critical Issues: This review centers on RT-induced metabolic alterations in vascular cells and their contribution to senescence accumulation and chronic inflammation across the vasculature post-RT. We discuss key metabolic pathways, including glycolysis, the tricarboxylic acid cycle, lipid metabolism, glutamine metabolism, and redox metabolism (nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADP+)/NADPH). We further explore the roles of regulatory proteins such as p53, adenosine monophosphate-activated protein kinase, and mammalian target of rapamycin in driving these metabolic dysregulations. The review emphasizes the impact of immune-vascular crosstalk mediated by the senescence-associated secretory phenotype, which perpetuates metabolic dysfunction, enhances chronic inflammation, drives senescence accumulation, and causes vascular damage, ultimately contributing to cardiovascular pathogenesis. Future Directions: Future research should prioritize identifying therapeutic targets within these metabolic pathways or the immune-vascular interactions influenced by RT. Correcting metabolic dysfunction and reducing chronic inflammation through targeted therapies could significantly improve cardiovascular outcomes in cancer survivors. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Junichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khanh Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anahita Mojiri
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Venkata S K Samanthapudi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abigail M Osborn
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Tammay Mathur
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Abhishek Jain
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
2
|
Rahim M, Bednarski TK, Hasenour CM, Banerjee DR, Trenary I, Young JD. Simultaneous in vivo multi-organ fluxomics reveals divergent metabolic adaptations in liver, heart, and skeletal muscle during obesity. Cell Rep 2025; 44:115591. [PMID: 40244853 DOI: 10.1016/j.celrep.2025.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/23/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
We present an isotope-based metabolic flux analysis (MFA) approach to simultaneously quantify metabolic fluxes in the liver, heart, and skeletal muscle of individual mice. The platform was scaled to examine metabolic flux adaptations in age-matched cohorts of mice exhibiting varying levels of chronic obesity. We found that severe obesity increases hepatic gluconeogenesis and citric acid cycle flux, accompanied by elevated glucose oxidation in the heart that compensates for impaired fatty acid oxidation. In contrast, skeletal muscle fluxes exhibit an overall reduction in substrate oxidation. These findings demonstrate the dichotomy in fuel utilization between cardiac and skeletal muscle during worsening metabolic disease and demonstrate the divergent effects of obesity on metabolic fluxes in different organs. This multi-tissue MFA technology can be extended to address important questions about in vivo regulation of metabolism and its dysregulation in disease, which cannot be fully answered through studies of single organs or isolated cells/tissues.
Collapse
Affiliation(s)
- Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Tomasz K Bednarski
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Clinton M Hasenour
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Deveena R Banerjee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Leven AS, Wagner N, Nienaber S, Messiha D, Tasdogan A, Ugurel S. Changes in tumor and cardiac metabolism upon immune checkpoint. Basic Res Cardiol 2025; 120:133-152. [PMID: 39658699 PMCID: PMC11790718 DOI: 10.1007/s00395-024-01092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Cardiovascular disease and cancer are the leading causes of death in the Western world. The associated risk factors are increased by smoking, hypertension, diabetes, sedentary lifestyle, aging, unbalanced diet, and alcohol consumption. Therefore, the study of cellular metabolism has become of increasing importance, with current research focusing on the alterations and adjustments of the metabolism of cancer patients. This may also affect the efficacy and tolerability of anti-cancer therapies such as immune-checkpoint inhibition (ICI). This review will focus on metabolic adaptations and their consequences for various cell types, including cancer cells, cardiac myocytes, and immune cells. Focusing on ICI, we illustrate how anti-cancer therapies interact with metabolism. In addition to the desired tumor response, we highlight that ICI can also lead to a variety of side effects that may impact metabolism or vice versa. With regard to the cardiovascular system, ICI-induced cardiotoxicity is increasingly recognized as one of the most life-threatening adverse events with a mortality of up to 50%. As such, significant efforts are being made to assess the specific interactions and associated metabolic changes associated with ICIs to improve both efficacy and management of side effects.
Collapse
Affiliation(s)
- Anna-Sophia Leven
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Natalie Wagner
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stephan Nienaber
- Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Daniel Messiha
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Centre, University of Duisburg-Essen, Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
- National Center for Tumor Diseases (NCT)-West, Campus Essen, and Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
- National Center for Tumor Diseases (NCT)-West, Campus Essen, and Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
DeLuca S, Strash N, Chen Y, Patsy M, Myers A, Tejeda L, Broders S, Miranda A, Jiang X, Bursac N. Engineered Cardiac Tissues as a Platform for CRISPR-Based Mitogen Discovery. Adv Healthc Mater 2025; 14:e2402201. [PMID: 39508305 PMCID: PMC11695184 DOI: 10.1002/adhm.202402201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/23/2024] [Indexed: 11/15/2024]
Abstract
Improved understanding of cardiomyocyte (CM) cell cycle regulation may allow researchers to stimulate pro-regenerative effects in injured hearts or promote maturation of human stem cell-derived CMs. Gene therapies, in particular, hold promise to induce controlled proliferation of endogenous or transplanted CMs via transient activation of mitogenic processes. Methods to identify and characterize candidate cardiac mitogens in vitro can accelerate translational efforts and contribute to the understanding of the complex regulatory landscape of CM proliferation and postnatal maturation. In this study, A CRISPR knockout-based screening strategy using in vitro neonatal rat ventricular myocyte (NRVM) monolayers is established, followed by candidate mitogen validation in mature 3-D engineered cardiac tissues (ECTs). This screen identified knockout of the purine metabolism enzyme adenosine deaminase (ADA-KO) as an effective pro-mitogenic stimulus. RNA-sequencing of ECTs further reveals increased pentose phosphate pathway (PPP) activity as the primary driver of ADA-KO-induced CM cycling. Inhibition of the pathway's rate limiting enzyme, glucose-6-phosphate dehydrogenase (G6PD), prevented ADA-KO induced CM cycling, while increasing PPP activity via G6PD overexpression increased CM cycling. Together, this study demonstrates the development and application of a genetic/tissue engineering platform for in vitro discovery and validation of new candidate mitogens affecting regenerative or maturation states of cardiomyocytes.
Collapse
Affiliation(s)
- Sophia DeLuca
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Nicholas Strash
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | | | | | | | | | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
5
|
Ou Z, Yang L, Xu M, Weng X, Xu G. Identification of the serum metabolomic profile for acute ischemic preconditioning in athletes. Front Physiol 2024; 15:1492202. [PMID: 39568544 PMCID: PMC11576439 DOI: 10.3389/fphys.2024.1492202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Purpose In recent years, ischemic preconditioning (IPC) has emerged as an effective strategy to increase tissue resistance against long-term ischemic damage and has been increasingly integrated into exercise regimens. However, further research is needed to explore the impact of IPC-mediated metabolic alterations from an exercise standpoint to conduct a comprehensive exploration of metabolic alterations and their exercise-related mechanisms during acute IPC. Methods Nontarget metabolomics was performed on blood samples obtained from 8 male athletes both before and after IPC. The studies included the identification of differentially abundant metabolites, analysis of receiver operating characteristic (ROC) curves, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for differentially abundant metabolites, and metabolite set enrichment analysis (MSEA). Results Nineteen differentially abundant metabolites were identified, with increasing levels of five metabolites, such as O-desmethyltramadol and D-gluconate, whereas 14 metabolites, including 9-hydroxy-10e, 12z-octadecadienoic acid (9-HODE), tetradione, 2-hexenal, (2,4-dichlorophenoxy)acetic acid (2,4-D), and phosphatidylserine (PS), decreased. ROC curve analysis revealed an AUC of 0.9375 for D-gluconate. Both KEGG enrichment analysis and MSEA revealed enrichment in the pentose phosphate pathway (PPP). Conclusion This study revealed that PPP, D-gluconate, O-desmethyltramadol, and D-2-aminobutyric acid could be upregulated within 5 min after acute IPC, whereas 2,4-D, PS, 9-HODE, 2-hexenal, and tetradinone could be downregulated. These identified metabolites show promise for improving physical functional status and could be harnessed to enhance athletic performance.
Collapse
Affiliation(s)
- Ziyue Ou
- College of Martial Arts, Guangzhou Sport University, Guangzhou, China
| | - Liang Yang
- College of Martial Arts, Guangzhou Sport University, Guangzhou, China
| | - Mingxin Xu
- The Fifth College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiquan Weng
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China
| | - Guoqin Xu
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China
| |
Collapse
|
6
|
Carvalho RA. The glycolytic pathway to heart failure. GLYCOLYSIS 2024:235-266. [DOI: 10.1016/b978-0-323-91704-9.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Zhang Y, Feng Y, Chen F, Yu J, Liu X, Liu Y, Ouyang J, Liang M, Zhu Y, Zou L. Insight into the mechanisms of therapeutic hypothermia for asphyxia cardiac arrest using a comprehensive approach of GC-MS/MS and UPLC-Q-TOF-MS/MS based on serum metabolomics. Heliyon 2023; 9:e16247. [PMID: 37274716 PMCID: PMC10238693 DOI: 10.1016/j.heliyon.2023.e16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Cardiac arrest (CA) is a severe worldwide health problem. Therapeutic hypothermia is widely used to reduce the cardiac injury and improve the neurological outcomes after CA. However, a few studies have reported the changes of serum metabolic characteristics after CA. The healthy male New Zealand Rabbits successfully resuscitated from 10-min asphyxia-induced CA were divided randomly into the normothermia (NT) group and mild therapeutic hypothermia (HT) group. The sham group underwent sham-operation. Survival was recorded and neurological deficit score (NDS) was assessed. The serum non-targeted metabolomics were detected using ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) and gas chromatography tandem mass spectrometry (GC-MS/MS) at 15 min, 3 h, 6 h and 24 h after return of spontaneous circulation (ROSC). Our study showed that the heart rate (HR) significantly slowed down during 0.5-6 h post ROSC, consistent with the decreasing trend of body temperature in the HT group. Compared with the NT group, the levels of Lac and PCO2 at 24 h post ROSC were lower, while a significant increase in PO2 level at 24 h post ROSC was observed in the HT group. The survival rate of the HT group was significantly higher than that of the NT group, and NDS scores were remarkably increased at 24 h post ROSC in the NT group. Significant differences in metabolic profiles at 15 min, 3 h, 6 h and 24 h post ROSC were observed among the Sham, NT and HT groups. The differential metabolites detected by UPLC-Q-TOF-MS/MS and GC-MS/MS were screened for further study between every two groups (NT vs sham, HT vs sham and HT vs NT) at 15 min, 3 h, 6 h and 24 h post ROSC. Phenylalanine metabolism, alanine, aspartate and glutamate metabolism and tricarboxylic acid (TCA) cycle were enriched in NT vs sham, HT vs sham and HT vs NT respectively. Our study demonstrated that therapeutic hypothermia improves the survival and neurological outcomes in rabbit model of cardiac arrest, and firstly represents the dynamic metabolic changes in the hypothermia therapy for CA by comprehensive UPLC-Q-TOF-MS/MS- and GC-MS/MS-based metabolomics.
Collapse
Affiliation(s)
- Yiyuan Zhang
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial Key Laboratory of Molecular Epidemiology, Changsha, Hunan, China
| | - Yang Feng
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial Key Laboratory of Molecular Epidemiology, Changsha, Hunan, China
- Department of Emergency Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Fang Chen
- Hunan Provincial People's Hospital, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabolomics,Changsha, Hunan, China
| | - Jiang Yu
- Hunan Provincial People's Hospital, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabolomics,Changsha, Hunan, China
| | - Xiehong Liu
- Hunan Provincial People's Hospital, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabolomics,Changsha, Hunan, China
| | - Yanjuan Liu
- Hunan Provincial People's Hospital, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabolomics,Changsha, Hunan, China
| | - Jielin Ouyang
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial Key Laboratory of Molecular Epidemiology, Changsha, Hunan, China
- Department of Emergency Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Mingyu Liang
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial Key Laboratory of Molecular Epidemiology, Changsha, Hunan, China
- Department of Emergency Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yiming Zhu
- Hunan Provincial People's Hospital, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabolomics,Changsha, Hunan, China
| | - Lianhong Zou
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial Key Laboratory of Molecular Epidemiology, Changsha, Hunan, China
| |
Collapse
|
8
|
Kadir AA, Stubbs BJ, Chong C, Lee H, Cole M, Carr C, Hauton D, McCullagh J, Evans RD, Clarke K. On the interdependence of ketone body oxidation, glycogen content, glycolysis and energy metabolism in the heart. J Physiol 2023; 601:1207-1224. [PMID: 36799478 PMCID: PMC10684314 DOI: 10.1113/jp284270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
In heart, glucose and glycolysis are important for anaplerosis and potentially therefore for d-β-hydroxybutyrate (βHB) oxidation. As a glucose store, glycogen may also furnish anaplerosis. We determined the effects of glycogen content on βHB oxidation and glycolytic rates, and their downstream effects on energetics, in the isolated rat heart. High glycogen (HG) and low glycogen (LG) containing hearts were perfused with 11 mM [5-3 H]glucose and/or 4 mM [14 C]βHB to measure glycolytic rates or βHB oxidation, respectively, then freeze-clamped for glycogen and metabolomic analyses. Free cytosolic [NAD+ ]/[NADH] and mitochondrial [Q+ ]/[QH2 ] ratios were estimated using the lactate dehydrogenase and succinate dehydrogenase reaction, respectively. Phosphocreatine (PCr) and inorganic phosphate (Pi ) concentrations were measured using 31 P-nuclear magnetic resonance spectroscopy. Rates of βHB oxidation in LG hearts were half that in HG hearts, with βHB oxidation directly proportional to glycogen content. βHB oxidation decreased glycolysis in all hearts. Glycogenolysis in glycogen-replete hearts perfused with βHB alone was twice that of hearts perfused with βHB and glucose, which had significantly higher levels of the glycolytic intermediates fructose 1,6-bisphosphate and 3-phosphoglycerate, and higher free cytosolic [NAD+ ]/[NADH]. βHB oxidation increased the Krebs cycle intermediates citrate, 2-oxoglutarate and succinate, the total NADP/H pool, reduced mitochondrial [Q+ ]/[QH2 ], and increased the calculated free energy of ATP hydrolysis (∆GATP ). Although βHB oxidation inhibited glycolysis, glycolytic intermediates were not depleted, and cytosolic free NAD remained oxidised. βHB oxidation alone increased Krebs cycle intermediates, reduced mitochondrial Q and increased ∆GATP . We conclude that glycogen facilitates cardiac βHB oxidation by anaplerosis. KEY POINTS: Ketone bodies (d-β-hydroxybutyrate, acetoacetate) are increasingly recognised as important cardiac energetic substrates, in both healthy and diseased hearts. As 2-carbon equivalents they are cataplerotic, causing depletion of Krebs cycle intermediates; therefore their utilisation requires anaplerotic supplementation, and intra-myocardial glycogen has been suggested as a potential anaplerotic source during ketone oxidation. It is demonstrated here that cardiac glycogen does indeed provide anaplerotic substrate to facilitate β-hydroxybutyrate oxidation in isolated perfused rat heart, and this contribution was quantified using a novel pulse-chase metabolic approach. Further, using metabolomics and 31 P-MR, it was shown that glycolytic flux from myocardial glycogen increased the heart's ability to oxidise βHB, and βHB oxidation increased the mitochondrial redox potential, ultimately increasing the free energy of ATP hydrolysis.
Collapse
Affiliation(s)
- Azrul Abdul Kadir
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | | | - Cher‐Rin Chong
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
| | - Henry Lee
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Mark Cole
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Carolyn Carr
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - David Hauton
- Department of ChemistryUniversity of OxfordOxfordUK
| | | | - Rhys D. Evans
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Kieran Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Emanuelli G, Zoccarato A, Reumiller CM, Papadopoulos A, Chong M, Rebs S, Betteridge K, Beretta M, Streckfuss-Bömeke K, Shah AM. A roadmap for the characterization of energy metabolism in human cardiomyocytes derived from induced pluripotent stem cells. J Mol Cell Cardiol 2022; 164:136-147. [PMID: 34923199 DOI: 10.1016/j.yjmcc.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 01/16/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are an increasingly employed model in cardiac research and drug discovery. As cellular metabolism plays an integral role in determining phenotype, the characterization of the metabolic profile of hiPSC-CM during maturation is crucial for their translational application. In this study we employ a combination of methods including extracellular flux, 13C-glucose enrichment and targeted metabolomics to characterize the metabolic profile of hiPSC-CM during their maturation in culture from 6 weeks, up to 12 weeks. Results show a progressive remodeling of pathways involved in energy metabolism and substrate utilization along with an increase in sarcomere regularity. The oxidative capacity of hiPSC-CM and particularly their ability to utilize fatty acids increased with time. In parallel, relative glucose oxidation was reduced while glutamine oxidation was maintained at similar levels. There was also evidence of increased coupling of glycolysis to mitochondrial respiration, and away from glycolytic branch pathways at later stages of maturation. The rate of glycolysis as assessed by lactate production was maintained at both stages but with significant alterations in proximal glycolytic enzymes such as hexokinase and phosphofructokinase. We observed a progressive maturation of mitochondrial oxidative capacity at comparable levels of mitochondrial content between these time-points with enhancement of mitochondrial network structure. These results show that the metabolic profile of hiPSC-CM is progressively restructured, recapitulating aspects of early post-natal heart development. This would be particularly important to consider when employing these cell model in studies where metabolism plays an important role.
Collapse
Affiliation(s)
- Giulia Emanuelli
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom; Clinic for Cardiology and Pneumonology, University Medical Center Göttingen, Germany and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Anna Zoccarato
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom.
| | - Christina M Reumiller
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Angelos Papadopoulos
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Mei Chong
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Sabine Rebs
- Clinic for Cardiology and Pneumonology, University Medical Center Göttingen, Germany and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Kai Betteridge
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Matteo Beretta
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology and Pneumonology, University Medical Center Göttingen, Germany and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom.
| |
Collapse
|
10
|
Jin ES, Lee MH, Malloy CR. 13 C NMR of glutamate for monitoring the pentose phosphate pathway in myocardium. NMR IN BIOMEDICINE 2021; 34:e4533. [PMID: 33900680 DOI: 10.1002/nbm.4533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
After administration of 13 C-labeled glucose, the activity of the pentose phosphate pathway (PPP) is often assessed by the distribution of 13 C in lactate. However, in some tissues, such as the well-oxygenated heart, the concentration of lactate may be too low for convenient analysis by NMR. Here, we examined 13 C-labeled glutamate as an alternative biomarker of the PPP in the heart. Isolated rat hearts were perfused with media containing [2,3-13 C2 ]glucose and the tissue extracts were analyzed. Metabolism of [2,3-13 C2 ]glucose yields [1,2-13 C2 ]pyruvate via glycolysis and [2,3-13 C2 ]pyruvate via the PPP. Pyruvate is in exchange with lactate or is further metabolized to glutamate through pyruvate dehydrogenase and the TCA cycle. A doublet from [4,5-13 C2 ]glutamate, indicating flux through the PPP, was readily detected in 13 C NMR of heart extracts even when the corresponding doublet from [2,3-13 C2 ]lactate was minimal. Benfotiamine, known to induce the PPP, caused an increase in production of [4,5-13 C2 ]glutamate. In rats receiving [2,3-13 C2 ]glucose, brain extracts showed well-resolved signals from both [2,3-13 C2 ]lactate and [4,5-13 C2 ]glutamate in 13 C NMR spectra. Assessment of the PPP in the brain based on glutamate had a strong linear correlation with lactate-based assessment. In summary, 13 C NMR analysis of glutamate enabled detection of the low PPP activity in isolated hearts. This analyte is an alternative to lactate for monitoring the PPP with the use of [2,3-13 C2 ]glucose.
Collapse
Affiliation(s)
- Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Min H Lee
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- VA North Texas Health Care System, Dallas, Texas, USA
| |
Collapse
|
11
|
Cao Z, Wang T, Xia W, Zhu B, Tian M, Zhao R, Guan D. A Pilot Metabolomic Study on Myocardial Injury Caused by Chronic Alcohol Consumption-Alcoholic Cardiomyopathy. Molecules 2021; 26:2177. [PMID: 33918931 PMCID: PMC8070378 DOI: 10.3390/molecules26082177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023] Open
Abstract
Chronic alcohol consumption leads to myocardial injury, ventricle dilation, and cardiac dysfunction, which is defined as alcoholic cardiomyopathy (ACM). To explore the induced myocardial injury and underlying mechanism of ACM, the Liber-DeCarli liquid diet was used to establish an animal model of ACM and histopathology, echocardiography, molecular biology, and metabolomics were employed. Hematoxylin-eosin and Masson's trichrome staining revealed disordered myocardial structure and local fibrosis in the ACM group. Echocardiography revealed thinning wall and dilation of the left ventricle and decreased cardiac function in the ACM group, with increased serum levels of brain natriuretic peptide (BNP) and expression of myocardial BNP mRNA measured through enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (PCR), respectively. Through metabolomic analysis of myocardium specimens, 297 differentially expressed metabolites were identified which were involved in KEGG pathways related to the biosynthesis of unsaturated fatty acids, vitamin digestion and absorption, oxidative phosphorylation, pentose phosphate, and purine and pyrimidine metabolism. The present study demonstrated chronic alcohol consumption caused disordered cardiomyocyte structure, thinning and dilation of the left ventricle, and decreased cardiac function. Metabolomic analysis of myocardium specimens and KEGG enrichment analysis further demonstrated that several differentially expressed metabolites and pathways were involved in the ACM group, which suggests potential causes of myocardial injury due to chronic alcohol exposure and provides insight for further research elucidating the underlying mechanisms of ACM.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Z.C.); (T.W.); (B.Z.); (M.T.)
| | - Tianqi Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Z.C.); (T.W.); (B.Z.); (M.T.)
| | - Wei Xia
- Department of Forensic Toxicological Analysis, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
| | - Baoli Zhu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Z.C.); (T.W.); (B.Z.); (M.T.)
| | - Meihui Tian
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Z.C.); (T.W.); (B.Z.); (M.T.)
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Z.C.); (T.W.); (B.Z.); (M.T.)
| | - Dawei Guan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Z.C.); (T.W.); (B.Z.); (M.T.)
| |
Collapse
|
12
|
Dittrich A, Hansen K, Simonsen MIT, Busk M, Alstrup AKO, Lauridsen H. Intrinsic Heart Regeneration in Adult Vertebrates May be Strictly Limited to Low-Metabolic Ectotherms. Bioessays 2020; 42:e2000054. [PMID: 32914411 DOI: 10.1002/bies.202000054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/12/2020] [Indexed: 01/24/2023]
Abstract
The heart has a high-metabolic rate, and its "around-the-clock" vital role to sustain life sets it apart in a regenerative setting from other organs and appendages. The landscape of vertebrate species known to perform intrinsic heart regeneration is strongly biased toward ectotherms-for example, fish, salamanders, and embryonic/neonatal ectothermic mammals. It is hypothesized that intrinsic heart regeneration is exclusively limited to the low-metabolic hearts of ectotherms. The biomedical field of regenerative medicine seeks to devise biologically inspired regenerative therapies to diseased human hearts. Falsification of the ectothermy dependency for heart regeneration hypothesis may be a crucial prerequisite to meaningfully seek inspiration in established ectothermic regenerative animal models. Otherwise, engineering approaches to construct artificial heart components may constitute a more viable path toward regenerative therapies. A more strict definition of regenerative phenomena is generated and several testable sub-hypotheses and experimental avenues are put forward to elucidate the link between heart regeneration and metabolism. Also see the video abstract here https://youtu.be/fZcanaOT5z8.
Collapse
Affiliation(s)
- Anita Dittrich
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark
| | - Kasper Hansen
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark.,Department of Forensic Medicine, Aarhus University, Aarhus N, 8200, Denmark.,Department of Biology (Zoophysiology), Aarhus University, Aarhus C, 8000, Denmark.,Leicester Royal Infirmary (East Midlands Forensic Pathology Unit), University of Leicester, Leicester, LE2 7LX, UK
| | | | - Morten Busk
- Department of Oncology (Experimental Clinical Oncology), Aarhus University Hospital, Aarhus N, 8200, Denmark.,Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | | | - Henrik Lauridsen
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark
| |
Collapse
|
13
|
Xu W, Li L, Zhang L. NAD + Metabolism as an Emerging Therapeutic Target for Cardiovascular Diseases Associated With Sudden Cardiac Death. Front Physiol 2020; 11:901. [PMID: 32903597 PMCID: PMC7438569 DOI: 10.3389/fphys.2020.00901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to its central role in mediating oxidation reduction in fuel metabolism and bioenergetics, nicotinamide adenine dinucleotide (NAD+) has emerged as a vital co-substrate for a number of proteins involved in diverse cellular processes, including sirtuins, poly(ADP-ribose) polymerases and cyclic ADP-ribose synthetases. The connection with aging and age-associated diseases has led to a new wave of research in the cardiovascular field. Here, we review the basics of NAD+ homeostasis, the molecular physiology and new advances in ischemic-reperfusion injury, heart failure, and arrhythmias, all of which are associated with increased risks for sudden cardiac death. Finally, we summarize the progress of NAD+-boosting therapy in human cardiovascular diseases and the challenges for future studies.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Le Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
14
|
Noree C, Begovich K, Samilo D, Broyer R, Monfort E, Wilhelm JE. A quantitative screen for metabolic enzyme structures reveals patterns of assembly across the yeast metabolic network. Mol Biol Cell 2019; 30:2721-2736. [PMID: 31483745 PMCID: PMC6761767 DOI: 10.1091/mbc.e19-04-0224] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Despite the proliferation of proteins that can form filaments or phase-separated condensates, it remains unclear how this behavior is distributed over biological networks. We have found that 60 of the 440 yeast metabolic enzymes robustly form structures, including 10 that assemble within mitochondria. Additionally, the ability to assemble is enriched at branch points on several metabolic pathways. The assembly of enzymes at the first branch point in de novo purine biosynthesis is coordinated, hierarchical, and based on their position within the pathway, while the enzymes at the second branch point are recruited to RNA stress granules. Consistent with distinct classes of structures being deployed at different control points in a pathway, we find that the first enzyme in the pathway, PRPP synthetase, forms evolutionarily conserved filaments that are sequestered in the nucleus in higher eukaryotes. These findings provide a roadmap for identifying additional conserved features of metabolic regulation by condensates/filaments.
Collapse
Affiliation(s)
- Chalongrat Noree
- Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543.,Institute of Molecular Biosciences, Mahidol University, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Kyle Begovich
- Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Dane Samilo
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Risa Broyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Elena Monfort
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - James E Wilhelm
- Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
15
|
Chhabra A, Mishra S, Kumar G, Gupta A, Keshri GK, Bharti B, Meena RN, Prabhakar AK, Singh DK, Bhargava K, Sharma M. Glucose-6-phosphate dehydrogenase is critical for suppression of cardiac hypertrophy by H 2S. Cell Death Discov 2018; 4:6. [PMID: 29531803 PMCID: PMC5841415 DOI: 10.1038/s41420-017-0010-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Hydrogen Sulfide (H2S), recently identified as the third endogenously produced gaseous messenger, is a promising therapeutic prospect for multiple cardio-pathological states, including myocardial hypertrophy. The molecular niche of H2S in normal or diseased cardiac cells is, however, sparsely understood. Here, we show that β-adrenergic receptor (β-AR) overstimulation, known to produce hypertrophic effects in cardiomyocytes, rapidly decreased endogenous H2S levels. The preservation of intracellular H2S levels under these conditions strongly suppressed hypertrophic responses to adrenergic overstimulation, thus suggesting its intrinsic role in this process. Interestingly, unbiased global transcriptome sequencing analysis revealed an integrated metabolic circuitry, centrally linked by NADPH homeostasis, as the direct target of intracellular H2S augmentation. Within these gene networks, glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme (producing NADPH) in pentose phosphate pathway, emerged as the critical node regulating cellular effects of H2S. Utilizing both cellular and animal model systems, we show that H2S-induced elevated G6PD activity is critical for the suppression of cardiac hypertrophy in response to adrenergic overstimulation. We also describe experimental evidences suggesting multiple processes/pathways involved in regulation of G6PD activity, sustained over extended duration of time, in response to endogenous H2S augmentation. Our data, thus, revealed H2S as a critical endogenous regulator of cardiac metabolic circuitry, and also mechanistic basis for its anti-hypertrophic effects.
Collapse
Affiliation(s)
- Aastha Chhabra
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Shalini Mishra
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Gaurav Kumar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Asheesh Gupta
- Biochemical Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Gaurav Kumar Keshri
- Biochemical Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Brij Bharti
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Ram Niwas Meena
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Amit Kumar Prabhakar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | | | - Kalpana Bhargava
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Manish Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| |
Collapse
|
16
|
Nedvedova I, Kolar D, Elsnicova B, Hornikova D, Novotny J, Kalous M, Pravenec M, Neckar J, Kolar F, Zurmanova JM. Mitochondrial genome modulates myocardial Akt/Glut/HK salvage pathway in spontaneously hypertensive rats adapted to chronic hypoxia. Physiol Genomics 2018; 50:532-541. [PMID: 29676955 DOI: 10.1152/physiolgenomics.00040.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently we have shown that adaptation to continuous normobaric hypoxia (CNH) decreases myocardial ischemia/reperfusion injury in spontaneously hypertensive rats (SHR) and in a conplastic strain (SHR-mtBN). The protective effect was stronger in the latter group characterized by a selective replacement of the SHR mitochondrial genome with that of a more ischemia-resistant Brown Norway strain. The aim of the present study was to examine the possible involvement of the hypoxia inducible factor (HIF)-dependent pathway of the protein kinase B/glucose transporters/hexokinase (Akt/GLUT/HK) in this mitochondrial genome-related difference of the cardioprotective phenotype. Adult male rats were exposed for 3 wk to CNH ([Formula: see text] 0.1). The expression of dominant isoforms of Akt, GLUT, and HK in left ventricular myocardium was determined by real-time RT-PCR and Western blotting. Subcellular localization of GLUTs was assessed by quantitative immunofluorescence. Whereas adaptation to hypoxia markedly upregulated protein expression of HK2, GLUT1, and GLUT4 in both rat strains, Akt2 protein level was significantly increased in SHR-mtBN only. Interestingly, a higher content of HK2 was revealed in the sarcoplasmic reticulum-enriched fraction in SHR-mtBN after CNH. The increased activity of HK determined in the mitochondrial fraction after CNH in both strains suggested an increase of HK association with mitochondria. Interestingly, HIF1a mRNA increased and HIF2a mRNA decreased after CNH, the former effect being more pronounced in SHR-mtBN than in SHR. Pleiotropic effects of upregulated Akt2 along with HK translocation to mitochondria and mitochondria-associated membranes can potentially contribute to a stronger CNH-afforded cardioprotection in SHR-mtBN compared with progenitor SHR.
Collapse
Affiliation(s)
- Iveta Nedvedova
- Department of Physiology, Faculty of Science, Charles University , Prague , Czech Republic
| | - David Kolar
- Department of Physiology, Faculty of Science, Charles University , Prague , Czech Republic
| | - Barbara Elsnicova
- Department of Physiology, Faculty of Science, Charles University , Prague , Czech Republic
| | - Daniela Hornikova
- Department of Physiology, Faculty of Science, Charles University , Prague , Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University , Prague , Czech Republic
| | - Martin Kalous
- Department of Physiology, Faculty of Science, Charles University , Prague , Czech Republic
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Jan Neckar
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Frantisek Kolar
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Jitka M Zurmanova
- Department of Physiology, Faculty of Science, Charles University , Prague , Czech Republic
| |
Collapse
|
17
|
Tsipis A, Athanassiadou AM, Petrou E, Miliopoulos D, Athanassiadou P, Kavantzas N, Athanassopoulos G. From cell to heart: the impact of the cell organelles dysfunction on heart disease. J Cardiovasc Med (Hagerstown) 2018; 19:131-140. [PMID: 29489739 DOI: 10.2459/jcm.0000000000000628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
: Cellular morphology reflects biologic behavior and activity of the tissue and of the organ also reflects the genetic and molecular biology of the cells themselves. This intermediary position places examination of the cell in a key role to our understanding of the innumerable processes that affect this closely knit chain, from molecules to host. A large volume of the cell is occupied by organelles that come in a variety of shapes and sizes. Organelles are dynamic to maintain homeostasis and adjust to the various functions of the cell. The cardiovascular system is metabolically very active and is therefore particularly vulnerable to defects of the cellular substructures, such as the mitochondrial respiratory chain. Given the functional complexity of the cardiovascular system, it is not surprising that defects in cell organelles produce diverse clinical manifestations. Organelle dysfunction is being recognized as the basis of a wide variety of heart diseases. In this review, the authors discuss the relationship between organelle structure and function in myocardial cells and how these organelles have been linked to the cardiovascular diseases.
Collapse
Affiliation(s)
- Angelos Tsipis
- Cytology Unit, Department of Pathology, University of Athens.,Department of Cardiology, Onassis Cardiac Surgery Center
| | | | | | | | | | | | | |
Collapse
|
18
|
Integration of flux measurements to resolve changes in anabolic and catabolic metabolism in cardiac myocytes. Biochem J 2017; 474:2785-2801. [PMID: 28706006 PMCID: PMC5545928 DOI: 10.1042/bcj20170474] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
Although ancillary pathways of glucose metabolism are critical for synthesizing cellular building blocks and modulating stress responses, how they are regulated remains unclear. In the present study, we used radiometric glycolysis assays, [13C6]-glucose isotope tracing, and extracellular flux analysis to understand how phosphofructokinase (PFK)-mediated changes in glycolysis regulate glucose carbon partitioning into catabolic and anabolic pathways. Expression of kinase-deficient or phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in rat neonatal cardiomyocytes co-ordinately regulated glycolytic rate and lactate production. Nevertheless, in all groups, >40% of glucose consumed by the cells was unaccounted for via catabolism to pyruvate, which suggests entry of glucose carbons into ancillary pathways branching from metabolites formed in the preparatory phase of glycolysis. Analysis of 13C fractional enrichment patterns suggests that PFK activity regulates glucose carbon incorporation directly into the ribose and the glycerol moieties of purines and phospholipids, respectively. Pyrimidines, UDP-N-acetylhexosamine, and the fatty acyl chains of phosphatidylinositol and triglycerides showed lower 13C incorporation under conditions of high PFK activity; the isotopologue 13C enrichment pattern of each metabolite indicated limitations in mitochondria-engendered aspartate, acetyl CoA and fatty acids. Consistent with this notion, high glycolytic rate diminished mitochondrial activity and the coupling of glycolysis to glucose oxidation. These findings suggest that a major portion of intracellular glucose in cardiac myocytes is apportioned for ancillary biosynthetic reactions and that PFK co-ordinates the activities of the pentose phosphate, hexosamine biosynthetic, and glycerolipid synthesis pathways by directly modulating glycolytic intermediate entry into auxiliary glucose metabolism pathways and by indirectly regulating mitochondrial cataplerosis.
Collapse
|
19
|
Luteolin-7-diglucuronide attenuates isoproterenol-induced myocardial injury and fibrosis in mice. Acta Pharmacol Sin 2017; 38:331-341. [PMID: 28112175 DOI: 10.1038/aps.2016.142] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022]
Abstract
Myocardial injury and ensuing fibrotic alterations impair normal heart architecture and cause cardiac dysfunction. Oxidative stress has been recognized as a key player in the pathogenesis of cardiac injury and progression of cardiac dysfunction, and promoting fibrosis. In the current study we investigated whether luteolin-7-diglucuronide (L7DG), a naturally occurring antioxidant found in edible plants, could attenuate isoproterenol (ISO)-induced myocardial injury and fibrosis in mice and the underlying mechanisms. Myocardial injury and fibrosis were induced in mice via injection of ISO (5 mg·kg-1·d-1, ip) for 5 or 10 d. Two treatment regimens (pretreatment and posttreatment) were employed to administer L7DG (5-40 mg·kg-1·d-1, ip) into the mice. After the mice were euthanized, morphological examinations of heart sections revealed that both L7DG pretreatment and posttreatment regimens significantly attenuated ISO-induced myocardial injury and fibrosis. But the pretreatment regimen caused better protection against ISO-induced myocardial fibrosis than the posttreatment regimen. Furthermore, L7DG pretreatment blocked ISO-stimulated expression of the genes (Cyba, Cybb, Ncf1, Ncf4 and Rac2) encoding the enzymatic subunits of NADPH oxidase, which was the primary source of oxidant production in mammalian cells. Moreover, L7DG pretreatment significantly suppressed ISO-stimulated expression of collagen genes Col1a1, Col1a2, Col3a1, and Col12a1 and non-collagen extracellular matrix genes fibrillin-1, elastin, collagen triple helix repeat containing 1 and connective tissue growth factor. In addition, L7DG pretreatment almost reversed ISO-altered expression of microRNAs that were crosstalking with TGFβ-mediated fibrosis, including miR-29c-3p, miR-29c-5p, miR-30c-3p, miR-30c-5p and miR-21. The current study demonstrated for the first time that L7DG is pharmacologically effective in protecting the heart against developing ISO-induced injury and fibrosis, justifying further evaluation of L7DG as a cardioprotective agent to treat related cardiovascular diseases.
Collapse
|
20
|
Deddens JC, Sadeghi AH, Hjortnaes J, van Laake LW, Buijsrogge M, Doevendans PA, Khademhosseini A, Sluijter JPG. Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models. Adv Healthc Mater 2017; 6. [PMID: 27906521 DOI: 10.1002/adhm.201600571] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/07/2016] [Indexed: 12/11/2022]
Abstract
Cardiac remodeling is critical for effective tissue healing, however, excessive production and deposition of extracellular matrix components contribute to scarring and failing of the heart. Despite the fact that novel therapies have emerged, there are still no lifelong solutions for this problem. An urgent need exists to improve the understanding of adverse cardiac remodeling in order to develop new therapeutic interventions that will prevent, reverse, or regenerate the fibrotic changes in the failing heart. With recent advances in both disease biology and cardiac tissue engineering, the translation of fundamental laboratory research toward the treatment of chronic heart failure patients becomes a more realistic option. Here, the current understanding of cardiac fibrosis and the great potential of tissue engineering are presented. Approaches using hydrogel-based tissue engineered heart constructs are discussed to contemplate key challenges for modeling tissue engineered cardiac fibrosis and to provide a future outlook for preclinical and clinical applications.
Collapse
Affiliation(s)
- Janine C. Deddens
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Netherlands Heart Institute (ICIN); 3584CX Utrecht The Netherlands
| | - Amir Hossein Sadeghi
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Department of Cardiothoracic Surgery; Division Heart and Lungs; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Biomaterials Innovation Research Center; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Harvard-MIT Division of Health Sciences & Technology; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery; Division Heart and Lungs; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| | - Linda W. van Laake
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| | - Marc Buijsrogge
- Department of Cardiothoracic Surgery; Division Heart and Lungs; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Netherlands Heart Institute (ICIN); 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Harvard-MIT Division of Health Sciences & Technology; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
- Department of Physics; King Abdulaziz University; Jeddah 21569 Saudi Arabia
| | - Joost P. G. Sluijter
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Netherlands Heart Institute (ICIN); 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| |
Collapse
|
21
|
Weingärtner S, Meßner NM, Budjan J, Loßnitzer D, Mattler U, Papavassiliu T, Zöllner FG, Schad LR. Myocardial T 1-mapping at 3T using saturation-recovery: reference values, precision and comparison with MOLLI. J Cardiovasc Magn Reson 2016; 18:84. [PMID: 27855705 PMCID: PMC5114738 DOI: 10.1186/s12968-016-0302-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myocardial T1-mapping recently emerged as a promising quantitative method for non-invasive tissue characterization in numerous cardiomyopathies. Commonly performed with an inversion-recovery (IR) magnetization preparation at 1.5T, the application at 3T has gained due to increased quantification precision. Alternatively, saturation-recovery (SR) T1-mapping has recently been introduced at 1.5T for improved accuracy. Thus, the purpose of this study is to investigate the robustness and precision of SR T1-mapping at 3T and to establish accurate reference values for native T1-times and extracellular volume fraction (ECV) of healthy myocardium. METHODS Balanced Steady-State Free-Precession (bSSFP) Saturation-Pulse Prepared Heart-rate independent Inversion-REcovery (SAPPHIRE) and Saturation-recovery Single-SHot Acquisition (SASHA) T1-mapping were compared with the Modified Look-Locker inversion recovery (MOLLI) sequence at 3T. Accuracy and precision were studied in phantom. Native and post-contrast T1-times and regional ECV were determined in 20 healthy subjects (10 men, 27 ± 5 years). Subjective image quality, susceptibility artifact rating, in-vivo precision and reproducibility were analyzed. RESULTS SR T1-mapping showed <4 % deviation from the spin-echo reference in phantom in the range of T1 = 100-2300 ms. The average quality and artifact scores of the T1-mapping methods were: MOLLI:3.4/3.6, SAPPHIRE:3.1/3.4, SASHA:2.9/3.2; (1: poor - 4: excellent/1: strong - 4: none). SAPPHIRE and SASHA yielded significantly higher T1-times (SAPPHIRE: 1578 ± 42 ms, SASHA: 1523 ± 46 ms), in-vivo T1-time variation (SAPPHIRE: 60.1 ± 8.7 ms, SASHA: 70.0 ± 9.3 ms) and lower ECV-values (SAPPHIRE: 0.20 ± 0.02, SASHA: 0.21 ± 0.03) compared with MOLLI (T1: 1181 ± 47 ms, ECV: 0.26 ± 0.03, Precision: 53.7 ± 8.1 ms). No significant difference was found in the inter-subject variability of T1-times or ECV-values (T1: p = 0.90, ECV: p = 0.78), the observer agreement (inter: p > 0.19; intra: p > 0.09) or consistency (inter: p > 0.07; intra: p > 0.17) between the three methods. CONCLUSIONS Saturation-recovery T1-mapping at 3T yields higher accuracy, comparable inter-subject, inter- and intra-observer variability and less than 30 % precision-loss compared to MOLLI.
Collapse
Affiliation(s)
- Sebastian Weingärtner
- Computer Assisted Clinical Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN USA
| | - Nadja M. Meßner
- Computer Assisted Clinical Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- DZHK (German Centre for Cardiovascular Research) partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Johannes Budjan
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Loßnitzer
- 1st Department of Medicine Cardiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Uwe Mattler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Theano Papavassiliu
- DZHK (German Centre for Cardiovascular Research) partner site Heidelberg/Mannheim, Mannheim, Germany
- 1st Department of Medicine Cardiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G. Zöllner
- Computer Assisted Clinical Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Lothar R. Schad
- Computer Assisted Clinical Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
22
|
Role of ROS Production and Turnover in the Antioxidant Activity of Taurine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:581-96. [PMID: 25833529 DOI: 10.1007/978-3-319-15126-7_47] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 2014; 90:927-63. [PMID: 25243985 PMCID: PMC4470864 DOI: 10.1111/brv.12140] [Citation(s) in RCA: 921] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/07/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite infections, neurons, stem cell potency and cancer metabolism.
Collapse
Affiliation(s)
- Anna Stincone
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Alessandro Prigione
- Max Delbrueck Centre for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Thorsten Cramer
- Department of Gastroenterology and Hepatology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mirjam M C Wamelink
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Centre Amsterdam, De Boelelaaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Eric Cheung
- Cancer Research UK, Beatson Institute, Switchback Road, Glasgow G61 1BD, U.K
| | - Viridiana Olin-Sandoval
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Nana-Maria Grüning
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Antje Krüger
- Max Planck Institute for Molecular Genetics, Ihnestr 73, 14195 Berlin, Germany
| | - Mohammad Tauqeer Alam
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Markus A Keller
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Michael Breitenbach
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cancer Research UK Cambridge Research Institute (CRI), Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, U.K
| | - Joshua D Rabinowitz
- Department of Chemistry, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, 08544 NJ, U.S.A
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Division of Physiology and Metabolism, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7, U.K
| |
Collapse
|
24
|
Abstract
Pentose phosphate (PP) pathway, which is ubiquitously present in all living organisms, is one of the major metabolic pathways associated with glucose metabolism. The most important functions of this pathway includes the generation of reducing equivalents in the form of NADPH for reductive biosynthesis, and production of ribose sugars for the biosynthesis of nucleotides, amino acids, and other macromolecules required by all living cells. Under normal conditions of growth, PP pathway is important for cell cycle progression, myelin formation, and the maintenance of the structure and function of brain, liver, cortex and other organs. Under diseased conditions, such as in cases of many metabolic, neurological or malignant diseases, pathological mechanisms augment due to defects in the PP pathway genes. Adoption of alternative metabolic pathways by cells that are metabolically abnormal, or malignant cells that are resistant to chemotherapeutic drugs often plays important roles in disease progression and severity. Accordingly, the PP pathway has been suggested to play critical roles in protecting cancer or abnormal cells by providing reduced environment, to protect cells from oxidative damage and generating structural components for nucleic acids biosynthesis. Novel drugs that targets one or more components of the PP pathway could potentially serve to overcome challenges associated with currently available therapeutic options for many metabolic and non-metabolic diseases. However, careful designing of drugs is critical that takes into the accounts of cell’s broader genomic, proteomic and metabolic contexts under consideration, in order to avoid undesirable side-effects. In this review, we discuss the role of PP pathway under normal and abnormal physiological conditions and the potential of the PP pathway as a target for new drug development to treat metabolic and non-metabolic diseases.
Collapse
|
25
|
Zhu MJ, Wang YP, Xie SY, Liu WH, Li B, Wang YX, Wang H, Zhang BL. Protective effects of Jiashen Prescription () on myocardial infarction in rats. Chin J Integr Med 2014; 21:417-22. [PMID: 24817316 DOI: 10.1007/s11655-014-1751-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the effects of Jiashen Prescription (, JSP) on myocardial infarction (MI) size and cardiac function at the early stage of MI in rats. METHODS One hundred male Sprague-Dawley rats were subjected to sham-operation or MI induced by ligating the left anterior descending coronary artery. The rats with MI were treated with vehicle, JSP 3 and 6 g/(kg·d), or losartan 10 mg/(kg·d) for 1 week. RESULTS Compared with the vehicle-treated MI rats, 6 g/(kg·d) JSP reduced MI size 3 days after MI (P<0.05), and attenuated the MI-induced increases in left ventricular end-diastolic and end-systolic dimension and decreases in fractional shortening and ejection fraction 1 week after MI (P<0.05). In addition, 6 g/(kg·d) JSP and losartan were equally effective in reducing MI size and enhancing cardiac functional recovery. CONCLUSION JSP reduces MI size and improves cardiac function after MI, suggesting that JSP has potential as a therapy for MI.
Collapse
Affiliation(s)
- Ming-Jun Zhu
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ho HY, Cheng ML, Chiu DTY. Glucose-6-phosphate dehydrogenase--beyond the realm of red cell biology. Free Radic Res 2014; 48:1028-48. [PMID: 24720642 DOI: 10.3109/10715762.2014.913788] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is critical to the maintenance of NADPH pool and redox homeostasis. Conventionally, G6PD deficiency has been associated with hemolytic disorders. Most biochemical variants were identified and characterized at molecular level. Recently, a number of studies have shone light on the roles of G6PD in aspects of physiology other than erythrocytic pathophysiology. G6PD deficiency alters the redox homeostasis, and affects dysfunctional cell growth and signaling, anomalous embryonic development, and altered susceptibility to infection. The present article gives a brief review of basic science and clinical findings about G6PD, and covers the latest development in the field. Moreover, how G6PD status alters the susceptibility of the affected individuals to certain degenerative diseases is also discussed.
Collapse
Affiliation(s)
- H-Y Ho
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Kwei-san, Tao-yuan , Taiwan
| | | | | |
Collapse
|
27
|
Thompson J, Neutel J, Homer K, Tempero K, Shah A, Khankari R. Evaluation of D-ribose pharmacokinetics, dose proportionality, food effect, and pharmacodynamics after oral solution administration in healthy male and female subjects. J Clin Pharmacol 2013; 54:546-54. [DOI: 10.1002/jcph.241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/20/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Jeff Thompson
- RiboCor, Inc.; 7077 Northland Circle North Suite 100 Minneapolis MN 55428 USA
| | - Joel Neutel
- Orange County Research Center; 14351 Myford Road Suite B Tustin CA 92780 USA
| | - Ken Homer
- Integrium, LLC; 100 E. Hanover Avenue Suite 401 Cedar Knolls NJ 07927 USA
| | - Ken Tempero
- KTC, Inc.; 1901 Lake Road Wayzata MN 55391 USA
| | - Ajit Shah
- Ajit Pharma LLC; 9671 LaForet Drive Eden Prairie MN 55347 USA
| | - Raj Khankari
- RiboCor, Inc.; 7077 Northland Circle North Suite 100 Minneapolis MN 55428 USA
| |
Collapse
|
28
|
Kolwicz SC, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 2013; 113:603-16. [PMID: 23948585 DOI: 10.1161/circresaha.113.302095] [Citation(s) in RCA: 573] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP-producing and non-ATP-producing end points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies used as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | | |
Collapse
|
29
|
zur Nedden S, Doney AS, Frenguelli BG. Modulation of intracellular ATP determines adenosine release and functional outcome in response to metabolic stress in rat hippocampal slices and cerebellar granule cells. J Neurochem 2013; 128:111-24. [PMID: 23937448 DOI: 10.1111/jnc.12397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 11/24/2022]
Abstract
Cerebral ischaemia rapidly depletes cellular ATP. Whilst this deprives brain tissue of a valuable energy source, the concomitant production of adenosine mitigates the damaging effects of energy failure by suppressing neuronal activity. However, the production of adenosine and other metabolites, and their loss across the blood-brain barrier, deprives the brain of substrates for the purine salvage pathway, the primary means by which the brain makes ATP. Because of this, cerebral ATP levels remain depressed after brain injury. To test whether manipulating cellular ATP levels in brain tissue could affect functional neuronal outcomes in response to oxygen/glucose deprivation (OGD), we examined the effects of creatine and d-ribose and adenine (RibAde). In hippocampal slices creatine delayed ATP breakdown, reduced adenosine release, retarded both the depression of synaptic transmission and the anoxic depolarization caused by OGD, and improved the recovery of transmission. In contrast, RibAde increased cellular ATP, caused increased OGD-induced adenosine release and accelerated the depression of synaptic transmission, but did not improve functional recovery. However, RibAde improved the viability of cerebellar granule cells when administered after OGD. Our data indicate that RibAde may be effective in promoting recovery of brain tissue after injury, potentially via enhancement of salvage-mediated ATP production.
Collapse
|
30
|
Addis P, Shecterle LM, St Cyr JA. Cellular protection during oxidative stress: a potential role for D-ribose and antioxidants. J Diet Suppl 2012; 9:178-82. [PMID: 22891990 DOI: 10.3109/19390211.2012.708715] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A healthy cellular system involves the maintenance of an intracellular metabolic balance. Reactive oxygen species (ROS) are constantly produced as a normal product of cellular metabolism; however, during situations of cellular stress, these levels can increase dramatically with the potential to cause deleterious cellular structural and/or functional consequences. There is a significant elevation in these ROS following stressful situations, such as ischemia, hypoxia, high-intensity exercise, and in many diseases. To combat these ROS, neutralizing endogenous enzymes, as well as exogenous antioxidants, can aid in minimizing their potential untoward cellular effects. Exogenous reducing antioxidant agents, such as vitamin C and/or E, play a role in addressing these formed species; however, recent research has suggested that fruit seed extracts may provide additional cellular benefits beyond their antioxidant features. Furthermore, supplemental D-ribose enhances the recovery of high-energy phosphates following stress and appears to potentially offer additional benefits by reducing radical formation. Specifically, during periods of hypoxia/ischemia, supplemental D-ribose may play an inhibitory role in the breakdown of adenine nucleotides, influencing the subsequent formation of xanthine and uric acid compounds; and thereby affecting the release of superoxide anion radicals. The combination of D-ribose with reducing antioxidants may provide a more optimal state of cellular protection during and following times of oxidative stress.
Collapse
Affiliation(s)
- Paul Addis
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
31
|
Rawat DK, Hecker P, Watanabe M, Chettimada S, Levy RJ, Okada T, Edwards JG, Gupte SA. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function. PLoS One 2012; 7:e45365. [PMID: 23071515 PMCID: PMC3465299 DOI: 10.1371/journal.pone.0045365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 08/21/2012] [Indexed: 11/27/2022] Open
Abstract
We recently demonstrated that a 17-ketosteroid, epiandrosterone, attenuates L-type Ca2+ currents (ICa-L) in cardiac myocytes and inhibits myocardial contractility. Because 17-ketosteroids are known to inhibit glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, and to reduce intracellular NADPH levels, we hypothesized that inhibition of G6PD could be a novel signaling mechanism which inhibit ICa-L and, therefore, cardiac contractile function. We tested this idea by examining myocardial function in isolated hearts and Ca2+ channel activity in isolated cardiac myocytes. Myocardial function was tested in Langendorff perfused hearts and ICa-L were recorded in the whole-cell patch configuration by applying double pulses from a holding potential of −80 mV and then normalized to the peak amplitudes of control currents. 6-Aminonicotinamide, a competitive inhibitor of G6PD, increased pCO2 and decreased pH. Additionally, 6-aminonicotinamide inhibited G6PD activity, reduced NADPH levels, attenuated peak ICa-L amplitudes, and decreased left ventricular developed pressure and ±dp/dt. Finally, dialyzing NADPH into cells from the patch pipette solution attenuated the suppression of ICa-L by 6-aminonicotinamide. Likewise, in G6PD-deficient mice, G6PD insufficiency in the heart decreased GSH-to-GSSG ratio, superoxide, cholesterol and acetyl CoA. In these mice, M-mode echocardiographic findings showed increased diastolic volume and end-diastolic diameter without changes in the fraction shortening. Taken together, these findings suggest that inhibiting G6PD activity and reducing NADPH levels alters metabolism and leads to inhibition of L-type Ca2+ channel activity. Notably, this pathway may be involved in modulating myocardial contractility under physiological and pathophysiological conditions during which the pentose phosphate pathway-derived NADPH redox is modulated (e.g., ischemia-reperfusion and heart failure).
Collapse
Affiliation(s)
- Dhwajbahadur K Rawat
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Srivastava RK, Maiti SK, Das D, Bapat PM, Batta K, Bhushan M, Wangikar PP. Metabolic flexibility of d-ribose producer strain of Bacillus pumilus under environmental perturbations. ACTA ACUST UNITED AC 2012; 39:1227-43. [DOI: 10.1007/s10295-012-1115-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 02/27/2012] [Indexed: 02/07/2023]
Abstract
Abstract
The metabolic reaction rate vector is a bridge that links gene and protein expression alterations to the phenotypic endpoint. We present a simple approach for the estimation of flux distribution at key branch points in the metabolic network by using substrate uptake, metabolite secretion rate, and biomass growth rate for transketolase (tkt) deficient Bacillus pumilus ATCC 21951. We find that the glucose-6-phosphate (G6P) and pseudo catabolic/anabolic branch points are flexible in the d-ribose-producing tkt deficient strain of B. pumilus. The normalized flux through the pentose phosphate pathway (PPP) varied from 1.5 to 86 % under different growth conditions, thereby enabling substantial extracellular accumulation of d-ribose under certain conditions. Interestingly, the flux through PPP was affected by the extracellular phosphate concentration and dissolved oxygen concentration. This metabolic flexibility may have been the underlying reason for this strain being selected from thousands of others in a screening for d-ribose producers conducted in the 1970s.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- grid.417971.d 0000000121987527 Department of Biosciences and Bioengineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Soumen K Maiti
- grid.417971.d 0000000121987527 Department of Chemical Engineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Debasish Das
- grid.417971.d 0000000121987527 Department of Chemical Engineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Prashant M Bapat
- grid.417971.d 0000000121987527 Department of Chemical Engineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
- grid.5170.3 0000000121818870 Center for Mikrobiel Bioteknologi, BioCentrum-DTU Danmarks Tekniske Universitet Bygning 223 2800 Kgs. Lyngby Denmark
| | - Kritika Batta
- grid.417971.d 0000000121987527 Department of Chemical Engineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Mani Bhushan
- grid.417971.d 0000000121987527 Department of Chemical Engineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Pramod P Wangikar
- grid.417971.d 0000000121987527 Department of Chemical Engineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| |
Collapse
|
33
|
Marina Prendes MG, Hermann R, Torresin ME, Souto P, Tallis S, Savino EA, Varela A. Involvement of energetic metabolism in the effects of ischemic postconditioning on the ischemic-reperfused heart of fed and fasted rats. J Physiol Sci 2011; 61:303-12. [PMID: 21547611 PMCID: PMC10717561 DOI: 10.1007/s12576-011-0152-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/08/2011] [Indexed: 01/20/2023]
Abstract
The effects of ischemic-postconditioning (IPOC) on functional recovery and cell viability of ischemic-reperfused hearts from fed and fasted rats were studied in relation to triacylglycerol and glycogen mobilization, ATP content, glucose-6-phosphate dehydrogenase activity and reduced/oxidized glutathione (GSH/GSSG). Oxidative damage was estimated by measuring thiobarbituric acid reactive substances (TBARS). IPOC improved contractile recovery and cell viability in the fed but attenuated them in the fasted hearts. In both groups ischemia lowered glycogen. IPOC further reduced it. Triacylglycerol remained unchanged during ischemia-reperfusion in both groups, but triacylglycerol mobilization was activated by IPOC in the fasted group. ATP was increased by IPOC in the fed hearts, but lowered in the fasted ones, which appeared to be associated with the rates of ATP synthesis in isolated mitochondria. In the fed hearts IPOC raised glucose-6-phosphate dehydrogenase activity and GSH/GSSG, and lowered TBARS. These results suggest that IPOC effects are associated with changes in the ATP supply, mobilization of energy sources and glutathione antioxidant ratio.
Collapse
Affiliation(s)
- M. G. Marina Prendes
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - R. Hermann
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - M. E. Torresin
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - P. Souto
- Physiopathology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - S. Tallis
- Physiopathology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - E. A. Savino
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - A. Varela
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Buenos Aires, Argentina
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, University of Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| |
Collapse
|
34
|
Sanzen Y, Ito M, Ohta Y, Yoshida Y, Kawada T, Sato H, Yamamoto T, Nakazawa M. Functional proteomic analysis of experimental autoimmune myocarditis-induced chronic heart failure in the rat. Biol Pharm Bull 2010; 33:477-86. [PMID: 20190413 DOI: 10.1248/bpb.33.477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental autoimmune myocarditis (EAM)-induced heart failure in rats is used to study the pathogenesis of heart failure. Based on a proteomic analysis of soluble (S) and membranous (M) fractions extracted from ventricles of rats with a stable chronic form of EAM-induced heart failure, we assessed changes in protein levels and their correlation to heart functions to gain insights into the pathogenesis and to explore new targets for the treatment of heart failure. Proteins were separated by two-dimensional gel electrophoresis and silver stained spots were analyzed. In the S-fraction, 274+/-3 spots were detected in the normal (N)-group and 273+/-6 in the heart failure (HF)-group. In the HF-group, 26 of the spots were increased and 15 were decreased in intensity. In the M-fraction, 277+/-3 spots were detected in the N-group and 277+/-2 in the HF-group, with 20 spots increased and 10 decreased in intensity. We analyzed relationships between the expression of these proteins and 11 parameters of heart function, and found all the significantly changed spots to correlate with at least one of the parameters. We analyzed 49 spots that correlated with over 9 parameters of heart function using mass spectrometry, and identified 15 as proteins with increased expression including glucose regulated protein (GRP)78, an endoplasmic-stress related protein, and heat shock protein (HSP)90beta, a molecular chaperone, and 4 spots as proteins with decreased expression. It is suggested that in the heart failure model, GRP78 and HSP90beta play a role in the protection or deterioration of the heart and may be new targets for treatment.
Collapse
Affiliation(s)
- Yoshiki Sanzen
- Department of Medical Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Fang T, Chen X, Li N, Song H, Bai J, Xiong J, Ying H. Optimization of medium components for D-ribose production by transketolase-deficient Bacillus subtilis NJT-1507. KOREAN J CHEM ENG 2010. [DOI: 10.1007/s11814-010-0288-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Serpillon S, Floyd BC, Gupte RS, George S, Kozicky M, Neito V, Recchia F, Stanley W, Wolin MS, Gupte SA. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH. Am J Physiol Heart Circ Physiol 2009; 297:H153-62. [PMID: 19429815 DOI: 10.1152/ajpheart.01142.2008] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increased oxidative stress is a known cause of cardiac dysfunction in animals and patients with diabetes, but the sources of reactive oxygen species [e.g., superoxide anion (O(2)(-))] and the mechanisms underlying O(2)(-) production in diabetic hearts are not clearly understood. Our aim was to determine whether NADPH oxidase (Nox) is a source of O(2)(-) and whether glucose-6-phosphate dehydrogenase (G6PD)-derived NADPH plays a role in augmenting O(2)(-) generation in diabetes. We assessed cardiac function, Nox and G6PD activities, NADPH levels, and the activities of antioxidant enzymes in heart homogenates from young (9-11 wk old) Zucker lean and obese (fa/fa) rats. We found that myocardial G6PD activity was significantly higher in fa/fa than in lean rats, whereas superoxide dismutase and glutathione peroxidase activities were decreased (P < 0.05). O(2)(-) levels were elevated (70-90%; P < 0.05) in the diabetic heart, and this elevation was blocked by the Nox inhibitor gp-91(ds-tat) (50 microM) or by the mitochondrial respiratory chain inhibitors antimycin (10 microM) and rotenone (50 microM). Inhibition of G6PD by 6-aminonicotinamide (5 mM) and dihydroepiandrosterone (100 microM) also reduced (P < 0.05) O(2)(-) production. Notably, the activities of Nox and G6PD in the fa/fa rat heart were inhibited by chelerythrine, a protein kinase C inhibitor. Although we detected no changes in stroke volume, cardiac output, or ejection fraction, left ventricular diameter was slightly increased during diastole and systole, and left ventricular posterior wall thickness was decreased during systole (P < 0.05) in Zucker fa/fa rats. Our findings suggest that in a model of severe hyperlipidema and hyperglycemia Nox-derived O(2)(-) generation in the myocardium is fueled by elevated levels of G6PD-derived NADPH. Similar mechanisms were found to activate O(2)(-) production and induce endothelial dysfunction in aorta. Thus G6PD may be a useful therapeutic target for treating the cardiovascular disease associated with type 2 diabetes, if second-generation drugs specifically reducing the activity of G6PD to near normal levels are developed.
Collapse
Affiliation(s)
- Sabrina Serpillon
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Srivastava RK, Jaiswal R, Panda D, Wangikar PP. Megacell phenotype and its relation to metabolic alterations in transketolase deficient strain ofBacillus pumilus. Biotechnol Bioeng 2009; 102:1387-97. [DOI: 10.1002/bit.22184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Johnson AN, Burnett LA, Sellin J, Paululat A, Newfeld SJ. Defective decapentaplegic signaling results in heart overgrowth and reduced cardiac output in Drosophila. Genetics 2007; 176:1609-24. [PMID: 17507674 PMCID: PMC1931542 DOI: 10.1534/genetics.107.073569] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During germ-band extension, Decapentaplegic (Dpp) signals from the dorsal ectoderm to maintain Tinman (Tin) expression in the underlying mesoderm. This signal specifies the cardiac field, and homologous genes (BMP2/4 and Nkx2.5) perform this function in mammals. We showed previously that a second Dpp signal from the dorsal ectoderm restricts the number of pericardial cells expressing the transcription factor Zfh1. Here we report that, via Zfh1, the second Dpp signal restricts the number of Odd-skipped-expressing and the number of Tin-expressing pericardial cells. Dpp also represses Tin expression independently of Zfh1, implicating a feed-forward mechanism in the regulation of Tin pericardial cell number. In the adjacent dorsal muscles, Dpp has the opposite effect. Dpp maintains Krüppel and Even-skipped expression required for muscle development. Our data show that Dpp refines the cardiac field by limiting the number of pericardial cells. This maintains the boundary between pericardial and dorsal muscle cells and defines the size of the heart. In the absence of the second Dpp signal, pericardial cells overgrow and this significantly reduces larval cardiac output. Our study suggests the existence of a second round of BMP signaling in mammalian heart development and that perhaps defects in this signal play a role in congenital heart defects.
Collapse
Affiliation(s)
- Aaron N Johnson
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| | | | | | | | | |
Collapse
|
39
|
Thirunavukkarasu M, Penumathsa SV, Juhasz B, Zhan L, Cordis G, Altaf E, Bagchi M, Bagchi D, Maulik N. Niacin-bound chromium enhances myocardial protection from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2006; 291:H820-6. [PMID: 16840737 DOI: 10.1152/ajpheart.00134.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel niacin-bound, chromium-based energy formula (EF; InterHealth Nutraceuticals, Benicia, CA) has been developed in conjunction with D-ribose, caffeine, ashwagandha extract (containing 5% withanolides), and selected amino acids. We have assessed the efficacy of oral administration of EF (40 mg x kg body wt(-1) x day(-1)) in male and female rats over a period of 90 consecutive days on the cardiovascular and pathophysiological functions in an isolated rat heart model. After 30, 60, and 90 days of treatment with EF, the hearts of male and female rats were subjected to 30 min of global ischemia followed by 2 h of reperfusion and were measured for myocardial ATP, creatine phosphate (CP), phosphorylated AMP kinase (p-AMPK), and heat shock proteins. Myocardial ATP and CP levels were increased in both male and female rats after EF treatment compared with the controls. Western blot analyses were performed to quantify the expression of stress-related proteins such as heat shock proteins (HSP-70, -32, and -25) and are found to be increased in both male and female rats after EF treatment. The p-AMPK level, which is a sensor for the energy state in various cell types, was also found to be increased after treatment with EF in both male and female rats. Aortic flow, maximum first derivative of developed pressure, left ventricular developed pressure, and infarct size were observed after ischemia-reperfusion and found to be significantly improved in EF-treated rats compared with control animals. Thus EF demonstrated long-term safety as well as exhibiting significant cardioprotective ability during ischemia and reperfusion injury by increased energy production, improved cardiac function, and reduced infarct size.
Collapse
Affiliation(s)
- Mahesh Thirunavukkarasu
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-1110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Joseph J, Ranganathan S, Mehta JL. Low density lipoproteins modulate collagen metabolism in fibroblasts. J Cardiovasc Pharmacol Ther 2003; 8:161-6. [PMID: 12808489 DOI: 10.1177/107424840300800209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High levels of low-density lipoprotein are associated with atherosclerosis, and myocardial and arterial remodeling. We postulated that low-density lipoprotein influences collagen synthesis and degradation in fibroblasts as a potential mechanism of tissue remodeling. Incubation of cultured human skin fibroblasts with low-density lipoproteins resulted in a time-dependent and dose-dependent increase in the secretion of matrix metalloproteinase activity measured by gelatin zymography. Western blot analysis showed a concomitant increase in matrix metalloproteinase-1 protein. Northern blot analysis demonstrated an increase in collagen I messenger RNA after treatment with low-density lipoprotein. The matrix metalloproteinase-1 secretory response of fibroblasts to low-density lipoprotein was attenuated by heparin, which inhibits low-density lipoprotein uptake through the low-density lipoprotein-receptor. These observations suggest that low-density lipoprotein has a regulatory effect on collagen metabolism in fibroblasts.
Collapse
Affiliation(s)
- Jacob Joseph
- Department of Internal Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205, USA.
| | | | | |
Collapse
|
41
|
Maki T, Nasa Y, Tanonaka K, Takahashi M, Takeo S. Beneficial effects of sampatrilat, a novel vasopeptidase inhibitor, on cardiac remodeling and function of rats with chronic heart failure following left coronary artery ligation. J Pharmacol Exp Ther 2003; 305:97-105. [PMID: 12649357 DOI: 10.1124/jpet.102.042747] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sampatrilat is a novel vasopeptidase inhibitor that may offer a greater benefit than traditional angiotensin-converting enzyme (ACE) inhibitors in the treatment of chronic heart failure (CHF). The present study was undertaken to determine whether sampatrilat improves hemodynamic function and cardiac remodeling through a direct action on the failing heart in rats with CHF following left coronary artery ligation (CAL). Sampatrilat (30 mg/kg a day) was administered orally to the animals from the 1st to 6th week after the operation. Sampatrilat reduced the mortality of the rats with CAL (20 versus 57% for untreated rats). Treatment with sampatrilat for 5 weeks suppressed tissue ACE and neutral endopeptidase (NEP) activities. Sampatrilat did not affect the arterial blood pressure, whereas it attenuated the CAL-induced increases in the left ventricular end-diastolic pressure, heart weight, and collagen content of the viable left ventricle. To assess the direct effects of sampatrilat on collagen synthesis, we measured the incorporation of [(3)H]proline into cultured cardiac fibroblasts. Sampatrilat at concentrations that inhibited NEP activity in vitro augmented the atrial natriuretic peptide-induced decrease in [(3)H]proline incorporation by the cells. In addition, sampatrilat prevented the angiotensin I-induced increase in [(3)H]proline incorporation, whereas captopril did not. The results suggest that long-term treatment with sampatrilat regresses cardiac remodeling in rats with CAL, which is associated with improvement of hemodynamic function. The mechanism by which sampatrilat improved cardiac remodeling may be attributable to the direct inhibition of cardiac fibrosis, possibly acting through the cardiac natriuretic peptide system.
Collapse
Affiliation(s)
- Toshiyuki Maki
- Department of Pharmacology, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | | | | | | | | |
Collapse
|
42
|
Wallen WJ, Belanger MP, Wittnich C. Preischemic administration of ribose to delay the onset of irreversible ischemic injury and improve function: studies in normal and hypertrophied hearts. Can J Physiol Pharmacol 2003; 81:40-7. [PMID: 12665256 DOI: 10.1139/y03-018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Compared with normal hearts, those with pathology (hypertrophy) are less tolerant of metabolic stresses such as ischemia. Pharmacologic intervention administered prior to such stress could provide significant protection. This study determined, firstly, whether the pentose sugar ribose, previously shown to improve postischemic recovery of energy stores and function, protects against ischemia when administered as a pretreatment. Secondly, the efficacy of this same pretreatment protocol was determined in hearts with pathology (hypertrophy). For study 1, Sprague-Dawley rats received equal volumes of either vehicle (bolus i.v. saline) or ribose (100 mg/kg) before global myocardial ischemia. In study 2, spontaneously hypertensive rats (SHR; blood pressure approximately 200/130) with myocardial hypertrophy underwent the same treatment protocol and assessments. In vivo left ventricular function was measured and myocardial metabolites and tolerance to ischemia were assessed. In normal hearts, ribose pretreatment significantly elevated the heart's energy stores (glycogen), and delayed the onset of irreversible ischemic injury by 25%. However, in vivo ventricular relaxation was reduced by 41% in the ribose group. In SHR, ribose pretreatment did not produce significant elevations in the heart's energy or improvements in tolerance to global ischemia, but significantly improved ventricular function (maximal rate of pressure rise (+dP/dt(max)), 25%; normalized contractility ((+dP/dt)/P), 13%) despite no change in hemodynamics. Thus, administration of ribose in advance of global myocardial ischemia does provide metabolic benefit in normal hearts. However, in hypertrophied hearts, ribose did not affect ischemic tolerance but improved ventricular function.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Anaerobic Threshold/drug effects
- Anaerobic Threshold/physiology
- Animals
- Cardiotonic Agents/administration & dosage
- Cardiotonic Agents/metabolism
- Disease Models, Animal
- Drug Administration Schedule
- Glycogen/metabolism
- Hypertension/complications
- Hypertension/physiopathology
- Hypertrophy, Left Ventricular/complications
- Hypertrophy, Left Ventricular/drug therapy
- Hypertrophy, Left Ventricular/physiopathology
- Injections, Intravenous
- Male
- Myocardial Ischemia/physiopathology
- Myocardial Ischemia/prevention & control
- Myocardium/metabolism
- Phosphocreatine/metabolism
- Rats
- Rats, Sprague-Dawley
- Ribose/administration & dosage
- Ribose/metabolism
- Structure-Activity Relationship
- Ventricular Function, Left/drug effects
- Ventricular Function, Left/physiology
- Ventricular Function, Right/drug effects
- Ventricular Function, Right/physiology
Collapse
Affiliation(s)
- W Jack Wallen
- Department of Physiology and The Cardiovascular Sciences Collaborative Program, University of Toronto, Toronto, ON M5S IA8, Canada
| | | | | |
Collapse
|
43
|
Nwogu JI, Geenen D, Bean M, Brenner MC, Huang X, Buttrick PM. Inhibition of collagen synthesis with prolyl 4-hydroxylase inhibitor improves left ventricular function and alters the pattern of left ventricular dilatation after myocardial infarction. Circulation 2001; 104:2216-21. [PMID: 11684634 DOI: 10.1161/hc4301.097193] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background- Left ventricular (LV) remodeling after myocardial infarction (MI) is associated with fibrosis, dilatation, and dysfunction. We postulated that prevention of fibrosis after MI with a prolyl 4-hydroxylase inhibitor (P4HI) would preserve LV function and attenuate LV enlargement. Methods and Results- Adult female rats (200 to 250 g) had experimental MI and were then randomized to treatment with P4HI (MI-FG041, n=29) or vehicle (MI-control, n=29) 48 hours after MI for 4 weeks in 2 phases. Echocardiograms were performed weekly with a 15-MHz linear transducer, and at 4 weeks, collagen isoform determinations and in vivo hemodynamics were performed. At randomization, the infarct size and LV function and size were similar in MI-FG041 and MI-control but significantly different from shams (n=9). At week 4, the LV function in MI-FG041 was significantly better than in MI-controls (fractional shortening 21% versus 16%, P=0.01; fractional area change 30% versus 19%, P=0.002; ejection fraction 35% versus 23%, P=0.001). In the FG041 group, LV area in systole was less (P<0.05), the dP/dt(max) after isoproterenol was higher (P<0.05), and types I and III collagen in noninfarcted LV were less than in MI-control. The hydroxyproline/proline ratio was increased by 64% in MI-control and reduced to the sham value in MI-FG041 rats. In the scar tissue, it was reduced by 24% in MI-FG041. Conclusions- This study demonstrates that prevention of interstitial fibrosis with a P4H inhibitor alters the pattern of LV enlargement and produces partial recovery of LV function after MI.
Collapse
Affiliation(s)
- J I Nwogu
- Section of Cardiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
44
|
Ulusu NN, Kus MS, Acan NL, Tezcan EF. A rapid method for the purification of glucose-6-phosphate dehydrogenase from bovine lens. Int J Biochem Cell Biol 1999; 31:787-96. [PMID: 10467735 DOI: 10.1016/s1357-2725(99)00019-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper describes a simple and rapid method for the purification of glucose-6-phosphate dehydrogenase from bovine lens, together with analysis of the kinetic behaviour and some properties of the enzyme. The purification consisted of two steps, 2',5'-ADP-Sepharose 4B affinity chromatography and DEAE Sepharose Fast Flow ion exchange chromatography in procedure which took two working days. The enzyme was obtained with a yield of 13.7% and had a specific activity of 2.64 U/mg protein. The overall purification was about 19,700-fold. The molecular weight of the enzyme was found to be 62 +/- 3 kDa by Sephadex G-200 gel filtration chromatography. A protein band corresponding to a molecular weight of 69.2 +/- 3.2 kDa was obtained on SDS polyacrylamide slab gel electrophoresis. On chromatofocusing, lens glucose-6-phosphate dehydrogenase gave a single peak at pI 5.14. The activation energy of the reaction catalyzed by the enzyme was calculated from Arrhenius plot as Ea = 5.88 kcal/mol. The pH versus velocity curve had two peaks at pH 7.7 and 9.6. By the double-reciprocal plots and the product inhibition studies, it was shown that the enzyme follows 'Ordered Bi Bi' sequential kinetics. From the graphical and statistical analyses, KmNADP+, KmG-6-P, KiNADPH, Ki6-PGA were estimated to be 0.008 +/- 0.002, 0.035 +/- 0.013, 0.173 +/- 0.007 and 1.771 +/- 0.160 mM, respectively. The observed kinetic behaviour of glucose-6-phosphate dehydrogenase from bovine lens was in accordance with the enzyme from other sources.
Collapse
Affiliation(s)
- N N Ulusu
- Department of Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | | |
Collapse
|
45
|
de Wulf P, Vandamme E. Microbial Synthesis of d-Ribose: Metabolic Deregulation and Fermentation Process. ADVANCES IN APPLIED MICROBIOLOGY 1997. [DOI: 10.1016/s0065-2164(08)70462-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
REES BERNARDB, SWEZEY ROBERTR, KIBAK HENRIK, EPEL DAVID. Regulation of the pentose phosphate pathway at fertilization in sea urchin eggs. INVERTEBR REPROD DEV 1996. [DOI: 10.1080/07924259.1996.9672538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Jones JG, Le TH, Storey CJ, Sherry AD, Malloy CR, Burton KP. Effects of different oxidative insults on intermediary metabolism in isolated perfused rat hearts. Free Radic Biol Med 1996; 20:515-23. [PMID: 8904292 DOI: 10.1016/0891-5849(95)02088-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
13C and 31P NMR were used to evaluate exogenous substrate utilization and endogenous phosphate metabolites in perfused rat hearts exposed to tert-butylhydroperoxide (tert-BOOH) and hydrogen peroxide (H2O2). Both reagents caused a reduction in developed pressure compared to controls and, in agreement with previous 31P NMR data, had different effects on intracellular high-energy phosphates and glycolysis. 13C Isotopomer analysis of tissue extracts showed that H2O2 and tert-BOOH also had significantly different effects on substrate utilization by the citric acid cycle. The contribution of exogenous lactate and glucose to acetyl-CoA was 43% in controls and increased to over 80% in the presence of either oxidant. With tert-BOOH, exogenous glucose and lactate were both significant contributors to acetyl-CoA (44 +/- 2 and 41 +/- 3%). However, with H2O2, exogenous lactate supplied a much higher fraction of acetyl-CoA (72 +/- 2%) than glucose (9 +/- 1%). Also, when [2-(13)C] glucose was supplied, accumulation of [2-(13)C] and [5-(13)C] fructose 1,6-bisphosphate was observed in the presence of H2O2, indicating inhibition of glyceraldehyde-3-phosphate dehydrogenase. These results indicate that despite this glycolytic inhibition, H2O2 increased the utilization of pyruvate precursors when lactate was present as an alternative carbohydrate substrate.
Collapse
Affiliation(s)
- J G Jones
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, USA
| | | | | | | | | | | |
Collapse
|
48
|
Zimmer HG, Irlbeck M, Kolbeck-Rühmkorff CK. Response of the rat heart to catecholamines and thyroid hormones. Mol Cell Biochem 1995; 147:105-14. [PMID: 7494538 DOI: 10.1007/bf00944790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Catecholamines and thyroid hormones have a similar influence on heart function and metabolism, but this may occur in a differential manner and to a different extent. In this study, the effects of norepinephrine (NE) and of triiodothyronine (T3) were studied in regard to the function of the left (LV) and right ventricle (RV) and to the oxidative pentose phosphate pathway (PPP). NE was applied in rats as continuous i.v. infusion (0.2 mg/kg/h) for three days. T3 was given as daily s.c. injections (0.2 mg/kg) for the same period of time. LV and RV function was measured in the closed-chest trapanal-anesthetized animals using special Millar ultraminature catheter pressure transducers. NE induced an increase in heart rate, in mean arterial pressure, and in total peripheral resistance (TPR). The cardiac RNA/DNA and the left ventricular weight/body weight ratios were increased by about 40%. These effects were prevented by simultaneous alpha- and beta-receptor blockade with prazosin and metoprolol, respectively, but not by verapamil which abolished the hemodynamic effects. RVSP was significantly elevated by NE in a dose-dependent manner. The functional effects of T3 on the LV were not as pronounced as those induced by NE. Heart rate and LV dp/dtmax were increased by T3, and this increase was prevented by concomitant beta-receptor blockade with metoprolol. In contrast to NE, T3 induced an increase in cardiac output and a concomitant decrease in TPR. The RNA/DNA ratio was elevated and cardiac hypertrophy had developed after treatment for three days with T3. These changes were not affected by beta-receptor blockade with metoprolol. RVSP was increased by T3 to a lesser extent than with NE. In metabolic terms it turned out that only NE, but not T3 had a stimulating effect on the cardiac PPP. NE increased the mRNA and activity of glucose-6-phosphate dehydrogenase (G-6-PD), the first and regulating enzyme of this pathway. However, there was no effect of T3 on G-6-PD activity nor on 6-phosphogluconate dehydrogenase activity, one of the following enzymes in the pathway within the first 5 days of T3 treatment. These results demonstrate that the functional effects of T3 were not as pronounced as or even different from those of NE, and that T3 lacked a stimulating effect on the cardiac PPP.
Collapse
Affiliation(s)
- H G Zimmer
- Department of Physiology, University of Munich, Germany
| | | | | |
Collapse
|
49
|
Yamazaki A, Birnboim HC. Potentiation of retinoic acid-induced U-937 differentiation into respiratory burst-competent cells by nitric oxide donors. Leuk Res 1995; 19:325-35. [PMID: 7769833 DOI: 10.1016/0145-2126(94)00125-t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
All-trans retinoic acid (tretinoin) is a known inducer of differentiation of the human monoblastic cell line, U-937. We now report that the ability of retinoic acid (RA) to induce differentiation of U-937 cells into cells possessing respiratory burst activity is enhanced by the known nitric oxide-donating drugs glyceryl trinitrate, molsidomine and CAS 936, and by tetranitromethane in combination with cysteine. RA alone was a strong inducer of U-937 differentiation as indicated by the following responses to 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulation: (1) increase in the percentage of cells staining with nitroblue tetrazolium (NBT); (2) increase in the total amount of formazan (the product of NBT reduction by O2-.) as determined spectrophotometrically; (3) increase in hexose monophosphate shunt (HMPS) activity as assessed by [14C]CO2 released from D-[1-14C]glucose. RA was also able to increase mRNA levels for two respiratory burst-related genes and for glucose-6-phosphate dehydrogenase (G6PD), an HMPS enzyme. Other indications of differentiation were reduced cell proliferation, increased adherence and altered nuclear morphology. The observed increase in formazan production and HMPS activity and the reduction of cell proliferation due to RA were augmented by co-treatment with either glyceryl trinitrate, molsidomine, CAS 936 or tetranitromethane plus cysteine. Glyceryl trinitrate alone increased HMPS activity and G6PD mRNA levels and also reduced cell proliferation. Glyceryl trinitrate, molsidomine and CAS 936 are presumed to release nitric oxide and increase intracellular cGMP levels by stimulation of soluble guanylate cyclase. The mechanism of action of tetranitromethane is less certain, although it may also generate reactive nitrogen intermediates. These data suggest that a NO./cGMP pathway may augment a retinoic acid-mediated pathway to enhance maturation of U-937 cells with respect to the respiratory burst. Glyceryl trinitrate may act additionally by another pathway.
Collapse
Affiliation(s)
- A Yamazaki
- Ottawa Regional Cancer Centre, Ontario, Canada
| | | |
Collapse
|
50
|
Lund LG, Paraidathathu T, Kehrer JP. Reduction of glutathione disulfide and the maintenance of reducing equivalents in hypoxic hearts after the infusion of diamide. Toxicology 1994; 93:249-62. [PMID: 7974518 DOI: 10.1016/0300-483x(94)90082-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A tissue's response to an oxidative stress is related to its capacity to supply reducing equivalents and may be affected by energy levels. The ability of intact rat heart tissue to supply NADPH and reduce glutathione disulfide (GSSG) produced by diamide was determined under normoxic or hypoxic conditions with and without glycolytic energy production. Cardiac ATP and phosphocreatine (PCr) levels remained relatively constant (approximately 20 nmol/mg dry weight) during a 60 min perfusion with oxygenated Krebs-Henseleit buffer containing glucose. Levels of ATP and PCr were depleted 85-92% following 60 min of hypoxia. A 5 min infusion of 800 microM diamide, after 60 min of normoxia or hypoxia, oxidized 70-80% of cardiac glutathione (GSH), but had no effect on total glutathione. After a subsequent 25 min diamidefree perfusion, 75-85% of the GSSG formed was reduced in both normoxic and hypoxic hearts. The removal of glucose, or the inhibition of glycolysis with 2-deoxy-D-glucose, did not affect GSSG reduction. Cardiac NADH levels were increased from 0.05 to 0.5 nmol/mg dry weight after 60 min hypoxia in hearts perfused with or without glucose. A 5 min infusion of diamide in hypoxic hearts slightly decreased NADH levels, but there was no further change after a subsequent 25 min diamide-free period. Inhibition of glutathione reductase with 1,3-bis(2-chloroethyl)-1-nitrosourea prevented GSSG reduction, showing NADPH was required. However, NADPH levels were not affected by hypoxia or diamide infusion and remained constant at 0.2 nmol/mg dry weight in hearts perfused with or without glucose. Inhibition of glycolysis with 2-deoxy-D-glucose also did not affect NADPH levels. These results demonstrate that hypoxia did not affect the ability of oxidatively stressed, intact heart tissue to supply NADPH for the reduction of GSSG. In addition, GSSG reduction was independent of energy levels and appeared to be unaffected by glucose availability. NADH may be involved in maintaining NADPH levels through interconversion pathways.
Collapse
Affiliation(s)
- L G Lund
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin 78712-1074
| | | | | |
Collapse
|