1
|
Nou NO, Covington JK, Lai D, Mayali X, Seymour CO, Johnston J, Jiao JY, Buessecker S, Mosier D, Muok AR, Torosian N, Cook AM, Briegel A, Woyke T, Eloe-Fadrosh E, Shapiro N, Bryan SG, Sleezer S, Dimapilis J, Gonzalez C, Gonzalez L, Noriega M, Hess M, Carlson RP, Liu L, Li MM, Lian ZH, Zhu S, Liu F, Sun X, Gao B, Mewalal R, Harmon-Smith M, Blaby IK, Cheng JF, Weber PK, Grigorean G, Li WJ, Dekas AE, Pett-Ridge J, Dodsworth JA, Palmer M, Hedlund BP. Genome-guided isolation of the hyperthermophilic aerobe Fervidibacter sacchari reveals conserved polysaccharide metabolism in the Armatimonadota. Nat Commun 2024; 15:9534. [PMID: 39496591 PMCID: PMC11535203 DOI: 10.1038/s41467-024-53784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Few aerobic hyperthermophilic microorganisms degrade polysaccharides. Here, we describe the genome-enabled enrichment and optical tweezer-based isolation of an aerobic polysaccharide-degrading hyperthermophile, Fervidibacter sacchari, previously ascribed to candidate phylum Fervidibacteria. F. sacchari uses polysaccharides and monosaccharides for growth at 65-87.5 °C and expresses 191 carbohydrate-active enzymes (CAZymes) according to RNA-Seq and proteomics, including 31 with unusual glycoside hydrolase domains (GH109, GH177, GH179). Fluorescence in-situ hybridization and nanoscale secondary ion mass spectrometry confirmed rapid assimilation of 13C-starch in spring sediments. Purified GHs were optimally active at 80-100 °C on ten different polysaccharides. Finally, we propose reassigning Fervidibacteria as a class within phylum Armatimonadota, along with 18 other species, and show that a high number and diversity of CAZymes is a hallmark of the phylum, in both aerobic and anaerobic lineages. Our study establishes Fervidibacteria as hyperthermophilic polysaccharide degraders in terrestrial geothermal springs and suggests a broad role for Armatimonadota in polysaccharide catabolism.
Collapse
Affiliation(s)
- Nancy O Nou
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | | | - Dengxun Lai
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Juliet Johnston
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Steffen Buessecker
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Damon Mosier
- Department of Biology, California State University, San Bernardino, CA, USA
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Alise R Muok
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, Leiden, The Netherlands
| | - Nicole Torosian
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Allison M Cook
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Ariane Briegel
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, Leiden, The Netherlands
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California Merced, Life and Environmental Sciences, Merced, CA, USA
| | - Emiley Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nicole Shapiro
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Scott G Bryan
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Savannah Sleezer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Joshua Dimapilis
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Cristina Gonzalez
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Lizett Gonzalez
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Marlene Noriega
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Matthias Hess
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Ross P Carlson
- Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Siqi Zhu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Fan Liu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Xian Sun
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Ritesh Mewalal
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Miranda Harmon-Smith
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ian K Blaby
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
2
|
Hao L, Ayinla Z, Ma K. Molecular Characterization of the Iron-Containing Alcohol Dehydrogenase from the Extremely Thermophilic Bacterium Pseudothermotoga hypogea. Microorganisms 2024; 12:311. [PMID: 38399715 PMCID: PMC10891854 DOI: 10.3390/microorganisms12020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Pseudothermotoga hypogea is an extremely thermophilic bacterium capable of growing at 90 °C and producing ethanol, which is catalyzed by an alcohol dehydrogenase (ADH). The gene encoding P. hypogea ADH (PhADH) was cloned, sequenced and over-expressed. The gene sequence (1164 bp) was obtained by sequencing all fragments of the gene, which were amplified from the genomic DNA. The deduced amino acid sequence showed high identity to iron-containing ADHs from other Thermotoga species and harbored typical iron- and NADP-binding motifs, Asp195His199His268His282 and Gly39Gly40Gly41Ser42, respectively. Structural modeling showed that the N-terminal domain of PhADH contains an α/β-dinucleotide-binding motif and that its C-terminal domain is an α-helix-rich region containing the iron-binding motif. The recombinant PhADH was soluble, active, and thermostable, with a subunit size of 43 ± 1 kDa revealed by SDS-PAGE analyses. The recombinant PhADH (69 ± 2 U/mg) was shown to have similar properties to the native enzyme. The optimal pH values for alcohol oxidation and aldehyde reduction were 11.0 and 8.0, respectively. It was also thermostable, with a half-life of 5 h at 70 °C. The successful expression of the recombinant PhADH in E. coli significantly enhanced the yield of enzyme production and thus will facilitate further investigation of the catalytic mechanisms of iron-containing ADHs.
Collapse
Affiliation(s)
| | | | - Kesen Ma
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada (Z.A.)
| |
Collapse
|
3
|
Wang G, Du Y, Ma X, Ye F, Qin Y, Wang Y, Xiang Y, Tao R, Chen T. Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology. Int J Mol Sci 2022; 23:ijms232314969. [PMID: 36499296 PMCID: PMC9738464 DOI: 10.3390/ijms232314969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Thermophilic nucleic acid polymerases, isolated from organisms that thrive in extremely hot environments, possess great DNA/RNA synthesis activities under high temperatures. These enzymes play indispensable roles in central life activities involved in DNA replication and repair, as well as RNA transcription, and have already been widely used in bioengineering, biotechnology, and biomedicine. Xeno nucleic acids (XNAs), which are analogs of DNA/RNA with unnatural moieties, have been developed as new carriers of genetic information in the past decades, which contributed to the fast development of a field called xenobiology. The broad application of these XNA molecules in the production of novel drugs, materials, and catalysts greatly relies on the capability of enzymatic synthesis, reverse transcription, and amplification of them, which have been partially achieved with natural or artificially tailored thermophilic nucleic acid polymerases. In this review, we first systematically summarize representative thermophilic and hyperthermophilic polymerases that have been extensively studied and utilized, followed by the introduction of methods and approaches in the engineering of these polymerases for the efficient synthesis, reverse transcription, and amplification of XNAs. The application of XNAs facilitated by these polymerases and their mutants is then discussed. In the end, a perspective for the future direction of further development and application of unnatural nucleic acid polymerases is provided.
Collapse
|
4
|
Kohtz AJ, Jay ZJ, Lynes MM, Krukenberg V, Hatzenpichler R. Culexarchaeia, a novel archaeal class of anaerobic generalists inhabiting geothermal environments. ISME COMMUNICATIONS 2022; 2:86. [PMID: 37938354 PMCID: PMC9723716 DOI: 10.1038/s43705-022-00175-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2023]
Abstract
Geothermal environments, including terrestrial hot springs and deep-sea hydrothermal sediments, often contain many poorly understood lineages of archaea. Here, we recovered ten metagenome-assembled genomes (MAGs) from geothermal sediments and propose that they constitute a new archaeal class within the TACK superphylum, "Candidatus Culexarchaeia", named after the Culex Basin in Yellowstone National Park. Culexarchaeia harbor distinct sets of proteins involved in key cellular processes that are either phylogenetically divergent or are absent from other closely related TACK lineages, with a particular divergence in cell division and cytoskeletal proteins. Metabolic reconstruction revealed that Culexarchaeia have the capacity to metabolize a wide variety of organic and inorganic substrates. Notably, Culexarchaeia encode a unique modular, membrane associated, and energy conserving [NiFe]-hydrogenase complex that potentially interacts with heterodisulfide reductase (Hdr) subunits. Comparison of this [NiFe]-hydrogenase complex with similar complexes from other archaea suggests that interactions between membrane associated [NiFe]-hydrogenases and Hdr may be more widespread than previously appreciated in both methanogenic and non-methanogenic lifestyles. The analysis of Culexarchaeia further expands our understanding of the phylogenetic and functional diversity of lineages within the TACK superphylum and the ecology, physiology, and evolution of these organisms in extreme environments.
Collapse
Affiliation(s)
- Anthony J Kohtz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Zackary J Jay
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Mackenzie M Lynes
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Viola Krukenberg
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
5
|
Proteolytic systems of archaea: slicing, dicing, and mincing in the extreme. Emerg Top Life Sci 2018; 2:561-580. [PMID: 32953999 DOI: 10.1042/etls20180025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Archaea are phylogenetically distinct from bacteria, and some of their proteolytic systems reflect this distinction. Here, the current knowledge of archaeal proteolysis is reviewed as it relates to protein metabolism, protein homeostasis, and cellular regulation including targeted proteolysis by proteasomes associated with AAA-ATPase networks and ubiquitin-like modification. Proteases and peptidases that facilitate the recycling of peptides to amino acids as well as membrane-associated and integral membrane proteases are also reviewed.
Collapse
|
6
|
Eram MS, Wong A, Oduaran E, Ma K. Molecular and biochemical characterization of bifunctional pyruvate decarboxylases and pyruvate ferredoxin oxidoreductases from Thermotoga maritima and Thermotoga hypogea. J Biochem 2015; 158:459-66. [PMID: 26032540 DOI: 10.1093/jb/mvv058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/06/2015] [Indexed: 11/13/2022] Open
Abstract
Hyperthermophilic bacteria Thermotoga maritima and Thermotoga hypogea produce ethanol as a metabolic end product, which is resulted from acetaldehyde reduction catalysed by an alcohol dehydrogenase (ADH). However, the enzyme that is involved in the production of acetaldehyde from pyruvate is not well characterized. An oxygen sensitive and coenzyme A-dependent pyruvate decarboxylase (PDC) activity was found to be present in cell free extracts of T. maritima and T. hypogea. Both enzymes were purified and found to have pyruvate ferredoxin oxidoreductase (POR) activity, indicating their bifunctionality. Both PDC and POR activities from each of the purified enzymes were characterized in regards to their optimal assay conditions including pH dependency, oxygen sensitivity, thermal stability, temperature dependency and kinetic parameters. The close relatedness of the PORs that was shown by sequence analysis could be an indication of the presence of such bifunctionality in other hyperthermophilic bacteria. This is the first report of a bifunctional PDC/POR enzyme in hyperthermophilic bacteria. The PDC and the previously reported ADHs are most likely the key enzymes catalysing the production of ethanol from pyruvate in bacterial hyperthermophiles.
Collapse
Affiliation(s)
- Mohammad S Eram
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada and
| | - Alton Wong
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada and
| | - Erica Oduaran
- Department of Chemistry and Physics, Roger Williams University, One Old Ferry Road, Bristol, RI 02809, USA
| | - Kesen Ma
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada and
| |
Collapse
|
7
|
Gogliettino M, Riccio A, Cocca E, Rossi M, Palmieri G, Balestrieri M. A new pepstatin-insensitive thermopsin-like protease overproduced in peptide-rich cultures of Sulfolobus solfataricus. Int J Mol Sci 2014; 15:3204-19. [PMID: 24566144 PMCID: PMC3958906 DOI: 10.3390/ijms15023204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/26/2014] [Accepted: 02/11/2014] [Indexed: 11/16/2022] Open
Abstract
In this study, we gain insight into the extracellular proteolytic system of Sulfolobus solfataricus grown on proteinaceous substrates, providing further evidence that acidic proteases were specifically produced in response to peptide-rich media. The main proteolytic component was the previously isolated SsMTP (Sulfolobus solfataricus multi-domain thermopsin-like protease), while the less abundant (named SsMTP-1) one was purified, characterized and identified as the sso1175 gene-product. The protein revealed a multi-domain organization shared with the cognate SsMTP with a catalytic domain followed by several tandemly-repeated motifs. Moreover, both enzymes were found spread across the Crenarchaeota phylum and belonging to the thermopsin family, although segregated into diverse phylogenetic clusters. SsMTP-1 showed a 75-kDa molecular mass and was stable in the temperature range 50–90 °C, with optimal activity at 70 °C and pH 2.0. Serine, metallo and aspartic protease inhibitors did not affect the enzyme activity, designating SsMTP-1 as a new member of the pepstatin-insensitive aspartic protease family. The peptide-bond-specificity of SsMTP-1 in the cleavage of the oxidized insulin B chain was uncommon amongst thermopsins, suggesting that it could play a distinct, but cooperative role in the protein degradation machinery. Interestingly, predictions of the transmembrane protein topology of SsMTP and SsMTP-1 strongly suggest a possible contribution in signal-transduction pathways.
Collapse
Affiliation(s)
- Marta Gogliettino
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Via Pietro Castellino 111, Naples 80131, Italy.
| | - Alessia Riccio
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Via Pietro Castellino 111, Naples 80131, Italy.
| | - Ennio Cocca
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Via Pietro Castellino 111, Naples 80131, Italy.
| | - Mosè Rossi
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Via Pietro Castellino 111, Naples 80131, Italy.
| | - Gianna Palmieri
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Via Pietro Castellino 111, Naples 80131, Italy.
| | - Marco Balestrieri
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Via Pietro Castellino 111, Naples 80131, Italy.
| |
Collapse
|
8
|
Schut GJ, Nixon WJ, Lipscomb GL, Scott RA, Adams MWW. Mutational Analyses of the Enzymes Involved in the Metabolism of Hydrogen by the Hyperthermophilic Archaeon Pyrococcus furiosus. Front Microbiol 2012; 3:163. [PMID: 22557999 PMCID: PMC3341082 DOI: 10.3389/fmicb.2012.00163] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/12/2012] [Indexed: 11/21/2022] Open
Abstract
Pyrococcus furiosus grows optimally near 100°C by fermenting carbohydrates to produce hydrogen (H2) or, if elemental sulfur (S0) is present, hydrogen sulfide instead. It contains two cytoplasmic hydrogenases, SHI and SHII, that use NADP(H) as an electron carrier and a membrane-bound hydrogenase (MBH) that utilizes the redox protein ferredoxin. We previously constructed deletion strains lacking SHI and/or SHII and showed that they exhibited no obvious phenotype. This study has now been extended to include biochemical analyses and growth studies using the ΔSHI and ΔSHII deletion strains together with strains lacking a functional MBH (ΔmbhL). Hydrogenase activity in cytoplasmic extracts of various strains demonstrate that SHI is responsible for most of the cytoplasmic hydrogenase activity. The ΔmbhL strain showed no growth in the absence of S0, confirming the hypothesis that, in the absence of S0, MBH is the only enzyme that can dispose of reductant (in the form of H2) generated during sugar oxidation. Under conditions of limiting sulfur, a small but significant amount of H2 was produced by the ΔmbhL strain, showing that SHI can produce H2 from NADPH in vivo, although this does not enable growth of ΔmbhL in the absence of S0. We propose that the physiological function of SHI is to recycle H2 and provide a link between external H2 and the intracellular pool of NADPH needed for biosynthesis. This likely has a distinct energetic advantage in the environment, but it is clearly not required for growth of the organism under the usual laboratory conditions. The function of SHII, however, remains unknown.
Collapse
Affiliation(s)
- Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia Athens, GA, USA
| | | | | | | | | |
Collapse
|
9
|
Moon YJ, Kwon J, Yun SH, Lim HL, Kim MS, Kang SG, Lee JH, Choi JS, Kim SI, Chung YH. Proteome analyses of hydrogen-producing hyperthermophilic archaeon Thermococcus onnurineus NA1 in different one-carbon substrate culture conditions. Mol Cell Proteomics 2012; 11:M111.015420. [PMID: 22232491 DOI: 10.1074/mcp.m111.015420] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Thermococcus onnurineus NA1, a sulfur-reducing hyperthermophilic archaeon, is capable of H(2)-producing growth, considered to be hydrogenogenic carboxydotrophy. Utilization of formate as a sole energy source has been well studied in T. onnurineus NA1. However, whether formate can be used as its carbon source remains unknown. To obtain a global view of the metabolic characteristics of H(2)-producing growth, a quantitative proteome analysis of T. onnurineus NA1 grown on formate, CO, and starch was performed by combining one-dimensional SDS-PAGE with nano UPLC-MS(E). A total of 587 proteins corresponding to 29.7% of the encoding genes were identified, and the major metabolic pathways (especially energy metabolism) were characterized at the protein level. Expression of glycolytic enzymes was common but more highly induced in starch-grown cells. In contrast, enzymes involved in key steps of the gluconeogenesis and pentose phosphate pathways were strongly up-regulated in formate-grown cells, suggesting that formate could be utilized as a carbon source by T. onnurineus NA1. In accordance with the genomic analysis, comprehensive proteomic analysis also revealed a number of hydrogenase clusters apparently associated with formate metabolism. On the other hand, CODH and CO-induced hydrogenases belonging to the Hyg4-II cluster, as well as sulfhydrogenase-I and Mbx, were prominently expressed during CO culture. Our data suggest that CO can be utilized as a sole energy source for H(2) production via an electron transport mechanism and that CO(2) produced from catabolism or CO oxidation by CODH and CO-induced hydrogenases may subsequently be assimilated into the organic carbon. Overall, proteomic comparison of formate- and CO-grown cells with starch-grown cells revealed that a single carbon compound, such as formate and CO, can be utilized as an efficient substrate to provide cellular carbon and/or energy by T. onnurineus NA1.
Collapse
Affiliation(s)
- Yoon-Jung Moon
- Division of Life Science, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Adams MW. The biochemical diversity of life near and above 100°C in marine environments. J Appl Microbiol 2011; 85 Suppl 1:108S-117S. [PMID: 21182699 DOI: 10.1111/j.1365-2672.1998.tb05289.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hyperthermophilic micro-organisms grow at temperatures above 90 °C with a current upper limit of 113 °C. They are a recent discovery in the microbial world and have been isolated mainly from marine geothermal environments, which include both shallow and deep sea hydrothermal vents. By 16S rRNA analyses they are the most slowly evolving of all extant life forms, and all but two of the nearly 20 known genera are classified as Archaea (formerly Archaebacteria). Almost all hyperthermophiles are strict anaerobes. They include species of methanogens, iron-oxidizers and sulphate reducers, but the majority are obligate heterotrophs that depend upon the reduction of elemental sulphur (S°) to hydrogen sulphide for significant growth. The heterotrophs utilize proteinaceous materials as carbon and energy sources, although a few species are also saccharolytic. A scheme for electron flow during the oxidation of carbohydrates and peptides and the reduction of S° has been proposed. Two S°-reducing enzymes have been purified from the cytoplasm of one hyperthermophile (T(opt) 100 °C) that is able to grow either with and without S°. However, the mechanisms by which S° reduction is coupled to energy conservation in this organism and in obligate S°-reducing hyperthermophiles is not known. In the heterotrophs, sugar fermentation is achieved by a novel glycolytic pathway involving unusual ADP-dependent kinases and ATP synthetases, and novel oxidoreductases that are ferredoxin- rather than NAD(P)-linked. Similarly, peptide fermentation involves several unusual ferredoxin-linked oxidoreductases not found in mesophilic organisms. Several of these oxido-reductases contain tungsten, an element that is rarely used in biological systems. Tungsten is present in exceedingly low concentrations in normal sea water, but hydrothermal systems contain much higher tungsten concentrations, more than sufficient to support hyperthermophilic life.
Collapse
Affiliation(s)
- M W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA.
| |
Collapse
|
11
|
Lee YG, Kang SG, Lee JH, Kim SI, Chung YH. Characterization of hyperthermostable fructose-1,6-bisphosphatase from Thermococcus onnurineus NA1. J Microbiol 2011; 48:803-7. [PMID: 21221938 DOI: 10.1007/s12275-010-0377-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/11/2010] [Indexed: 11/26/2022]
Abstract
To understand the physiological functions of thermostable fructose-1,6-bisphosphatase (TNA1-Fbp) from Thermococcus onnurineus NA1, its recombinant enzyme was overexpressed in Escherichia coli, purified, and the enzymatic properties were characterized. The enzyme showed maximal activity for fructose-1,6-bisphosphate at 95°C and pH 8.0 with a half-life (t (1/2)) of about 8 h. TNA1-Fbp had broad substrate specificities for fructose-1,6-bisphosphate and its analogues including fructose-1-phosphate, glucose-1-phosphate, and phosphoenolpyruvate. In addition, its enzyme activity was increased five-fold by addition of 1 mM Mg(2+), while Li(+) did not enhance enzymatic activity. TNA1-Fbp activity was inhibited by ATP, ADP, and phosphoenolpyruvate, but AMP up to 100 mM did not have any effect. TNA1-Fbp is currently defined as a class V fructose-1,6-bisphosphatase (FBPase) because it is very similar to FBPase of Thermococcus kodakaraensis KOD1 based on sequence homology. However, this enzyme shows a different range of substrate specificities. These results suggest that TNA1-Fbp can establish new criterion for class V FBPases.
Collapse
Affiliation(s)
- Yeol Gyun Lee
- Division of Life Science, Korea Basic Science Institute, Daejeon, 305-806, Republic of Korea
| | | | | | | | | |
Collapse
|
12
|
Rinker K, Han C, Kelly R. Continuous culture as a tool for investigating the growth physiology of heterotrophic hyperthermophiles and extreme thermoacidophiles. J Appl Microbiol 2010; 85 Suppl 1:118S-127S. [DOI: 10.1111/j.1365-2672.1998.tb05290.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Giuliani MC, Jourlin-Castelli C, Leroy G, Hachani A, Giudici-Orticoni MT. Characterization of a new periplasmic single-domain rhodanese encoded by a sulfur-regulated gene in a hyperthermophilic bacterium Aquifex aeolicus. Biochimie 2010; 92:388-97. [PMID: 20060433 DOI: 10.1016/j.biochi.2009.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 12/22/2009] [Indexed: 10/20/2022]
Abstract
Rhodaneses (thiosulfate cyanide sulfurtransferases) are enzymes involved in the production of the sulfur in sulfane form, which has been suggested to be the relevant biologically active sulfur species. Rhodanese domains occur in the three major domains of life. We have characterized a new periplasmic single-domain rhodanese from a hyperthermophile bacterium, Aquifex aeolicus, with thiosulfate:cyanide transferase activity, Aq-1599. The oligomeric organization of the enzyme is stabilized by a disulfide bridge. To date this is the first characterization from a hyperthermophilic bacterium of a periplasmic sulfurtransferase with a disulfide bridge. The aq-1599 gene belongs to an operon that also contains a gene for a prepilin peptidase and that is up-regulated when sulfur is used as electron acceptor. Finally, we have observed a sulfur-dependent bacterial adherence linked to an absence of flagellin suggesting a possible role for sulfur detection by A. aeolicus.
Collapse
Affiliation(s)
- Marie-Cécile Giuliani
- Laboratoire de Bioénergétique et Ingénierie des Protéines, IMM-CNRS, 31 chemin Joseph Aiguier, Marseille cedex 20, France
| | | | | | | | | |
Collapse
|
14
|
Kwon SO, Kang SG, Park SH, Kim YH, Choi JS, Lee JH, Kim SI. Proteomic characterization of the sulfur-reducing hyperthermophilic archaeon Thermococcus onnurineus NA1 by 2-DE/MS-MS. Extremophiles 2009; 13:379-87. [PMID: 19132287 DOI: 10.1007/s00792-008-0220-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 12/09/2008] [Indexed: 11/28/2022]
Abstract
Thermococcus onnurineus NA1, a sulfur-reducing hyperthermophilic archaeon, was isolated from a deep-sea hydrothermal vent area in Papua New Guinea. The strain requires elemental sulfur as a terminal electron acceptor for heterotrophic growth on peptides, amino acids and sugars. Recently, genome sequencing of Thermococcus onnurineus NA1 was completed. In this study, 2-DE/MS-MS analysis of the cytosolic proteome was performed to elucidate the metabolic characterization of Thermococcus onnurineus NA1 at the protein level. Among the 1,136 visualized protein spots, 110 proteins were identified. Enzymes related to metabolic pathways of amino acids utilization, glycolysis, pyruvate conversion, ATP synthesis, and protein synthesis were identified as abundant proteins, highlighting the fact that these are major metabolic pathways in Thermococcus onnurineus NA1. Interestingly, multiple spots of phosphoenolpyruvate synthetase and elongation factor Tu were found on 2D gels generated by truncation at the N-terminus, implicating the cellular regulatory mechanism of this key enzyme by protease degradation. In addition to the proteins involved in metabolic systems, we also identified various proteases and stress-related proteins. The proteomic characterization of abundantly induced proteins using 2-DE/MS-MS enables a better understanding of Thermococcus onnurineus NA1 metabolism.
Collapse
Affiliation(s)
- Sang Oh Kwon
- Korea Basic Science Institute, Daejeon 305-333, South Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Podar M, Anderson I, Makarova KS, Elkins JG, Ivanova N, Wall MA, Lykidis A, Mavromatis K, Sun H, Hudson ME, Chen W, Deciu C, Hutchison D, Eads JR, Anderson A, Fernandes F, Szeto E, Lapidus A, Kyrpides NC, Saier MH, Richardson PM, Rachel R, Huber H, Eisen JA, Koonin EV, Keller M, Stetter KO. A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome Biol 2008; 9:R158. [PMID: 19000309 PMCID: PMC2614490 DOI: 10.1186/gb-2008-9-11-r158] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/21/2008] [Accepted: 11/10/2008] [Indexed: 01/03/2023] Open
Abstract
Sequencing of the complete genome of Ignicoccus hospitalis gives insight into its association with another species of Archaea, Nanoarchaeum equitans. Background The relationship between the hyperthermophiles Ignicoccus hospitalis and Nanoarchaeum equitans is the only known example of a specific association between two species of Archaea. Little is known about the mechanisms that enable this relationship. Results We sequenced the complete genome of I. hospitalis and found it to be the smallest among independent, free-living organisms. A comparative genomic reconstruction suggests that the I. hospitalis lineage has lost most of the genes associated with a heterotrophic metabolism that is characteristic of most of the Crenarchaeota. A streamlined genome is also suggested by a low frequency of paralogs and fragmentation of many operons. However, this process appears to be partially balanced by lateral gene transfer from archaeal and bacterial sources. Conclusions A combination of genomic and cellular features suggests highly efficient adaptation to the low energy yield of sulfur-hydrogen respiration and efficient inorganic carbon and nitrogen assimilation. Evidence of lateral gene exchange between N. equitans and I. hospitalis indicates that the relationship has impacted both genomes. This association is the simplest symbiotic system known to date and a unique model for studying mechanisms of interspecific relationships at the genomic and metabolic levels.
Collapse
Affiliation(s)
- Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci U S A 2008; 105:8102-7. [PMID: 18535141 DOI: 10.1073/pnas.0801980105] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name, "Candidatus Korarchaeum cryptofilum," which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49%. Of the 1,617 predicted protein-coding genes, 1,382 (85%) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.
Collapse
|
17
|
Gonzalez O, Zimmer R. Assigning functional linkages to proteins using phylogenetic profiles and continuous phenotypes. ACTA ACUST UNITED AC 2008; 24:1257-63. [PMID: 18381403 DOI: 10.1093/bioinformatics/btn106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION A class of non-homology-based methods for protein function prediction relies on the assumption that genes linked to a phenotypic trait are preferentially conserved among organisms that share the trait. These methods typically compare pairs of binary strings, where one string encodes the phylogenetic distribution of a trait and the other of a protein. In this work, we extended the approach to automatically deal with continuous phenotypes. RESULTS Rather than use a priori rules, which can be very subjective, to construct binary profiles from continuous phenotypes, we propose to systematically explore thresholds which can meaningfully separate the phenotype values. We illustrate our method by analyzing optimal growth temperatures, and demonstrate its usefulness by automatically retrieving genes which have been associated with thermophilic growth. We also apply the general approach, for the first time, to optimal growth pH, and make novel predictions. Finally, we show that our method can also be applied to other properties which may not be classically considered as phenotypes. Specifically, we studied correlations between genome size and the distribution of genes.
Collapse
Affiliation(s)
- Orland Gonzalez
- Institute for Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333 Munich, Germany.
| | | |
Collapse
|
18
|
Giuliani MC, Tron P, Leroy G, Aubert C, Tauc P, Giudici-Orticoni MT. A new sulfurtransferase from the hyperthermophilic bacterium Aquifex aeolicus. FEBS J 2007; 274:4572-87. [PMID: 17697123 DOI: 10.1111/j.1742-4658.2007.05985.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sulfur is a functionally important element of living matter. Rhodanese is involved in the enzymatic production of the sulfane sulfur which has been suggested as the biological relevant active sulfur species. Rhodanese domains are ubiquitous structural modules occurring in the three major evolutionary phyla. We characterized a new single-domain rhodanese with a thiosulfate : cyanide transferase activity, Aq-477. Aq-477 can also use tetrathionate and polysulfide. Thermoactivity and thermostability studies show that in solution Aquifex sulfurtranferase exists in equilibrium between monomers, dimers and tetramers, shifting to the tetrameric state in the presence of substrate. We show that oligomerization is important for thermostability and thermoactivity. This is the first characterization of a sulfurtransferase from a hyperthermophilic bacterium, which moreover presents a tetrameric organization. Oligomeric Aq-477 may have been selected in hyperthermophiles because subunit association provides extra stabilization.
Collapse
Affiliation(s)
- Marie-Cécile Giuliani
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), IBSM-CNRS, Marseille, France
| | | | | | | | | | | |
Collapse
|
19
|
Suo Z, Avci R, Schweitzer MH, Deliorman M. Porphyrin as an ideal biomarker in the search for extraterrestrial life. ASTROBIOLOGY 2007; 7:605-15. [PMID: 17723092 DOI: 10.1089/ast.2006.0120] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A key issue in astrobiological research is identifying target molecules that are unambiguously biological in origin and can be easily detected and recognized. We suggest porphyrin derivatives as an ideal target, because these chromophores are global in distribution and found in virtually all living organisms on Earth, including microorganisms that may approximate the early evolution of life on Earth. We discuss the inherent qualities that make porphyrin ideally suited for astrobiological research and discuss methods for detecting porphyrin molecules in terrestrial sedimentary environments. We present preliminary data to support the use of ToFSIMS as a powerful technique in the identification of porphyrins.
Collapse
Affiliation(s)
- Zhiyong Suo
- ICAL Facility, Department of Physics, Montana State University, Bozeman, MT 59717, USA
| | | | | | | |
Collapse
|
20
|
Ying X, Wang Y, Badiei HR, Karanassios V, Ma K. Purification and characterization of an iron-containing alcohol dehydrogenase in extremely thermophilic bacterium Thermotoga hypogea. Arch Microbiol 2007; 187:499-510. [PMID: 17294170 DOI: 10.1007/s00203-007-0217-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 01/11/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90 degrees C. It uses carbohydrates and peptides as carbon and energy sources to produce acetate, CO(2), H(2), L-alanine and ethanol as end products. Alcohol dehydrogenase activity was found to be present in the soluble fraction of T. hypogea. The alcohol dehydrogenase was purified to homogeneity, which appeared to be a homodimer with a subunit molecular mass of 40 +/- 1 kDa revealed by SDS-PAGE analyses. A fully active enzyme contained iron of 1.02 +/- 0.06 g-atoms/subunit. It was oxygen sensitive; however, loss of enzyme activity by exposure to oxygen could be recovered by incubation with dithiothreitol and Fe(2+). The enzyme was thermostable with a half-life of about 10 h at 70 degrees C, and its catalytic activity increased along with the rise of temperature up to 95 degrees C. Optimal pH values for production and oxidation of alcohol were 8.0 and 11.0, respectively. The enzyme had a broad specificity to use primary alcohols and aldehydes as substrates. Apparent K (m) values for ethanol and 1-butanol were much higher than that of acetaldehyde and butyraldehyde. It was concluded that the physiological role of this enzyme is likely to catalyze the reduction of aldehydes to alcohols.
Collapse
Affiliation(s)
- Xiangxian Ying
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 Canada
| | | | | | | | | |
Collapse
|
21
|
Sakuraba H, Ohshima T. Novel energy metabolism in anaerobic hyperthermophilic archaea: a modified Embden-Meyerhof pathway. J Biosci Bioeng 2005; 93:441-8. [PMID: 16233230 DOI: 10.1016/s1389-1723(02)80090-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2002] [Accepted: 03/06/2002] [Indexed: 11/30/2022]
Abstract
Hyperthermophiles, a group of microorganisms whose optimum growth temperatures are above 80 degrees C, have been isolated mainly from marine and continental volcanic environments. They are viewed as potential sources of extraordinarily stable biomolecules with applications in novel industrial processes. Most hyperthermophiles belong to the domain Archaea, the third domain of life, and are considered to be the most ancient of all extant life forms. Recent studies have revealed unusual energy metabolic processes in hyperthermophilic archaea, e.g. a modified Embden-Meyerhof pathway, that have not been observed so far in organisms belonging to the Bacteria and Eucarya domains. Several novel enzymes--ADP-dependent glucokinase, ADP-dependent phosphofruktokinase, glyceraldehyde-3-phosphate ferredoxin oxidoreductase, phosphoenolpyruvate synthase, pyruvate: ferredoxin oxidoreductase, and ADP-forming acetyl-CoA synthetase--have been found to be involved in the modified Embden-Meyerhof pathway of the hyperthermophilic archaeon Pyrococcus furiosus. In addition, a novel regulation site for energy metabolism and a unique mode of ATP regeneration have been postulated to exist in the pathway of P. furiosus. The metabolic design observed in this microorganism might reflect the situation at an early stage of evolution. This review focuses mainly on the unique energy metabolism and related enzymes of P. furiosus that have recently been described.
Collapse
Affiliation(s)
- Haruhiko Sakuraba
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Tokushima 770-8506, Japan
| | | |
Collapse
|
22
|
Hao X, Ma K. Minimal sulfur requirement for growth and sulfur-dependent metabolism of the hyperthermophilic archaeon Staphylothermus marinus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:191-7. [PMID: 15803665 PMCID: PMC2685564 DOI: 10.1155/2003/626017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylothermus marinus is an anaerobic hyperthermophilic archaeon that uses peptides as carbon and energy sources. Elemental sulfur (S(o)) is obligately required for its growth and is reduced to H2S. The metabolic functions and mechanisms of S(o) reduction were explored by examining S(o)-dependent growth and activities of key enzymes present in this organism. All three forms of S(o) tested--sublimed S(o), colloidal S(o) and polysulfide--were used by S. marinus, and no other sulfur-containing compounds could replace S(o). Elemental sulfur did not serve as physical support but appeared to function as an electron acceptor. The minimal S(o) concentration required for optimal growth was 0.05% (w/v). At this concentration, there appeared to be a metabolic transition from H2 production to S reduction. Some enzymatic activities related to S(o)-dependent metabolism, including sulfur reductase, hydrogenase, glutamate dehydrogenase and electron transfer activities, were detected in cell-free extracts of S. marinus. These results indicate that S(o) plays an essential role in the heterotrophic metabolism of S. marinus. Reducing equivalents generated by the oxidation of amino acids from peptidolysis may be transferred to sulfur reductase and hydrogenase, which then catalyze the production of H2S and H2, respectively.
Collapse
Affiliation(s)
- Xiaolei Hao
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Kesen Ma
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Corresponding author ()
| |
Collapse
|
23
|
Weinberg MV, Schut GJ, Brehm S, Datta S, Adams MWW. Cold shock of a hyperthermophilic archaeon: Pyrococcus furiosus exhibits multiple responses to a suboptimal growth temperature with a key role for membrane-bound glycoproteins. J Bacteriol 2005; 187:336-48. [PMID: 15601718 PMCID: PMC538827 DOI: 10.1128/jb.187.1.336-348.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hyperthermophilic archaeon, Pyrococcus furiosus, was grown on maltose near its optimal growth temperature, 95 degrees C, and at the lower end of the temperature range for significant growth, 72 degrees C. In addition, cultures were shocked by rapidly dropping the temperature from 95 to 72 degrees C. This resulted in a 5-h lag phase, during which time little growth occurred. Transcriptional analyses using whole-genome DNA microarrays representing 2,065 open reading frames (ORFs) in the P. furiosus genome showed that cells undergo three very different responses at 72 degrees C: an early shock (1 to 2 h), a late shock (5 h), and an adapted response (occurring after many generations at 72 degrees C). Each response involved the up-regulation in the expression of more than 30 ORFs unique to that response. These included proteins involved in translation, solute transport, amino acid biosynthesis, and tungsten and intermediary carbon metabolism, as well as numerous conserved-hypothetical and/or membrane-associated proteins. Two major membrane proteins were evident after one-dimensional sodium dodecyl sulfate-gel analysis of cold-adapted cells, and staining revealed them to be glycoproteins. Their cold-induced expression evident from the DNA microarray analysis was confirmed by quantitative PCR. Termed CipA (PF0190) and CipB (PF1408), both appear to be solute-binding proteins. While the archaea do not contain members of the bacterial cold shock protein (Csp) family, they all contain homologs of CipA and CipB. These proteins are also related phylogenetically to some cold-responsive genes recently identified in certain bacteria. The Cip proteins may represent a general prokaryotic-type cold response mechanism that is present even in hyperthermophilic archaea.
Collapse
Affiliation(s)
- Michael V Weinberg
- Department of Biochemistry and Molecular Biology, Life Sciences Bldg., University of Georgia, Athens, GA 30602-7229, USA
| | | | | | | | | |
Collapse
|
24
|
Jim K, Parmar K, Singh M, Tavazoie S. A cross-genomic approach for systematic mapping of phenotypic traits to genes. Genome Res 2004; 14:109-15. [PMID: 14707173 PMCID: PMC314287 DOI: 10.1101/gr.1586704] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We present a computational method for de novo identification of gene function using only cross-organismal distribution of phenotypic traits. Our approach assumes that proteins necessary for a set of phenotypic traits are preferentially conserved among organisms that share those traits. This method combines organism-to-phenotype associations,along with phylogenetic profiles,to identify proteins that have high propensities for the query phenotype; it does not require the use of any functional annotations for any proteins. We first present the statistical foundations of this approach and then apply it to a range of phenotypes to assess how its performance depends on the frequency and specificity of the phenotype. Our analysis shows that statistically significant associations are possible as long as the phenotype is neither extremely rare nor extremely common; results on the flagella,pili, thermophily,and respiratory tract tropism phenotypes suggest that reliable associations can be inferred when the phenotype does not arise from many alternate mechanisms.
Collapse
Affiliation(s)
- Kam Jim
- Department of Computer Science, Princeton University, Princeton, New Jersey, 08544 USA
| | | | | | | |
Collapse
|
25
|
Sakuraba H, Goda S, Ohshima T. Unique sugar metabolism and novel enzymes of hyperthermophilic archaea. CHEM REC 2004; 3:281-7. [PMID: 14762828 DOI: 10.1002/tcr.10066] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hyperthermophiles are a group of microorganisms that have their optimum growth temperature above 80 degrees C. More than 60 species of the hyperthermophiles have been isolated from marine and continental volcanic environments. Most hyperthermophiles belong to Archaea, the third domain of life, and are considered to be the most ancient of all extant life forms. Recent studies have revealed the presence of unusual sugar metabolic processes in hyperthermophilic archaea, for example, a modified Embden-Meyerhof pathway, that has so far not been observed in bacteria and eucarya. Several novel enzymes, such as ADP-dependent glucokinase, ADP-dependent phosphofructokinase, glyceraldehyde-3-phosphate ferredoxin oxidoreductase, phosphoenolpyruvate synthase, pyruvate : ferredoxin oxidoreductase, and ADP-forming acetyl-CoA synthetase, have been found to be involved in a modified Embden-Meyerhof pathway of the hyperthermophilic archaeon Pyrococcus furiosus. In addition, a unique mode of ATP regeneration has been postulated to exist in the pathway of P. furiosus. The metabolic design observed in this microorganism might reflect the situation at an early stage of evolution.
Collapse
Affiliation(s)
- Haruhiko Sakuraba
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Tokushima 770-8506, Japan
| | | | | |
Collapse
|
26
|
Significance of polysaccharides in microbial physiology and the ecology of hydrothermal vent environments. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/144gm14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Abstract
Two billion years of aerobic evolution have resulted in mammalian cells and tissues that are extremely oxygen-dependent. Exposure to oxygen tensions outside the relatively narrow physiological range results in cellular stress and toxicity. Consequently, hypoxia features prominently in many human diseases, particularly those associated with blood and vascular disorders, including all forms of anemia and ischemia. Bioenergetic enzymes have evolved both acute and chronic oxygen sensing mechanisms to buffer changes of oxygen tension; at normal P(O) oxidative phosphorylation is the principal energy supply for eukaryotic cells, but when the P(O) falls below a critical mark metabolic switches turn off mitochondrial electron transport and activate anaerobic glycolysis. Without this switch cells would suffer an immediate energy deficit and death at low P(O). An intriguing feature of the switching is that the same conditions that regulate energy metabolism also regulate bioenergetic genes, so that enzyme activity and transcription are regulated simultaneously, albeit with different time courses and signaling pathways. In this review we explore the pathways mediating hypoxia-regulated glycolytic enzyme gene expression, focusing on their atavistic traits and evolution.
Collapse
Affiliation(s)
- Keith A Webster
- Department of Molecular and Cellular Pharmacology, University of Miami Medical Center, Miami, FL 33136, USA.
| |
Collapse
|
28
|
Tor JM, Amend JP, Lovley DR. Metabolism of organic compounds in anaerobic, hydrothermal sulphate-reducing marine sediments. Environ Microbiol 2003; 5:583-91. [PMID: 12823190 DOI: 10.1046/j.1462-2920.2003.00441.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies of hot (>80 degrees C) microbial ecosystems have primarily relied on the study of pure cultures or analysis of 16S rDNA sequences. In order to gain more information on anaerobic metabolism by natural communities in hot environments, sediments were collected from a shallow marine hydrothermal vent system in Baia di Levante, Vulcano, Italy and incubated under strict anaerobic conditions at 90 degrees C. Sulphate reduction was the predominant terminal electron-accepting process in the sediments. The addition of molybdate inhibited sulphate reduction in the sediments and resulted in a linear accumulation of acetate and hydrogen over time. [U-14C]- acetate was completely oxidized to 14CO2, and the addition of molybdate inhibited 14CO2 production by 60%. [U-14C]-glucose was oxidized to 14CO2, and this was inhibited when molybdate was added. When the pool sizes of short-chain fatty acids were artificially increased, radiolabel from [U-14C]-glucose accumulated in the acetate pool. L-[U-14C]-glutamate, [ring-14C]-benzoate and [U-14C]-palmitate were also anaerobically oxidized to 14CO2 in the sediments, but molybdate had little effect on the oxidation of these compounds. These results demonstrate that natural microbial communities living in a hot, microbial ecosystem can oxidize acetate and a range of other organic electron donors under sulphate-reducing conditions and suggest that acetate is an important extracellular intermediate in the anaerobic degradation of organic matter in hot microbial ecosystems.
Collapse
Affiliation(s)
- Jason M Tor
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
29
|
Brugna-Guiral M, Tron P, Nitschke W, Stetter KO, Burlat B, Guigliarelli B, Bruschi M, Giudici-Orticoni MT. [NiFe] hydrogenases from the hyperthermophilic bacterium Aquifex aeolicus: properties, function, and phylogenetics. Extremophiles 2003; 7:145-57. [PMID: 12664267 DOI: 10.1007/s00792-002-0306-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2002] [Accepted: 11/07/2002] [Indexed: 11/26/2022]
Abstract
Genes potentially coding for three distinct [NiFe] hydrogenases are present in the genome of Aquifex aeolicus. We have demonstrated that all three hydrogenases are expressed under standard growth conditions of the organism. Two hydrogenases were further purified to homogeneity. A periplasmically oriented hydrogenase was obtained in two forms, i.e., as a soluble enzyme containing only the two essential subunits and as a detergent-solubilized complex additionally containing a membrane-integral b-type cytochrome. The second hydrogenase purified was identified as a soluble cytoplasmic enzyme. The isolated enzymes were characterized with respect to biochemical/biophysical parameters, activity, thermostability, and substrate specificity. The phylogenetic positioning of all three hydrogenases was analyzed. A model for the metabolic roles of the three enzymes is proposed on the basis of the obtained results.
Collapse
Affiliation(s)
- Marianne Brugna-Guiral
- Bioénergétique et Ingénierie des Protéines, CNRS, IBSM, 31 chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Amend JP, Shock EL. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. FEMS Microbiol Rev 2001; 25:175-243. [PMID: 11250035 DOI: 10.1111/j.1574-6976.2001.tb00576.x] [Citation(s) in RCA: 372] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Thermophilic and hyperthermophilic Archaea and Bacteria have been isolated from marine hydrothermal systems, heated sediments, continental solfataras, hot springs, water heaters, and industrial waste. They catalyze a tremendous array of widely varying metabolic processes. As determined in the laboratory, electron donors in thermophilic and hyperthermophilic microbial redox reactions include H2, Fe(2+), H2S, S, S2O3(2-), S4O6(2-), sulfide minerals, CH4, various mono-, di-, and hydroxy-carboxylic acids, alcohols, amino acids, and complex organic substrates; electron acceptors include O2, Fe(3+), CO2, CO, NO3(-), NO2(-), NO, N2O, SO4(2-), SO3(2-), S2O3(2-), and S. Although many assimilatory and dissimilatory metabolic reactions have been identified for these groups of microorganisms, little attention has been paid to the energetics of these reactions. In this review, standard molal Gibbs free energies (DeltaGr(0)) as a function of temperature to 200 degrees C are tabulated for 370 organic and inorganic redox, disproportionation, dissociation, hydrolysis, and solubility reactions directly or indirectly involved in microbial metabolism. To calculate values of DeltaGr(0) for these and countless other reactions, the apparent standard molal Gibbs free energies of formation (DeltaG(0)) at temperatures to 200 degrees C are given for 307 solids, liquids, gases, and aqueous solutes. It is shown that values of DeltaGr(0) for many microbially mediated reactions are highly temperature dependent, and that adopting values determined at 25 degrees C for systems at elevated temperatures introduces significant and unnecessary errors. The metabolic processes considered here involve compounds that belong to the following chemical systems: H-O, H-O-N, H-O-S, H-O-N-S, H-O-C(inorganic), H-O-C, H-O-N-C, H-O-S-C, H-O-N-S-C(amino acids), H-O-S-C-metals/minerals, and H-O-P. For four metabolic reactions of particular interest in thermophily and hyperthermophily (knallgas reaction, anaerobic sulfur and nitrate reduction, and autotrophic methanogenesis), values of the overall Gibbs free energy (DeltaGr) as a function of temperature are calculated for a wide range of chemical compositions likely to be present in near-surface and deep hydrothermal and geothermal systems.
Collapse
Affiliation(s)
- J P Amend
- Department of Earth and Planetary Sciences, Washington University, CB 1169 St. Louis, MO 63130, USA.
| | | |
Collapse
|
31
|
Tor JM, Lovley DR. Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. Environ Microbiol 2001; 3:281-7. [PMID: 11359514 DOI: 10.1046/j.1462-2920.2001.00192.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aromatic compounds are an important component of the organic matter in some of the anaerobic environments that hyperthermophilic microorganisms inhabit, but the potential for hyperthermophilic microorganisms to metabolize aromatic compounds has not been described previously. In this study, aromatic metabolism was investigated in the hyperthermophile Ferroglobus placidus. F. placidus grew at 85 degrees C in anaerobic medium with a variety of aromatic compounds as the sole electron donor and poorly crystalline Fe(III) oxide as the electron acceptor. Growth coincided with Fe(III) reduction. Aromatic compounds supporting growth included benzoate, phenol, 4-hydroxybenzoate, benzaldehyde, p-hydroxybenzaldehyde and t-cinnamic acid (3-phenyl-2-propenoic acid). These aromatic compounds did not support growth when nitrate was provided as the electron acceptor, even though nitrate supports the growth of this organism with Fe(II) or H2 as the electron donor. The stoichiometry of benzoate and phenol uptake and Fe(III) reduction indicated that F. placidus completely oxidized these aromatic compounds to carbon dioxide, with Fe(III) serving as the sole electron acceptor. This is the first example of an Archaea that can anaerobically oxidize an aromatic compound. These results also demonstrate for the first time that hyperthermophilic microorganisms can anaerobically oxidize aromatic compounds and suggest that hyperthermophiles may metabolize aromatic compounds in hot environments such as the deep hot subsurface and in marine and terrestrial hydrothermal zones in which Fe(III) is available as an electron acceptor.
Collapse
Affiliation(s)
- J M Tor
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
32
|
Xavier KB, Peist R, Kossmann M, Boos W, Santos H. Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterization of key enzymes. J Bacteriol 1999; 181:3358-67. [PMID: 10348846 PMCID: PMC93801 DOI: 10.1128/jb.181.11.3358-3367.1999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maltose metabolism was investigated in the hyperthermophilic archaeon Thermococcus litoralis. Maltose was degraded by the concerted action of 4-alpha-glucanotransferase and maltodextrin phosphorylase (MalP). The first enzyme produced glucose and a series of maltodextrins that could be acted upon by MalP when the chain length of glucose residues was equal or higher than four, to produce glucose-1-phosphate. Phosphoglucomutase activity was also detected in T. litoralis cell extracts. Glucose derived from the action of 4-alpha-glucanotransferase was subsequently metabolized via an Embden-Meyerhof pathway. The closely related organism Pyrococcus furiosus used a different metabolic strategy in which maltose was cleaved primarily by the action of an alpha-glucosidase, a p-nitrophenyl-alpha-D-glucopyranoside (PNPG)-hydrolyzing enzyme, producing glucose from maltose. A PNPG-hydrolyzing activity was also detected in T. litoralis, but maltose was not a substrate for this enzyme. The two key enzymes in the pathway for maltose catabolism in T. litoralis were purified to homogeneity and characterized; they were constitutively synthesized, although phosphorylase expression was twofold induced by maltodextrins or maltose. The gene encoding MalP was obtained by complementation in Escherichia coli and sequenced (calculated molecular mass, 96,622 Da). The enzyme purified from the organism had a specific activity for maltoheptaose, at the temperature for maximal activity (98 degrees C), of 66 U/mg. A Km of 0.46 mM was determined with heptaose as the substrate at 60 degrees C. The deduced amino acid sequence had a high degree of identity with that of the putative enzyme from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 (66%) and with sequences of the enzymes from the hyperthermophilic bacterium Thermotoga maritima (60%) and Mycobacterium tuberculosis (31%) but not with that of the enzyme from E. coli (13%). The consensus binding site for pyridoxal 5'-phosphate is conserved in the T. litoralis enzyme.
Collapse
Affiliation(s)
- K B Xavier
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
33
|
Abstract
Glycosyl hydrolases from hyperthermophiles are, thus far, the most widely studied enzyme class from these organisms. Not only are there many biotechnological opportunities for these enzymes, but the rapidly increasing amount of information about their genetic, biochemical and biophysical characteristics (recently genomic sequencing data for both P. furiosus and P. horikoshi have been published on the Internet) make them ideal candidates for the study of biocatalysis and protein thermostability at extremely high temperatures.
Collapse
Affiliation(s)
- M W Bauer
- Department of Chemical Engineering, North Carolina State University, Raleigh 27695-7905, USA
| | | | | |
Collapse
|
34
|
Siddiqui MA, Fujiwara S, Takagi M, Imanaka T. Phylogenetic analysis and effect of heat on conformational change of ferredoxin from hyperthermophilic archaeon Pyrococcus sp. KOD1. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(97)85674-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
McCollom TM, Shock EL. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. GEOCHIMICA ET COSMOCHIMICA ACTA 1997; 61:4375-4391. [PMID: 11541662 DOI: 10.1016/s0016-7037(97)00241-x] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mixing of hydrothermal fluids and seawater at the ocean floor, combined with slow reaction kinetics for oxidation/reduction reactions, provides a source of metabolic energy for chemolithotrophic microorganisms which are the primary biomass producers for an extensive submarine ecosystem that is essentially independent of photosynthesis. Thermodynamic models are used to explore geochemical constraints on the amount of metabolic energy potentially available from chemosynthetic reactions involving S, C, Fe, and Mn compounds during mixing of hydrothermal fluids with seawater. For the vent fluid used in the calculations (EPR 21 degrees N OBS), the model indicates that mixing environments are favorable for oxidation of H2S, CH4, Fe2+ and Mn2+ only below approximately 38 degrees C, with methanogenesis and reduction of sulfate or S degrees favored at higher temperatures, suggesting that environments dominated by mixing provide habitats for mesophilic (but not thermophilic) aerobes and thermophilic (but not mesophilic) anaerobes. A maximum of approximately 760 cal per kilogram vent fluid is available from sulfide oxidation while between 8 and 35 cal/kg vent fluid is available from methanotrophy, methanogenesis, oxidation of Fe or Mn, or sulfate reduction. The total potential for chemosynthetic primary production at deep-sea hydrothermal vents globally is estimated to be about 10(13) g biomass per year, which represents approximately 0.02% of the global primary production by photosynthesis in the oceans. Thermophilic methanogens and sulfate- and S degree-reducers are likely to be the predominant organisms in the walls of vent chimneys and in the diffuse mixing zones beneath warm vents, where biological processes may contribute to the high methane concentrations of vent fluids and heavy 34S/32S ratios of vent sulfide minerals. The metabolic processes taking place in these systems may be analogs of the first living systems to evolve on the Earth.
Collapse
Affiliation(s)
- T M McCollom
- GEOPIG, Earth and Planetary Sciences, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
36
|
Ma K, Hutchins A, Sung SJ, Adams MW. Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase. Proc Natl Acad Sci U S A 1997; 94:9608-13. [PMID: 9275170 PMCID: PMC23233 DOI: 10.1073/pnas.94.18.9608] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pyruvate ferredoxin oxidoreductase (POR) has been previously purified from the hyperthermophilic archaeon, Pyrococcus furiosus, an organism that grows optimally at 100 degrees C by fermenting carbohydrates and peptides. The enzyme contains thiamine pyrophosphate and catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and CO2 and reduces P. furiosus ferredoxin. Here we show that this enzyme also catalyzes the formation of acetaldehyde from pyruvate in a CoA-dependent reaction. Desulfocoenzyme A substituted for CoA showing that the cofactor plays a structural rather than a catalytic role. Ferredoxin was not necessary for the pyruvate decarboxylase activity of POR, nor did it inhibit acetaldehyde production. The apparent Km values for CoA and pyruvate were 0.11 mM and 1.1 mM, respectively, and the optimal temperature for acetaldehyde formation was above 90 degrees C. These data are comparable to those previously determined for the pyruvate oxidation reaction of POR. At 80 degrees C (pH 8.0), the apparent Vm value for pyruvate decarboxylation was about 40% of the apparent Vm value for pyruvate oxidation rate (using P. furiosus ferredoxin as the electron acceptor). Tentative catalytic mechanisms for these two reactions are presented. In addition to POR, three other 2-keto acid ferredoxin oxidoreductases are involved in peptide fermentation by hyperthermophilic archaea. It is proposed that the various aldehydes produced by these oxidoreductases in vivo are used by two aldehyde-utilizing enzymes, alcohol dehydrogenase and aldehyde ferredoxin oxidoreductase, the physiological roles of which were previously unknown.
Collapse
Affiliation(s)
- K Ma
- Center for Metalloenzyme Studies, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
37
|
Harwood VJ, Denson JD, Robinson-Bidle KA, Schreier HJ. Overexpression and characterization of a prolyl endopeptidase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 1997; 179:3613-8. [PMID: 9171407 PMCID: PMC179155 DOI: 10.1128/jb.179.11.3613-3618.1997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The maltose-regulated mlr-2 gene from the hyperthermophilic archaeon Pyrococcus furiosus having homology to bacterial and eukaryal prolyl endopeptidase (PEPase) was cloned and overexpressed in Escherichia coli. Extracts from recombinant cells were capable of hydrolyzing the PEPase substrate benzyloxycarbonyl-Gly-Pro-p-nitroanilide (ZGPpNA) with a temperature optimum between 85 and 90 degrees C. Denaturing gel electrophoresis of purified PEPase showed that enzyme activity was associated with a 70-kDa protein, which is consistent with that predicted from the mlr-2 sequence. However, an apparent molecular mass of 59 kDa was obtained from gel permeation studies. In addition to ZGPpNA (K(Mapp) of 53 microM), PEPase was capable of hydrolyzing azocasein, although at a low rate. No activity was detected when ZGPpNA was replaced by substrates for carboxypeptidase A and B, chymotrypsin, subtilisin, and neutral endopeptidase. N-[N-(L-3-trans-Carboxirane-2-carbonyl)-L-Leu]-agmatine (E-64) and tosyl-L-Lys chloromethyl ketone did not inhibit PEPase activity. Both phenylmethylsulfonyl fluoride and diprotin A inhibited ZGPpNA cleavage, the latter doing so competitively (K(lapp) of 343 microM). At 100 degrees C, the enzyme displayed some tolerance to sodium dodecyl sulfate treatment. Stability of PEPase over time was dependent on protein concentration; at temperatures above 65 degrees C, dilute samples retained most of their activity after 24 h while the activity of concentrated preparations diminished significantly. This decrease was found to be due, in part, to autoproteolysis. Partially purified PEPase from P. furiosus exhibited the same temperature optimum, molecular weight, and kinetic characteristics as the enzyme overexpressed in E. coli. Extracts from P. furiosus cultures grown in the presence of maltose were approximately sevenfold greater in PEPase activity than those grown without maltose. Activity could not be detected in clarified medium obtained from maltose-grown cultures. We conclude that mlr-2, now called prpA, encodes PEPase; the physiological role of this protease is presently unknown.
Collapse
Affiliation(s)
- V J Harwood
- Center of Marine Biotechnology, The University of Maryland, Baltimore 21202, USA
| | | | | | | |
Collapse
|
38
|
Glasemacher J, Bock AK, Schmid R, Schønheit P. Purification and properties of acetyl-CoA synthetase (ADP-forming), an archaeal enzyme of acetate formation and ATP synthesis, from the hyperthermophile Pyrococcus furiosus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:561-7. [PMID: 9119024 DOI: 10.1111/j.1432-1033.1997.00561.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acetyl-CoA synthetase (ADP-forming) is an enzyme in Archaea that catalyzes the formation of acetate from acetyl-CoA and couples this reaction with the synthesis of ATP from ADP and Pi (acetyl-CoA + ADP + Pi --> acetate + ATP + CoA) [Schifer, T., Selig, M. & Schonheit, P. (1993) Arch. Microbiol. 159, 72-83]. The enzyme from the anaerobic hyperthermophile Pyrococcus furiosus was purified 96-fold with a yield of 20% to apparent electrophoretic homogeneity. The oxygen-stable enzyme had an apparent molecular mass of 145 kDa and was composed of two subunits with apparent molecular masses of 47 kDa and 25 kDa, indicating an alpha2beta2 structure. The N-terminal amino acid sequences of both subunits were determined; they do not show significant identity to other proteins in databases. The purified enzyme catalyzed the reversible conversion of acetyl-CoA, ADP and Pi to acetate, ATP and CoA. The apparent Vmax value in the direction of acetate formation was 18 U/mg (55 degrees C), the apparent Km values for acetyl-CoA, ADP and Pi were 17 microM, 60 microM and 200 microM, respectively. ADP and Pi could not be replaced by AMP and PPi, defining the enzyme as an ADP-forming rather than an AMP-forming acetyl-CoA synthetase. The apparent Vmax value in the direction of acetyl-CoA formation was about 40 U/mg (55 degrees C), and the apparent Km values for acetate, ATP and CoA were 660 microM, 80 microM and 30 microM, respectively. The purified enzyme was not specific for acetyl-CoA or acetate, in addition to acetyl-CoA (100%), the enzyme accepts propionyl-CoA (110%) and butyryl-CoA (92%), and in addition to acetate (100%), the enzyme accepts propionate (100%), butyrate (92%), isobutyrate (79%), valerate (36%) and isovalerate (34%), indicating that the enzyme functions as an acyl-CoA synthetase (ADP-forming) with a broad substrate spectrum. Succinate, phenylacetate and indoleacetate did not serve as substrates for the enzyme (<3%). In addition to ADP (100%), GDP (220%) and IDP (250%) were used, and in addition to ATP (100%), GTP (210%) and ITP (320%) were used. Pyrimidine nucleotides were not accepted. The enzyme was dependent on Mg2+, which could be partly substituted by Mn2+ and Co2+. The pH optimum was pH 7. The enzyme has a temperature optimum at 90 degrees C, which is in accordance with its physiological function under hyperthermophilic conditions. The enzyme was stabilized against heat inactivation by salts. In the presence of KCI (1 M), which was most effective, the enzyme did not loose activity after 2 h incubation at 100 degrees C.
Collapse
Affiliation(s)
- J Glasemacher
- Institut für Pflanzenphysiologie und Mikrobiologie, Fachbereich Biologie der Freien Universität, Berlin, Germany
| | | | | | | |
Collapse
|
39
|
Rinker KD, Kelly RM. Growth Physiology of the Hyperthermophilic Archaeon Thermococcus litoralis: Development of a Sulfur-Free Defined Medium, Characterization of an Exopolysaccharide, and Evidence of Biofilm Formation. Appl Environ Microbiol 1996; 62:4478-85. [PMID: 16535464 PMCID: PMC1389002 DOI: 10.1128/aem.62.12.4478-4485.1996] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nutritional characteristics of the hyperthermophilic archaeon Thermococcus litoralis have been investigated with emphasis on the development of a sulfur-free, defined growth medium, analysis of an exocellular polysaccharide, and formation of a biofilm. An artificial-seawater-based medium, containing 16 amino acids, adenine, uracil, vitamins, and trace elements, allowed T. litoralis to attain growth rates and cell densities similar to those found with complex media. Four amino acids (alanine, asparagine, glutamine, and glutamate) were not included due to their lack of effect on growth rates and cell yields. In this medium, cultures reached densities of 10(sup8) cells per ml, with doubling times of 55 min (without maltose) or 43 min (with maltose). Neither the addition of elemental sulfur nor the presence of H(inf2) significantly affected cell growth. A sparingly soluble exopolysaccharide was produced by T. litoralis grown in either defined or complex media. Analysis of the acid-hydrolyzed exopolysaccharide yielded mannose as the only monosaccharidic constituent. This exopolysaccharide is apparently involved in the formation of a biofilm on polycarbonate filters and glass slides, which is inhabited by high levels of T. litoralis. Biofilm formation by hyperthermophilic microorganisms in geothermal environments has not been examined to any extent, but further work in this area may provide information related to the interactions among high-temperature organisms.
Collapse
|
40
|
Mai X, Adams MW. Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. J Bacteriol 1996; 178:5890-6. [PMID: 8830683 PMCID: PMC178443 DOI: 10.1128/jb.178.20.5890-5896.1996] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Thermococcus litoralis is a strictly anaerobic archaeon (archaebacterium) that grows at temperatures up to 98 degrees C by fermenting peptides. It is known to contain three distinct ferredoxin-dependent, 2-keto acid oxidoreductases, which use pyruvate, aromatic 2-keto acids such as indolepyruvate, or branched-chain 2-keto acids such as 2-ketoisovalerate, as their primary substrates. We show here that T. litoralis also contains a fourth member of this family of enzymes, 2-ketoglutarate ferredoxin oxidoreductase (KGOR). In the presence of coenzyme A, KGOR catalyzes the oxidative decarboxylation of 2-ketoglutarate to succinyl coenzyme A and CO2 and reduces T. litoralis ferredoxin. The enzyme was oxygen sensitive (half-life of approximately 5 min) and was purified under anaerobic conditions. It had an M(r) of approximately 210,000 and appeared to be an octomeric enzyme (alpha2beta2gamma2delta2) with four different subunits with M(r)s of 43,000 (alpha), 29,000 (beta), 23,000 (gamma), and 10,000 (delta). The enzyme contained 0.9 mol of thiamine PPi and at least four [4Fe-4S] clusters per mol of holoenzyme as determined by metal analyses and electron paramagnetic resonance spectroscopy. Significant amounts of other metals (Cu, Zn, Mo, W, and Ni) were not present (<0.1 mol/mol of holoenzyme). Pure KGOR did not utilize other 2-keto acids, such as pyruvate, indolepyruvate, or 2-ketoisovalerate, as substrates, and the apparent Km values for 2-ketoglutarate, coenzyme A, T. litoralis ferredoxin, and thiamine PPi were approximately 250, 40, 8, and 9 microM, respectively. The enzyme was virtually inactive at 25 degrees C and exhibited optimal activity above 90 degrees C (at pH 8.0) and at pH 8.0 (at 80 degrees C). KGOR was quite thermostable, with a half-life at 80 degrees C (under anaerobic conditions) of about 2 days. An enzyme analogous to KGOR has been previously purified from a mesophilic archaeon, but the molecular properties of T. litoralis KGOR more closely resemble those of the other oxidoreductases from hyperthermophiles. In contrast to these enzymes, however, KGOR appears to have a biosynthetic function rather than a role in energy conservation.
Collapse
Affiliation(s)
- X Mai
- Department of Biochemistry and Molecular Biology and Center for Metalloenzyme Studies, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
41
|
Voorhorst WG, Eggen RI, Geerling AC, Platteeuw C, Siezen RJ, Vos WM. Isolation and characterization of the hyperthermostable serine protease, pyrolysin, and its gene from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 1996; 271:20426-31. [PMID: 8702780 DOI: 10.1074/jbc.271.34.20426] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The hyperthermostable serine protease pyrolysin from the hyperthermophilic archaeon Pyrococcus furiosus was purified from membrane fractions. Two proteolytically active fractions were obtained, designated high (HMW) and low (LMW) molecular weight pyrolysin, that showed immunological cross-reaction and identical NH2-terminal sequences in which the third residue could be glycosylated. The HMW pyrolysin showed a subunit mass of 150 kDa after acid denaturation. Incubation of HMW pyrolysin at 95 degrees C resulted in the formation of LMW pyrolysin, probably as a consequence of COOH-terminal autoproteolysis. The 4194-base pair pls gene encoding pyrolysin was isolated and characterized, and its transcription initiation site was identified. The deduced pyrolysin sequence indicated a prepro-enzyme organization, with a 1249-residue mature protein composed of an NH2-terminal catalytic domain with considerable homology to subtilisin-like serine proteases and a COOH-terminal domain that contained most of the 32 possible N-glycosylation sites. The archaeal pyrolysin showed highest homology with eucaryal tripeptidyl peptidases II on the amino acid level but a different cleavage specificity as shown by its endopeptidase activity toward caseins, casein fragments including alphaS1-casein and synthetic peptides.
Collapse
Affiliation(s)
- W G Voorhorst
- Department of Microbiology, Wageningen Agricultural University, 6703 CT Wageningen
| | | | | | | | | | | |
Collapse
|
42
|
Xavier KB, Martins LO, Peist R, Kossmann M, Boos W, Santos H. High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol 1996; 178:4773-7. [PMID: 8759837 PMCID: PMC178256 DOI: 10.1128/jb.178.16.4773-4777.1996] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The hyperthermophilic marine archaeon Thermococcus litoralis exhibits high-affinity transport activity for maltose and trehalose at 85 degrees C. The K(m) for maltose transport was 22 nM, and that for trehalose was 17 nM. In cells that had been grown on peptone plus yeast extract, the Vmax for maltose uptake ranged from 3.2 to 7.5 nmol/min/mg of protein in different cell cultures. Cells grown in peptone without yeast extract did not show significant maltose or trehalose uptake. We found that the compound in yeast extract responsible for the induction of the maltose and trehalose transport system was trehalose. [14C]maltose uptake at 100 nM was not significantly inhibited by glucose, sucrose, or maltotriose at a 100 microM concentration but was completely inhibited by trehalose and maltose. The inhibitor constant, Ki, of trehalose for inhibiting maltose uptake was 21 nM. In contrast, the ability of maltose to inhibit the uptake of trehalose was not equally strong. With 20 nM [14C]trehalose as the substrate, a 10-fold excess of maltose was necessary to inhibit uptake to 50%. However, full inhibition was observed at 2 microM maltose. The detergent-solubilized membranes of trehalose-induced cells contained a high-affinity binding protein for maltose and trehalose, with an M(r) of 48,000, that exhibited the same substrate specificity as the transport system found in whole cells. We conclude that maltose and trehalose are transported by the same high-affinity membrane-associated system. This represents the first report on sugar transport in any hyperthermophilic archaeon.
Collapse
Affiliation(s)
- K B Xavier
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Halio SB, Blumentals II, Short SA, Merrill BM, Kelly RM. Sequence, expression in Escherichia coli, and analysis of the gene encoding a novel intracellular protease (PfpI) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 1996; 178:2605-12. [PMID: 8626329 PMCID: PMC177986 DOI: 10.1128/jb.178.9.2605-2612.1996] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A previously identified intracellular proteolytic activity in the hyperthermophilic archaeon Pyrococcus furiosus (I. I. Blumentals, A. S. Robinson, and R. M. Kelly, Appl. Environ. Microbiol. 56:1992-1998, 1990) was found to be a homomultimer consisting of 18.8-kDa subunits. Dissociation of this native P. furiosus protease I (PfpI) into a single subunit was seen by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) but only after trichloroacetic acid precipitation; heating to 95 degrees C in the presence of 2% SDS and 80 mM dithiothreitol did not dissociate the protein. The gene (pfpI) coding for this protease was located in genomic digests by Southern blotting with probes derived from the N-terminal amino acid sequence. pfpI was cloned, sequenced, and expressed in active form in Escherichia coli as a fusion protein with a histidine tag. The recombinant protease from E. coli showed maximum proteolytic activity at 95 degrees C, and its half-life was 19 min at this temperature. This level of stability was significantly below that previously reported for the enzyme purified by electroelution of a 66-kDa band from SDS-PAGE after extended incubation of cell extracts at 98 degrees C in 1% SDS (>30 h). The pfpI gene codes for a polypeptide of 166 amino acid residues lacking any conserved protease motifs; no protease activity was detected for the 18.8-kDa PfpI subunit (native or recombinant) by substrate gel assay. Although an immunological relationship of this protease to the eukaryotic proteasome has been seen previously, searches of the available databases identified only two similar amino acid sequences: an open reading frame of unknown function from Staphylococcus aureus NCTC 8325 (171 amino acid residues, 18.6 kDa, 41% identity) and an open reading frame also of unknown function in E. coli (172 amino acid residues, 18.8 kDa, 47% identity). Primer extension experiments with P. furiosus total RNA defined the 5' end of the transcript. There are only 10 nucleotides upstream of the start of translation; therefore, it is unlikely that there are any pre- or pro-regions associated with PfpI which could have been used for targeting or assembly of this protease. Although PfpI activity appears to be the dominant proteolytic activity in P. furiosus cell extracts, the physiological function of PfpI is unclear.
Collapse
Affiliation(s)
- S B Halio
- Department of Chemical Engineering, North Carolina State University, Raleigh, 27695-7905, USA
| | | | | | | | | |
Collapse
|
45
|
Fardeau ML, Faudon C, Cayol JL, Magot M, Patel BK, Ollivier B. Effect of thiosulphate as electron acceptor on glucose and xylose oxidation by Thermoanaerobacter finnii and a Thermoanaerobacter sp. isolated from oil field water. Res Microbiol 1996; 147:159-65. [PMID: 8761734 DOI: 10.1016/0923-2508(96)80215-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During glucose and xylose fermentation, Thermoanaerobacter finnii was observed to produce lactate, acetate, H2 and CO2, with ethanol being the major end product. Thermoanaerobacter strain SEBR 5268, an isolate from an oil field, also produced a similar range of end products from glucose and xylose fermentation, with the exception that both ethanol and lactate were the major products of sugar metabolism. Both these strains were able to reduce thiosulphate to sulphide in the presence of these two substrates, with acetate being the dominant metabolite in that case. In addition, a faster growth rate and increased cell yield were obtained in the presence of thiosulphate, than in its absence. The higher concentrations of acetate produced in the presence of thiosulphate rather than without any electron acceptor indicated that more ATP was generated from substrate-level phosphorylation. These results have implications for our understanding of the breakdown of carbohydrates present in organic matter found in the natural ecological niches of Thermoanaerobacter species (sulphide-, elemental sulphur- or sulphate-rich thermal hot springs and oil fields).
Collapse
Affiliation(s)
- M L Fardeau
- Laboratoire de Microbiologie ORSTOM, Université de Provence, CESB-ESIL, Marseille, France
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Heider J, Mai X, Adams MW. Characterization of 2-ketoisovalerate ferredoxin oxidoreductase, a new and reversible coenzyme A-dependent enzyme involved in peptide fermentation by hyperthermophilic archaea. J Bacteriol 1996; 178:780-7. [PMID: 8550513 PMCID: PMC177725 DOI: 10.1128/jb.178.3.780-787.1996] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cell extracts of the proteolytic and hyperthermophilic archaea Thermococcus litoralis, Thermococcus sp. strain ES-1, Pyrococcus furiosus, and Pyrococcus sp. strain ES-4 contain an enzyme which catalyzes the coenzyme A-dependent oxidation of branched-chain 2-ketoacids coupled to the reduction of viologen dyes or ferredoxin. This enzyme, termed VOR (for keto-valine-ferredoxin oxidoreductase), has been purified from all four organisms. All four VORs comprise four different subunits and show amino-terminal sequence homology. T. litoralis VOR has an M(r) of ca. 230,000, with subunit M(r) values of 47,000 (alpha), 34,000 (beta), 23,000 (gamma), and 13,000 (delta). It contains about 11 iron and 12 acid-labile sulfide atoms and 13 cysteine residues per heterotetramer (alpha beta gamma delta), but thiamine pyrophosphate, which is required for catalytic activity, was lost during purification. The most efficient substrates (kcat/Km > 1.0 microM-1 s-1; Km < 100 microM) for the enzyme were the 2-ketoacid derivatives of valine, leucine, isoleucine, and methionine, while pyruvate and aryl pyruvates were very poor substrates (kcat/Km < 0.2 microM-1 s-1) and 2-ketoglutarate was not utilized. T. litoralis VOR also functioned as a 2-ketoisovalerate synthase at 85 degrees C, producing 2-ketoisovalerate and coenzyme A from isobutyryl-coenzyme A (apparent Km, 250 microM) and CO2 (apparent Km, 48 mM) with reduced viologen as the electron donor. The rate of 2-ketoisovalerate synthesis was about 5% of the rate of 2-ketoisovalerate oxidation. The optimum pH for both reactions was 7.0. A mechanism for 2-ketoisovalerate oxidation based on data from substrate-induced electron paramagnetic resonance spectra is proposed, and the physiological role of VOR is discussed.
Collapse
Affiliation(s)
- J Heider
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| | | | | |
Collapse
|
48
|
Baross JA, Holden JF. Overview of hyperthermophiles and their heat-shock proteins. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:1-34. [PMID: 8791623 DOI: 10.1016/s0065-3233(08)60360-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J A Baross
- School of Oceanography, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
49
|
Bauer MW, Halio SB, Kelly RM. Proteases and glycosyl hydrolases from hyperthermophilic microorganisms. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:271-310. [PMID: 8791627 DOI: 10.1016/s0065-3233(08)60364-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M W Bauer
- Department of Chemical Engineering, North Carolina State University, Raleigh 27695-7905, USA
| | | | | |
Collapse
|
50
|
Adams MW, Kletzin A. Oxidoreductase-type enzymes and redox proteins involved in fermentative metabolisms of hyperthermophilic Archaea. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:101-80. [PMID: 8791625 DOI: 10.1016/s0065-3233(08)60362-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|