1
|
Grubbe WS, Zhang B, Kauffman A, Byléhn F, Padoł K, Jung HG, Park SB, Priest JM, Özkan E, de Pablo JJ, Liang TJ, Zhao M, Mendoza JL. Structural studies of the IFNλ4 receptor complex using cryoEM enabled by protein engineering. Nat Commun 2025; 16:818. [PMID: 39827213 PMCID: PMC11742915 DOI: 10.1038/s41467-025-56119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
IFNλ4 has posed a conundrum in human immunology since its discovery in 2013, with its expression linked to complications with viral clearance. While genetic and cellular studies revealed the detrimental effects of IFNλ4 expression, extensive structural and functional characterization has been limited by the inability to express and purify the protein, complicating explanations of its paradoxical behavior. In this work, we report a method for robust production of IFNλ4. We then use yeast surface display to affinity-mature IL10Rβ and solve the 72 kilodalton structures of IFNλ4 (3.26 Å) and IFNλ3 (3.00 Å) in complex with their receptors IFNλR1 and IL10Rβ using cryogenic electron microscopy. Comparison of the structures highlights differences in receptor engagement and reveals a distinct 12-degree rotation in overall receptor geometry, providing a potential mechanistic explanation for differences in cell signaling, downstream gene induction, and antiviral activities. Further, we perform a structural analysis using molecular modeling and simulation to identify a unique region of IFNλ4 that, when replaced, enables secretion of the protein from cells. These findings provide a structural and functional understanding of the IFNλ4 protein and enable future comprehensive studies towards correcting IFNλ4 dysfunction in large populations of affected patients.
Collapse
Affiliation(s)
- William S Grubbe
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Bixia Zhang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Aileen Kauffman
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Fabian Byléhn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Kasia Padoł
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Hae-Gwang Jung
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Seung Bum Park
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Jessica M Priest
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Argonne National Laboratory, Lemont, IL, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Juan L Mendoza
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Lin K, Yao K, Li X, Li Q, Guo X, You W, Ren W, Bian Y, Guo J, Sun Z, Zhang R, Yang X, Li Z, Li B. Rapid and sensitive detection of nucleic acids using an RAA-CRISPR/Cas12b one-pot detection assay (Rcod). Talanta 2024; 271:125616. [PMID: 38277969 DOI: 10.1016/j.talanta.2023.125616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/28/2024]
Abstract
Rapid, sensitive and specific methods are crucial for nucleic acid detection. CRISPR/Cas12b has recently been widely used in nucleic acid detection. However, due to its thermophagic property, DNA isothermal recombinase-aided amplification (RAA) and subsequent CRISPR/Cas12b detection require two separate reactions, which is cumbersome and inconvenient and may cause aerosol pollution. In this study, we propose an RAA-CRISPR/Cas12b one-pot detection assay (Rcod) for Bordetella pertussis detection without additional amplification product transfer steps. The time from sample processing to response time was less than 30 min using nucleic acid extraction-free method, and the sensitivity reached 0.2 copies/μL. In this system, Alicyclobacillus acidoterrestris Cas12b protein (AacCas12b) exhibited strong and specific trans-cleavage activity at a constant temperature of 37 °C, while the cis-cleavage activity was weak. This characteristic reduces the interference of AacCas12b with nucleic acids in the system. Compared with real-time PCR, our Rcod system detected B. pertussis in 221 clinical samples with a sensitivity and specificity of 97.96 % and 99.19 %, respectively, with nucleic acid extraction-free method. The rapid, sensitive and specific Rcod system provides ideas for the establishment of CRISPR-based one-step nucleic acid detection and may aid the development of reliable point-of-care nucleic acid tests. IMPORTANCE: Pertussis is an acute respiratory infection caused by B. pertussis that is highly contagious and potentially fatal, and early diagnosis is essential for the treatment of whooping cough. In this study, we found that AacCas12b has high and strongly specific trans-cleavage activity at lower temperatures. A RAA-CRISPR/Cas12b one-step detection platform (Rcod) without interference with amplification was developed. In addition, the combination of Rcod and nucleic acid extraction-free method can quickly and accurately detect the qualitative detection of B. pertussis, and the detection results are visualized, which makes the pathogen nucleic acid detection and analysis process simpler, and provides a new method for the rapid clinical diagnosis of B. pertussis.
Collapse
Affiliation(s)
- Kangfeng Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Kaihu Yao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Laboratory of Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiao Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qinghan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiangju Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Weixin You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenjing Ren
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ya Bian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jianguang Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhen Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Rui Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Xiaoqing Yang
- Pediatrics Department, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.
| | - Zhiyong Li
- Department of Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, China.
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
3
|
Son J, Kim SH, Cha BS, Lee ES, Kim S, Park KS. Primer exchange reaction-coupled transcription isothermal amplification as a sensitive biomolecular assay. Chem Commun (Camb) 2024; 60:4565-4568. [PMID: 38572617 DOI: 10.1039/d4cc00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
We devised a novel strategy that relies on a combination of the primer exchange reaction (PER) with transcription isothermal amplification, termed PER-Trap, for a sensitive biomolecular assay. Its design allowed light-up RNA aptamers to be produced as the final product, leading to the generation of an amplified fluorescence signal. The utility of PER-Trap was successfully demonstrated by the detection of exosomes.
Collapse
Affiliation(s)
- Jinseo Son
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| | - Seok Hyeon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| | - Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Papa V, Galassi FM, Varotto E, Gori A, Vaccarezza M. The Evolution of Diagnostic Techniques in the Paleopathology of Tuberculosis: A Scoping Review. Pathog Immun 2023; 8:93-116. [PMID: 37900966 PMCID: PMC10603826 DOI: 10.20411/pai.v8i1.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/21/2023] [Indexed: 10/31/2023] Open
Abstract
Tuberculosis (TB) is an ancient chronic infectious disease that remains a global health concern. In human remains, the most common and characteristic clinical signs are the skeletal modifications involving the spine, such as in Pott's disease. Diagnosing TB in ancient human remains is challenging. Therefore, in this systematic review, the authors investigated the studies assessing molecular diagnosis of Pott's disease in ancient human remains with the intention to survey the literature, map the evidence, and identify gaps and future perspectives on TB in paleopathology. Our systematic review offers a full contextualization of the history of Pott's disease in ancient times. Our search strategy was performed between August 2022 and March 2023. The authors initially identified 340 records, and 74 studies were finally included and assessed for qualitative analysis. Due to non-specific clinical signs associated with TB, how best to diagnose tuberculosis in human remains still represents a central point. Nevertheless, ancient DNA (aDNA) analysis, lipid biomarkers, and spoligotyping might be extremely useful tools in the study of TB in human remains. Moreover, we propose the extraction and study of immune response genes involved in innate and adaptive immunity versus Mycobacterium spp. as an innovative and vastly overlooked approach in TB paleopathology. Complementary methodologies should be integrated to provide the best approach to the study of TB in human remains.
Collapse
Affiliation(s)
- Veronica Papa
- Forensic Anthropology, Paleopathology and Bioarchaeology (FAPAB) Research Center, Avola, Italy
- Department of Economics, Law, Cybersecurity, and Sports Sciences, University of Naples “Parthenope,” Naples, Italy
- School of Science, Engineering and Health, University of Naples “Parthenope,” Naples, Italy
| | - Francesco M. Galassi
- Forensic Anthropology, Paleopathology and Bioarchaeology (FAPAB) Research Center, Avola, Italy
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237, Lodz, Poland
| | - Elena Varotto
- Forensic Anthropology, Paleopathology and Bioarchaeology (FAPAB) Research Center, Avola, Italy
- Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Adelaide, SA, Australia
| | - Andrea Gori
- I Division of Infectious Diseases, “Luigi Sacco” Hospital, ASST Fatebenefratelli Sacco, Milan, Italy; Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Mauro Vaccarezza
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Perth, 6102 Western Australia, Australia
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, Perth, 6102 Western Australia, Australia
| |
Collapse
|
5
|
Sinha K, Uddin Z, Kawsar H, Islam S, Deen M, Howlader M. Analyzing chronic disease biomarkers using electrochemical sensors and artificial neural networks. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Ma S, Wang K, Jiang Y, Guo Y, Zhang Y, Gao Y, Wu W. Development of a low-cost multi-channel nucleic acid detection PCR instrument and clinical detection application of COVID-19. Anal Chim Acta 2022; 1229:340338. [PMID: 36156217 PMCID: PMC9472591 DOI: 10.1016/j.aca.2022.340338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/01/2022]
Abstract
Since the COVID-19 outbreak at the end of December 2019, a variety of novel Coronavirus nucleic acid detection methods have been proposed at home and abroad. Because of the disadvantages of most existing PCR instruments on the market such as long reaction time and high cost, this study developed a more timesaving and cheaper two-channel real-time quantitative PCR instrument. In this instrument, a PCR system combining a thermal cycle system and real-time fluorescence quantitative technology was designed. The software system and data processing, optical system, thermal cycle module, and hardware module of the PCR instrument were studied. The low-cost, portable real-time quantitative PCR system has been validated with consistent results compared to Bio-rad CFX Connect. At the same time, the same samples were used for the contract experiment with the hospital instrument, and the amplification result was better than the existing instrument in the hospital.
Collapse
Affiliation(s)
- Shuang Ma
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, PR China
| | - Kangning Wang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, PR China
| | - Yangyang Jiang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, PR China
| | - Yu Guo
- School of Mechanical and Electrical Engineering, Guangdong University of Technology, PR China
| | - Yipeng Zhang
- School of Biomedical Engineering, Southern Medical University, PR China
| | - YingJun Gao
- School of Biotechnology and Health Sciences, Wuyi University, PR China
| | - Wenming Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, PR China; Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
7
|
Hsieh SA, Shamsaei D, Eitzmann DR, Anderson JL. Digital Droplet Loop-Mediated Isothermal Amplification Featuring a Molecular Beacon Assay, 3D Printed Droplet Generation, and Smartphone Imaging for Sequence-Specific DNA Detection. Anal Chem 2022; 94:11949-11956. [PMID: 35973866 DOI: 10.1021/acs.analchem.2c02979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleic acid detection is widely used in the amplification and quantitation of nucleic acids from biological samples. While polymerase chain reaction (PCR) enjoys great popularity, expensive thermal cyclers are required for precise temperature control. Loop-mediated isothermal amplification (LAMP) enables highly sensitive, rapid, and low-cost amplification of nucleic acids at constant temperatures. LAMP detection often relies on double-stranded DNA-binding dyes or metal indicators that lack sequence selectivity. Molecular beacons (MBs) are hairpin-shaped oligonucleotide probes whose sequence specificity in LAMP provides the capability of differentiating between single-nucleotide polymorphisms (SNPs). Digital droplet LAMP (ddLAMP) enables a large number of independent LAMP reactions to be performed and provides quantification of target DNA sequences. However, a major challenge with ddLAMP is the requirement of expensive droplet generators to form homogeneous microdroplets. In this study, we demonstrate for the first time that a three-dimensional (3D) printed droplet generation platform can be coupled to a LAMP assay featuring MBs as sequence-specific probes. The low-cost 3D printed droplet generator system was designed, and its customizability was demonstrated in the formation of monodisperse ddLAMP assay-in-oil microdroplets. Additionally, a smartphone-based imaging system is demonstrated to increase accessibility for point-of-care applications. The MB-ddLAMP assay is shown to discriminate between two SNPs at various amplification temperatures to afford a useful platform for sequence-specific, sensitive, and accurate DNA quantification. This work expands the utility of MBs to ddLAMP for quantitative studies in the detection of SNPs and exploits the customizability of 3D printing technologies to optimize the homogeneity, size, and volume of oil-in-water microdroplets.
Collapse
Affiliation(s)
- Shu-An Hsieh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Danial Shamsaei
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Derek R Eitzmann
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
8
|
Wang K, Wang Q, Peng C, Guo Y, Li Y, Zhou J, Wu W. Portable Heating System Based on a Liquid Metal Bath for Rapid PCR. ACS OMEGA 2022; 7:26165-26173. [PMID: 35936432 PMCID: PMC9352155 DOI: 10.1021/acsomega.2c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
With the outbreak of COVID-19 around the world, rapid and accurate detection of new coronaviruses is the key to stop the transmission of the disease and prevent and control the novel coronavirus, among which polymerase chain reaction (PCR) is the mainstream nucleic acid detection method. A temperature cycling device is the core of the PCR amplification micro-device. The precision of the temperature control and temperature change rate directly affect the efficiency of PCR amplification. This study proposes a new PCR method based on rapid PCR chip optimization of a liquid metal bath, which realizes precise and rapid temperature rise and fall control. We systematically explored the feasibility of using liquid metals with different melting points in the system and proposed a 47 °C bismuth-based liquid metal bath as the heat conduction medium of the system to optimize the system. The heat conduction properties of the thermally conductive silicone oil bath were compared. Compared with the thermally conductive silicone oil bath, thermal cycle efficiency is improved nearly 3 times. The average heating rate of the liquid metal bath is fast, and the temperature control stability is good, which can significantly reduce the hysteresis, and the temperature change curve is more gentle, which can greatly improve the efficiency of PCR amplification. The results of gene amplification using rat DNA as the template and SEC61A as the target also indicate that the system can be successfully used in PCR devices, and the types of PCR containers can be not limited to PCR tubes. Based on the experiment, we proved that the PCR method optimized by the liquid metal bath multi-gene rapid PCR chip can further improve the temperature response speed. It has the advantages of accurate data, fast response speed, low price, safety, and environmental protection and can effectively reduce the time of PCR and improve the application efficiency. As far as we know, this is the first international report on using a liquid metal bath to do rapid-cooling PCR.
Collapse
Affiliation(s)
- Kangning Wang
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, Guangzhou 516001, China
| | - Qingran Wang
- State
Key Laboratory of Luminescence and Applications, Changchun Institute
of Optics, Fine Mechanics and Physics, Chinese
Academy of Sciences, Changchun 130033, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Canfu Peng
- State
Key Laboratory of Luminescence and Applications, Changchun Institute
of Optics, Fine Mechanics and Physics, Chinese
Academy of Sciences, Changchun 130033, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Guo
- School
of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Li
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, Guangzhou 516001, China
| | - Jia Zhou
- State
Key Laboratory of Microelectronics and Integrated Circuits, Fudan University, Shanghai 200433, China
| | - Wenming Wu
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, Guangzhou 516001, China
| |
Collapse
|
9
|
Cardona-Trujillo MC, Ocampo-Cárdenas T, Tabares-Villa FA, Zuluaga-Vélez A, Sepúlveda-Arias JC. Recent molecular techniques for the diagnosis of Zika and Chikungunya infections: A systematic review. Heliyon 2022; 8:e10225. [PMID: 36033321 PMCID: PMC9404361 DOI: 10.1016/j.heliyon.2022.e10225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Zika virus (ZIKV) and Chikungunya virus (CHIKV) are arboviruses that cause important viral diseases affecting the world population. Both viruses can produce remarkably similar clinical manifestations, co-circulate in a geographic region, and coinfections have been documented, thus making clinical diagnosis challenging. Therefore, it is urgent to have better molecular techniques that allow a differential, sensitive and rapid diagnosis from body fluid samples. This systematic review explores evidence in the literature regarding the advances in the molecular diagnosis of Zika and Chikungunya in humans, published from 2010 to March 2021. Four databases were consulted (Scopus, PubMed, Web of Science, and Embase) and a total of 31 studies were included according to the selection criteria. Our analysis highlights the need for standardization in the report and interpretation of new promising diagnostic methods. It also examines the benefits of new alternatives for the molecular diagnosis of these arboviruses, in contrast to established methods.
Collapse
Affiliation(s)
- María C Cardona-Trujillo
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Tatiana Ocampo-Cárdenas
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Fredy A Tabares-Villa
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Augusto Zuluaga-Vélez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan C Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| |
Collapse
|
10
|
Jang M, Kim S. Inhibition of Non-specific Amplification in Loop-Mediated Isothermal Amplification via Tetramethylammonium Chloride. BIOCHIP JOURNAL 2022; 16:326-333. [PMID: 35909465 PMCID: PMC9326409 DOI: 10.1007/s13206-022-00070-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
Abstract
Loop-mediated isothermal amplification (LAMP) may be used in molecular and point-of-care diagnostics for pathogen detection. The amplification occurs under isothermal conditions using up to six primers. However, non-specific amplification is frequently observed in LAMP. Non-specific amplification has the potential to be triggered by forward and reverse internal primers. And the relatively low reaction temperature (55-65 °C) induces the secondary structure via primer-primer interactions. Primer redesign and probe design have been recommended to solve this problem. LAMP primers have strict conditions, such as Tm, GC contents, primer dimer, and distance between primers compared to conventional PCR primers. Probe design requires specialized knowledge to have high specificity for a target. In polymerase chain reaction (PCR), some chemicals or proteins are used for improving specificity and efficiency. Therefore, we hypothesized that additives can suppress the non-specific amplification. In this study, tetramethylammonium chloride (TMAC), formamide, dimethyl sulfoxide, Tween 20, and bovine serum albumin have been used as LAMP additives. In our study, TMAC was presented as a promising additive for suppressing non-specific amplification in LAMP. Supplementary Information The online version contains supplementary material available at 10.1007/s13206-022-00070-3.
Collapse
Affiliation(s)
- MinJu Jang
- grid.256155.00000 0004 0647 2973Department of Bionanotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Sanghyo Kim
- grid.256155.00000 0004 0647 2973Department of Bionanotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
11
|
Homayoonnia S, Lee Y, Andalib D, Rahman MS, Shin J, Kim K, Kim S. Micro/nanotechnology-inspired rapid diagnosis of respiratory infectious diseases. Biomed Eng Lett 2021; 11:335-365. [PMID: 34513114 PMCID: PMC8424173 DOI: 10.1007/s13534-021-00206-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
Humans have suffered from a variety of infectious diseases since a long time ago, and now a new infectious disease called COVID-19 is prevalent worldwide. The ongoing COVID-19 pandemic has led to research of the effective methods of diagnosing respiratory infectious diseases, which are important to reduce infection rate and help the spread of diseases be controlled. The onset of COVID-19 has led to the further development of existing diagnostic methods such as polymerase chain reaction, reverse transcription polymerase chain reaction, and loop-mediated isothermal amplification. Furthermore, this has contributed to the further development of micro/nanotechnology-based diagnostic methods, which have advantages of high-throughput testing, effectiveness in terms of cost and space, and portability compared to conventional diagnosis methods. Micro/nanotechnology-based diagnostic methods can be largely classified into (1) nanomaterials-based, (2) micromaterials-based, and (3) micro/nanodevice-based. This review paper describes how micro/nanotechnologies have been exploited to diagnose respiratory infectious diseases in each section. The research and development of micro/nanotechnology-based diagnostics should be further explored and advanced as new infectious diseases continue to emerge. Only a handful of micro/nanotechnology-based diagnostic methods has been commercialized so far and there still are opportunities to explore.
Collapse
Affiliation(s)
- Setareh Homayoonnia
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Yoonjung Lee
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Daniyal Andalib
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Md Sazzadur Rahman
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Jaemyung Shin
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Seonghwan Kim
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
12
|
Abstract
Although highly active antiretroviral therapy (HAART) has been introduced over twenty years ago to treat Human Immunodeficiency Virus (HIV) positive patients, acquired immunodeficiency syndrome (AIDS) is still one of the deadliest diseases found worldwide. AIDS prevalence and mortality rates are usually more pronounced in resource-constrained countries than in the developed world. The lack of trained medical technicians, sophisticated diagnostic equipment, and the overall scarcity of medical infrastructures have severely impacted HIV/AIDS diagnostics, which hinders the initiation and periodic monitoring of antiretroviral therapy (ART). Currently, available HIV viral load assays are not well-suited for resource-limited settings due to their high cost and a requirement for medical/technical infrastructures. In this paper, we review current and emerging diagnostic assays for HIV detection, with a focus on point-of-care (POC) based immunoassays for viral load measurement, drug resistance, and HIV recurrence. We also discuss the limitations of the available HIV assays and highlight the technological advancements in cellphone, paper, and flexible material-based assays which have the potential to improve HIV diagnosis and monitoring, thus assisting with the management of the disease.
Collapse
Affiliation(s)
- Md Alamgir Kabir
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA.,Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA
| | - Hussein Zilouchian
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA
| | - Massimo Caputi
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA.,Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA.,Department of Biological Sciences (courtesy appointment), Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
13
|
Bollinger AL, Bollinger T, Rupp J, Shima K, Gross N, Padayachy L, Chicheportiche R, Puga Yung GL, Seebach JD. Annexin V expression on CD4 + T cells with regulatory function. Immunology 2019; 159:205-220. [PMID: 31642515 DOI: 10.1111/imm.13140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Regulatory T (Treg) cells induce immunologic tolerance by suppressing effector functions of conventional lymphocytes in the periphery. On the other hand, immune silencing is mediated by recognition of phosphatidylserine (PS) on apoptotic cells by phagocytes. Here we describe expression of the PS-binding protein Annexin V (ANXA5) in CD4+ CD25hi Treg cells at the mRNA and protein levels. CD4+ ANXA5+ T cells constitute about 0·1%-0·6% of peripheral blood CD3+ T cells, exhibit co-expression of several Treg markers, such as Forkhead box P3, programmed cell death protein-1, cytotoxic T-lymphocyte antigen-4 and CD38. In vitro, ANXA5+ Treg cells showed enhanced adhesion to PS+ endothelial cells. Stimulated by anti-CD3 and PS+ syngeneic antigen-presenting cells CD4+ ANXA5+ T cells expanded in the absence of exogenous interleukin-2. CD4+ ANXA5+ T cells suppressed CD4+ ANXA5- T-cell proliferation and mammalian target of rapamycin phosphorylation, partially dependent on cell contact. CD4+ ANXA5+ T-cell-mediated suppression was allo-specific and accompanied by an increased production of anti-inflammatory mediators. In vivo, using a model of delayed type hypersensitivity, murine CD4+ ANXA5+ T cells inhibited T helper type 1 responses. In conclusion, we report for the first time expression of ANXA5 on a subset of Treg cells that might bridge classical regulatory Treg function with immune silencing.
Collapse
Affiliation(s)
- Anna-Lena Bollinger
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Thomas Bollinger
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Natalie Gross
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Laura Padayachy
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Rachel Chicheportiche
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Gisella L Puga Yung
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Jörg Dieter Seebach
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| |
Collapse
|
14
|
Pardy T, Sink H, Koel A, Rang T. Development of a Low-Cost, Wireless Smart Thermostat for Isothermal DNA Amplification in Lab-On-A-Chip Devices. MICROMACHINES 2019; 10:E437. [PMID: 31262090 PMCID: PMC6680506 DOI: 10.3390/mi10070437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 01/16/2023]
Abstract
Nucleic acid amplification tests (NAAT) are widely used for the detection of living organisms, recently applied in Lab-on-a-Chip (LoC) devices to make portable DNA analysis platforms. While portable LoC-NAAT can provide definitive test results on the spot, it requires specialized temperature control equipment. This work focuses on delivering a generalized low-cost, wireless smart thermostat for isothermal NAAT protocols in 2 cm × 3 cm LoC cartridges. We report on the design, prototyping, and evaluation results of our smart thermostat. The thermostat was evaluated by experimental and simulated thermal analysis using 3D printed LoC cartridges, in order to verify its applicability to various isothermal NAAT protocols. Furthermore, it was tested at the boundaries of its operating ambient temperature range as well as its battery life was evaluated. The prototype thermostat was proven functional in 20-30 °C ambient range, capable of maintaining the required reaction temperature of 12 isothermal NAAT protocols with 0.7 °C steady-state error in the worst case.
Collapse
Affiliation(s)
- Tamas Pardy
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia.
| | - Henri Sink
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Ants Koel
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Toomas Rang
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia
| |
Collapse
|
15
|
Gill AAS, Singh S, Thapliyal N, Karpoormath R. Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant Staphylococcus aureus: a review. Mikrochim Acta 2019; 186:114. [PMID: 30648216 DOI: 10.1007/s00604-018-3186-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for a number of life-threatening complications in humans. Mutations in the genetic sequence of S. aureus due to the presence of certain genes results in resistance against β-lactamases. Thus, there is an urgent need for developing highly sensitive techniques for the early detection of MRSA to counter the rise in resistant strains. This review (142 refs.) extensively covers literature reports on nanomaterial-based optical and electrochemical sensors from the year 1983 to date, with particularly emphasis on recent advances in electrochemical sensing (such as voltammetry and impedimetric) and optical sensing (such as colorimetry and fluorometry) techniques. Among the electrochemical methods, various nanomaterials were employed for the modification of electrodes. Whereas, in optical assays, formats such as enzyme linked immunosorbent assay, lateral flow assays or in optical fiber systems are common. In addition, novel sensing platforms are reported by applying advanced nanomaterials which include gold nanoparticles, nanotitania, graphene, graphene-oxide, cadmium telluride and related quantum dots, nanocomposites, upconversion nanoparticles and bacteriophages. Finally, closing remarks and an outlook conclude the review. Graphical abstract Schematic of the diversity of nanomaterial-based methods for detection of methicillin-resistant Staphylococcus aureus (MRSA). AuNPs: gold nanoparticles; QDs: quantum dots; PVL: Panton-Valentine leukocidin; mecA gene: mec-gene complex encoding methicillin resistance.
Collapse
Affiliation(s)
- Atal A S Gill
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Sima Singh
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Neeta Thapliyal
- Department of Applied Science, Women Institute of Technology, Sudhowala, Dehradun, Uttarakhand, 248007, India
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| |
Collapse
|
16
|
Field Evaluation of a Loop-Mediated Isothermal Amplification (LAMP) Platform for the Detection of Schistosoma japonicum Infection in Oncomelania hupensis Snails. Trop Med Infect Dis 2018; 3:tropicalmed3040124. [PMID: 30558259 PMCID: PMC6306868 DOI: 10.3390/tropicalmed3040124] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
Schistosoma infection in snails can be monitored by microscopy or indirectly by sentinel mice. As both these approaches can miss infections, more sensitive tests are needed, particularly in low-level transmission settings. In this study, loop-mediated isothermal amplification (LAMP) technique, designed to detect a specific 28S ribosomal Schistosoma japonicum (Sj28S) gene with high sensitivity, was compared to microscopy using snail samples from 51 areas endemic for schistosomiasis in five Chinese provinces. In addition, the results were compared with those from polymerase chain reaction (PCR) by adding DNA sequencing as a reference. The testing of pooled snail samples with the LAMP assay showed that a dilution factor of 1/50, i.e., one infected snail plus 49 non-infected ones, would still result in a positive reaction after the recommended number of amplification cycles. Testing a total of 232 pooled samples, emanating from 4006 snail specimens, showed a rate of infection of 6.5%, while traditional microscopy found only 0.4% positive samples in the same materials. Parallel PCR analysis confirmed the diagnostic accuracy of the LAMP assay, with DNA sequencing even giving LAMP a slight lead. Microscopy and the LAMP test were carried out at local schistosomiasis-control stations, demonstrating that the potential of the latter assay to serve as a point-of-care (POC) test with results available within 60–90 min, while the more complicated PCR test had to be carried out at the National Institute of Parasitic Diseases (NIPD) in Shanghai, China. In conclusion, LAMP was found to be clearly superior to microscopy and as good as, or better than, PCR. As it can be used under field conditions and requires less time than other techniques, LAMP testing would improve and accelerate schistosomiasis control.
Collapse
|
17
|
Ma D, Wu C, Li G, Leung C. Group 8–9 Metal-Based Luminescent Chemosensors for Protein Biomarker Detection. JOURNAL OF ANALYSIS AND TESTING 2018. [DOI: 10.1007/s41664-017-0045-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Du Y, Chen B. Detection approaches for multidrug resistance genes of leukemia. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1255-1261. [PMID: 28458519 PMCID: PMC5402920 DOI: 10.2147/dddt.s134529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leukemia is a clonal malignant hematopoietic stem cell disease. It is the sixth most lethal cancer and accounts for 4% of all cancers. The main form of treatment for leukemia is chemotherapy. While some cancer types with a higher incidence than leukemia, such as lung and gastric cancer, have shown a sharp decline in mortality rates in recent years, leukemia has not followed this trend. Drug resistance is often regarded as the main clinical obstacle to effective chemotherapy in patients diagnosed with leukemia. Many resistance mechanisms have now been identified, and multidrug resistance (MDR) is considered the most important and prevalent mechanism involved in the failure of chemotherapy in leukemia. In order to reverse MDR and improve leukemia prognosis, effective detection methods are needed to identify drug resistance genes at initial diagnosis. This article provides a comprehensive overview of published approaches for the detection of MDR in leukemia. Identification of relevant MDR genes and methods for early detection of these genes will be needed in order to treat leukemia more effectively.
Collapse
Affiliation(s)
- Ying Du
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
19
|
Ma DL, Wang M, Liu C, Miao X, Kang TS, Leung CH. Metal complexes for the detection of disease-related protein biomarkers. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:267570. [PMID: 26508902 PMCID: PMC4609770 DOI: 10.1155/2015/267570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/18/2015] [Indexed: 01/03/2023]
Abstract
DNA ligases are indispensable in all living cells and ubiquitous in all organs. DNA ligases are broadly utilized in molecular biology research fields, such as genetic engineering and DNA sequencing technologies. Here we review the utilization of DNA ligases in a variety of in vitro gene manipulations, developed over the past several decades. During this period, fewer protein engineering attempts for DNA ligases have been made, as compared to those for DNA polymerases. We summarize the recent progress in the elucidation of the DNA ligation mechanisms obtained from the tertiary structures solved thus far, in each step of the ligation reaction scheme. We also present some examples of engineered DNA ligases, developed from the viewpoint of their three-dimensional structures.
Collapse
|
21
|
Kim GA, Sun Y, Song JG, Bae H, Kim JH, Kwon ST. Properties of cold-active uracil-DNA glycosylase from Photobacterium aplysiae GMD509, and its PCR application for carryover contamination control. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2008.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Characterization of cold-active uracil-DNA glycosylase from Bacillus sp. HJ171 and its use for contamination control in PCR. Appl Microbiol Biotechnol 2008; 80:785-94. [PMID: 18626641 DOI: 10.1007/s00253-008-1585-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
Abstract
In this study, the gene encoding Bacillus sp. HJ171 uracil-DNA glycosylase (Bsp HJ171 UDG) was cloned and sequenced. The Bsp HJ171 UDG gene consists of a 738-bp DNA sequence, which encodes for a protein that is 245-amino-acid residues in length. The deduced amino acid sequence of the Bsp HJ171 UDG had a high sequence similarity with other bacterial UDGs. The molecular mass of the protein derived from this amino acid sequence was 27.218 kDa. The Bsp HJ171 UDG gene was expressed under the control of a T7lac promoter in the pTYB1 plasmid in Escherichia coli BL21 (DE3). The expressed enzyme was purified in one step using the Intein Mediated Purification with an Affinity Chitin-binding Tag purification system. The optimal temperature range, pH, NaCl concentration, and KCl concentration of the purified enzyme was 20-25 degrees C, 8.0, 25 and 25 mM, respectively. The half-life of the enzyme at 40 degrees C and 50 degrees C were approximately 131 and 45 s, respectively. These heat-labile characteristics enabled Bsp HJ171 UDG to control carry-over contamination in the polymerase chain reaction product (PCR) without losing the PCR product.
Collapse
|
23
|
Nakada Y, Hunsaker TL, Henke RM, Johnson JE. Distinct domains within Mash1 and Math1 are required for function in neuronal differentiation versus neuronal cell-type specification. Development 2004; 131:1319-30. [PMID: 14993186 DOI: 10.1242/dev.01008] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many members of the basic helix-loop-helix (bHLH) family of transcription factors play pivotal roles in the development of a variety of tissues and organisms. We identify activities for the neural bHLH proteins Mash1 and Math1 in inducing neuronal differentiation, and in inducing the formation of distinct dorsal interneuron subtypes in the chick neural tube. Although both factors induce neuronal differentiation, each factor has a distinct activity in the type of dorsal interneuron that forms, with overexpression of Math1 increasing dI1 interneurons, and Mash1 increasing dI3 interneurons. Math1 and Mash1 function as transcriptional activators for both of these functions. Furthermore, we define discrete domains within the bHLH motif that are required for these different activities in neural development. Helix 1 of the Mash1 HLH domain is necessary for Mash1 to be able to promote neuronal differentiation, and is sufficient to confer this activity to the non-neural bHLH factor MyoD. In contrast, helix 2 of Math1, and both helix 1 and 2 of Mash1, are the domains required for the neuronal specification activities of these factors. The requirement for distinct domains within the HLH motif of Mash1 and Math1 for driving neuronal differentiation and cell-type specification probably reflects the importance of unique protein-protein interactions involved in these functions.
Collapse
Affiliation(s)
- Yuji Nakada
- Center for Basic Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9111, USA
| | | | | | | |
Collapse
|
24
|
Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001; 193:1285-94. [PMID: 11390435 PMCID: PMC2193380 DOI: 10.1084/jem.193.11.1285] [Citation(s) in RCA: 931] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A subpopulation of peripheral human CD4(+)CD25(+) T cells that expresses CD45RO, histocompatibility leukocyte antigen DR, and intracellular cytotoxic T lymphocyte-associated antigen (CTLA) 4 does not expand after stimulation and markedly suppresses the expansion of conventional T cells in a contact-dependent manner. After activation, CD4(+)CD25(+) T cells express CTLA-4 on the surface detectable for several weeks. These cells show a G1/G0 cell cycle arrest and no production of interleukin (IL)-2, IL-4, or interferon (IFN)-gamma on either protein or mRNA levels. The anergic state of CD4(+)CD25(+) T cells is not reversible by the addition of anti-CD28, anti-CTLA-4, anti-transforming growth factor beta, or anti-IL-10 antibody. However, the refractory state of CD4(+)CD25(+) T cells was partially reversible by the addition of IL-2 or IL-4. These data demonstrate that human blood contains a resident T cell population with potent regulatory properties.
Collapse
Affiliation(s)
- H Jonuleit
- Department of Dermatology, University of Mainz, D-55101 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- F B Perler
- New England Biolabs, Inc., Beverly, Massachusetts, USA
| | | | | |
Collapse
|
26
|
|
27
|
Aniskovich LP, Motin VL, Lichoded LJ, Balayeva NM, Smirnov GB. Identification of Rickettsia prowazekii using the polymerase chain reaction. Eur J Epidemiol 1993; 9:645-9. [PMID: 8150068 DOI: 10.1007/bf00211440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Polymerase chain reaction (PCR) was used to identify Rickettsia prowazekii, the etiologic agent of epidemic typhus. For the PCR, Thermus thermophilus thermostable DNA polymerase was applied with buffer containing a relatively low Mg2+ concentration (1.5-2 mM with dNTP's at 250 microM each). A primer pair used to amplify a 448-base-pair (bp) fragment of R. prowazekii genome was synthesized on the basis of the DNA sequence of gene rpa14/16, coding for a precursor of the mature polypeptides of molecular weight (Mr) 14,000 and/or 16,000 (16kD) from R. prowazekii strain E. For determining the specificity of the primer pair, purified genomic DNAs of 16 rickettsial and 10 other bacterial strains were used.
Collapse
Affiliation(s)
- L P Aniskovich
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Moscow
| | | | | | | | | |
Collapse
|
28
|
Hu H, Queirò MR, Tilanus MG, de Weger RA, Schuurman HJ. Expression of T-cell receptor alpha and beta variable genes in normal and malignant human T cells. Br J Haematol 1993; 84:39-48. [PMID: 8338778 DOI: 10.1111/j.1365-2141.1993.tb03023.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A PCR method was developed to analyse each of 29 families of the T cell receptor V alpha gene and 20 families of the V beta gene at the mRNA level in heterogenous cell populations. All V alpha and V beta families were detectable in blood mononuclear cells from four of six healthy donors. In two donors only V alpha 22 was missing, and all other V alpha and V beta families were detected. V beta family expression was observed in T-leukaemic cell lines Jurkat, HSB, Molt-3 and Molt-4. In contrast, V alpha family expression was not detectable in any cell line except Jurkat cells. In T-cell malignancies (non-Hodgkin's lymphoma and mycosis fungoides), one or two V alpha and V beta families were detectable. Four of 10 cases investigated showed two V alpha transcripts and one V beta transcript. This fits with concepts in literature that allelic exclusion for the genes encoding alpha chains is not strictly required in the DNA rearrangement, or that this exclusion is a post-translational event. Using a limited series of antibodies to V beta gene family products, blood mononuclear cells from healthy donors were analysed by flow cytometry in a follow-up study. Two of four donors were rather stable in proportions of T cells expressing distinct V beta families, and two other donors showed variation in one or more families. When analysed on frozen tissue sections of normal lymph node and tonsil, there was no preferential location of lymphocytes expressing a distinct V beta gene family in different compartments (interfollicular area, follicle, or tonsillar epithelium).
Collapse
Affiliation(s)
- H Hu
- Department of Pathology, Molecular Genetics, and Internal Medicine, University Hospital, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Kilpatrick DC. Simplified preparation from anti-coagulated blood for HLA-DR genomic typing. TISSUE ANTIGENS 1993; 41:219-20. [PMID: 8362417 DOI: 10.1111/j.1399-0039.1993.tb02008.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
30
|
Zanoni RG, Nauta IM, Kuhnert P, Pauli U, Pohl B, Peterhans E. Genomic heterogeneity of small ruminant lentiviruses detected by PCR. Vet Microbiol 1992; 33:341-51. [PMID: 1336245 DOI: 10.1016/0378-1135(92)90061-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In order to detect a large spectrum of small ruminant lentiviruses, primers for PCR were chosen in conserved parts of the LTR and GAG genes of Icelandic Visna virus 1514 and of the POL gene of caprine arthritis-encephalitis virus. This set of primers was tested in six different caprine arthritis-encephalitis virus (CAEV)- and Maedi-Visna virus isolates of Dutch, American and Swiss origin. The LTR primers allowed the detection of the corresponding fragments of all isolates. The GAG primers allowed amplification of the corresponding fragments of all but the Swiss Maedi-Visna virus strain OLV. Using the POL primers, one Maedi-Visna- and two caprine arthritis-encephalitis virus strains were detected after one round of amplification. Sequencing of the GAG and POL amplification products and comparison to Icelandic Visna virus and CAEV strain CO revealed total heterogeneity of 38% for the GAG- and 28% for the POL fragment. The virus strains studied fall into two groups which are more closely related to one another than to Icelandic Visna virus.
Collapse
Affiliation(s)
- R G Zanoni
- Institute of Veterinary Virology, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Preesman AH, Hu HZ, Tilanus MG, de Geus B, Schuurman HJ, Reitsma R, van Wichen DF, van Vloten WA, de Weger RA. T-cell receptor V beta-family usage in primary cutaneous and primary nodal T-cell non-Hodgkin's lymphomas. J Invest Dermatol 1992; 99:587-93. [PMID: 1331246 DOI: 10.1111/1523-1747.ep12667988] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To evaluate whether the expression of T-cell receptor (TCR) V beta families in eight cases of malignant T-cell lymphomas took place in a preferential manner, we analyzed four cases of mycosis fungoides (MF), the most common form of primary cutaneous T-cell non-Hodgkin's lymphomas (NHL), and four cases of primary nodal T-cell NHL. The usage of V beta families in T-cell populations was investigated on mRNA that was transcribed to cDNA using a C beta primer and reverse transcriptase. Subsequently, the specific usage of the families was analyzed by polymerase chain reaction (PCR) using combinations of the selected C beta-oligonucleotide primer and one of the family-specific V beta primers. Peripheral blood lymphocytes from four healthy volunteers and 1 "reactive" lymph node served as a control and expressed all 20 V beta families tested for. In T-cell lines, with restricted V beta expression, and in three patients with advanced MF, only one or two V beta families were expressed at the mRNA level. In an early MF lesion this monoclonal expression was absent: several V beta families were expressed with a weak intensity. This may indicate either a polyclonal origin of MF, or that too few monoclonal neoplastic cells were present in the tissue specimen. In the four nodal T-cell NHL, only one family could be clearly distinguished, whereas some of the other V beta families showed only a weak expression. These latter families represent the reactive T-cell component in the nodal T-cell NHL. Both in nodal T-cell NHL and in MF there was no preferential expression of a particular V beta family. There was a good correlation between PCR data and the expression of V beta-family protein products observed by immunohistochemistry on tissue sections of the T-cell lymphomas. All T-cell lines, three cases of MF, and three cases of nodal T-cell NHL showed a rearrangement of the TCR beta chain on DNA level.
Collapse
MESH Headings
- Base Sequence
- Gene Expression
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Humans
- Immunohistochemistry
- Immunophenotyping
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/ultrastructure
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/ultrastructure
- Molecular Sequence Data
- Polymerase Chain Reaction
- RNA, Messenger/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A H Preesman
- Department of Pathology, University Hospital Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schlayer HJ, Peters T, Preisler S, Fehr J, Gerok W, Rasenack J. Amplification of unknown DNA sequences by sequence-independent nested polymerase chain reaction using a standardized adaptor without specific primers. J Virol Methods 1992; 38:333-41. [PMID: 1358907 DOI: 10.1016/0166-0934(92)90078-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A new procedure for sequence-independent PCR amplification of DNA fragments is described. DNA from pUC18 plasmid was used as a test DNA. It was digested with a frequently cutting restriction enzyme (Sau3A), generating sticky ends. The DNA was ligated to a synthetic, non-phosphorylated adaptor and subsequently amplified in a nested PCR using two oligonucleotides with sequences derived from the adaptor. As little as 1 fg of pUC18 DNA could be detected by this procedure. The product was analyzed on a gel and hybridized with a pUC18-specific probe. The sequence-independent nested PCR was repeated with different amounts of pUC18 DNA in the presence of an excess of non-specific DNA. In these experiments, pUC18 DNA fragments were amplified in a concentration-dependent manner. After hybridization with a digoxigenin dUTP-labelled pUC18 DNA probe, 1 fg of pUC18 DNA could still be detected. This method allows rapid screening of blood for low titred and mutated viruses in which primer binding sites are not conserved.
Collapse
Affiliation(s)
- H J Schlayer
- Medizinische Universitätsklinik der Albert-Ludwigs Universität, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- L G Birkenmeyer
- Experimental Biology Research, Abbott Laboratories, North Chicago, Illinois 60064
| | | |
Collapse
|
34
|
Zanoni RG, Nauta IM, Pauli U, Peterhans E. Expression in Escherichia coli and sequencing of the coding region for the capsid protein of Dutch maedi-visna virus strain ZZV 1050: application of recombinant protein in enzyme-linked immunosorbent assay for the detection of caprine and ovine lentiviruses. J Clin Microbiol 1991; 29:1290-4. [PMID: 1653261 PMCID: PMC270102 DOI: 10.1128/jcm.29.7.1290-1294.1991] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Maedi-visna in sheep and caprine arthritis-encephalitis in goats are caused by two closely related and widespread lentiviruses. The infections are characterized by life-long virus persistence and slow induction of antiviral antibodies. The diagnosis is based on the detection of antiviral antibodies. We have used the polymerase chain reaction (PCR) to amplify a part of the gag gene coding for the entire capsid protein and for parts of the matrix and nucleocapsid proteins. Sequencing of the PCR fragment of the Dutch maedi-visna virus strain ZZV 1050 revealed 85 and 92% homology to the DNA and deduced amino acid sequences, respectively, of the distantly related Icelandic visna virus strain 1514. The respective homologies with caprine arthritis-encephalitis virus strain CO were 76 and 80%. The PCR fragment was cloned into pGEX-2T and expressed as a glutathione S-transferase fusion protein. The recombinant protein could be detected on immunoblots by using a monoclonal antibody and polyclonal antisera and was further purified by glutathione-based affinity chromatography. Enzyme-linked immunosorbent assay with purified recombinant fusion protein is shown to be a sensitive and specific diagnostic tool for the detection of lentiviral infection in goats and sheep.
Collapse
Affiliation(s)
- R G Zanoni
- Institute of Veterinary Virology, Bern, Switzerland
| | | | | | | |
Collapse
|
35
|
Zambruno G, Mori L, Marconi A, Mongiardo N, De Rienzo B, Bertazzoni U, Giannetti A. Detection of HIV-1 in epidermal Langerhans cells of HIV-infected patients using the polymerase chain reaction. J Invest Dermatol 1991; 96:979-82. [PMID: 2045686 DOI: 10.1111/1523-1747.ep12476469] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Langerhans cells (LC) are bone marrow-derived, HLA-DR+, CD1a+, dendritic antigen-presenting cells found in stratified squamous epithelia. Within resident epidermal cells (EC), LC are the only cells expressing the CD4 antigen and are, therefore, a possible target for human immunodeficiency virus (HIV) infection. To date, conflicting results have been reported on the in vivo infection of LC by HIV. The aim of the present study was to investigate the presence of HIV-1 proviral DNA in epidermal LC of HIV-1-infected patients. EC suspensions were prepared from clinically normal skin of nine seropositive patients. Purified LC and LC-depleted EC were obtained by immunomagnetic separation and analyzed for the presence of HIV-1 proviral DNA by the polymerase chain reaction using primer pairs from different conserved regions (env and gag) of the HIV-1 genome. HIV-1 proviral DNA was detected in LC from seven of nine patients. LC-depleted EC fractions from the same nine patients were all negative, with the exception of one case. Altogether these results demonstrate that epidermal LC are infected by HIV-1 and constitute the only resident cell type in the epidermis harboring the virus. Further studies are, however, needed to demonstrate HIV replication in LC and to elucidate the functional role of LC in this infection.
Collapse
Affiliation(s)
- G Zambruno
- Department of Dermatology, University of Modena, Italy
| | | | | | | | | | | | | |
Collapse
|