1
|
Wenzek F, Biallas A, Müller S. Nicotinamide Riboside: What It Takes to Incorporate It into RNA. Molecules 2024; 29:3788. [PMID: 39202867 PMCID: PMC11357040 DOI: 10.3390/molecules29163788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Nicotinamide is an important functional compound and, in the form of nicotinamide adenine dinucleotide (NAD), is used as a co-factor by protein-based enzymes to catalyze redox reactions. In the context of the RNA world hypothesis, it is therefore reasonable to assume that ancestral ribozymes could have used co-factors such as NAD or its simpler analog nicotinamide riboside (NAR) to catalyze redox reactions. The only described example of such an engineered ribozyme uses a nicotinamide moiety bound to the ribozyme through non-covalent interactions. Covalent attachment of NAR to RNA could be advantageous, but the demonstration of such scenarios to date has suffered from the chemical instability of both NAR and its reduced form, NARH, making their use in oligonucleotide synthesis less straightforward. Here, we review the literature describing the chemical properties of the oxidized and reduced species of NAR, their synthesis, and previous attempts to incorporate either species into RNA. We discuss how to overcome the stability problem and succeed in generating RNA structures incorporating NAR.
Collapse
Affiliation(s)
| | | | - Sabine Müller
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany; (F.W.); (A.B.)
| |
Collapse
|
2
|
Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. ADP-ribosylation from molecular mechanisms to therapeutic implications. Cell 2023; 186:4475-4495. [PMID: 37832523 PMCID: PMC10789625 DOI: 10.1016/j.cell.2023.08.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023]
Abstract
ADP-ribosylation is a ubiquitous modification of biomolecules, including proteins and nucleic acids, that regulates various cellular functions in all kingdoms of life. The recent emergence of new technologies to study ADP-ribosylation has reshaped our understanding of the molecular mechanisms that govern the establishment, removal, and recognition of this modification, as well as its impact on cellular and organismal function. These advances have also revealed the intricate involvement of ADP-ribosylation in human physiology and pathology and the enormous potential that their manipulation holds for therapy. In this review, we present the state-of-the-art findings covering the work in structural biology, biochemistry, cell biology, and clinical aspects of ADP-ribosylation.
Collapse
Affiliation(s)
| | | | - Johannes G M Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; MRC Centre of Medical Mycology, University of Exeter, Exeter, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Henriques Pereira DP, Leethaus J, Beyazay T, do Nascimento Vieira A, Kleinermanns K, Tüysüz H, Martin WF, Preiner M. Role of geochemical protoenzymes (geozymes) in primordial metabolism: specific abiotic hydride transfer by metals to the biological redox cofactor NAD . FEBS J 2022; 289:3148-3162. [PMID: 34923745 PMCID: PMC9306933 DOI: 10.1111/febs.16329] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Hydrogen gas, H2 , is generated in serpentinizing hydrothermal systems, where it has supplied electrons and energy for microbial communities since there was liquid water on Earth. In modern metabolism, H2 is converted by hydrogenases into organically bound hydrides (H- ), for example, the cofactor NADH. It transfers hydrides among molecules, serving as an activated and biologically harnessed form of H2 . In serpentinizing systems, minerals can also bind hydrides and could, in principle, have acted as inorganic hydride donors-possibly as a geochemical protoenzyme, a 'geozyme'- at the origin of metabolism. To test this idea, we investigated the ability of H2 to reduce NAD+ in the presence of iron (Fe), cobalt (Co) and nickel (Ni), metals that occur in serpentinizing systems. In the presence of H2 , all three metals specifically reduce NAD+ to the biologically relevant form, 1,4-NADH, with up to 100% conversion rates within a few hours under alkaline aqueous conditions at 40 °C. Using Henry's law, the partial pressure of H2 in our reactions corresponds to 3.6 mm, a concentration observed in many modern serpentinizing systems. While the reduction of NAD+ by Ni is strictly H2 -dependent, experiments in heavy water (2 H2 O) indicate that native Fe can reduce NAD+ both with and without H2 . The results establish a mechanistic connection between abiotic and biotic hydride donors, indicating that geochemically catalysed, H2 -dependent NAD+ reduction could have preceded the hydrogenase-dependent reaction in evolution.
Collapse
Affiliation(s)
| | - Jana Leethaus
- Institute for Molecular EvolutionHeinrich Heine UniversityDüsseldorfGermany
| | - Tugce Beyazay
- Max‐Planck‐Institut für KohlenforschungMülheim an der RuhrGermany
| | | | - Karl Kleinermanns
- Institute for Physical ChemistryHeinrich Heine UniversityDüsseldorfGermany
| | - Harun Tüysüz
- Max‐Planck‐Institut für KohlenforschungMülheim an der RuhrGermany
| | - William F. Martin
- Institute for Molecular EvolutionHeinrich Heine UniversityDüsseldorfGermany
| | - Martina Preiner
- Department of Ocean SystemsRoyal Netherlands Institute for Sea ResearchDen BurgThe Netherlands
- Department of Earth SciencesUtrecht UniversityThe Netherlands
| |
Collapse
|
4
|
Zachos I, Döring M, Tafertshofer G, Simon RC, Sieber V. carba‐Nicotinamid‐Adenin‐Dinukleotid‐Phosphat: Robuster Cofaktor für die Redox‐Biokatalyse. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ioannis Zachos
- Lehrstuhl für Chemie der biogenen Rohstoffe Campus Straubing für Biotechnologie und Nachhaltigkeit Technische Universität München Schulgasse 16 94315 Straubing Deutschland
| | - Manuel Döring
- Lehrstuhl für Chemie der biogenen Rohstoffe Campus Straubing für Biotechnologie und Nachhaltigkeit Technische Universität München Schulgasse 16 94315 Straubing Deutschland
- Synbiofoundry@TUM Technische Universität München Schulgasse 22 94315 Straubing Deutschland
| | - Georg Tafertshofer
- Roche Diagnostics GmbH DOZCBE.-6164 Nonnenwald 2 82377 Penzberg Deutschland
| | - Robert C. Simon
- Roche Diagnostics GmbH DOZCBE.-6164 Nonnenwald 2 82377 Penzberg Deutschland
| | - Volker Sieber
- Lehrstuhl für Chemie der biogenen Rohstoffe Campus Straubing für Biotechnologie und Nachhaltigkeit Technische Universität München Schulgasse 16 94315 Straubing Deutschland
- Synbiofoundry@TUM Technische Universität München Schulgasse 22 94315 Straubing Deutschland
- Katalytisches Forschungszentrum Technische Universität München Ernst-Otto-Fischer-Straße 1 85748 Garching Deutschland
- School of Chemistry and Molecular Biosciences The University of Queensland 68 Copper Road St. Lucia 4072 Australien
| |
Collapse
|
5
|
Zachos I, Döring M, Tafertshofer G, Simon RC, Sieber V. carba Nicotinamide Adenine Dinucleotide Phosphate: Robust Cofactor for Redox Biocatalysis. Angew Chem Int Ed Engl 2021; 60:14701-14706. [PMID: 33719153 PMCID: PMC8252718 DOI: 10.1002/anie.202017027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/22/2021] [Indexed: 12/21/2022]
Abstract
Here we report a new robust nicotinamide dinucleotide phosphate cofactor analog (carba-NADP+ ) and its acceptance by many enzymes in the class of oxidoreductases. Replacing one ribose oxygen with a methylene group of the natural NADP+ was found to enhance stability dramatically. Decomposition experiments at moderate and high temperatures with the cofactors showed a drastic increase in half-life time at elevated temperatures since it significantly disfavors hydrolysis of the pyridinium-N-glycoside bond. Overall, more than 27 different oxidoreductases were successfully tested, and a thorough analytical characterization and comparison is given. The cofactor carba-NADP+ opens up the field of redox-biocatalysis under harsh conditions.
Collapse
Affiliation(s)
- Ioannis Zachos
- Chair of Chemistry of Biogenic ResourcesCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichSchulgasse 1694315StraubingGermany
| | - Manuel Döring
- Chair of Chemistry of Biogenic ResourcesCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichSchulgasse 1694315StraubingGermany
- Synbiofoundry@TUMTechnical University of MunichSchulgasse 2294315StraubingGermany
| | | | - Robert C. Simon
- Roche Diagnostics GmbHDOZCBE.-6164Nonnenwald 282377PenzbergGermany
| | - Volker Sieber
- Chair of Chemistry of Biogenic ResourcesCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichSchulgasse 1694315StraubingGermany
- Synbiofoundry@TUMTechnical University of MunichSchulgasse 2294315StraubingGermany
- Catalytic Research CenterTechnical University of MunichErnst-Otto-Fischer-Strasse 185748GarchingGermany
- School of Chemistry and Molecular BiosciencesThe University of Queensland68 Copper RoadSt. Lucia4072Australia
| |
Collapse
|
6
|
The N-terminus of Paenibacillus larvae C3larvinA modulates catalytic efficiency. Biosci Rep 2021; 41:227200. [PMID: 33289829 PMCID: PMC7789906 DOI: 10.1042/bsr20203727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/21/2023] Open
Abstract
C3larvinA was recently described as a mono-ADP-ribosyltransferase (mART) toxin from the enterobacterial repetitive intergenic consensus (ERIC) III genotype of the agricultural pathogen, Paenibacillus larvae. It was shown to be the full-length, functional version of the previously described C3larvintrunc toxin, due to a 33-residue extension of the N-terminus of the protein. In the present study, a series of deletions and substitutions were made to the N-terminus of C3larvinA to assess the contribution of the α1-helix to toxin structure and function. Catalytic characterization of these variants identified Asp23 and Ala31 residues as supportive to enzymatic function. A third residue, Lys36, was also found to contribute to the catalytic activity of the enzyme. Analysis of the C3larvinA homology model revealed that these three residues were participating in a series of interactions to properly orient both the Q-X-E and S-T-S motifs. Ala31 and Lys36 were found to associate with a structural network of residues previously identified in silico, whereas Asp23 forms novel interactions not previously described. At last, the membrane translocation activity into host target cells of each variant was assessed, highlighting a possible relationship between protein dipole and target cell entry.
Collapse
|
7
|
Röllig R, Paul CE, Claeys-Bruno M, Duquesne K, Kara S, Alphand V. Divorce in the two-component BVMO family: the single oxygenase for enantioselective chemo-enzymatic Baeyer-Villiger oxidations. Org Biomol Chem 2021; 19:3441-3450. [PMID: 33899864 DOI: 10.1039/d1ob00015b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two-component flavoprotein monooxygenases consist of a reductase and an oxygenase enzyme. The proof of functionality of the latter without its counterpart as well as the mechanism of flavin transfer remains unanswered beyond doubt. To tackle this question, we utilized a reductase-free reaction system applying purified 2,5-diketocamphane-monooxygenase I (2,5-DKCMO), a FMN-dependent type II Baeyer-Villiger monooxygenase, and synthetic nicotinamide analogues (NCBs) as dihydropyridine derivatives for FMN reduction. This system demonstrated the stand-alone quality of the oxygenase, as well as the mechanism of FMNH2 transport by free diffusion. The efficiency of this reductase-free system strongly relies on the balance of FMN reduction and enzymatic (re)oxidation, since reduced FMN in solution causes undesired side reactions, such as hydrogen peroxide formation. Design of experiments allowed us to (i) investigate the effect of various reaction parameters, underlining the importance to balance the FMN/FMNH2 cycle, (ii) optimize the reaction system for the enzymatic Baeyer-Villiger oxidation of rac-bicyclo[3.2.0]hept-2-en-6-one, rac-camphor, and rac-norcamphor. Finally, this study not only demonstrates the reductase-independence of 2,5-DKCMO, but also revisits the terminology of two-component flavoprotein monooxygenases for this specific case.
Collapse
Affiliation(s)
- Robert Röllig
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France. and Aarhus University, Denmark
| | | | | | - Katia Duquesne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France.
| | | | - Véronique Alphand
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France.
| |
Collapse
|
8
|
Zarei A, Khazdooz L, Enayati M, Madarshahian S, Wooster TJ, Ufheil G, Abbaspourrad A. Dihydronicotinamide riboside: synthesis from nicotinamide riboside chloride, purification and stability studies. RSC Adv 2021; 11:21036-21047. [PMID: 35479370 PMCID: PMC9034155 DOI: 10.1039/d1ra02062e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
In the present work, we describe an efficient method for scalable synthesis and purification of 1,4-dihydronicotinamide riboside (NRH) from commercially available nicotinamide riboside chloride (NRCl) and in the presence of sodium dithionate as a reducing agent. NRH is industrially relevant as the most effective, synthetic NAD+ precursor. We demonstrated that solid phase synthesis cannot be used for the reduction of NRCl to NRH in high yield, whereas a reduction reaction in water at room temperature under anaerobic conditions is shown to be very effective, reaching a 55% isolation yield. For the first time, by using common column chromatography, we were able to highly purify this sensitive bio-compound with good yield. A series of identifications and analyses including HPLC, NMR, LC-MS, FTIR, and UV-vis spectroscopy were performed on the purified sample, confirming the structure of NRH as well as its purity to be 96%. Thermal analysis of NRH showed higher thermal stability compared to NRCl, and with two major weight losses, one at 218 °C and another at 805 °C. We also investigated the long term stability effects of temperature, pH, light, and oxygen (as air) on the NRH in aqueous solutions. Our results show that NRH can be oxidized in the presence of oxygen, and it hydrolyzed quickly in acidic conditions. It was also found that the degradation rate is lower under a N2 atmosphere, at lower temperatures, and under basic pH conditions. A convenient and scalable method for synthesis of dihydronicotinamide riboside (NRH) from the commercially available nicotinamide riboside chloride (NRCl) is elaborated as well as a fast purification method that led to high purity NRH.![]()
Collapse
Affiliation(s)
- Amin Zarei
- Department of Food Science
- College of Agriculture and Life Sciences
- Cornell University
- Ithaca
- USA
| | - Leila Khazdooz
- Department of Food Science
- College of Agriculture and Life Sciences
- Cornell University
- Ithaca
- USA
| | - Mojtaba Enayati
- Department of Food Science
- College of Agriculture and Life Sciences
- Cornell University
- Ithaca
- USA
| | - Sara Madarshahian
- Department of Food Science
- College of Agriculture and Life Sciences
- Cornell University
- Ithaca
- USA
| | | | - Gerhard Ufheil
- Nestle Product Technology Center Bridgewater
- Nestle Nutrition R&D Inc
- Bridgewater
- USA
| | - Alireza Abbaspourrad
- Department of Food Science
- College of Agriculture and Life Sciences
- Cornell University
- Ithaca
- USA
| |
Collapse
|
9
|
You W, Hugar KM, Selhorst RC, Treichel M, Peltier CR, Noonan KJT, Coates GW. Degradation of Organic Cations under Alkaline Conditions. J Org Chem 2020; 86:254-263. [PMID: 33236908 DOI: 10.1021/acs.joc.0c02051] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the degradation mechanisms of organic cations under basic conditions is extremely important for the development of durable alkaline energy conversion devices. Cations are key functional groups in alkaline anion exchange membranes (AAEMs), and AAEMs are critical components to conduct hydroxide anions in alkaline fuel cells. Previously, we have established a standard protocol to evaluate cation alkaline stability within KOH/CD3OH solution at 80 °C. Herein, we are using the protocol to compare 26 model compounds, including benzylammonium, tetraalkylammonium, spirocyclicammonium, imidazolium, benzimidazolium, triazolium, pyridinium, guanidinium, and phosphonium cations. The goal is not only to evaluate their degradation rate, but also to identify their degradation pathways and lead to the advancement of cations with improved alkaline stabilities.
Collapse
Affiliation(s)
- Wei You
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States.,Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kristina M Hugar
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Ryan C Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Megan Treichel
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
10
|
do Nascimento Vieira A, Kleinermanns K, Martin WF, Preiner M. The ambivalent role of water at the origins of life. FEBS Lett 2020; 594:2717-2733. [PMID: 32416624 DOI: 10.1002/1873-3468.13815] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Life as we know it would not exist without water. However, water molecules not only serve as a solvent and reactant but can also promote hydrolysis, which counteracts the formation of essential organic molecules. This conundrum constitutes one of the central issues in origin of life. Hydrolysis is an important part of energy metabolism for all living organisms but only because, inside cells, it is a controlled reaction. How could hydrolysis have been regulated under prebiotic settings? Lower water activities possibly provide an answer: geochemical sites with less free and more bound water can supply the necessary conditions for protometabolic reactions. Such conditions occur in serpentinising systems, hydrothermal sites that synthesise hydrogen gas via rock-water interactions. Here, we summarise the parallels between biotic and abiotic means of controlling hydrolysis in order to narrow the gap between biochemical and geochemical reactions and briefly outline how hydrolysis could even have played a constructive role at the origin of molecular self-organisation.
Collapse
Affiliation(s)
| | | | - William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, Germany
| | - Martina Preiner
- Institute for Molecular Evolution, University of Düsseldorf, Germany
| |
Collapse
|
11
|
Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD + synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 2020; 132:110841. [PMID: 31954874 DOI: 10.1016/j.exger.2020.110841] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive decline in the normal physiological functions of an organism, ultimately leading to mortality. Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor that plays a critical role in mitochondrial energy production as well as many enzymatic redox reactions. Age-associated decline in NAD+ is implicated as a driving factor in several categories of age-associated disease, including metabolic and neurodegenerative disease, as well as deficiency in the mechanisms of cellular defense against oxidative stress. The kynurenine metabolic pathway is the sole de novo NAD+ biosynthetic pathway, generating NAD+ from ingested tryptophan. Altered kynurenine pathway activity is associated with both aging and a variety of age-associated diseases. Kynurenine pathway interventions can extend lifespan in both fruit flies and nematodes, and altered NAD+ metabolism represents one potential mediating mechanism. Recent studies demonstrate that supplementation with NAD+ or NAD+-precursors increase longevity and promote healthy aging in fruit flies, nematodes, and mice. NAD+ levels and the intrinsic relationship to mitochondrial function have been widely studied in the context of aging. Mitochondrial function and dynamics have both been implicated in longevity determination in a range of organisms from yeast to humans, at least in part due to their intimate link to regulating an organism's cellular energy economy and capacity to resist oxidative stress. Recent findings support the idea that complex communication between the mitochondria and the nucleus orchestrates a series of events and stress responses involving mitophagy, mitochondrial number, mitochondrial unfolded protein response (UPRmt), and mitochondria fission and fusion events. In this review, we discuss how mitochondrial morphological changes and dynamics operate during aging, and how altered metabolism of tryptophan to NAD+ through the kynurenine pathway interacts with these processes.
Collapse
Affiliation(s)
- Raul Castro-Portuguez
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA
| | - George L Sutphin
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, 85721, AZ, USA.
| |
Collapse
|
12
|
Tak U, Vlach J, Garza-Garcia A, William D, Danilchanka O, de Carvalho LPS, Saad JS, Niederweis M. The tuberculosis necrotizing toxin is an NAD + and NADP + glycohydrolase with distinct enzymatic properties. J Biol Chem 2019; 294:3024-3036. [PMID: 30593509 PMCID: PMC6398120 DOI: 10.1074/jbc.ra118.005832] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
Upon host infection, Mycobacterium tuberculosis secretes the tuberculosis necrotizing toxin (TNT) into the cytosol of infected macrophages, leading to host cell death by necroptosis. TNT hydrolyzes NAD+ in the absence of any exogenous cofactor, thus classifying it as a β-NAD+ glycohydrolase. However, TNT lacks sequence similarity with other NAD+ hydrolyzing enzymes and lacks the essential motifs involved in NAD+ binding and hydrolysis by these enzymes. In this study, we used NMR to examine the enzymatic activity of TNT and found that TNT hydrolyzes NADP+ as fast as NAD+ but does not cleave the corresponding reduced dinucleotides. This activity of TNT was not inhibited by ADP-ribose or nicotinamide, indicating low affinity of TNT for these reaction products. A selection assay for nontoxic TNT variants in Escherichia coli identified four of six residues in the predicted NAD+-binding pocket and four glycine residues that form a cradle directly below the NAD+-binding site, a conserved feature in the TNT protein family. Site-directed mutagenesis of residues near the predicted NAD+-binding site revealed that Phe727, Arg757, and Arg780 are essential for NAD+ hydrolysis by TNT. These results identify the NAD+-binding site of TNT. Our findings also show that TNT is an NAD+ glycohydrolase with properties distinct from those of other bacterial glycohydrolases. Because many of these residues are conserved within the TNT family, our findings provide insights into understanding the function of the >300 TNT homologs.
Collapse
Affiliation(s)
- Uday Tak
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | - Jiri Vlach
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | | | - Doreen William
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | - Olga Danilchanka
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | | | - Jamil S Saad
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | - Michael Niederweis
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| |
Collapse
|
13
|
Anand G, Waiger D, Vital N, Maman J, Ma LJ, Covo S. How Does Fusarium oxysporum Sense and Respond to Nicotinaldehyde, an Inhibitor of the NAD + Salvage Biosynthesis Pathway? Front Microbiol 2019; 10:329. [PMID: 30873138 PMCID: PMC6400851 DOI: 10.3389/fmicb.2019.00329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
Plant pathogenic fungi are a major threat to food security and impose a severe economic burden, thus there is a continuous need to develop new strategies to manage them. NAD+ is a co-factor in numerous enzymatic activities and determines the metabolic fate of the cell. Therefore, maintenance of NAD+ concentration is important for cellular viability. Consequently, the NAD+ biosynthetic pathway and redox homeostasis was suggested as a target for antifungal development. We aimed to study how Fusarium oxysporum senses and responds to nicotinaldehyde (NA), an inhibitor of Pnc1, a key enzyme in the salvage pathway of NAD+ biosynthesis. We were able to show that NA was inhibitory in high concentrations to several fungal plant pathogens, with much milder effects on tomato growth. Under low nutrient conditions NA reduced the total amounts of NAD+ in the fungal cell, a trend that was also observed in rich media, although without statistical significance. In low and high nutrient availability NA dramatically reduced the NAD+/NADH ratio. After exposure to NA, NADH levels were increased and NAD+ levels and the biomass were greatly reduced. Cells responded to NA by up-regulation of oxidoreductases, with hardly any up-regulation of the classic response to oxidative stress. Direct measurement of oxidative stress response showed that unlike formaldehyde and hydrogen peroxide, NA caused reductive rather than oxidative stress. Surprisingly, alcohol dehydrogenases were significantly up-regulated more than any other dehydrogenases, including aldehyde dehydrogenases. We propose that conidia of F. oxysporum efficiently detoxified the aldehyde group of NA by reducing NAD+ to NADH; the high concentrations of the latter provoked the expression of alcohol dehydrogenases that in yeast can act to reduce NADH and increase NAD+ amounts, respectively. Overall, the results suggest that targeting NAD+ biosynthesis pathway and redox homeostasis can be a potential approach to manage fungal plant pathogens. Many of the natural antifungal compounds produced by bio-control agents or even the natural biome are aldehydes, and thus the results presented here predict the possible response of Fusarium to wide sources of toxicity in the environment.
Collapse
Affiliation(s)
- Gautam Anand
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Daniel Waiger
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nuria Vital
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jacob Maman
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Li Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
14
|
Abstract
Redox reactions catalyzed by highly selective nicotinamide-dependent oxidoreductases are rising to prominence in industry. The cost of nicotinamide adenine dinucleotide coenzymes has led to the use of well-established elaborate regeneration systems and more recently alternative synthetic biomimetic cofactors. These biomimetics are highly attractive to use with ketoreductases for asymmetric catalysis. In this work, we show that the commonly studied cofactor analogue 1-benzyl-1,4-dihydronicotinamide (BNAH) can be used with alcohol dehydrogenases (ADHs) under certain conditions. First, we carried out the rhodium-catalyzed recycling of BNAH with horse liver ADH (HLADH), observing enantioenriched product only with unpurified enzyme. Then, a series of cell-free extracts and purified ketoreductases were screened with BNAH. The use of unpurified enzyme led to product formation, whereas upon dialysis or further purification no product was observed. Several other biomimetics were screened with various ADHs and showed no or very low activity, but also no inhibition. BNAH as a hydride source was shown to directly reduce nicotinamide adenine dinucleotide (NAD) to NADH. A formate dehydrogenase could also mediate the reduction of NAD from BNAH. BNAH was established to show no or very low activity with ADHs and could be used as a hydride donor to recycle NADH.
Collapse
|
15
|
Makarov MV, Migaud ME. Syntheses and chemical properties of β-nicotinamide riboside and its analogues and derivatives. Beilstein J Org Chem 2019; 15:401-430. [PMID: 30873226 PMCID: PMC6404419 DOI: 10.3762/bjoc.15.36] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
The β-anomeric form of nicotinamide riboside (NR+) is a precursor for nicotinamide adenine dinucleotide (NAD+), a redox cofactor playing a critical role in cell metabolism. Recently, it has been demonstrated that its chloride salt (NR+Cl-) has beneficial effects, and now NR+Cl- is available as a dietary supplement. Syntheses and studies of analogues and derivatives of NR+ are of high importance to unravel the role of NR+ in biochemical processes in living cells and to elaborate the next generation of NR+ derivatives and conjugates with the view of developing novel drug and food supplement candidates. This review provides an overview of the synthetic approaches, the chemical properties, and the structural and functional modifications which have been undertaken on the nicotinoyl riboside scaffold.
Collapse
Affiliation(s)
- Mikhail V Makarov
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave., Mobile, AL 36604, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave., Mobile, AL 36604, USA
| |
Collapse
|
16
|
Influence of 6-aminonicotinamide (6AN) on Leishmania promastigotes evaluated by metabolomics: Beyond the pentose phosphate pathway. Chem Biol Interact 2018; 294:167-177. [PMID: 30170107 DOI: 10.1016/j.cbi.2018.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Accepted: 08/17/2018] [Indexed: 11/23/2022]
Abstract
6-Aminonicotinamide (6AN) is an antimetabolite used to inhibit the NADPH-producing pentose phosphate pathway (PPP) in many cellular systems, making them more susceptible to oxidative stress. It is converted by a NAD(P)+ glycohydrolase to 6-aminoNAD and 6-aminoNADP, causing the accumulation of PPP intermediates, due to their inability to participate in redox reactions. Some parasites like Plasmodium falciparum and Coccidia are highly sensitive but not all cell types showed a strong responsiveness to 6AN, probably due to the different targeted pathway. For instance, in bacteria the main target is the Preiss-Handler salvage pathway for NAD+ biosynthesis. We were interested in testing 6AN on the kinetoplastid protozoan Leishmania as another model to clarify the mechanisms of action of 6AN, by using metabolomics. Leishmania promastigotes, the life-cycle stage residing in the sandfly, demonstrated a three order of magnitude higher EC50 (mM) compared to P. falciparum and mammalian cells (μM), although pre-treatment with 100 μM 6AN prior to sub-lethal oxidative challenge induced a supra-additive cell kill in L. infantum. By metabolomics, we did not detect 6ANAD/P suggesting that NAD+ glycohydrolases in Leishmania may not be highly efficient in catalysing transglycosidation as happens in other microorganisms. Contrariwise to the reported effect on 6AN-treated cancer cells, we did not detect 6-phosphogluconate (6 PG) accumulation, indicating that 6ANADP cannot bind with high affinity to the PPP enzyme 6 PG dehydrogenase. By contrast, 6AN caused a profound phosphoribosylpyrophosphate (PRPP) decrease and nucleobases accumulation confirming that PPP is somehow affected. More importantly, we found a decrease in nicotinate production, evidencing the interference with the Preiss-Handler salvage pathway for NAD+ biosynthesis, most probably by inhibiting the reaction catalysed by nicotinamidase. Therefore, our combined data from Leishmania strains, though confirming the interference with PPP, also showed that 6AN impairs the Preiss-Handler pathway, underlining the importance to develop compounds targeting this last route.
Collapse
|
17
|
Bucci A, Dunn S, Bellachioma G, Menendez Rodriguez G, Zuccaccia C, Nervi C, Macchioni A. A Single Organoiridium Complex Generating Highly Active Catalysts for both Water Oxidation and NAD+/NADH Transformations. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02387] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alberto Bucci
- Department
of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto, 8, I-06123 Perugia, Italy
| | - Savannah Dunn
- Department
of Chemistry, Longwood University, 201 High Street, Farmville, Virginia 23901, United States
| | - Gianfranco Bellachioma
- Department
of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto, 8, I-06123 Perugia, Italy
| | - Gabriel Menendez Rodriguez
- Department
of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto, 8, I-06123 Perugia, Italy
| | - Cristiano Zuccaccia
- Department
of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto, 8, I-06123 Perugia, Italy
| | - Carlo Nervi
- Department
of Chemistry, University of Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Alceo Macchioni
- Department
of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto, 8, I-06123 Perugia, Italy
- Department
of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg
2, CH-8093 Zürich, Switzerland
| |
Collapse
|
18
|
Fan PW, Zhang D, Halladay JS, Driscoll JP, Khojasteh SC. Going Beyond Common Drug Metabolizing Enzymes: Case Studies of Biotransformation Involving Aldehyde Oxidase, γ-Glutamyl Transpeptidase, Cathepsin B, Flavin-Containing Monooxygenase, and ADP-Ribosyltransferase. Drug Metab Dispos 2016; 44:1253-61. [PMID: 27117704 DOI: 10.1124/dmd.116.070169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/25/2016] [Indexed: 11/22/2022] Open
Abstract
The significant roles that cytochrome P450 (P450) and UDP-glucuronosyl transferase (UGT) enzymes play in drug discovery cannot be ignored, and these enzyme systems are commonly examined during drug optimization using liver microsomes or hepatocytes. At the same time, other drug-metabolizing enzymes have a role in the metabolism of drugs and can lead to challenges in drug optimization that could be mitigated if the contributions of these enzymes were better understood. We present examples (mostly from Genentech) of five different non-P450 and non-UGT enzymes that contribute to the metabolic clearance or bioactivation of drugs and drug candidates. Aldehyde oxidase mediates a unique amide hydrolysis of GDC-0834 (N-[3-[6-[4-[(2R)-1,4-dimethyl-3-oxopiperazin-2-yl]anilino]-4-methyl-5-oxopyrazin-2-yl]-2-methylphenyl]-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxamide), leading to high clearance of the drug. Likewise, the rodent-specific ribose conjugation by ADP-ribosyltransferase leads to high clearance of an interleukin-2-inducible T-cell kinase inhibitor. Metabolic reactions by flavin-containing monooxygenases (FMO) are easily mistaken for P450-mediated metabolism such as oxidative defluorination of 4-fluoro-N-methylaniline by FMO. Gamma-glutamyl transpeptidase is involved in the initial hydrolysis of glutathione metabolites, leading to formation of proximate toxins and nephrotoxicity, as is observed with cisplatin in the clinic, or renal toxicity, as is observed with efavirenz in rodents. Finally, cathepsin B is a lysosomal enzyme that is highly expressed in human tumors and has been targeted to release potent cytotoxins, as in the case of brentuximab vedotin. These examples of non-P450- and non-UGT-mediated metabolism show that a more complete understanding of drug metabolizing enzymes allows for better insight into the fate of drugs and improved design strategies of molecules in drug discovery.
Collapse
Affiliation(s)
- Peter W Fan
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco (P.W.F., D.Z., S.C.K.); Anacor Pharmaceuticals, Inc., Palo Alto (J.S.H.); MyoKardia, Inc., South San Francisco (J.P.D.), California
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco (P.W.F., D.Z., S.C.K.); Anacor Pharmaceuticals, Inc., Palo Alto (J.S.H.); MyoKardia, Inc., South San Francisco (J.P.D.), California
| | - Jason S Halladay
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco (P.W.F., D.Z., S.C.K.); Anacor Pharmaceuticals, Inc., Palo Alto (J.S.H.); MyoKardia, Inc., South San Francisco (J.P.D.), California
| | - James P Driscoll
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco (P.W.F., D.Z., S.C.K.); Anacor Pharmaceuticals, Inc., Palo Alto (J.S.H.); MyoKardia, Inc., South San Francisco (J.P.D.), California
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco (P.W.F., D.Z., S.C.K.); Anacor Pharmaceuticals, Inc., Palo Alto (J.S.H.); MyoKardia, Inc., South San Francisco (J.P.D.), California
| |
Collapse
|
19
|
Measuring NAD(+) levels in mouse blood and tissue samples via a surrogate matrix approach using LC-MS/MS. Bioanalysis 2015; 6:1445-57. [PMID: 25046046 DOI: 10.4155/bio.14.8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND NAD(+) is an endogenous analyte and is unstable during blood sample collection, both of which present obstacles for quantitation. Moreover, current procedures for NAD(+) sample collection require onsite treatment with strong acid to stabilize the NAD(+) in mouse blood cells. RESULTS NAD(+) can be stabilized by addition of acid before the frozen mouse blood sample was thawed. A simple sample collection procedure was proposed to facilitate the analysis of NAD(+) in mouse blood and tissue samples. A LC-MS/MS method was developed for quantifying NAD(+) in mouse blood and various tissue samples. The described method was used to measure endogenous NAD(+) levels in mouse blood following oral administration of the nicotinamide phosphoribosyltransferase inhibitor GNE-617. CONCLUSION This study presents a suitable assay and sample collection procedure for high throughput screening of NAD(+) samples in preclinical discovery studies.
Collapse
|
20
|
Sung VMH, Tsai CL. ADP-Ribosylargininyl reaction of cholix toxin is mediated through diffusible intermediates. BMC BIOCHEMISTRY 2014; 15:26. [PMID: 25494717 PMCID: PMC4265445 DOI: 10.1186/s12858-014-0026-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/28/2014] [Indexed: 11/29/2022]
Abstract
Background Cholix toxin is an ADP-ribosyltransferase found in non-O1/non-O139 strains of Vibrio cholera. The catalytic fragment of cholix toxin was characterized as a diphthamide dependent ADP-ribosyltransferase. Results Our studies on the enzymatic activity of cholix toxin catalytic fragment show that the transfer of ADP-ribose to toxin takes place by a predominantly intramolecular mechanism and results in the preferential alkylation of arginine residues proximal to the NAD+ binding pocket. Multiple arginine residues, located near the catalytic site and at distal sites, can be the ADP-ribose acceptor in the auto-reaction. Kinetic studies of a model enzyme, M8, showed that a diffusible intermediate preferentially reacted with arginine residues in proximity to the NAD+ binding pocket. ADP-ribosylarginine activity of cholix toxin catalytic fragment could also modify exogenous substrates. Auto-ADP-ribosylation of cholix toxin appears to have negatively regulatory effect on ADP-ribosylation of exogenous substrate. However, at the presence of both endogenous and exogenous substrates, ADP-ribosylation of exogenous substrates occurred more efficiently than that of endogenous substrates. Conclusions We discovered an ADP-ribosylargininyl activity of cholix toxin catalytic fragment from our studies in auto-ADP-ribosylation, which is mediated through diffusible intermediates. The lifetime of the hypothetical intermediate exceeds recorded and predicted lifetimes for the cognate oxocarbenium ion. Therefore, a diffusible strained form of NAD+ intermediate was proposed to react with arginine residues in a proximity dependent manner. Electronic supplementary material The online version of this article (doi:10.1186/s12858-014-0026-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vicky M-H Sung
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston 02114, MA, USA.
| | | |
Collapse
|
21
|
Probing the catalytic mechanism of bovine CD38/NAD+ glycohydrolase by site directed mutagenesis of key active site residues. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1317-31. [PMID: 24721563 DOI: 10.1016/j.bbapap.2014.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/14/2023]
Abstract
Bovine CD38/NAD(+) glycohydrolase catalyzes the hydrolysis of NAD(+) to nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose via a stepwise reaction mechanism. Our recent crystallographic study of its Michaelis complex and covalently-trapped intermediates provided insights into the modalities of substrate binding and the molecular mechanism of bCD38. The aim of the present work was to determine the precise role of key conserved active site residues (Trp118, Glu138, Asp147, Trp181 and Glu218) by focusing mainly on the cleavage of the nicotinamide-ribosyl bond. We analyzed the kinetic parameters of mutants of these residues which reside within the bCD38 subdomain in the vicinity of the scissile bond of bound NAD(+). To address the reaction mechanism we also performed chemical rescue experiments with neutral (methanol) and ionic (azide, formate) nucleophiles. The crucial role of Glu218, which orients the substrate for cleavage by interacting with the N-ribosyl 2'-OH group of NAD(+), was highlighted. This contribution to catalysis accounts for almost half of the reaction energy barrier. Other contributions can be ascribed notably to Glu138 and Asp147 via ground-state destabilization and desolvation in the vicinity of the scissile bond. Key interactions with Trp118 and Trp181 were also proven to stabilize the ribooxocarbenium ion-like transition state. Altogether we propose that, as an alternative to a covalent acylal reaction intermediate with Glu218, catalysis by bCD38 proceeds through the formation of a discrete and transient ribooxocarbenium intermediate which is stabilized within the active site mostly by electrostatic interactions.
Collapse
|
22
|
Tsuge H, Tsurumura T. Reaction Mechanism of Mono-ADP-Ribosyltransferase Based on Structures of the Complex of Enzyme and Substrate Protein. Curr Top Microbiol Immunol 2014; 384:69-87. [PMID: 24990621 DOI: 10.1007/82_2014_415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mono-ADP-ribosylation is a post-translational protein modification catalyzed by bacterial toxins and exoenzymes that function as ADP-ribosyltransferases. Despite the importance of this modification, the reaction mechanism remains poorly understood due to a lack of information on the crystal structure of these enzymes in complex with a substrate protein. Recently, the structures of two such complexes became available, which shed new light on the mechanisms of mono-ADP-ribosylation. In this review, we consider the reaction mechanism based on the structures of ADP-ribosyltransferases in complex with a substrate protein.
Collapse
Affiliation(s)
- Hideaki Tsuge
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto, 603-8555, Japan,
| | | |
Collapse
|
23
|
Kuhn I, Kellenberger E, Schuber F, Muller-Steffner H. Schistosoma mansoni NAD(+) catabolizing enzyme: identification of key residues in catalysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2520-7. [PMID: 24035885 DOI: 10.1016/j.bbapap.2013.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/21/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
Schistosoma mansoni NAD(+) catabolizing enzyme (SmNACE), a distant homolog of mammalian CD38, shows significant structural and functional analogy to the members of the CD38/ADP-ribosyl cyclase family. The hallmark of SmNACE is the lack of ADP-ribosyl cyclase activity that might be ascribed to subtle changes in its active site. To better characterize the residues of the active site we determined the kinetic parameters of nine mutants encompassing three acidic residues: (i) the putative catalytic residue Glu202 and (ii) two acidic residues within the 'signature' region (the conserved Glu124 and the downstream Asp133), (iii) Ser169, a strictly conserved polar residue and (iv) two aromatic residues (His103 and Trp165). We established the very important role of Glu202 and of the hydrophobic domains overwhelmingly in the efficiency of the nicotinamide-ribosyl bond cleavage step. We also demonstrated that in sharp contrast with mammalian CD38, the 'signature' Glu124 is as critical as Glu202 for catalysis by the parasite enzyme. The different environments of the two Glu residues in the crystal structure of CD38 and in the homology model of SmNACE could explain such functional discrepancies. Mutagenesis data and 3D structures also indicated the importance of aromatic residues, especially His103, in the stabilization of the reaction intermediate as well as in the selection of its conformation suitable for cyclization to cyclic ADP-ribose. Finally, we showed that inhibition of SmNACE by the natural product cyanidin requires the integrity of Glu202 and Glu124, but not of His103 and Trp165, hence suggesting different recognition modes for substrate and inhibitor.
Collapse
Affiliation(s)
- Isabelle Kuhn
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Medalis Drug Discovery Center, 74 route du Rhin, 67400 Illkirch, France
| | | | | | | |
Collapse
|
24
|
Le H, Ford KA, Khojasteh SC, Fan PW. Elucidation of the mechanism of ribose conjugation in a pyrazole-containing compound in rodent liver. Xenobiotica 2012; 43:236-45. [PMID: 22931212 DOI: 10.3109/00498254.2012.715211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Here we report on the mechanism of ribose conjugation, through NADH as a cofactor, of a pyrazole-containing compound (PT). Incubation of PT in rat liver microsomes supplemented with NADP⁺/H, NAD⁺/H, and β-nicotinamide mononucleotide (NMN) resulted in complete conjugation to the adenine dinucleotide phosphate conjugate (ADP-C), adenine dinucleotide conjugate (AD-C), and 5-phosphoribose conjugate (Rib-C1), respectively. In hepatocytes, PT predominantly formed three ribose conjugates: Rib-C1, the ribose conjugate (Rib-C2), and the carboxylic acid of Rib-C2 (Rib-C3). 2. Phosphatase inhibitors were added to hepatocyte incubations. AD-C was detected in this reaction, which suggests that one of the major pathways for the formation of the ribose conjugates is through NAD⁺/H. When AD-C was incubated with phosphatase, Rib-C1 and Rib-C2 formed. 3. To understand the in vivo relevance of this metabolic pathway, rats were dosed with PT and Rib-C2 was found in the urine. 4. Structure-activity relationship shows that replacement of the distal thiazole group in the PT to a phenyl group abolishes this conjugation. Three amino acid residues in the active site preferentially interact with the sulfur atom in the thiazole of PT. 5. In summary, PT forms direct AD-C in hepatocytes, which is further hydrolyzed by phosphatase to give ribose conjugates.
Collapse
Affiliation(s)
- Hoa Le
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | | | | | | |
Collapse
|
25
|
Szczepankiewicz BG, Dai H, Koppetsch KJ, Qian D, Jiang F, Mao C, Perni RB. Synthesis of carba-NAD and the structures of its ternary complexes with SIRT3 and SIRT5. J Org Chem 2012; 77:7319-29. [PMID: 22849721 DOI: 10.1021/jo301067e] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carba-NAD is a synthetic compound identical to NAD except for one substitution, where an oxygen atom adjacent to the anomeric linkage bearing nicotinamide is replaced with a methylene group. Because it is inert in nicotinamide displacement reactions, carba-NAD is an unreactive substrate analogue for NAD-consuming enzymes. SIRT3 and SIRT5 are NAD-consuming enzymes that are potential therapeutic targets for the treatment of metabolic diseases and cancers. We report an improved carba-NAD synthesis, including a pyrophosphate coupling method that proceeds in approximately 60% yield. We also disclose the X-ray crystal structures of the ternary complexes of SIRT3 and SIRT5 bound to a peptide substrate and carba-NAD. These X-ray crystal structures provide critical snapshots of the mechanism by which human sirtuins function as protein deacylation catalysts.
Collapse
|
26
|
Egea PF, Muller-Steffner H, Kuhn I, Cakir-Kiefer C, Oppenheimer NJ, Stroud RM, Kellenberger E, Schuber F. Insights into the mechanism of bovine CD38/NAD+glycohydrolase from the X-ray structures of its Michaelis complex and covalently-trapped intermediates. PLoS One 2012; 7:e34918. [PMID: 22529956 PMCID: PMC3329556 DOI: 10.1371/journal.pone.0034918] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/06/2012] [Indexed: 01/02/2023] Open
Abstract
Bovine CD38/NAD+glycohydrolase (bCD38) catalyses the hydrolysis of NAD+ into nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose (cADPR). We solved the crystal structures of the mono N-glycosylated forms of the ecto-domain of bCD38 or the catalytic residue mutant Glu218Gln in their apo state or bound to aFNAD or rFNAD, two 2′-fluorinated analogs of NAD+. Both compounds behave as mechanism-based inhibitors, allowing the trapping of a reaction intermediate covalently linked to Glu218. Compared to the non-covalent (Michaelis) complex, the ligands adopt a more folded conformation in the covalent complexes. Altogether these crystallographic snapshots along the reaction pathway reveal the drastic conformational rearrangements undergone by the ligand during catalysis with the repositioning of its adenine ring from a solvent-exposed position stacked against Trp168 to a more buried position stacked against Trp181. This adenine flipping between conserved tryptophans is a prerequisite for the proper positioning of the N1 of the adenine ring to perform the nucleophilic attack on the C1′ of the ribofuranoside ring ultimately yielding cADPR. In all structures, however, the adenine ring adopts the most thermodynamically favorable anti conformation, explaining why cyclization, which requires a syn conformation, remains a rare alternate event in the reactions catalyzed by bCD38 (cADPR represents only 1% of the reaction products). In the Michaelis complex, the substrate is bound in a constrained conformation; the enzyme uses this ground-state destabilization, in addition to a hydrophobic environment and desolvation of the nicotinamide-ribosyl bond, to destabilize the scissile bond leading to the formation of a ribooxocarbenium ion intermediate. The Glu218 side chain stabilizes this reaction intermediate and plays another important role during catalysis by polarizing the 2′-OH of the substrate NAD+. Based on our structural analysis and data on active site mutants, we propose a detailed analysis of the catalytic mechanism.
Collapse
Affiliation(s)
- Pascal F. Egea
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (PFE); (FS)
| | - Hélène Muller-Steffner
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Isabelle Kuhn
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Céline Cakir-Kiefer
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux, UR AFPA, Nancy Université, Vandoeuvre-les-Nancy, France
| | - Norman J. Oppenheimer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Esther Kellenberger
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Francis Schuber
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- * E-mail: (PFE); (FS)
| |
Collapse
|
27
|
Kotaka M, Graeff R, Chen Z, Zhang LH, Lee HC, Hao Q. Structural studies of intermediates along the cyclization pathway of Aplysia ADP-ribosyl cyclase. J Mol Biol 2011; 415:514-26. [PMID: 22138343 DOI: 10.1016/j.jmb.2011.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 11/19/2022]
Abstract
Cyclic ADP-ribose (cADPR) is a calcium messenger that can mobilize intracellular Ca²⁺ stores and activate Ca²⁺ influx to regulate a wide range of physiological processes. Aplysia cyclase is the first member of the ADP-ribosyl cyclases identified to catalyze the cyclization of NAD⁺ into cADPR. The catalysis involves a two-step reaction, the elimination of the nicotinamide ring and the cyclization of the intermediate resulting in the covalent attachment of the purine ring to the terminal ribose. Aplysia cyclase exhibits a high degree of leniency towards the purine base of its substrate, and the cyclization reaction takes place at either the N1- or the N7-position of the purine ring. To decipher the mechanism of cyclization in Aplysia cyclase, we used a crystallization setup with multiple Aplysia cyclase molecules present in the asymmetric unit. With the use of natural substrates and analogs, not only were we able to capture multiple snapshots during enzyme catalysis resulting in either N1 or N7 linkage of the purine ring to the terminal ribose, we were also able to observe, for the first time, the cyclized products of both N1 and N7 cyclization bound in the active site of Aplysia cyclase.
Collapse
Affiliation(s)
- Masayo Kotaka
- Department of Physiology, University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
28
|
French JB, Cen Y, Vrablik TL, Xu P, Allen E, Hanna-Rose W, Sauve AA. Characterization of nicotinamidases: steady state kinetic parameters, classwide inhibition by nicotinaldehydes, and catalytic mechanism. Biochemistry 2010; 49:10421-39. [PMID: 20979384 DOI: 10.1021/bi1012518] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nicotinamidases are metabolic enzymes that hydrolyze nicotinamide to nicotinic acid. These enzymes are widely distributed across biology, with examples found encoded in the genomes of Mycobacteria, Archaea, Eubacteria, Protozoa, yeast, and invertebrates, but there are none found in mammals. Although recent structural work has improved our understanding of these enzymes, their catalytic mechanism is still not well understood. Recent data show that nicotinamidases are required for the growth and virulence of several pathogenic microbes. The enzymes of Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans regulate life span in their respective organisms, consistent with proposed roles in the regulation of NAD(+) metabolism and organismal aging. In this work, the steady state kinetic parameters of nicotinamidase enzymes from C. elegans, Sa. cerevisiae, Streptococcus pneumoniae (a pathogen responsible for human pneumonia), Borrelia burgdorferi (the pathogen that causes Lyme disease), and Plasmodium falciparum (responsible for most human malaria) are reported. Nicotinamidases are generally efficient catalysts with steady state k(cat) values typically exceeding 1 s(-1). The K(m) values for nicotinamide are low and in the range of 2 -110 μM. Nicotinaldehyde was determined to be a potent competitive inhibitor of these enzymes, binding in the low micromolar to low nanomolar range for all nicotinamidases tested. A variety of nicotinaldehyde derivatives were synthesized and evaluated as inhibitors in kinetic assays. Inhibitions are consistent with reaction of the universally conserved catalytic Cys on each enzyme with the aldehyde carbonyl carbon to form a thiohemiacetal complex that is stabilized by a conserved oxyanion hole. The S. pneumoniae nicotinamidase can catalyze exchange of (18)O into the carboxy oxygens of nicotinic acid with H(2)(18)O. The collected data, along with kinetic analysis of several mutants, allowed us to propose a catalytic mechanism that explains nicotinamidase and nicotinic acid (18)O exchange chemistry for the S. pneumoniae enzyme involving key catalytic residues, a catalytic transition metal ion, and the intermediacy of a thioester intermediate.
Collapse
Affiliation(s)
- Jarrod B French
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | | | | | | | | | | | | |
Collapse
|
29
|
Dudev T, Lim C. Factors controlling the mechanism of NAD(+) non-redox reactions. J Am Chem Soc 2010; 132:16533-43. [PMID: 21047075 DOI: 10.1021/ja106600k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
β-Nicotinamide adenine dinucleotide (NAD(+)) is an indispensable coenzyme or substrate for enzymes involved in catalyzing redox and non-redox reactions. ADP-ribosylating enzymes catalyze cleavage of the nicotinamide-glycosyl bond of NAD(+) and addition of a nucleophilic group from their substrate proteins to the N-ribose anomeric carbon of NAD(+). Although the role of the nicotinamide-ribose fragment in the mechanism of NAD(+) hydrolysis has been examined, the role of the doubly negatively charged, flexible, and chemically reactive NAD(+) diphosphate moiety in the reaction process has largely been neglected. Thus, the participation of the pyrophosphate group in stabilizing intra- and intermolecular interactions in the ground state and transition state has not been explored. Furthermore, the roles of other factors such as the type/nucleophilicity of the attacking nucleophile and the medium in influencing the reaction pathway have not been systematically evaluated. In this study, we endeavor to fill in these gaps and elucidate the role of these factors in controlling the NAD(+) nicotinamide-glycosyl bond cleavage. Using density functional theory combined with continuum dielectric methods, we modeled both S(N)1 and S(N)2 reaction pathways and assessed the role of the diphosphate group in stabilizing the (i) NAD(+) ground state, (ii) oxocarbocation intermediate, (iii) reaction product, and (iv) nucleophile. We also assessed the chemical nature of the attacking nucleophile and the role of the protein matrix in affecting the reaction mechanism. Our results reveal an intricate interplay among various factors in controlling the reaction pathway, which in turn suggests ways in which the enzyme can accelerate the reaction.
Collapse
Affiliation(s)
- Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | |
Collapse
|
30
|
French JB, Cen Y, Sauve AA, Ealick SE. High-resolution crystal structures of Streptococcus pneumoniae nicotinamidase with trapped intermediates provide insights into the catalytic mechanism and inhibition by aldehydes . Biochemistry 2010; 49:8803-12. [PMID: 20853856 PMCID: PMC3006156 DOI: 10.1021/bi1012436] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD(+) in most prokaryotes and most single-cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD(+) homeostasis has stimulated interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD(+)-consuming enzymes, such as the NAD(+)-dependent deacetylases (sirtuins). Here, we report several high-resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. The structure of the C136S mutant in complex with nicotinamide provides details about substrate binding, while a trapped nicotinoyl thioester in a complex with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features, including a metal ion that coordinates the substrate and the catalytically relevant water molecule and an oxyanion hole that both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence of several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme.
Collapse
Affiliation(s)
- Jarrod B. French
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Yana Cen
- Department of Pharmacology, Weill Cornell College of Medicine, 1300 York Ave, New York, New York 10065
| | - Anthony A. Sauve
- Department of Pharmacology, Weill Cornell College of Medicine, 1300 York Ave, New York, New York 10065
| | - Steven E. Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
31
|
Cortial S, Chaignon P, Iorga BI, Aymerich S, Truan G, Gueguen-Chaignon V, Meyer P, Moréra S, Ouazzani J. NADH oxidase activity of Bacillus subtilis nitroreductase NfrA1: insight into its biological role. FEBS Lett 2010; 584:3916-22. [PMID: 20727352 DOI: 10.1016/j.febslet.2010.08.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/06/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
NfrA1 nitroreductase from the Gram-positive bacterium Bacillus subtilis is a member of the NAD(P)H/FMN oxidoreductase family. Here, we investigated the reactivity, the structure and kinetics of NfrA1, which could provide insight into the unclear biological role of this enzyme. We could show that NfrA1 possesses an NADH oxidase activity that leads to high concentrations of oxygen peroxide and an NAD(+) degrading activity leading to free nicotinamide. Finally, we showed that NfrA1 is able to rapidly scavenge H(2)O(2) produced during the oxidative process or added exogenously.
Collapse
Affiliation(s)
- Sylvie Cortial
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bello Z, Stitt B, Grubmeyer C. Interactions at the 2 and 5 positions of 5-phosphoribosyl pyrophosphate are essential in Salmonella typhimurium quinolinate phosphoribosyltransferase. Biochemistry 2010; 49:1377-87. [PMID: 20047307 DOI: 10.1021/bi9018219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quinolinate phosphoribosyltransferase (QAPRTase, EC 2.4.2.19) catalyzes an unusual phosphoribosyl transfer that is linked to a decarboxylation reaction to form the NAD precursor nicotinate mononucleotide, carbon dioxide, and pyrophosphate from quinolinic acid (QA) and 5-phosphoribosyl 1-pyrophosphate (PRPP). Structural studies and sequence similarities with other PRTases have implicated Glu214, Asp235, Lys153, and Lys284 in contributing to catalysis through direct interaction with PRPP. The four residues were substituted by site-directed mutagenesis. A nadC deletant form of BL21DE3 was created to eliminate trace contamination by chromosomal QAPRTase. The mutant enzymes were readily purified and retained their dimeric aggregation state on gel filtration. Substitution of Lys153 with Ala resulted in an inactive enzyme, indicating its essential nature. Mutation of Glu214 to Ala or Asp caused at least a 4000-fold reduction in k(cat), with 10-fold increases in K(m) and K(D) values for PRPP. However, mutation of Glu214 to Gln had only modest effects on ligand binding and catalysis. pH profiles indicated that the deprotonated form of a residue with pK(a) of 6.9 is essential for catalysis. The WT-like pH profile of the E214Q mutant indicated that Glu214 is not that residue. Mutation of Asp235 to Ala did not affect ligand binding or catalysis. Mutation of Lys284 to Ala decreased k(cat) by 30-fold and increased K(m) and K(D) values for PRPP by 80-fold and at least 20-fold, respectively. The study suggests that Lys153 is necessary for catalysis and important for PRPP binding, Glu214 provides a hydrogen bond necessary for catalysis but does not act as a base or electrostatically to stabilize the transition state, Lys284 is involved in PRPP binding, and Asp235 is not essential.
Collapse
Affiliation(s)
- Zainab Bello
- Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
33
|
Ghosh J, Anderson PJ, Chandrasekaran S, Caparon MG. Characterization of Streptococcus pyogenes beta-NAD+ glycohydrolase: re-evaluation of enzymatic properties associated with pathogenesis. J Biol Chem 2009; 285:5683-94. [PMID: 20018886 DOI: 10.1074/jbc.m109.070300] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gram-positive pathogen Streptococcus pyogenes injects a beta-NAD(+) glycohydrolase (SPN) into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. In this compartment, SPN accelerates the death of the host cell by an unknown mechanism that may involve its beta-NAD(+)-dependent enzyme activities. SPN has been reported to possess the unique characteristic of not only catalyzing hydrolysis of beta-NAD(+), but also carrying out ADP-ribosyl cyclase and ADP-ribosyltransferase activities, making SPN the only beta-NAD(+) glycohydrolase that can catalyze all of these reactions. With the long term goal of understanding how these activities may contribute to pathogenesis, we have further characterized the enzymatic activity of SPN using highly purified recombinant protein. Kinetic studies of the multiple activities of SPN revealed that SPN possessed only beta-NAD(+) hydrolytic activity and lacked detectable ADP-ribosyl cyclase and ADP-ribosyltransferase activities. Similarly, SPN was unable to catalyze cyclic ADPR hydrolysis, and could not catalyze methanolysis or transglycosidation. Kinetic analysis of product inhibition by recombinant SPN demonstrated an ordered uni-bi mechanism, with ADP-ribose being released as a second product. SPN was unaffected by product inhibition using nicotinamide, suggesting that this moiety contributes little to the binding energy of the substrate. Upon transformation, SPN was toxic to Saccharomyces cerevisiae, whereas a glycohydrolase-inactive SPN allowed for viability. Taken together, these data suggest that SPN functions exclusively as a strict beta-NAD(+) glycohydrolase during pathogenesis.
Collapse
Affiliation(s)
- Joydeep Ghosh
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
34
|
Covalent and noncovalent intermediates of an NAD utilizing enzyme, human CD38. ACTA ACUST UNITED AC 2008; 15:1068-78. [PMID: 18940667 DOI: 10.1016/j.chembiol.2008.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 11/22/2022]
Abstract
Enzymatic utilization of nicotinamide adenine dinucleotide (NAD) has increasingly been shown to have fundamental roles in gene regulation, signal transduction, and protein modification. Many of the processes require the cleavage of the nicotinamide moiety from the substrate and the formation of a reactive intermediate. Using X-ray crystallography, we show that human CD38, an NAD-utilizing enzyme, is capable of catalyzing the cleavage reactions through both covalent and noncovalent intermediates, depending on the substrate used. The covalent intermediate is resistant to further attack by nucleophiles, resulting in mechanism-based enzyme inactivation. The noncovalent intermediate is stabilized mainly through H-bond interactions, but appears to remain reactive. Our structural results favor the proposal of a noncovalent intermediate during normal enzymatic utilization of NAD by human CD38 and provide structural insights into the design of covalent and noncovalent inhibitors targeting NAD-utilization pathways.
Collapse
|
35
|
Smith BC, Denu JM. Sir2 deacetylases exhibit nucleophilic participation of acetyl-lysine in NAD+ cleavage. J Am Chem Soc 2007; 129:5802-3. [PMID: 17439123 PMCID: PMC2568996 DOI: 10.1021/ja070162w] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Brian C Smith
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 1300 University Avenue, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
36
|
Bellocchi D, Costantino G, Pellicciari R, Re N, Marrone A, Coletti C. Poly(ADP-ribose)-polymerase-catalyzed hydrolysis of NAD+: QM/MM simulation of the enzyme reaction. ChemMedChem 2006; 1:533-9. [PMID: 16892389 DOI: 10.1002/cmdc.200500061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which uses NAD+ as substrate and catalyzes the transfer of multiple units of ADP-ribose to target proteins. PARP is an attractive target for the discovery of novel therapeutic agents and PARP inhibitors are currently evaluated for the treatment of a variety of pathological conditions such as brain ischemia, inflammation, and cancer. Herein, we use the PARP-catalyzed reaction of NAD+ hydrolysis as a model for gaining insight into the molecular details of the catalytic mechanism of PARP. The reaction has been studied in both the gas-phase and in the enzyme environment through a QM/MM approach. Our results indicate that the cleavage reaction of the nicotinamide-ribosyl bond proceeds through an SN2 dissociative mechanism via an oxacarbenium transition structure. These results confirm the importance of the structural water molecule in the active site and may constitute the basis for the design of transition-state-based PARP inhibitors.
Collapse
Affiliation(s)
- Daniele Bellocchi
- Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Kuhn I, Kellenberger E, Rognan D, Lund FE, Muller-Steffner H, Schuber F. Redesign of Schistosoma mansoni NAD+ catabolizing enzyme: active site H103W mutation restores ADP-ribosyl cyclase activity. Biochemistry 2006; 45:11867-78. [PMID: 17002287 PMCID: PMC2546491 DOI: 10.1021/bi060930g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Schistosoma mansoni NAD(P)+ catabolizing enzyme (SmNACE) is a new member of the ADP-ribosyl cyclase family. In contrast to all the other enzymes that are involved in the production of metabolites that elicit Ca2+ mobilization, SmNACE is virtually unable to transform NAD+ into the second messenger cyclic ADP-ribose (cADPR). Sequence alignments revealed that one of four conserved residues within the active site of these enzymes was replaced in SmNACE by a histidine (His103) instead of the highly conserved tryptophan. To find out whether the inability of SmNACE to catalyze the canonical ADP-ribosyl cyclase reaction is linked to this change, we have replaced His103 with a tryptophan. The H103W mutation in SmNACE was indeed found to restore ADP-ribosyl cyclase activity as cADPR amounts for 7% of the reaction products (i.e., a value larger than observed for other members of this family such as CD38). Introduction of a Trp103 residue provides some of the binding characteristics of mammalian ADP-ribosyl cyclases such as increased affinity for Cibacron blue and slow-binding inhibition by araF-NAD+. Homology modeling of wild-type and H103W mutant three-dimensional structures, and docking of substrates within the active sites, provides new insight into the catalytic mechanism of SmNACE. Both residue side chains share similar roles in the nicotinamide-ribose bond cleavage step leading to an E.ADP-ribosyl reaction intermediate. They diverge, however, in the evolution of this intermediate; His103 provides a more polar environment favoring the accessibility to water and hydrolysis leading to ADP-ribose at the expense of the intramolecular cyclization pathway resulting in cADPR.
Collapse
Affiliation(s)
| | | | | | | | | | - Francis Schuber
- To whom correspondence should be addressed : Institut Gilbert Laustriat, UMR 7175, CNRS–ULP, Département de Chimie Bioorganique, Faculté de Pharmacie, 74 route du Rhin, BP 24, 67401 Illkirch, France. Phone: + 33 390 244 172; Fax: +33 390 244 306; E-mail:
| |
Collapse
|
38
|
Liu Q, Kriksunov IA, Graeff R, Munshi C, Lee HC, Hao Q. Structural basis for the mechanistic understanding of human CD38-controlled multiple catalysis. J Biol Chem 2006; 281:32861-9. [PMID: 16951430 DOI: 10.1074/jbc.m606365200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzymatic cleavage of the nicotinamide-glycosidic bond on nicotinamide adenine dinucleotide (NAD(+)) has been proposed to go through an oxocarbenium ion-like transition state. Because of the instability of the ionic intermediate, there has been no structural report on such a transient reactive species. Human CD38 is an ectoenzyme that can use NAD(+) to synthesize two calcium-mobilizing molecules. By using NAD(+) and a surrogate substrate, NGD(+), we captured and determined crystal structures of the enzyme complexed with an intermediate, a substrate, and a product along the reaction pathway. Our results showed that the intermediate is stabilized by polar interactions with the catalytic residue Glu(226) rather than by a covalent linkage. The polar interactions between Glu(226) and the substrate 2',3'-OH groups are essential for initiating catalysis. Ser(193) was demonstrated to have a regulative role during catalysis and is likely to be involved in intermediate stabilization. In addition, a product inhibition effect by ADP-ribose (through the reorientation of the product) or GDP-ribose (through the formation of a covalently linked GDP-ribose dimer) was observed. These structural data provide insights into the understanding of multiple catalysis and clues for drug design.
Collapse
Affiliation(s)
- Qun Liu
- Macromolecular Diffraction Facility at the Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
39
|
Vella F, Ferry G, Delagrange P, Boutin JA. NRH:quinone reductase 2: an enzyme of surprises and mysteries. Biochem Pharmacol 2005; 71:1-12. [PMID: 16253210 DOI: 10.1016/j.bcp.2005.09.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 09/06/2005] [Accepted: 09/08/2005] [Indexed: 11/15/2022]
Abstract
Quinone reductase 2 has been discovered in 1961 and rediscovered in 1997. Because of its sequence homology with quinone reductase 1, it has been suspected to detoxify quinones. Ten years later, evidences begin to point to a versatile role of this enzyme. Indeed, QR2 is strongly suspected to be the molecular target of anti-malarian drugs such as chloroquin or paraquine, and of red wine-derived resveratrol that might be responsible for the so-called French paradox. It also is identical to the melatonin binding site MT3, and might therefore be a rationale explanation for the antioxidant role of melatonin. Finally QR2 might be implicated in the toxicity, in vivo, of quinones such as menadione. The present commentary attempts to summarize this information and discusses a series of hypotheses.
Collapse
Affiliation(s)
- Fanny Vella
- Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, 125, Chemin de Ronde 78290 Croissy-sur-Seine, France
| | | | | | | |
Collapse
|
40
|
Faraone-Mennella MR, De Maio A, Petrella A, Syntichaki E, Kerbalaeva AM, Nasmetova SM, Goulyamova TG, Farina B. Yeast (ADPribosyl)ation: revisiting a controversial question. J Cell Biochem 2005; 94:1258-66. [PMID: 15723357 DOI: 10.1002/jcb.20362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The controversy about the occurrence of an (ADPribosyl)ating activity in yeast is still standing up. Here we discuss this topic on the basis of results obtained with classic experiments proposed over years as basis to characterize an (ADPribosyl)ation system in any organism. Independent results obtained in two different laboratories were in line with each other and went towards the occurrence of an active (ADPribosyl)ating system in Saccharomyces cerevisiae. In fact data collected from nuclear preparations of cultured cells matched those from baker's yeast and lyophilized yeast cells. Yeast (ADPribosyl)ating enzyme is a protein of 80-90 kDa, as determined by electrophoresis on polyacrylamide gel in sodium dodecyl sulphate, followed by immunoblotting with antibodies against anti-poly(ADPribose) polymerase catalytic site. It synthesizes products, that, after digestion with phosphodiesterase, co-migrates mainly with phosphoribosyl adenosine monophosphate after thin layer chromatography on silica gel plate.
Collapse
|
41
|
Garcia GA, Kittendorf JD. Transglycosylation: a mechanism for RNA modification (and editing?). Bioorg Chem 2005; 33:229-51. [PMID: 15888313 PMCID: PMC2802272 DOI: 10.1016/j.bioorg.2005.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 01/11/2005] [Accepted: 01/11/2005] [Indexed: 11/22/2022]
Abstract
The vast majority of the ca. 100 chemically distinct modified nucleosides in RNA appear to arise via the chemical transformation of a genetically encoded nucleoside. Two notable exceptions are queuosine and pseudouridine, which are incorporated into tRNA via transglycosylation. Transglycosylation is an extremely efficient process for incorporating highly modified bases such as queuine into RNA. Transglycosylation is also a requisite process for "isomerizing" an N-nucleoside into a C-nucleoside as is the case for pseudouridine formation. Finally, transglycosylation is an attractive possibility for certain RNA editing events (e.g., pyrimidine to purine conversions) that cannot occur via the known, more straightforward enzymatic reactions (e.g., deaminations). This review discusses what is known about the mechanisms of transglycosylation for the queuine and pseudouridine RNA modifications and will speculate about a potential role for transglycosylation in certain RNA editing events.
Collapse
Affiliation(s)
- George A. Garcia
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA
| | | |
Collapse
|
42
|
Aktories K, Wilde C, Vogelsgesang M. Rho-modifying C3-like ADP-ribosyltransferases. Rev Physiol Biochem Pharmacol 2004; 152:1-22. [PMID: 15372308 DOI: 10.1007/s10254-004-0034-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
C3-like exoenzymes comprise a family of seven bacterial ADP-ribosyltransferases, which selectively modify RhoA, B, and C at asparagine-41. Crystal structures of C3 exoenzymes are available, allowing novel insights into the structure-function relationships of these exoenzymes. Because ADP-ribosylation specifically inhibits the biological functions of the low-molecular mass GTPases, C3 exoenzymes are established pharmacological tools to study the cellular functions of Rho GTPases. Recent studies, however, indicate that the functional consequences of C3-induced ADP-ribosylation are more complex than previously suggested. In the present review the basic properties of C3 exoenzymes are briefly summarized and new findings are reviewed.
Collapse
Affiliation(s)
- K Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University Freiburg, Otto-Krayer-Haus, Albertstr. 25, Freiburg, Germany.
| | | | | |
Collapse
|
43
|
Ménétrey J, Flatau G, Stura EA, Charbonnier JB, Gas F, Teulon JM, Le Du MH, Boquet P, Menez A. NAD binding induces conformational changes in Rho ADP-ribosylating clostridium botulinum C3 exoenzyme. J Biol Chem 2002; 277:30950-7. [PMID: 12029083 DOI: 10.1074/jbc.m201844200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have solved the crystal structures of Clostridium botulinum C3 exoenzyme free and complexed to NAD in the same crystal form, at 2.7 and 1.95 A, respectively. The asymmetric unit contains four molecules, which, in the free form, share the same conformation. Upon NAD binding, C3 underwent various conformational changes, whose amplitudes were differentially limited in the four molecules of the crystal unit. A major rearrangement concerns the loop that contains the functionally important ARTT motif (ADP-ribosyltransferase toxin turn-turn). The ARTT loop undergoes an ample swinging motion to adopt a conformation that covers the nicotinamide moiety of NAD. In particular, Gln-212, which belongs to the ARTT motif, flips over from a solvent-exposed environment to a buried conformation in the NAD binding pocket. Mutational experiments showed that Gln-212 is neither involved in NAD binding nor in the NAD-glycohydrolase activity of C3, whereas it plays a critical role in the ADP-ribosyl transfer to the substrate Rho. We observed additional NAD-induced movements, including a crab-claw motion of a subdomain that closes the NAD binding pocket. The data emphasized a remarkable NAD-induced plasticity of the C3 binding pocket and suggest that the NAD-induced ARTT loop conformation may be favored by the C3-NAD complex to bind to the substrate Rho. Our structural observations, together with a number of mutational experiments suggest that the mechanisms of Rho ADP-ribosylation by C3-NAD may be more complex than initially anticipated.
Collapse
Affiliation(s)
- Julie Ménétrey
- Département d'Ingénierie et d'Etudes des Protéines, Commissariat à l'Energie Atomique, CE Saclay, F91191 Gif-sur-Yvette Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kahn K, Bruice TC. Diphtheria toxin catalyzed hydrolysis of NAD(+): molecular dynamics study of enzyme-bound substrate, transition state, and inhibitor. J Am Chem Soc 2001; 123:11960-9. [PMID: 11724604 DOI: 10.1021/ja0113807] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of the diphtheria toxin-catalyzed hydrolysis of NAD(+) was investigated by quantum chemical calculations and molecular dynamics simulations. Several effects that could explain the 6000-fold rate acceleration (Delta Delta G(++) approximately 5 kcal/mol) by the enzyme were considered. First, the carboxamide arm of the enzyme-bound NAD(+) adopts a trans conformation while the most stable conformation is cis. The most stable conformation for the nicotinamide product has the amide carbonyl trans. The activation energy for the cleavage of the ribosidic bond is reduced by 2 kcal/mol due to the relaxation of this ground state conformational stress in the transition state. Second, molecular dynamics simulations to the nanosecond time range revealed that the carboxylate of Glu148 forms a hydrogen bond to the substrate's 2' hydroxyl group in E.S (approximately 17% of the time) and E.TS (approximately 57% of the time) complexes. This interaction is not seen in crystal structures. The ApUp inhibitor is held more tightly by the enzyme than the transition state and the substrate. Analysis of correlated motions reveals differences in the pattern of anticorrelated motions for protein backbone atoms when the transition state occupies the active site as compared to the E.NAD(+) complex.
Collapse
Affiliation(s)
- K Kahn
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | | |
Collapse
|
45
|
Han S, Arvai AS, Clancy SB, Tainer JA. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. J Mol Biol 2001; 305:95-107. [PMID: 11114250 DOI: 10.1006/jmbi.2000.4292] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors the catalytic Glu214 within the ARTT motif, and furthermore distinguishes the C3 toxin class by a conserved turn 2 Gln and the VIP2 binary toxin class by a conserved turn 2 Glu for appropriate target side-chain hydrogen-bonding recognition. Taken together, these structural results provide a molecular basis for understanding the coupled activity and recognition specificity for C3 and for the newly defined ARTT toxin family, which acts in the depolymerization of the actin cytoskeleton. This beta5 to beta6 region of the toxin fold represents an experimentally testable and potentially general recognition motif region for other ADP-ribosylating toxins that have a similar beta-structure framework.
Collapse
Affiliation(s)
- S Han
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB 4, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
46
|
Sauve AA, Deng H, Angeletti RH, Schramm VL. A Covalent Intermediate in CD38 Is Responsible for ADP-Ribosylation and Cyclization Reactions. J Am Chem Soc 2000. [DOI: 10.1021/ja001139c] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Hehre EJ. A fresh understanding of the stereochemical behavior of glycosylases: structural distinction of "inverting" (2-MCO-type) versus "retaining" (1-MCO-type) enzymes. Adv Carbohydr Chem Biochem 2000; 55:265-310. [PMID: 10715782 DOI: 10.1016/s0065-2318(00)55007-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- E J Hehre
- Department of Microbiology and Immmunology, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
48
|
Ziegler M. New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1550-64. [PMID: 10712584 DOI: 10.1046/j.1432-1327.2000.01187.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over the past decades, the pyridine nucleotides have been established as important molecules in signaling pathways, besides their well known function in energy transduction. Similarly to another molecule carrying such dual functions, ATP, NAD(P)+ may serve as substrate for covalent protein modification or as precursor of biologically active compounds. Protein modification is catalyzed by ADP-ribosyl transferases that attach the ADP-ribose moiety of NAD+ to specific amino-acid residues of the acceptor proteins. For a number of ADP ribosylation reactions the specific transferases and their target proteins have been identified. As a result of the modification, the biological activity of the acceptor proteins may be severely changed. The cell nucleus contains enzymes catalyzing the transfer of ADP-ribose polymers (polyADP-ribose) onto the acceptor proteins. The best known enzyme of this type is poly(ADP-ribose) polymerase 1 (PARP1), which has been implicated in the regulation of several important processes including DNA repair, transcription, apoptosis, neoplastic transformation and others. The second group of reactions leads to the synthesis of an unusual cyclic nucleotide, cyclic ADP-ribose (cADPR). Moreover, the enzymes catalyzing this reaction may also replace the nicotinamide of NADP+ by nicotinic acid resulting in the synthesis of nicotinic acid adenine dinucleotide phosphate (NAADP+). Both cADPR and NAADP+ have been reported to be potent intracellular calcium-mobilizing agents. In concert with inositol 1,4,5-trisphosphate, they participate in cytosolic calcium regulation by releasing calcium from intracellular stores.
Collapse
Affiliation(s)
- M Ziegler
- Freie Universität Berlin, Institut für Biochemie, Berlin, Germany.
| |
Collapse
|
49
|
Augustin A, Muller-Steffner H, Schuber F. Molecular cloning and functional expression of bovine spleen ecto-NAD+ glycohydrolase: structural identity with human CD38. Biochem J 2000; 345 Pt 1:43-52. [PMID: 10600637 PMCID: PMC1220728 DOI: 10.1042/bj3450043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bovine spleen ecto-NAD(+) glycohydrolase, an archetypal member of the mammalian membrane-associated NAD(P)(+) glycohydrolase enzyme family (EC 3.2.2.6), displays catalytic features similar to those of CD38, i.e. a protein originally described as a lymphocyte differentiation marker involved in the metabolism of cyclic ADP-ribose and signal transduction. Using amino acid sequence information obtained from NAD(+) glycohydrolase and from a truncated and hydrosoluble form of the enzyme (hNADase) purified to homogeneity, a full-length cDNA clone was obtained. The deduced sequence indicates a protein of 278 residues with a molecular mass of 31.5 kDa. It predicts that bovine ecto-NAD(+) glycohydrolase is a type II transmembrane protein, with a very short intracellular tail. The bulk of the enzyme, which is extracellular and contains two potential N-glycosylation sites, yields the fully catalytically active hNADase which is truncated by 71 residues. Transfection of HeLa cells with the full-length cDNA resulted in the expression of the expected NAD(+) glycohydrolase, ADP-ribosyl cyclase and GDP-ribosyl cyclase activities at the surface of the cells. The bovine enzyme, which is the first 'classical' NAD(P)(+) glycohydrolase whose structure has been established, presents a particularly high sequence identity with CD38, including the presence of 10 strictly conserved cysteine residues in the ectodomain and putative catalytic residues. However, it lacks two otherwise conserved cysteine residues near its C-terminus. Thus hNADase, the truncated protein of 207 amino acids, represents the smallest functional domain endowed with all the catalytic activities of CD38/NAD(+) glycohydrolases so far identified. Altogether, our data strongly suggest that the cloned bovine spleen ecto-NAD(+) glycohydrolase is the bovine equivalent of CD38.
Collapse
Affiliation(s)
- A Augustin
- Laboratoire de Chimie Bioorganique, UMR 7514 CNRS-ULP, Faculté de Pharmacie, 74 route du Rhin, 67400 Strasbourg-Illkirch, France
| | | | | |
Collapse
|
50
|
Migaud ME, Pederick RL, Bailey VC, Potter BV. Probing Aplysia californica adenosine 5'-diphosphate ribosyl cyclase for substrate binding requirements: design of potent inhibitors. Biochemistry 1999; 38:9105-14. [PMID: 10413485 DOI: 10.1021/bi9903392] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Readily synthesized nicotinamide adenine dinucleotide (NAD(+)) analogues have been used to investigate aspects of the cyclization of NAD(+) to cyclic adenosine 5'-O-diphosphate ribose (cADPR) catalyzed by the enzyme adenosine 5'-O-diphosphate (ADP) ribosyl cyclase and to produce the first potent inhibitors of this enzyme. In all cases, inhibition of Aplysia californica cyclase by various substrate analogues was found to be competitive while inhibition by nicotinamide exhibited mixed-behavior characteristics. Nicotinamide hypoxanthine dinucleotide (NHD(+)), nicotinamide guanine dinucleotide (NGD(+)), C1'-m-benzamide adenine dinucleotide (Bp(2)A), and C1'-m-benzamide nicotinamide dinucleotide (Bp(2)N) were found to be nanomolar potency inhibitors with inhibition constants of 70, 143, 189, and 201 nM, respectively. However, NHD(+) and NGD(+) are also known substrates and are slowly converted to cyclic products, thus preventing their further use as inhibitors. The symmetrical bis-nucleotides, bis-adenine dinucleotide (Ap(2)A), bis-hypoxanthine dinucleotide (Hp(2)H), and bis-nicotinamide dinucleotide (Np(2)N), exhibited micromolar competitive inhibition, with Ap(2)A displaying the greatest affinity for the enzyme. 2',3'-Di-O-acetyl nicotinamide adenine dinucleotide (AcONAD(+)) was not a substrate for the A. californica cyclase but also displayed some inhibition at a micromolar level. Finally, inhibition of the cyclase by adenosine 5'-O-diphosphate ribose (ADPR) and inosine 5'-O-diphosphate ribose (IDPR) was observed at millimolar concentration. The nicotinamide aromatic ring appears to be the optimal motif required for enzymatic recognition, while modifications of the 2'- and 3'-hydroxyls of the nicotinamide ribose seem to hamper binding to the enzyme. Stabilizing enzyme/inhibitor interactions and the inability of the enzyme to release unprocessed material are both considered to explain nanomolar inhibition. Recognition of inhibitors by other ADP ribosyl cyclases has also been investigated, and this study now provides the first potent nonhydrolyzable sea urchin ADP ribosyl cyclase and cADPR hydrolase inhibitor Bp(2)A, with inhibition observed at the micromolar and nanomolar level, respectively. The benzamide derivatives did not inhibit CD38 cyclase or hydrolase activity when NGD(+) was used as substrate. These results emphasize the difference between CD38 and other enzymes in which the cADPR cyclase activity predominates.
Collapse
Affiliation(s)
- M E Migaud
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, U.K
| | | | | | | |
Collapse
|