1
|
Akimbek A, Jamalova G, Yernazarova A, Kaiyrmanova G, Yelikbayev B, Pagano M, Zazybin A, Rafikova KS. Biodesulfurization of high-sulfur oil from the Karazhanbas field of Kazakhstan with deep eutectic solvents. Heliyon 2025; 11:e41877. [PMID: 39906832 PMCID: PMC11791287 DOI: 10.1016/j.heliyon.2025.e41877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025] Open
Abstract
The Karazhanbas oil field in the Mangystau region of Kazakhstan contains high-sulfur oil (1.6-2.2 %). It is known that sulfur negatively affects the operational properties of petroleum products, causes the corrosion of pipelines, and adversely affects the environment and the human body. Therefore, the development of biodesulfurization technology, taking into account local features, is relevant for this field. The purpose of the study is to develop biodesulfurization of high-sulfur oil from the Karazhanbas field in Kazakhstan using deep eutectic solvents. Research objectives: isolation of sulfate-oxidizing and sulfate-reducing bacteria from the studied oils; identification of isolated bacteria; study of the effect of heavy metal Cr(VI) and sulfur on microbial activity; testing of native strains for the potential for desulfurization of crude oil. The research methodology was based on the application of the Koch methods to determine the total number of microorganisms; light microscopy - for the study of microbiological preparations; genetic identification of bacteria based on the analysis of the nucleotide sequence of a fragment of the 16S rRNA gene; synthesis of deep eutectic solvents; testing of isolated bacteria - for sensitivity to Cr (VI), for the ability of microorganisms to use hydrocarbons of high-sulfur oil, for activity in sulfur-containing crude oil, for determination of the mass fraction of sulfur. From 12 aerobic bacterial cultures isolated from oil samples, 9 strains with active and moderate growth in a medium with high-sulfur oil were selected during testing, followed by two strains (Bacillus paramycoides SFN-1, Bacillus cereus SFN-2), which were the most resistant to Cr (VI) and two strains (Bacillus cereus SFN2, Bacillus thuringiensis SFN3), which have shown sulfur-oxidizing abilities. The native bacterial strains selected during the study showed high disulfurization activity without the addition of deep eutectic solvents (hereinafter referred to as DES) (Bacillus thuringiensis SFN3), with the addition of DES-1 (Bacillus cereus SFN2) and with the addition of DES-2 (Bacillus thuringiensis SFN3). As a result of a comparative analysis of microbial desulfurization processes, it was found that the highest biodesulfurization rate at the end of the experiment was recorded in cultures of Pseudomonas aeruginosa B-5807 (96.3 %), Bacillus thuringiensis SFN-3 (96.1 %), and Rhodococcus erythropolis AC 1039 (96 %).
Collapse
Affiliation(s)
- A.O. Akimbek
- Satbayev University, Geology and Oil-Gas Business Institute Named After K. Turyssov, Almaty, Kazakhstan
| | - G.A. Jamalova
- Satbayev University, Geology and Oil-Gas Business Institute Named After K. Turyssov, Almaty, Kazakhstan
- Scientific and Diagnostic Center Animal Expert Group, LLP, Almaty, Kazakhstan
| | | | | | - B.K. Yelikbayev
- Satbayev University, Geology and Oil-Gas Business Institute Named After K. Turyssov, Almaty, Kazakhstan
| | - M.C. Pagano
- Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - A.G. Zazybin
- Kazakh-British Technical University, Almaty, Kazakhstan
| | - Kh. S. Rafikova
- Satbayev University, Geology and Oil-Gas Business Institute Named After K. Turyssov, Almaty, Kazakhstan
| |
Collapse
|
2
|
Lizardi-Jiménez MA, Marín-Hernández A, Tomasini-Campocosio A, Coreño-Alonso A. The degradation of an aromatic organic compound by Aspergillus niger var tubingensis Ed8 produces metabolites that reduce Cr (VI). INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2022-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Chromium Cr(VI) is a highly toxic environmental contaminant for any organism, its presence in the environment is mainly due to anthropogenic activities. The use of biotechnology has been implemented for the treatment of effluents contaminated with Cr(VI).Our working group has isolated several fungi and bacteria capable of removing Cr(VI) from the culture medium. Aspergillus niger var tubingensis Ed8 is a strain that can produce metabolites which reduce Cr (VI) to Cr (III). The objective of this work was to determine the effect of sodium salicylate on the growth of this strain and on the Cr(VI) reduction system, as well as to identify the metabolites that are produced from sodium salicylate. Our results show that the Culture medium containing sodium salicylate (20 mM) inhibits strain growth compared to the control condition (0 mM). However, it increases the specific reduction capacity of Cr (VI) red/mg Biomass in order of magnitude. Analysis of the culture medium corresponding to 48 h of incubation shows the presence of catechol and salicylate diminution. In addition, as a product of the enzymatic activity of a cell-free cellular extract, after 24 h of incubation, the consumption of salicylate is detected, as well as the presence of peaks corresponding to resorcinol and catechol. Our results show that it is possible to increase the Cr(VI) reducing capacity of the Ed8 strain, depending on the composition of the culture medium.
Collapse
Affiliation(s)
| | - Alvaro Marín-Hernández
- Departamento de Bioquímica , Instituto Nacional de Cardiología , Juan Badiano no. 1 , Tlalpan , México DF 14080 , México
| | - Araceli Tomasini-Campocosio
- Departamento de Biotecnología, División de Ciencias Biológicas y de la Salud, Ciencias y Tecnología Ambiental , UAM lztapalapa , Av. San Rafael Atlixco No. 186 , Col. Vicentina , D.F. C.P. 09340 , Iztapalapa , México
| | - Alejandro Coreño-Alonso
- Departamento de Biotecnología, División de Ciencias Biológicas y de la Salud, Ciencias y Tecnología Ambiental , UAM lztapalapa , Av. San Rafael Atlixco No. 186 , Col. Vicentina , D.F. C.P. 09340 , Iztapalapa , México
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Campus Guanajuato , Noria Alta s/n , Col. Noria Alta , C.P. 36050 , Guanajuato , México
| |
Collapse
|
3
|
Meng Y, Ma X, Luan F, Zhao Z, Li Y, Xiao X, Wang Q, Zhang J, Thandar SM. Sustainable enhancement of Cr(VI) bioreduction by the isolated Cr(VI)-resistant bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152433. [PMID: 34942251 DOI: 10.1016/j.scitotenv.2021.152433] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Bioreduction of mobile Cr(VI) to sparingly soluble Cr(III) is an effective strategy for in situ remediations of Cr contaminated sites. The key of this technology is to screen Cr(VI)-resistant bacteria and further explore the sustainable enhancement approaches towards their Cr(VI) reduction performance. In this study, a total of ten Cr(VI)-resistant bacteria were isolated from a Cr(VI) contaminated site. All of them could reduce Cr(VI), and the greatest extent of Cr(VI) reduction (98%) was obtained by the isolated CRB6 strain. The isolated CRB6 was able to reduce structural Fe(III) in Nontronite NAu-2 to structural Fe(II). Compared with the slow bioreduction process, the produced structural Fe(II) can rapidly enhance Cr(VI) reduction. The resist dissolution characteristics of NAu-2 in the redox cycling may provide sustainable enhancement of Cr(VI) reduction. However, no enhancement on Cr(VI) bioreduction by the isolated CRB6 was observed in the presence of NAu-2, which was attributed to the inhibition of Cr(VI) on the electron transfer between the isolated CRB6 and NAu-2. AQDS can accelerate the electron transfer between the isolated CRB6 and NAu-2 as an electron shuttle in the presence of Cr(VI). Therefore, the combination of NAu-2 and AQDS generated a synergistic enhancement on Cr(VI) bioreduction compared with the enhancement obtained by NAu-2 and AQDS individually. Our results highlight that structural Fe(III) and electron shuttle can provide a sustainable enhancement of Cr(VI) reduction by Cr(VI)-reducing bacteria, which has great potential for the effective Cr(VI) in-situ remediation.
Collapse
Affiliation(s)
- Ying Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaoxu Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Geographical Sciences,Hebei Normal University; Hebei Key Laboratory of Environmental Change and Ecological Construction; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024, PR China
| | - Fubo Luan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ziwang Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuan Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Geological Exploration and Research Institute, CNACG, Beijing 100039, PR China
| | - Xiao Xiao
- New World Environmental Protection Group, ZhuZhou 412007, PR China
| | - Qianqian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Geographical Sciences,Hebei Normal University; Hebei Key Laboratory of Environmental Change and Ecological Construction; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024, PR China
| | - Jianda Zhang
- School of Geographical Sciences,Hebei Normal University; Hebei Key Laboratory of Environmental Change and Ecological Construction; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024, PR China.
| | - Soe Myat Thandar
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Department of Biotechnology, Mandalay Technological University, Ministry of Education, Mandalay, Myanmar.
| |
Collapse
|
4
|
Chen J, Tian Y. Hexavalent chromium reducing bacteria: mechanism of reduction and characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20981-20997. [PMID: 33689130 DOI: 10.1007/s11356-021-13325-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
As a common heavy metal, chromium and its compounds are widely used in industrial applications, e.g., leather tanning, electroplating, and in stainless steel, paints and fertilizers. Due to the strong toxicity of Cr(VI), chromium is regarded as a major source of pollution with a serious impact on the environment and biological systems. The disposal of Cr(VI) by biological treatment methods is more favorable than traditional treatment methods because the biological processes are environmentally friendly and cost-efficient. This review describes how bacteria tolerate and reduce Cr(VI) and the effects of some physical and chemical factors on the reduction of Cr(IV). The practical applications for Cr(VI) reduction of bacterial cells are also included in this review.
Collapse
Affiliation(s)
- Jia Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering, (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
- Key Laboratory of Leather Chemistry and Engineering, (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
5
|
Pradhan SK, Singh NR, Kumar U, Mishra SR, Perumal RC, Benny J, Thatoi H. Illumina MiSeq based assessment of bacterial community structure and diversity along the heavy metal concentration gradient in Sukinda chromite mine area soils, India. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.egg.2020.100054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Tariq M, Waseem M, Rasool MH, Zahoor MA, Hussain I. Isolation and molecular characterization of the indigenous Staphylococcus aureus strain K1 with the ability to reduce hexavalent chromium for its application in bioremediation of metal-contaminated sites. PeerJ 2019; 7:e7726. [PMID: 31616584 PMCID: PMC6791339 DOI: 10.7717/peerj.7726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/22/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Urbanization and industrialization are the main anthropogenic activities that are adding toxic heavy metals to the environment. Among these, chromium (in hexavalent: Cr+6 and/or trivalent Cr+3) is being released abundantly in wastewater due to its uses in different industrial processes. It becomes highly mutagenic and carcinogenic once it enters the cell through sulfate uptake pathways after interacting with cellular proteins and nucleic acids. However, Cr+6 can be bio-converted into more stable, less toxic and insoluble trivalent chromium using microbes. Hence in this study, we have made efforts to utilize chromium tolerant bacteria for bio-reduction of Cr+6 to Cr+3. METHODS Bacterial isolate, K1, from metal contaminated industrial effluent from Kala Shah Kaku-Lahore Pakistan, which tolerated up to 22 mM of Cr6+ was evaluated for chromate reduction. It was further characterized biochemically and molecularly by VITEK®2 system and 16S rRNA gene sequencing respectively. Other factors affecting the reduction of chromium such as initial chromate ion concentration, pH, temperature, contact-time were also investigated. The role of cellular surface in sorption of Cr6+ ion was analyzed by FTIR spectroscopy. RESULTS Both biochemical and phylogenetic analyses confirmed that strain K1 was Staphylococcusaureus that could reduce 99% of Cr6+ in 24 hours at 35 °C (pH = 8.0; initial Cr6+ concentration = 100 mg/L). FTIR results assumed that carboxyl, amino and phosphate groups of cell wall were involved in complexation with chromium. Our results suggested that Staphylococcusaureus K1 could be a promising gram-positive bacterium that might be utilized to remove chromium from metal polluted environments.
Collapse
Affiliation(s)
- Muhammad Tariq
- Department of Microbiology, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Waseem
- Department of Microbiology, Government College University, Faisalabad, Punjab, Pakistan
| | | | - Muhammad Asif Zahoor
- Department of Microbiology, Government College University, Faisalabad, Punjab, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, The Lahore University of Management Sciences (LUMS), Lahore, Punjab, Pakistan
| |
Collapse
|
7
|
Rhizosphere Microbial Response to Multiple Metal(loid)s in Different Contaminated Arable Soils Indicates Crop-Specific Metal-Microbe Interactions. Appl Environ Microbiol 2018; 84:AEM.00701-18. [PMID: 30291123 DOI: 10.1128/aem.00701-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/01/2018] [Indexed: 02/01/2023] Open
Abstract
In this study, we sampled rhizosphere soils from seven different agricultural fields adjacent to mining areas and cultivated with different crops (corn, rice, or soybean), to study the interactions among the innate microbiota, soil chemical properties, plants, and metal contamination. The rhizosphere bacterial communities were characterized by Illumina sequencing of the 16S rRNA genes, and their interactions with the local environments, including biotic and abiotic factors, were analyzed. Overall, these soils were heavily contaminated with multiple metal(loid)s, including V, Cr, Cu, Sb, Pb, Cd, and As. The interactions between environmental parameters and microbial communities were identified using multivariate regression tree analysis, canonical correspondence analysis, and network analysis. Notably, metal-microbe interactions were observed to be crop specific. The rhizosphere communities were strongly correlated with V and Cr levels, although these sites were contaminated from Sb and Zn/Pb mining, suggesting that these two less-addressed metals may play important roles in shaping the rhizosphere microbiota. Members of Gaiellaceae cooccurred with other bacterial taxa (biotic interactions) and several metal(loid)s, suggesting potential metal(loid) resistance or cycling involving this less-well-known taxon.IMPORTANCE The rhizosphere is the "hub" for plant-microbe interactions and an active region for exchange of nutrients and energy between soil and plants. In arable soils contaminated by mining activities, the rhizosphere may be an important barrier resisting metal uptake. Therefore, the responses of the rhizosphere microbiota to metal contamination involve important biogeochemical processes, which can affect metal bioavailability and thus impact food safety. However, understanding these processes remains a challenge. The current study illustrates that metal-microbe interactions may be crop specific and some less-addressed metals, such as V and Cr, may play important roles in shaping bacterial communities. The current study provides new insights into metal-microbe interactions and contributes to future implementation and monitoring efforts in contaminated arable soils.
Collapse
|
8
|
Ma S, Song CS, Chen Y, Wang F, Chen HL. Hematite enhances the removal of Cr(VI) by Bacillus subtilis BSn5 from aquatic environment. CHEMOSPHERE 2018; 208:579-585. [PMID: 29890496 DOI: 10.1016/j.chemosphere.2018.06.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
In the present study, we investigated the removal of Cr(VI) and the associated bacterial activity in the systems containing Bacillus subtilis BSn5 (B. subtilis BSn5) and hematite. The microcalorimetry was used to study the effect of hematite on the normal physiological functions of B. subtilis BSn5 towards the removal of Cr(VI) for the first time. The results of the heat flux and the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that hematite does not affect the normal physiological functions of B. subtilis BSn5, and can help the strains maintain their activity in the presence of Cr(VI). More importantly, the relative capacity and intensity of Cr(VI) and total Cr removal by B. subtilis BSn5 in the presence of hematite were higher than that in the absence of hematite. The enhancement effect could be associated with their mineral adsorption, biosorption, Fe(II) reduction, bioreduction and immobilization functions. This study demonstrates the possibility of reducing the toxicity of Cr(VI) and enhancing the Cr(VI) removal efficiency in contaminated environments using a combination of hematite and B. subtilis BSn5.
Collapse
Affiliation(s)
- Shuai Ma
- School of Energy & Environmental Engineering, And Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Chang-Shun Song
- School of Energy & Environmental Engineering, And Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Yuefang Chen
- School of Energy & Environmental Engineering, And Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China.
| | - Fei Wang
- School of Energy & Environmental Engineering, And Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Hui-Lun Chen
- School of Energy & Environmental Engineering, And Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| |
Collapse
|
9
|
Xia X, Wu S, Li L, Xu B, Wang G. The Cytochrome bd Complex Is Essential for Chromate and Sulfide Resistance and Is Regulated by a GbsR-Type Regulator, CydE, in Alishewanella Sp. WH16-1. Front Microbiol 2018; 9:1849. [PMID: 30147685 PMCID: PMC6096048 DOI: 10.3389/fmicb.2018.01849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 07/24/2018] [Indexed: 01/17/2023] Open
Abstract
Sulfate-reducing bacteria are a group of microorganisms that use sulfate as an electron acceptor. These bacteria are useful in the bioremediation of heavy metal pollution since they can reduce/precipitate metals. Previously, we identified the Alishewanella strain WH16-1 from soil of a copper and iron mine and determined that it can reduce sulfate and chromate and that it was tolerant to many heavy metals. In this study, we investigated the chromate reduction mechanism of strain WH16-1 through Tn5 transposon mutagenesis. A cytochrome bd (cytbd) Tn5 mutant was generated (Δcytbd), and a detail analysis showed that the following: (1) gene cydE (coding for a GbsR-type regulator) was co-transcribed with the two subunits coding genes of the Cytochrome bd complex (Cytbd), namely, cydA and cydB, based on RT-PCR analysis, and similar gene arrangements were also found in other Alteromonadaceae family strains; (2) the chromate resistance level was dramatically decreased and chromate reduction efficiency also decreased in strain Δcytbd compared to the wild-type and a complemented strain (Δcytbd-C); (3) Cytbd could catalyze the decomposition of H2O2 according to the analyses of H2O2 decomposition ability, cellular H2O2 contents, H2O2 inhibition zone, and H2O2 sensitivity tests; (4) surprisingly, chromate was not an inducer of the expression of Cytbd, but sulfate induced expression of Cytbd, and sulfate/sulfide resistance levels were also decreased in the Δcytbd strain; (5) the addition of sulfate enhanced the chromate resistance level and reduction efficiency; (6) Cytbd expression was repressed by CydE and derepressed by sulfate based on an in vivo bacterial one hybrid system and in vitro EMSA tests; and (7) DNA footprinting and short-fragment EMSA tests revealed two binding sites of CydE in its promoter region. All these results showed that Cytbd is negatively regulated by CydE and derepressed by sulfate. In addition, Cytbd contributes to the resistance of sulfate and sulfide, and sulfide could be used as a reductant to reduce chromate. Moreover, Cytbd is essential to decompose H2O2 to decrease cellular oxidative stress. Thus, the regulation and function of Cytbd may explain why sulfate could enhance chromate reduction.
Collapse
Affiliation(s)
- Xian Xia
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shijuan Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liqiong Li
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Biao Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Ranawat P, Rawat S. Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4105-4133. [PMID: 29238927 DOI: 10.1007/s11356-017-0869-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Metal-tolerant thermophiles are inhabitants of a wide range of extreme habitats like solfatara fields, hot springs, mud holes, hydrothermal vents oozing out from metal-rich ores, hypersaline pools and soil crusts enriched with metals and other elements. The ability to withstand adverse environmental conditions, like high temperature, high metal concentration and sometimes high pH in their niche, makes them an interesting subject for understanding mechanisms behind their ability to deal with multiple duress simultaneously. Metals are essential for biological systems, as they participate in biochemistries that cannot be achieved only by organic molecules. However, the excess concentration of metals can disrupt natural biogeochemical processes and can impose toxicity. Thermophiles counteract metal toxicity via their unique cell wall, metabolic factors and enzymes that carry out metal-based redox transformations, metal sequestration by metallothioneins and metallochaperones as well as metal efflux. Thermophilic metal resistance is heterogeneous at both genetic and physiology levels and may be chromosomally, plasmid or transposon encoded with one or more genes being involved. These effective response mechanisms either individually or synergistically make proliferation of thermophiles in metal-rich habitats possibly. This article presents the state of the art and future perspectives of responses of thermophiles to metals at genetic as well as physiological levels.
Collapse
Affiliation(s)
- Preeti Ranawat
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal), Uttarakhand, India
| | - Seema Rawat
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
11
|
Zhong L, Lai CY, Shi LD, Wang KD, Dai YJ, Liu YW, Ma F, Rittmann BE, Zheng P, Zhao HP. Nitrate effects on chromate reduction in a methane-based biofilm. WATER RESEARCH 2017; 115:130-137. [PMID: 28273443 DOI: 10.1016/j.watres.2017.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
The effects of nitrate (NO3-) on chromate (Cr(VI)) reduction in a membrane biofilm reactor (MBfR) were studied when CH4 was the sole electron donor supplied with a non-limiting delivery capacity. A high surface loading of NO3- gave significant and irreversible inhibition of Cr(VI) reduction. At a surface loading of 500 mg Cr/m2-d, the Cr(VI)-removal percentage was 100% when NO3- was absent (Stage 1), but was dramatically lowered to < 25% with introduction of 280 mg N m-2-d NO3- (Stage 2). After ∼50 days operation in Stage 2, the Cr(VI) reduction recovered to only ∼70% in Stage 3, when NO3- was removed from the influent; thus, NO3- had a significant long-term inhibition effect on Cr(VI) reduction. Weighted PCoA and UniFrac analyses proved that the introduction of NO3- had a strong impact on the microbial community in the biofilms, and the changes possibly were linked to the irreversible inhibition of Cr(VI) reduction. For example, Meiothermus, the main genus involved in Cr(VI) reduction at first, declined with introduction of NO3-. The denitrifier Chitinophagaceae was enriched after the addition of NO3-, while Pelomonas became important when nitrate was removed, suggesting its potential role as a Cr(VI) reducer. Moreover, introducing NO3- led to a decrease in the number of genes predicted (by PICRUSt) to be related to chromate reduction, but genes predicted to be related to denitrification, methane oxidation, and fermentation increased.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Chun-Yu Lai
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China; Zhejiang Province Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ling-Dong Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Kai-Di Wang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Yu-Jie Dai
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Yao-Wei Liu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China; Zhejiang Province Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China; Zhejiang Province Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
12
|
Thatoi HN, Pradhan SK. Detoxification and Bioremediation of Hexavalent Chromium Using Microbes and Their Genes: An Insight into Genomic, Proteomic and Bioinformatics Studies. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
13
|
Zhao X, Sobecky PA, Zhao L, Crawford P, Li M. Chromium(VI) transport and fate in unsaturated zone and aquifer: 3D Sandbox results. JOURNAL OF HAZARDOUS MATERIALS 2016; 306:203-209. [PMID: 26736171 DOI: 10.1016/j.jhazmat.2015.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/06/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
The simulation of Cr(VI) behavior in an unsaturated zone and aquifer, using a 3D experimental set-up were performed to illustrate the distribution, transport and transformation of Cr(VI), and further to reveal the potential harm of Cr(VI) after entering the groundwater. The result indicated that chromium(VI) was transported in the vertical direction, meanwhile, was transported in the horizontal direction under the influence of groundwater flow. The direction and distance away from the pollution source zone had great effect on the chromium(VI) concentration. At the sampling sites near the pollution source zone, there was a sudden increase of chromium(VI) concentration. The concentration of chromium(III) concentration in some random effluent samples was not detected. Chromium had not only transported but also had fraction and specie transformation in the unsaturated zone and aquifer. The relative concentration of residue fraction chromium was decreased with time. The content of Fe-Mn oxide fraction chromium was increased with time. The relative content of exchangeable and carbonate-bound fraction chromium was lower and the content variations were not obvious. Chromium(VI) (91-98%) was first reduced to chromium(III) rapidly. The oxidation reaction occurred later and the relative content of chromium(VI) was increased again. The presence of manganese oxides under favorable soil conditions can promote the reoxidation of Cr(III) to Cr(VI).
Collapse
Affiliation(s)
- Xingmin Zhao
- College of Resource and Environment, Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Jilin Agricultural University, Changchun 130118, China.
| | - Patricia A Sobecky
- Department of Biological Sciences, University of Alabama, Tuscaloosa 35401, USA.
| | - Lanpo Zhao
- College of Resource and Environment, Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Jilin Agricultural University, Changchun 130118, China
| | - Patrice Crawford
- Department of Biological Sciences, University of Alabama, Tuscaloosa 35401, USA
| | - Mingtang Li
- College of Resource and Environment, Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
14
|
|
15
|
Peng L, Liu Y, Gao SH, Dai X, Ni BJ. Assessing chromate reduction by dissimilatory iron reducing bacteria using mathematical modeling. CHEMOSPHERE 2015; 139:334-339. [PMID: 26171818 DOI: 10.1016/j.chemosphere.2015.06.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/25/2015] [Accepted: 06/27/2015] [Indexed: 06/04/2023]
Abstract
Chromate (Cr (VI)) is a ubiquitous contaminant in aquifers and soils, which can be reduced to its trivalent counterpart (Cr (III)), with the hazard being relieved. The coupling microbial and chemical reduction by dissimilatory iron reducing bacteria (IRB) is a promising approach for the reduction of Cr (VI) to Cr (III). In this work, three mathematical models with different Cr (VI) reduction pathways were proposed and compared based on their ability to predict the performance of an IRB-based stirred-flow reactor treating Cr (VI) contaminated medium and to provide insights into the possible chemical or microbial pathways for Cr (VI) reduction in the system. The Cr (VI) reduction was considered as chemical reaction between Fe (II) and Cr (VI), direct microbial reduction by IRB and combined biotic-abiotic reduction in these three models, respectively. Model evaluation results indicated that the model incorporating both chemical and microbial Cr (VI) reductions could well describe the system performance. In contrast, the other two single-pathway models were not capable of predicting the experimental data, suggesting that both chemical and microbial pathways contributed to Cr (VI) reduction by IRB. The validity of the two-pathway model was further confirmed by an independent experimental data set with different conditions. The results further revealed that the organic carbon availability and Cr (VI) loading rates for the IRB in the system determined the relative contributions of chemical and microbial pathways to overall Cr (VI) reduction.
Collapse
Affiliation(s)
- Lai Peng
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Yiwen Liu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Shu-Hong Gao
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing-Jie Ni
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
16
|
Ge S, Ge S, Zhou M, Dong X. Bioremediation of hexavalent chromate using permeabilized Brevibacterium sp. and Stenotrophomonas sp. cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 157:54-59. [PMID: 25881152 DOI: 10.1016/j.jenvman.2015.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
Bioremediation has been found to be a useful method for removing hexavalent chromium (Cr(VI)), which is very toxic, from wastewater. Two strains of bacteria that were able to reduce Cr(VI) effectively were isolated from Cr(VI) contaminated soil samples and identified as Brevibacterium sp. K1 and Stenotrophomonas sp. D6, respectively, based on 16S rRNA gene sequence analyses. Brevibacterium sp. K1 and Stenotrophomonas sp. D6 could grow in Luria-Broth medium containing K2Cr2O7 at 1000 and 1600 mg/L, respectively, and they completely reduced the Cr(VI) in LB medium containing K2Cr2O7 at 200 mg/L within 72 h. Further analyses revealed that permeabilized K1 and D6 cells reduced Cr(VI) more effectively than did the resting cells. Triton X-100 was the best permeabilizing agent that was tested. The permeabilized cells of both strains could completely reduce Cr(VI) in industrial wastewater twice before needing to be replenished. The results suggested that these chromate-reducing bacteria are potential candidates for practical use biotreating industrial effluents containing Cr(VI) with Stenotrophomonas sp. D6 being the more effective bacterium.
Collapse
Affiliation(s)
- Shimei Ge
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou 325035, China.
| | - Shichao Ge
- Department of Research and Development, Shanghai Benegene Biotechnology Co., Ltd., Shanghai 201114, China
| | - Maohong Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou 325035, China
| | - Xinjiao Dong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou 325035, China
| |
Collapse
|
17
|
Thatoi H, Das S, Mishra J, Rath BP, Das N. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 146:383-399. [PMID: 25199606 DOI: 10.1016/j.jenvman.2014.07.014] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 05/14/2023]
Abstract
Hexavalent chromium is mobile, highly toxic and considered as a priority environmental pollutant. Chromate reductases, found in chromium resistant bacteria are known to catalyse the reduction of Cr(VI) to Cr(III) and have recently received particular attention for their potential use in bioremediation process. Different chromate reductases such as ChrR, YieF, NemA and LpDH, have been identified from bacterial sources which are located either in soluble fractions (cytoplasm) or bound to the membrane of the bacterial cell. The reducing conditions under which these enzymes are functional can either be aerobic or anaerobic or sometimes both. Enzymatic reduction of Cr(VI) to Cr(III) involves transfer of electrons from electron donors like NAD(P)H to Cr(VI) and simultaneous generation of reactive oxygen species (ROS). Based on the steps involved in electron transfer to Cr(VI) and the subsequent amount of ROS generated, two reaction mechanisms, namely, Class I "tight" and Class II "semi tight" have been proposed. The present review discusses on the types of chromate reductases found in different bacteria, their mode of action and potential applications in bioremediation of hexavalent chromium both under free and immobilize conditions. Besides, techniques used in characterization of the Cr (VI) reduced products were also discussed.
Collapse
Affiliation(s)
- Hrudayanath Thatoi
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India.
| | - Sasmita Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Jigni Mishra
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Bhagwat Prasad Rath
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Nigamananda Das
- Department of Chemistry, North Orissa University, Takatpur, Baripada 757003, Odisha, India
| |
Collapse
|
18
|
Xue XM, Yan Y, Xu HJ, Wang N, Zhang X, Ye J. ArsH fromSynechocystissp. PCC 6803 reduces chromate and ferric iron. FEMS Microbiol Lett 2014; 356:105-12. [DOI: 10.1111/1574-6968.12481] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Xi-Mei Xue
- Key Laboratory of Urban Environment and Health; Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
- University of Chinese Academy of Sciences; Beijing China
| | - Yu Yan
- Key Laboratory of Urban Environment and Health; Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
- University of Chinese Academy of Sciences; Beijing China
| | - Hui-Juan Xu
- Key Laboratory of Urban Environment and Health; Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
- University of Chinese Academy of Sciences; Beijing China
| | - Ning Wang
- University of Chinese Academy of Sciences; Beijing China
- State Key Laboratory of Urban and Regional Ecology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
| | - Xiao Zhang
- Key Laboratory of Urban Environment and Health; Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
- University of Chinese Academy of Sciences; Beijing China
| | - Jun Ye
- Key Laboratory of Urban Environment and Health; Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| |
Collapse
|
19
|
Xiao W, Yang X, He Z, Li T. Chromium-resistant bacteria promote the reduction of hexavalent chromium in soils. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:507-516. [PMID: 25602652 DOI: 10.2134/jeq2013.07.0267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Knowledge of the chromium (Cr) redox process in soil is important in addressing Cr bioavailability and risk assessment of contaminated soils. In this study, seven representative agricultural soils with different physicochemical properties were used to investigate the importance of microbially mediated Cr(VI) reduction and the response of soil bacterial community to Cr contamination. Chromium application increased soil bacterial diversity in Periudic Argosols, Calcaric Regosols, Stagnic Anthrosols, Mollisols, Typic Haplustalfs, and Ustic Cambosols, with an exception of Udic Ferrisols. The soil bacterial community responded to Cr contamination through changes in bacterial community structure, with Cr-resistant bacteria becoming the dominant species, and the percentage of Cr-resistant bacteria of total cultivable bacteria was 89.9, 75.2, 92.8, 65.3, 72.8, 77.3, and 65.4%, respectively, for Periudic Argosols, Udic Ferrisols, Calcaric Regosols, Stagnic Anthrosols, Mollisols, Typic Haplustalfs, and Ustic Cambosols. , , , , , , , , , and were identified as the Cr-resistant bacteria. Moreover, our results demonstrated that microbial reduction was an important Cr(VI) reduction pathway, and the relative contribution of microorganisms to Cr(VI) reduction was 14.4, 44.0, 20.6, 34.9, 21.9, 21.7, and 22.0%, respectively for Periudic Argosols, Udic Ferrisols, Calcaric Regosols, Stagnic Anthrosols, Mollisols, Typic Haplustalfs, and Ustic Cambosols. Soil properties, especially Fe(II) and soil particle distribution, affected the microbially mediated Cr(VI) reduction. These results provide useful information for the bioremediation of Cr-contaminated soils under a wide range of environmental conditions.
Collapse
|
20
|
Hexavalent Chromate Reductase Activity in Cell Free Extracts of Penicillium sp. Bioinorg Chem Appl 2013; 2013:909412. [PMID: 24027493 PMCID: PMC3763568 DOI: 10.1155/2013/909412] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 07/22/2013] [Indexed: 11/17/2022] Open
Abstract
A chromium-resistant fungus isolated from contaminated air with industrial vapors can be used for reducing toxic Cr(VI) to Cr(III). This study analyzes in vitro reduction of hexavalent chromium using cell free extract(s) of the fungus that was characterized based on optimal temperature, pH, use of electron donors, metal ions and initial Cr(VI) concentration in the reaction mixture. This showed the highest activity at 37°C and pH 7.0; there is an increase in Cr(VI) reductase activity with addition of NADH as an electron donor, and it was highly inhibited by Hg(2+), Ca(2+) and Mg(2+), and azide, EDTA, and KCN.
Collapse
|
21
|
Singh R, Bishnoi NR, Kirrolia A. Evaluation of Pseudomonas aeruginosa an innovative bioremediation tool in multi metals ions from simulated system using multi response methodology. BIORESOURCE TECHNOLOGY 2013; 138:222-234. [PMID: 23612183 DOI: 10.1016/j.biortech.2013.03.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/15/2013] [Accepted: 03/17/2013] [Indexed: 06/02/2023]
Abstract
Under certain conditions bacteria can act as a good biosorbent towards heavy metals in simultaneous removal from effluents. The present study explores overlay plots of multi response surface methodology for simulated wastewater treatment potential. Pseudomonas aeruginosa was used for bioremediation of metallic ions, where removal of Cd (80-90%), Mn (85-90%), Fe (50-55%), Cr (70-75%) can be achieved by fixing the pH, oxidation reduction potential (mV) and one of the metallic constituent in the simulated effluent. The metal ions Cd and Cr (T), Fe and ORP (mV) are relatively closely located to each other in the loading plot indicating co-variance between these components. However Cr(VI) transformation and Mn removal are distantly placed in the bi-plot indicating the existed significant difference. Elevated reductase enzyme activity (31.75 μg/minmg) observed in the isolate showing the ability to effectively reduce metals ions.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, Haryana 125001, India
| | | | | |
Collapse
|
22
|
Dhal B, Thatoi HN, Das NN, Pandey BD. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. JOURNAL OF HAZARDOUS MATERIALS 2013; 250-251:272-91. [PMID: 23467183 DOI: 10.1016/j.jhazmat.2013.01.048] [Citation(s) in RCA: 542] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/07/2013] [Accepted: 01/21/2013] [Indexed: 05/11/2023]
Abstract
Chromium is a highly toxic non-essential metal for microorganisms and plants, and its occurrence is rare in nature. Lower to higher chromium containing effluents and solid wastes released by activities such as mining, metal plating, wood preservation, ink manufacture, dyes, pigments, glass and ceramics, tanning and textile industries, and corrosion inhibitors in cooling water, induce pollution and may cause major health hazards. Besides, natural processes (weathering and biochemical) also contribute to the mobility of chromium which enters in to the soil affecting the plant growth and metabolic functions of the living species. Generally, chemical processes are used for Cr- remediation. However, with the inference derived from the diverse Cr-resistance mechanism displayed by microorganisms and the plants including biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux, bioremediation is emerging as a potential tool to address the problem of Cr(VI) pollution. This review focuses on the chemistry of chromium, its use, and toxicity and mobility in soil, while assessing its concentration in effluents/wastes which becomes the source of pollution. In order to conserve the environment and resources, the chemical/biological remediation processes for Cr(VI) and their efficiency have been summarised in some detail. The interaction of chromium with various microbial/bacterial strains isolated and their reduction capacity towards Cr(VI) are also discussed.
Collapse
Affiliation(s)
- B Dhal
- Metal Extraction & Forming Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831 007, Jharkhand, India
| | | | | | | |
Collapse
|
23
|
Soni SK, Singh R, Awasthi A, Singh M, Kalra A. In vitro Cr(VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:1661-1674. [PMID: 22983604 DOI: 10.1007/s11356-012-1178-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/30/2012] [Indexed: 06/01/2023]
Abstract
Four efficient Cr(VI)-reducing bacterial strains were isolated from rhizospheric soil of plants irrigated with tannery effluent and investigated for in vitro Cr(VI) reduction. Based on 16S rRNA gene sequencing, the isolated strains SUCR44, SUCR140, SUCR186, and SUCR188 were identified as Bacillus sp. (JN674188), Microbacterium sp. (JN674183), Bacillus thuringiensis (JN674184), and Bacillus subtilis (JN674195), respectively. All four isolates could completely reduce Cr(VI) in culture media at 0.2 mM concentration within a period of 24-120 h; SUCR140 completely reduced Cr(VI) within 24 h. Assay with the permeabilized cells (treated with Triton X-100 and Tween 80) and cell-free assay demonstrated that the Cr(VI) reduction activity was mainly associated with the soluble fraction of cells. Considering the major amount of chromium being reduced within 24-48 h, these fractions could have been released extracellularly also during their growth. At the temperature optima of 28 °C and pH 7.0, the specific activity of Cr(VI) reduction was determined to be 0.32, 0.42, 0.34, and 0.28 μmol Cr(VI)min(-1)mg(-1) protein for isolates SUCR44, SUCR140, SUCR186, and SUCR188, respectively. Addition of 0.1 mM NADH enhanced the Cr(VI) reduction in the cell-free extracts of all four strains. The Cr(VI) reduction activity in cell-free extracts of all the isolates was stable in presence of different metal ions tested except Hg(2+). Beside this, urea and thiourea also reduced the activity of chromate reduction to significant levels.
Collapse
Affiliation(s)
- Sumit K Soni
- Department of Microbial Technology and Entomology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | | | | | | | | |
Collapse
|
24
|
Singh R, Bishnoi NR, Kirrolia A, Kumar R. Synergism of Pseudomonas aeruginosa and Fe0 for treatment of heavy metal contaminated effluents using small scale laboratory reactor. BIORESOURCE TECHNOLOGY 2013; 127:49-58. [PMID: 23131622 DOI: 10.1016/j.biortech.2012.09.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/08/2012] [Accepted: 09/15/2012] [Indexed: 06/01/2023]
Abstract
In this study Pseudomonas aeruginosa a metal tolerant strain was not only applied for heavy metal removal but also to the solublization performance of the precipitated metal ions during effluent treatment. The synergistic effect of the isolate and Fe(0) enhanced the metal removal potential to 72.97% and 87.63% for Cr(VI) and cadmium, respectively. The decrease in cadmium ion removal to 43.65% (aeration+stirring reactors), 21.33% (aerated reactors), and 18.95% (without aerated+without stirring) with an increase in incubation period not only indicate the presence of soluble less toxic complexes, but also help in exploration of the balancing potential for valuable metal recovery. A relatively best fit and significant values of the correlation coefficient 0.912, 0.959, and 0.9314 for mixed effluent (Paint Industry effluent+CETP Wazirpur, effluent), CETP, Wazirpur, and control effluents, respectively, indicating first-order formulation and provide a reasonable description of COD kinetic data.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | | | | | | |
Collapse
|
25
|
Sultan S, Hasnain S. Chromium (VI) reduction by cell free extract of Ochrobactrum anthropi isolated from tannery effluent. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 89:152-157. [PMID: 22526999 DOI: 10.1007/s00128-012-0648-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/06/2012] [Indexed: 05/31/2023]
Abstract
Chromium-resistant bacteria isolated from industrial wastes can be used to detoxify toxic chromium from contaminated sources. From effluent of Shafiq Tannery, Kasur, Pakistan, bacterial strain STCr-1 that could endure 40 mg mL(-1) of potassium chromate in nutrient agar medium was isolated. STCr-1, identified as Ochrobactrum anthropi by 16S rRNA gene sequence homology, demonstrated substantial Cr(VI) reduction at pH 7 and temperature 37°C. It completely reduced 250 μg mL(-1) of Cr(VI) and showed 71.2 % Cr(VI) reduction at Cr(VI) concentrations of 550 μg mL(-1). Rate of Cr(VI) reduction increased with increase in cell and Cr(VI) concentration. The presence of Cu(2+), Co(2+) and Mn(2+) significantly stimulated Cr(VI) reduction. Assay with cell free extracts clearly indicated that Cr(VI) reduction was solely associated with the soluble fraction of the cell.
Collapse
Affiliation(s)
- Sikander Sultan
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | | |
Collapse
|
26
|
Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS One 2012; 7:e40059. [PMID: 22768219 PMCID: PMC3386950 DOI: 10.1371/journal.pone.0040059] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 05/31/2012] [Indexed: 01/31/2023] Open
Abstract
Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways.
Collapse
|
27
|
Bacterial biodiversity from anthropogenic extreme environments: a hyper-alkaline and hyper-saline industrial residue contaminated by chromium and iron. Appl Microbiol Biotechnol 2012; 97:369-78. [DOI: 10.1007/s00253-012-3923-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 01/21/2012] [Accepted: 01/25/2012] [Indexed: 11/26/2022]
|
28
|
Sen M. A Comparative Study on Biosorption of Cr (VI) by <i>Fusarium solani</i> under Different Growth Conditions. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojapps.2012.23021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Garg SK, Tripathi M, Srinath T. Strategies for chromium bioremediation of tannery effluent. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 217:75-140. [PMID: 22350558 DOI: 10.1007/978-1-4614-2329-4_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and bioreduction methods that rely on free cells for bioremediation suffer from Cr6 toxicity, and cell damage. Therefore, immobilization of microbial cell biomass enhances bioremediation and renders industrial bioremediation processes more economically viable from reduced free-cells toxicity, easier separation of biosorbents from the tannery effluent, ability to achieve multiple biosorption cycles, and desorption (elution) of metal(s) from matrices for reuse. Thus, microbial bioremediation can be a cost competitive strategy and beneficial bioresource for removing many hazardous contaminants from tannery and other industrial wastes.
Collapse
Affiliation(s)
- Satyendra Kumar Garg
- Department of Microbiology, Dr. Ram Manohar Lohia Avadh University, Faizabad, India.
| | | | | |
Collapse
|
30
|
Encapsulation of Pannonibacter phragmitetus LSSE-09 in alginate–carboxymethyl cellulose capsules for reduction of hexavalent chromium under alkaline conditions. J Ind Microbiol Biotechnol 2011; 38:1709-18. [DOI: 10.1007/s10295-011-0960-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
|
31
|
Dogan NM, Kantar C, Gulcan S, Dodge CJ, Yilmaz BC, Mazmanci MA. Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2278-85. [PMID: 21319733 DOI: 10.1021/es102095t] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Laboratory batch and column experiments were conducted to investigate the role of microbial exudates, e.g., exopolymeric substance (EPS) and alginic acid, on microbial Cr(VI) reduction by two different Pseudomonas strains (P. putida P18 and P. aeuroginosa P16) as a method for treating subsurface environment contaminated with Cr(VI). Our results indicate that microbial exudates significantly enhanced microbial Cr(VI) reduction rates by forming less toxic and highly soluble organo-Cr(III) complexes despite the fact Cr(III) has a very low solubility under the experimental conditions studied (e.g., pH 7). The formation of soluble organo-Cr(III) complexes led to the protection of the cells and chromate reductases from inactivation. In systems with no organic ligands, soluble organo-Cr(III) end products were formed between Cr(III) and the EPS directly released by bacteria due to cell lysis. Our results also provide evidence that cell lysis played an important role in microbial Cr(VI) reduction by Pseudomonas bacteria due to the release of constitutive reductases that intracellularly and/or extracellularly catalyzed the reduction of Cr(VI) to Cr(III). The overall results highlight the need for incorporation of the release and formation of organo-Cr(III) complexes into reactive transport models to more accurately design and monitor in situ microbial remediation techniques for the treatment of subsurface systems contaminated with Cr(VI).
Collapse
Affiliation(s)
- Nazime Mercan Dogan
- Faculty of Arts and Science, Department of Biology, Pamukkale University, Denizli, Turkey
| | | | | | | | | | | |
Collapse
|
32
|
Xu L, Luo M, Li W, Wei X, Xie K, Liu L, Jiang C, Liu H. Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions. JOURNAL OF HAZARDOUS MATERIALS 2011; 185:1169-1176. [PMID: 21041020 DOI: 10.1016/j.jhazmat.2010.10.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/16/2010] [Accepted: 10/08/2010] [Indexed: 05/30/2023]
Abstract
A novel Cr (VI) resistant bacterial strain LSSE-09, identified as Pannonibacter phragmitetus, was isolated from industrial sludge. It has strong aerobic and anaerobic Cr (VI)-reduction potential under alkaline conditions. At 37 °C and pH 9.0, growing cells of strain LSSE-09 could completely reduce 100 and 1000 mg L(-1) Cr (VI)-Cr (III) within 9 and 24h, respectively under aerobic condition. Resting cells showed higher anaerobic reduction potential with the rate of 1.46 mg g(-1)((dry weight))min(-1), comparing with their aerobic reduction rate, 0.21 mg g(-1)min(-1). External electron donors, such as lactate, acetate, formate, pyruvate, citrate and glucose could highly increase the reduction rate, especially for aerobic reduction. The presence of 3000 mg L(-1) acetate enhanced anaerobic and aerobic Cr (VI)-reduction rates up to 9.47 mg g(-1)min(-1) and 4.42 mg g(-1)min(-1), respectively, which were 5 and 20 times faster than those without it. Strain LSSE-09 retained high activities over six batch cycles and NO(3)(-) and SO(4)(2-) had slightly negative effects on Cr (VI)-reduction rates. The results suggest that strain LSSE-09 has potential application for Cr (VI) detoxification in alkaline wastewater.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Han R, Geller JT, Yang L, Brodie EL, Chakraborty R, Larsen JT, Beller HR. Physiological and transcriptional studies of Cr(VI) reduction under aerobic and denitrifying conditions by an aquifer-derived pseudomonad. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7491-7497. [PMID: 20822129 DOI: 10.1021/es101152r] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cr(VI) is a widespread groundwater contaminant that is a potent toxin, mutagen, and carcinogen. In situ reductive immobilization is a favored approach for Cr(VI) bioremediation, and Cr(VI) reduction has been reported in a variety of aerobic, facultative, and anaerobic bacteria, including a number of pseudomonads. However, studies comparing Cr(VI) reduction under aerobic and denitrifying conditions in the same organism are not available. We have conducted studies with strain RCH2, a bacterium similar to Pseudomonas stutzeri that we isolated from a Cr-contaminated aquifer. Cell suspension studies with lactate demonstrated that Cr(VI) reduction could occur under either denitrifying or aerobic conditions (at comparable specific rates) and that reduction was at least 20-fold more rapid when the terminal electron acceptor (i.e., nitrate or O(2)) was present. Our results suggest that Cr(VI) reduction by strain RCH2 under either aerobic or denitrifying conditions is primarily cometabolic in the sense that the physiological electron acceptor (oxygen or nitrate) appears to be required. Under both aerobic and denitrifying conditions, the gene(s) associated with chromate reduction are not inducible by Cr. Continuous culture (chemostat) studies showed strong correlations (r(2) values >0.93) between nitrate reduction rate and the transcript copy number of either nirS (cytochrome cd(1) nitrite reductase) or narG (nitrate reductase α subunit). As our studies indicate that anaerobic Cr(VI) reduction by this pseudomonad requires active denitrification and that denitrification and chromate reduction rates are highly correlated (r(2) > 0.99), monitoring expression of such denitrification genes in biostimulated aquifers could provide valuable proxy information for in situ chromate reduction by similar bacteria even if the specific genes involved in chromate reduction have not been identified. We also report incomplete removal of reduced Cr from solution and on artifacts in the widely used diphenylcarbazide assay for Cr(VI), most notably, its complete inactivation in the presence of millimolar nitrite.
Collapse
Affiliation(s)
- Ruyang Han
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
He M, Li X, Guo L, Miller SJ, Rensing C, Wang G. Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1. BMC Microbiol 2010; 10:221. [PMID: 20723231 PMCID: PMC2936356 DOI: 10.1186/1471-2180-10-221] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 08/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr(VI) and Cr(III). Chromate [Cr(VI)] is carcinogenic, mutational, and teratogenic due to its strong oxidizing nature. Biotransformation of Cr(VI) to less-toxic Cr(III) by chromate-resistant and reducing bacteria has offered an ecological and economical option for chromate detoxification and bioremediation. However, knowledge of the genetic determinants for chromate resistance and reduction has been limited so far. Our main aim was to investigate chromate resistance and reduction by Bacillus cereus SJ1, and to further study the underlying mechanisms at the molecular level using the obtained genome sequence. RESULTS Bacillus cereus SJ1 isolated from chromium-contaminated wastewater of a metal electroplating factory displayed high Cr(VI) resistance with a minimal inhibitory concentration (MIC) of 30 mM when induced with Cr(VI). A complete bacterial reduction of 1 mM Cr(VI) was achieved within 57 h. By genome sequence analysis, a putative chromate transport operon, chrIA1, and two additional chrA genes encoding putative chromate transporters that likely confer chromate resistance were identified. Furthermore, we also found an azoreductase gene azoR and four nitroreductase genes nitR possibly involved in chromate reduction. Using reverse transcription PCR (RT-PCR) technology, it was shown that expression of adjacent genes chrA1 and chrI was induced in response to Cr(VI) but expression of the other two chromate transporter genes chrA2 and chrA3 was constitutive. In contrast, chromate reduction was constitutive in both phenotypic and gene expression analyses. The presence of a resolvase gene upstream of chrIA1, an arsenic resistance operon and a gene encoding Tn7-like transposition proteins ABBCCCD downstream of chrIA1 in B. cereus SJ1 implied the possibility of recent horizontal gene transfer. CONCLUSION Our results indicate that expression of the chromate transporter gene chrA1 was inducible by Cr(VI) and most likely regulated by the putative transcriptional regulator ChrI. The bacterial Cr(VI)-resistant level was also inducible. The presence of an adjacent arsenic resistance gene cluster nearby the chrIA1 suggested that strong selective pressure by chromium and arsenic could cause bacterial horizontal gene transfer. Such events may favor the survival and increase the resistance level of B. cereus SJ1.
Collapse
Affiliation(s)
- Minyan He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | | | | | | | | | | |
Collapse
|
35
|
Kavamura VN, Esposito E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 2010; 28:61-9. [PMID: 19778598 DOI: 10.1016/j.biotechadv.2009.09.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 09/14/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
|
36
|
Somasundaram V, Philip L, Bhallamudi SM. Experimental and mathematical modeling studies on Cr(VI) reduction by CRB, SRB and IRB, individually and in combination. JOURNAL OF HAZARDOUS MATERIALS 2009; 172:606-617. [PMID: 19692172 DOI: 10.1016/j.jhazmat.2009.07.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 06/08/2009] [Accepted: 07/10/2009] [Indexed: 05/28/2023]
Abstract
Cr(VI) reduction studies were carried out with chromium reducing bacteria (CRB), sulphate reducing bacteria (SRB) and iron reducing bacteria (IRB), individually and in combination. Biokinetic parameters such as maximum specific growth rate (micro(max)), half saturation constant (K(s)), yield coefficient (Y(T)) and inhibition coefficient (K(i)) for individual cultures were evaluated. A mathematical model was proposed for simulating the chromium reduction, COD utilization and biomass growth, by individual cultures as well as by a combination of two or three different cultures, for different initial Cr(VI), SO(4)(2-) and Fe(III) concentrations. The biokinetic parameters evaluated from one set of experiments for individual cultures were utilized in all the validation studies. The performance of the mathematical model in terms of the dimensionless modified coefficient of efficiency (E) indicated that the proposed model simulates the system behavior very well.
Collapse
Affiliation(s)
- V Somasundaram
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | | | | |
Collapse
|
37
|
Poopal AC, Laxman RS. Studies on biological reduction of chromate by Streptomyces griseus. JOURNAL OF HAZARDOUS MATERIALS 2009; 169:539-545. [PMID: 19410364 DOI: 10.1016/j.jhazmat.2009.03.126] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/02/2009] [Accepted: 03/27/2009] [Indexed: 05/27/2023]
Abstract
Chromium is a toxic heavy metal used in various industries and leads to environmental pollution due to improper handling. The most toxic form of chromium Cr(VI) can be converted to less toxic Cr(III) by reduction. Among the actinomycetes tested for chromate reduction, thirteen strains reduced Cr(VI) to Cr(III), of which one strain of Streptomyces griseus (NCIM 2020) was most efficient showing complete reduction within 24h. The organism was able to use a number of carbon sources as electron donors. Sulphate, nitrate, chloride and carbonate had no effect on chromate reduction during growth while cations such as Cd, Ni, Co and Cu were inhibitory to varying degrees. Chromate reduction was associated with the bacterial cells and sonication was the best method of cell breakage to release the enzyme. The enzyme was constitutive and did not require presence of chromate during growth for expression of activity. Chromate reduction with cell free extract (CFE) was observed without added NADH. However, addition of NAD(P)H resulted in 2-3-fold increase in activity. Chromate reductase showed optimum activity at 28 degrees C and pH 7.
Collapse
Affiliation(s)
- Ashwini C Poopal
- Division of Biochemical Sciences, National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
| | | |
Collapse
|
38
|
Caravelli AH, Zaritzky NE. About the performance of Sphaerotilus natans to reduce hexavalent chromium in batch and continuous reactors. JOURNAL OF HAZARDOUS MATERIALS 2009; 168:1346-1358. [PMID: 19345486 DOI: 10.1016/j.jhazmat.2009.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 05/27/2023]
Abstract
The hexavalent chromium biological reduction constitutes a safe and economical detoxification procedure of wastewaters containing Cr(VI). However, little research has been done to evaluate Cr(VI) tolerance and reduction capacity of microbial cultures under different growth conditions. The aims of this work were (a) to evaluate the capacity of Sphaerotilus natans to reduce Cr(VI) to Cr(III) in a continuous system limited in carbon and energy source or in nitrogen source, (b) to evaluate the toxic effect of Cr(VI) on this microorganism, (c) to carry out a complete analysis of Cr(VI) reduction by S. natans not only in continuous regime but also in batch system, and (d) to model the obtained results mathematically. S. natans exhibited great resistance to Cr(VI) (19-78 mg l(-1)) and optimal growth in continuous and batch systems using a mineral medium supplemented only with citric acid as organic substrate. In carbon- and energy-limited continuous systems, a maximum percentual decrease in Cr(VI) by 13% was reached for low influent Cr(VI) concentration (4.3-5.32 mg Cr(VI)l(-1)); the efficiency of the process did not notoriously increase as the length of cellular residence time was increased from 4.16 to 50h. A nitrogen-limited continuous operation with a cellular residence time of 28.5h resulted in a Cr(VI) decrease of approximately 26-32%. In batch system, a mathematical model allowed to predict the Cr(VI) concentration as a function of time and the ratio between the initial Cr(VI) concentration and that of the biomass. High concentrations of initial Cr(VI) and biomass produced the highest performance of the process of Cr(VI) reduction reached in batch system, aspects which should be considered in detoxification strategies of wastewaters.
Collapse
Affiliation(s)
- Alejandro H Caravelli
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT - CONICET - La Plata Fac, Ciencias Exactas, Universidad Nacional de La Plata, 47 y 116 La Plata, Argentina.
| | | |
Collapse
|
39
|
Removal of toxic chromate using free and immobilized Cr(VI)-reducing bacterial cells of Intrasporangium sp. Q5-1. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0047-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Elangovan R, Philip L, Chandraraj K. Hexavalent Chromium Reduction by Free and Immobilized Cell-free Extract of Arthrobacter rhombi-RE. Appl Biochem Biotechnol 2009; 160:81-97. [DOI: 10.1007/s12010-008-8515-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
|
41
|
Li B, Pan D, Zheng J, Cheng Y, Ma X, Huang F, Lin Z. Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:9630-9635. [PMID: 18686976 DOI: 10.1021/la801851h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A basic understanding related to the immobilization of chromium by bacteria is essential for chromate pollutant remediation in the environment. In this work, we studied the Cr(VI) uptake mechanism of living Ochrobactrum anthropi and the influence of a bacterial culture medium on the Cr-immobilization process. It was found that the Cr-immobilization ratio of bacteria in Tris-HCl buffer is higher than in LB medium. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) analysis revealed that the chromium accumulated on bacteria were mostly in Cr(III) states. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations showed that noticeable Cr(III) precipitates were accumulated on bacterial surfaces. AFM roughness analysis revealed that the surface roughness of bacteria increased greatly when the bacteria-Cr(VI) interaction was in Tris-HCl buffer rather than in LB solution. Transmission electron microscopy (TEM) thin section analysis coupled with energy-dispersive X-ray spectroscopy showed that Cr(III) is also distributed in bacterial inner portions. A chromium-immobilization mechanism considering the participation of both bacterial inner portions and bacterial surfaces of living Ochrobactrum anthropi was proposed, whereas the bacterial surface was the dominant part of the immobilization of Cr(III). This work also proved that the control of Cr immobilization by living Ochrobactrum anthropi could be achieved via adjusting the bacterial culture medium.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Okeke BC. Bioremoval of hexavalent chromium from water by a salt tolerant bacterium, Exiguobacterium sp. GS1. J Ind Microbiol Biotechnol 2008; 35:1571-9. [DOI: 10.1007/s10295-008-0399-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 07/07/2008] [Indexed: 11/29/2022]
|
43
|
Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.02.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Okeke BC, Laymon J, Crenshaw S, Oji C. Environmental and kinetic parameters for Cr(VI) bioreduction by a bacterial monoculture purified from Cr(VI)-resistant consortium. Biol Trace Elem Res 2008; 123:229-41. [PMID: 18317706 DOI: 10.1007/s12011-008-8098-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
Abstract
Hexavalent chromium, Cr(VI), is toxic to living systems. Widespread contamination of water and soil by Cr(VI) present a serious public health problem. Chromium-resistant bacteria can reduce and detoxify Cr(VI). Twelve bacteria resistant to high concentrations of Cr(VI) were isolated from soil enrichment cultures. Environmental parameters and kinetic parameters of Cr(VI) bioreduction by one monoculture isolate, identified by 16S rRNA gene sequence as Bacillus sp. PB2, were studied. The optimal temperature for growth and Cr(VI) reduction was 35 degrees C. The isolate grew luxuriantly and substantially reduced Cr(VI) at initial pH 7.5 to 9. Maximal Cr(VI) bioreduction occurred at initial pH 8.0. Substantial Cr(VI) bioreduction was observed in salt media, but removal efficiency was inversely related to salt concentration (1-9%). Michaelis-Menten hyperbolic equation and the Lineweaver-Burk double reciprocal plot were comparatively employed to determine the k (m) and V (max) of Cr(VI) bioreduction. A k (m) of 82.5 microg mL(-1) and V (max) of 7.78 microg mL(-1) h(-1) were calculated by nonlinear regression analysis of the hyperbola curve. Linear regression analysis of the double reciprocal plot revealed k (m) and V (max) of 80.9 microg mL(-1) and 10.6 microg mL(-1) h(-1), respectively. Time course studies displayed about 90% reduction of Cr(VI) at an initial concentration of 8,000 microg L(-1) in 8 h, with an estimated t (1/2) of 4 h. Data from time course analysis of the rate of Cr(VI) bioreduction fitted zero-order model, and the kinetic constant k was calculated to be 840 microg L(-1) h(-1). The monoculture isolate, Bacillus sp. PB2, strongly reduces Cr(VI) and could be used for bioremediation of Cr(VI)-contaminated aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Benedict C Okeke
- Department of Biology, Auburn University Montgomery, P.0. Box 244023, Montgomery, AL, 36124, USA.
| | | | | | | |
Collapse
|
45
|
Puzon GJ, Huang Y, Dohnalkova A, Xun L. Isolation and characterization of an NAD+-degrading bacterium PTX1 and its role in chromium biogeochemical cycle. Biodegradation 2007; 19:417-24. [PMID: 17701280 DOI: 10.1007/s10532-007-9147-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 07/30/2007] [Indexed: 10/23/2022]
Abstract
Microorganisms can reduce toxic chromate to less toxic trivalent chromium [Cr(III)]. Besides Cr(OH)(3) precipitates, some soluble organo-Cr(III) complexes are readily formed upon microbial, enzymatic, and chemical reduction of chromate. However, the biotransformation of the organo-Cr(III) complexes has not been characterized. We have previously reported the formation of a nicotinamide adenine dinucleotide (NAD(+))-Cr(III) complex after enzymatic reduction of chromate. Although the NAD(+)-Cr(III) complex was stable under sterile conditions, microbial cells were identified as precipitates in a non-sterile NAD(+)-Cr(III) solution after extended incubation. The most dominant bacterium PTX1 was isolated and assigned to Leifsonia genus by phylogenetic analysis of 16S rRNA gene sequence. PTX1 grew slowly on NAD(+) with a doubling time of 17 h, and even more slowly on the NAD(+)-Cr(III) complex with an estimated doubling time of 35 days. The slow growth suggests that PTX1 passively grew on trace NAD(+) dissociated from the NAD(+)-Cr(III) complex, facilitating further dissociation of the complex and formation of Cr(III) precipitates. Thus, organo-Cr(III) complexes might be an intrinsic link of the chromium biogeochemical cycle; they can be produced during chromate reduction and then further mineralized by microorganisms.
Collapse
Affiliation(s)
- Geoffrey J Puzon
- School of Molecular Biosciences, Washington State University, Abelson Hall 301, Pullman, WA 99164-4234, USA
| | | | | | | |
Collapse
|
46
|
Thacker U, Parikh R, Shouche Y, Madamwar D. Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. BIORESOURCE TECHNOLOGY 2007; 98:1541-7. [PMID: 16931000 DOI: 10.1016/j.biortech.2006.06.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/13/2006] [Accepted: 06/13/2006] [Indexed: 05/11/2023]
Abstract
A locally isolated gram negative strain of Brucella sp., identified by biochemical methods and 16SrRNA analysis, reduced chromate to 100%, 94.1%, 93.2%, 66.9% and 41.6% at concentrations of 50, 100, 150, 200 and 300mgl(-1), respectively at pH 7 and temperature 37 degrees C. Increasing concentrations of Cr(VI) in the medium lowered the growth rate but could not be directly correlated with the amount of Cr(VI) reduced. The strain also exhibited multiple heavy metal (Ni,Zn,Hg,Pb,Co) tolerance and resistance to various antibiotics. Assay with crude cell-free extracts demonstrated that the hexavalent chromium reduction was mainly associated with the soluble fraction of the cell. High Cr(VI) concentration resistance and high Cr(VI) reducing ability of the strain make it a suitable candidate for bioremediation.
Collapse
Affiliation(s)
- Urvashi Thacker
- Post Graduate Department of Biosciences, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India
| | | | | | | |
Collapse
|
47
|
Abou-Shanab RAI, Angle JS, van Berkum P. Chromate-tolerant bacteria for enhanced metal uptake by Eichhornia crassipes (Mart.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2007; 9:91-105. [PMID: 18246718 DOI: 10.1080/15226510701232708] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A total of 85 chromate-resistant bacteria were isolated from the rhizosphere of water hyacinth grown in Mariout Lake, Egypt, as well as the sediment and water of this habitat. Only 4 (11%), 2 (8%), and 2 (8%) of isolates from each of the environments, respectively, were able to tolerate 200 mg Cr (VI) L(-1). When these eight isolates were tested for their ability to tolerate other metals or to reduce chromate, they were shown to also be resistant to Zn, Mn, and Pb, and to display different degrees of chromate reduction (28% to 95%) under aerobic conditions. The isolates with the higher chromate reduction rates from 42% to 95%, (RA1, RA2, RA3, RA5, RA7, and RA8) were genetically diverse according to RAPD analysis using four differentprimers. Bacterial isolates RA1, RA2, RA3, RAS, and RA8 had 16 S rRNA gene sequences that were most similar to Pseudomonas diminuta, Brevundimonas diminuta, Nitrobacteria irancium, Ochrobactrum anthropi, and Bacillus cereus, respectively. Water hyacinth inoculated with RA5 and RA8 increased Mn accumulation in roots by 2.4- and 1.2-fold, respectively, compared to uninoculated controls. The highest concentrations of Cr (0.4 g kg(-1)) and Zn (0.18 g kg(-1)) were accumulated in aerial portions of water hyacinth inoculated with RA3. Plants inoculated with RA1, RA2, RA3, RA5, RA7, and RA8 had 7-, 11-, 24-, 29-, 35-, and 21-fold, respectively, higher Cr concentrations in roots compared to the control. These bacterial isolates are potential candidates in phytoremediation for chromium removal.
Collapse
Affiliation(s)
- R A I Abou-Shanab
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research, Borg El-Arab, Alexandria, Egypt.
| | | | | |
Collapse
|
48
|
Viamajala S, Smith WA, Sani RK, Apel WA, Petersen JN, Neal AL, Roberto FF, Newby DT, Peyton BM. Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: implications for long-term chromate reduction. BIORESOURCE TECHNOLOGY 2007; 98:612-22. [PMID: 16644211 DOI: 10.1016/j.biortech.2006.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 12/08/2005] [Accepted: 02/04/2006] [Indexed: 05/08/2023]
Abstract
Microbial enrichments from Cr(VI) contaminated and uncontaminated US Department of Energy Hanford Site sediments produced Cr(VI) reducing consortia when grown in the presence of Cr(VI) with acetate, D-xylose or glycerol as a carbon and energy source. Eight of the nine isolates from the consortia were Gram positive and four of these were identified by 16S rRNA sequence homology and membrane fatty acid composition as belonging to the genus Cellulomonas. Two strains, ES6 and WS01, were further examined for their ability to reduce Cr(VI) under growth and non-growth conditions. During fermentative growth on D-xylose, ES6 and WS01 decreased aqueous Cr(VI) concentrations from 0.04 mM Cr(VI) to below the detection limit (0.002 mM Cr(VI)) in less than three days and retained their ability to reduce Cr(VI) even after four months of incubation. Washed ES6 and WS01 cells also reduced Cr(VI) under non-growth conditions for over four months, both with and without the presence of an exogenous electron donor. K-edge XANES spectroscopy confirmed the reduction of Cr(VI) to Cr(III). The ability to reduce Cr(VI) after growth had stopped and in the absence of an external electron donor, suggests that stimulation of these types of organisms may lead to effective long-term, in situ passive reactive barriers for Cr(VI) removal. Our results indicate that Cr(VI) reduction by indigenous Cellulomonas spp. may be a potential method of in situ bioremediation of Cr(VI) contaminated sediment and groundwater.
Collapse
Affiliation(s)
- Sridhar Viamajala
- National Bioenergy Center, National Renewable Energy Laboratory, 1617 Cole Blvd., MS 3511, Golden, CO 80401, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sultan S, Hasnain S. Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. BIORESOURCE TECHNOLOGY 2007; 98:340-4. [PMID: 16488604 DOI: 10.1016/j.biortech.2005.12.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 12/22/2005] [Accepted: 12/26/2005] [Indexed: 05/06/2023]
Abstract
A Cr(VI) resistant bacterial strain SDCr-5, identified as Ochrobactrum intermedium on the basis of 16S rRNA gene sequencing, was tolerant to high concentrations of Cr(VI) up to 15 mg ml(-1) in acetate minimal medium. O. intermedium SDCr-5 reduced Cr(VI) under a wide range of concentrations from 100 to 1500 microg ml(-1) and reduction was optimum at 37 degrees C and pH 7. It reduced 200 and 721 microg ml(-1) Cr(VI) within 72 and 96 h, respectively. The rate of Cr(VI) reduction increased with concentration from 100 to 1500 microg ml(-1). The presence of heavy metal cations such as Cu(2+), Co(2+), Mn(2+) and Ni(2+) stimulated Cr(VI) reduction. Strain SDCr-5 might be useful for Cr(VI) detoxification under a wide range of environmental conditions.
Collapse
Affiliation(s)
- Sikander Sultan
- Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | | |
Collapse
|
50
|
Fulladosa E, Murat JC, Villaescusa I. Effect of cadmium(II), chromium(VI), and arsenic(V) on long-term viability- and growth-inhibition assays using Vibrio fischeri marine bacteria. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2005; 49:299-306. [PMID: 16132421 DOI: 10.1007/s00244-004-0170-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 03/20/2005] [Indexed: 05/04/2023]
Abstract
As a complement to previous results obtained using the standard Microtox acute-toxicity test, which is based on measuring the rapid decrease of bioluminescence (5 to 30 minutes of exposure) in Vibrio fischeri bacteria in the presence of toxicants, the long-term effects of Cd(II), Cr(VI), and As(V) were studied on growth rate and viability assays of the same bacteria adapted to longer-lasting cultures, i.e., 48 or 72 hours instead of 5 or 30 minutes. Effects on viability or growth, as studied by establishing dose- and time-response curves, confirmed that these poisonous chemicals were not particularly toxic to these bacteria. Nevertheless, in the case of Cr(VI), the viability-inhibition assay appeared to be more sensitive than the Microtox acute-toxicity test. Interestingly, it was possible to observe a clear hormesis phenomenon, especially for Cd(II), under the conditions of both viability- and growth-inhibition assays.
Collapse
Affiliation(s)
- E Fulladosa
- Department of Chemical Engineering, University of Girona, Avda. Lluís Santaló, s/n, Girona, 17071, Spain
| | | | | |
Collapse
|