1
|
Kharlamova A, Krivova Y, Proshchina A, Godovalova O, Otlyga D, Andreeva E, Shachina M, Grushetskaya E, Saveliev S. Spatial-temporal representation of the astroglial markers in the developing human cortex. Brain Struct Funct 2024:10.1007/s00429-024-02850-z. [PMID: 39153086 DOI: 10.1007/s00429-024-02850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Specific spatiotemporal patterns of the normal glial differentiation during human brain development have not been thoroughly studied. Immunomorphological studies on postmortem material have remained a basic method for human neurodevelopmental studies so far. The main problem for the immunohistochemical research of astrogliogenesis is that now there are no universal astrocyte markers, that characterize the whole mature astrocyte population or precursors at each stage of development. To define the general course of astrogliogenesis in the developing human cortex, 25 fetal autopsy samples at the stages from eight postconceptional weeks to birth were collected for the immunomorphological analysis. Spatiotemporal immunoreactivity patterns with the panel of markers (ALDH1L1, GFAP, S100, SOX9, and Olig-2), related to glial differentiation were described and compared. The early S100 + cell population of ventral origin was described as well. This S100 + cell distribution deviated from the SOX9-immunoreactivity pattern and was similar to the Olig-2 one. In the given material the dorsal gliogenic wave was characterized by ALDH1L1-, GFAP-, and S100-immunoreactivity manifestation in the dorsal proliferative niche at the end of the early fetal period. The time point of dorsal astrogliogenesis was agreed upon not later than the 17 GW stage. ALDH1L1 + , GFAP + , S100 + , and SOX9 + cell expansion patterns from the ventricular and subventricular zones to the intermediate zone, subplate, and cortical plate were described at the end of early fetal, middle, and late fetal periods. The ALDH1L1-, GFAP-, and S100-immunoreactivity patterns were shown to be not completely identical.
Collapse
Affiliation(s)
- A Kharlamova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418.
| | - Yu Krivova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - A Proshchina
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - O Godovalova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - D Otlyga
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - E Andreeva
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, Moscow, Russia, 101000
- FGBEU APE Russian Medical Academy Continuous Professional Education, Barrikadnaya St., 2/1, S.1, Moscow, Russia, 125993
| | - M Shachina
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, Moscow, Russia, 101000
| | - E Grushetskaya
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - S Saveliev
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| |
Collapse
|
2
|
Hernández-Ortega K, Canul-Euan AA, Solis-Paredes JM, Borboa-Olivares H, Reyes-Muñoz E, Estrada-Gutierrez G, Camacho-Arroyo I. S100B actions on glial and neuronal cells in the developing brain: an overview. Front Neurosci 2024; 18:1425525. [PMID: 39027325 PMCID: PMC11256909 DOI: 10.3389/fnins.2024.1425525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The S100B is a member of the S100 family of "E" helix-loop- "F" helix structure (EF) hand calcium-binding proteins expressed in diverse glial, selected neuronal, and various peripheral cells, exerting differential effects. In particular, this review compiles descriptions of the detection of S100B in different brain cells localized in specific regions during the development of humans, mice, and rats. Then, it summarizes S100B's actions on the differentiation, growth, and maturation of glial and neuronal cells in humans and rodents. Particular emphasis is placed on S100B regulation of the differentiation and maturation of astrocytes, oligodendrocytes (OL), and the stimulation of dendritic development in serotoninergic and cerebellar neurons during embryogenesis. We also summarized reports that associate morphological alterations (impaired neurite outgrowth, neuronal migration, altered radial glial cell morphology) of specific neural cell groups during neurodevelopment and functional disturbances (slower rate of weight gain, impaired spatial learning) with changes in the expression of S100B caused by different conditions and stimuli as exposure to stress, ethanol, cocaine and congenital conditions such as Down's Syndrome. Taken together, this evidence highlights the impact of the expression and early actions of S100B in astrocytes, OL, and neurons during brain development, which is reflected in the alterations in differentiation, growth, and maturation of these cells. This allows the integration of a spatiotemporal panorama of S100B actions in glial and neuronal cells in the developing brain.
Collapse
Affiliation(s)
- Karina Hernández-Ortega
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
| | - Arturo Alejandro Canul-Euan
- Department of Developmental Neurobiology, National Institute of Perinatology Isidro Espinosa de los Reyes (INPer), Mexico City, Mexico
| | | | | | | | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
3
|
Yesudhas D, Dharshini SAP, Taguchi YH, Gromiha MM. Tumor Heterogeneity and Molecular Characteristics of Glioblastoma Revealed by Single-Cell RNA-Seq Data Analysis. Genes (Basel) 2022; 13:428. [PMID: 35327982 PMCID: PMC8955282 DOI: 10.3390/genes13030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common infiltrating lethal tumor of the brain. Tumor heterogeneity and the precise characterization of GBM remain challenging, and the disease-specific and effective biomarkers are not available at present. To understand GBM heterogeneity and the disease prognosis mechanism, we carried out a single-cell transcriptome data analysis of 3389 cells from four primary IDH-WT (isocitrate dehydrogenase wild type) glioblastoma patients and compared the characteristic features of the tumor and periphery cells. We observed that the marker gene expression profiles of different cell types and the copy number variations (CNVs) are heterogeneous in the GBM samples. Further, we have identified 94 differentially expressed genes (DEGs) between tumor and periphery cells. We constructed a tissue-specific co-expression network and protein-protein interaction network for the DEGs and identified several hub genes, including CX3CR1, GAPDH, FN1, PDGFRA, HTRA1, ANXA2 THBS1, GFAP, PTN, TNC, and VIM. The DEGs were significantly enriched with proliferation and migration pathways related to glioblastoma. Additionally, we were able to identify the differentiation state of microglia and changes in the transcriptome in the presence of glioblastoma that might support tumor growth. This study provides insights into GBM heterogeneity and suggests novel potential disease-specific biomarkers which could help to identify the therapeutic targets in GBM.
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; (D.Y.); (S.A.P.D.)
| | - S. Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; (D.Y.); (S.A.P.D.)
| | - Y-h. Taguchi
- Department of Physics, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan;
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; (D.Y.); (S.A.P.D.)
| |
Collapse
|
4
|
Sawada K, Kamiya S, Aoki I. The Proliferation of Dentate Gyrus Progenitors in the Ferret Hippocampus by Neonatal Exposure to Valproic Acid. Front Neurosci 2021; 15:736313. [PMID: 34650400 PMCID: PMC8505998 DOI: 10.3389/fnins.2021.736313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Prenatal and neonatal exposure to valproic acid (VPA) is associated with human autism spectrum disorder (ASD) and can alter the development of several brain regions, such as the cerebral cortex, cerebellum, and amygdala. Neonatal VPA exposure induces ASD-like behavioral abnormalities in a gyrencephalic mammal, ferret, but it has not been evaluated in brain regions other than the cerebral cortex in this animal. This study aimed to facilitate a comprehensive understanding of brain abnormalities induced by developmental VPA exposure in ferrets. We examined gross structural changes in the hippocampus and tracked proliferative cells by 5-bromo-2-deoxyuridine (BrdU) labeling following VPA administration to ferret infants on postnatal days (PDs) 6 and 7 at 200 μg/g of body weight. Ex vivo short repetition time/time to echo magnetic resonance imaging (MRI) with high spatial resolution at 7-T was obtained from the fixed brain of PD 20 ferrets. The hippocampal volume estimated using MRI-based volumetry was not significantly different between the two groups of ferrets, and optical comparisons on coronal magnetic resonance images revealed no differences in gross structures of the hippocampus between VPA-treated and control ferrets. BrdU-labeled cells were observed throughout the hippocampus of both two groups at PD 20. BrdU-labeled cells were immunopositive for Sox2 (>70%) and almost immunonegative for NeuN, S100 protein, and glial fibrillary acidic protein. BrdU-labeled Sox2-positive progenitors were abundant, particularly in the subgranular layer of the dentate gyrus (DG), and were denser in VPA-treated ferrets. When BrdU-labeled Sox2-positive progenitors were examined at 2 h after the second VPA administration on PD 7, their density in the granular/subgranular layer and hilus of the DG was significantly greater in VPA-treated ferrets compared to controls. The findings suggest that VPA exposure to ferret infants facilitates the proliferation of DG progenitors, supplying excessive progenitors for hippocampal adult neurogenesis to the subgranular layer.
Collapse
Affiliation(s)
- Kazuhiko Sawada
- Department of Nutrition, Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Shiori Kamiya
- Department of Nutrition, Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba, Japan.,Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
5
|
Shan L, Zhang T, Fan K, Cai W, Liu H. Astrocyte-Neuron Signaling in Synaptogenesis. Front Cell Dev Biol 2021; 9:680301. [PMID: 34277621 PMCID: PMC8284252 DOI: 10.3389/fcell.2021.680301] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023] Open
Abstract
Astrocytes are the key component of the central nervous system (CNS), serving as pivotal regulators of neuronal synapse formation and maturation through their ability to dynamically and bidirectionally communicate with synapses throughout life. In the past 20 years, numerous astrocyte-derived molecules promoting synaptogenesis have been discovered. However, our understanding of the cell biological basis underlying intra-neuron processes and astrocyte-mediated synaptogenesis is still in its infancy. Here, we provide a comprehensive overview of the various ways astrocytes talk to neurons, and highlight astrocytes’ heterogeneity that allow them to displays regional-specific capabilities in boosting synaptogenesis. Finally, we conclude with promises and future directions on how organoids generated from human induced pluripotent stem cells (hiPSCs) effectively address the signaling pathways astrocytes employ in synaptic development.
Collapse
Affiliation(s)
- Lili Shan
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Tongran Zhang
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Kevin Fan
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Huisheng Liu
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
6
|
Holst CB, Brøchner CB, Vitting-Seerup K, Møllgård K. Astrogliogenesis in human fetal brain: complex spatiotemporal immunoreactivity patterns of GFAP, S100, AQP4 and YKL-40. J Anat 2019; 235:590-615. [PMID: 30901080 DOI: 10.1111/joa.12948] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
The astroglial lineage consists of heterogeneous cells instrumental for normal brain development, function and repair. Unfortunately, this heterogeneity complicates research in the field, which suffers from lack of truly specific and sensitive astroglial markers. Nevertheless, single astroglial markers are often used to describe astrocytes in different settings. We therefore investigated and compared spatiotemporal patterns of immunoreactivity in developing human brain from 12 to 21 weeks post conception and publicly available RNA expression data for four established and potential astroglial markers - GFAP, S100, AQP4 and YKL-40. In the hippocampal region, we also screened for C3, a complement component highly expressed in A1-reactive astrocytes. We found diverging partly overlapping patterns of the established astroglial markers GFAP, S100 and AQP4, confirming that none of these markers can fully describe and discriminate different developmental forms and subpopulations of astrocytes in human developing brain, although AQP4 seems to be the most sensitive and specific marker for the astroglial lineage at midgestation. AQP4 characterizes a brain-wide water transport system in cerebral cortex with regional differences in immunoreactivity at midgestation. AQP4 distinguishes a vast proportion of astrocytes and subpopulations of radial glial cells destined for the astroglial lineage, including astrocytes determined for the future glia limitans and apical truncated radial glial cells in ganglionic eminences, devoid of GFAP and S100. YKL-40 and C3d, previously found in reactive astrocytes, stain different subpopulations of astrocytes/astroglial progenitors in developing hippocampus at midgestation and may characterize specific subpopulations of 'developmental astrocytes'. Our results clearly reflect that lack of pan-astrocytic markers necessitates the consideration of time, region, context and aim when choosing appropriate astroglial markers.
Collapse
Affiliation(s)
- Camilla Bjørnbak Holst
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Radiation Biology, Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Beltoft Brøchner
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Vitting-Seerup
- Brain Tumor Biology, Danish Cancer Society Research Centre, Danish Cancer Society, Copenhagen, Denmark
| | - Kjeld Møllgård
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Nielsen JV, Thomassen M, Møllgård K, Noraberg J, Jensen NA. Zbtb20 defines a hippocampal neuronal identity through direct repression of genes that control projection neuron development in the isocortex. ACTA ACUST UNITED AC 2013; 24:1216-29. [PMID: 23283686 DOI: 10.1093/cercor/bhs400] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hippocampal pyramidal neurons are important for encoding and retrieval of spatial maps and episodic memories. While previous work has shown that Zbtb20 is a cell fate determinant for CA1 pyramidal neurons, the regulatory mechanisms governing this process are not known. In this study, we demonstrate that Zbtb20 binds to genes that control neuronal subtype specification in the developing isocortex, including Cux1, Cux2, Fezf2, Foxp2, Mef2c, Rorb, Satb2, Sox5, Tbr1, Tle4, and Zfpm2. We show that Zbtb20 represses these genes during ectopic CA1 pyramidal neuron development in transgenic mice. These data reveal a novel regulatory mechanism by which Zbtb20 suppresses the acquisition of an isocortical fate during archicortical neurogenesis to ensure commitment to a CA1 pyramidal neuron fate. We further show that the expression pattern of Zbtb20 is evolutionary conserved in the fetal human hippocampus, where it is complementary to the expression pattern of the Zbtb20 target gene Tbr1. Therefore, the disclosed Zbtb20-mediated transcriptional repressor mechanism may be involved in development of the human archicortex.
Collapse
Affiliation(s)
- Jakob V Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | | | | | | | | |
Collapse
|
8
|
Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res 2011; 345:1-19. [PMID: 21647561 DOI: 10.1007/s00441-011-1196-4] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/13/2011] [Indexed: 12/29/2022]
Abstract
Biologists long believed that, once development is completed, no new neurons are produced in the forebrain. However, as is now firmly established, new neurons can be produced at least in two specific forebrain areas: the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampal formation. Neurogenesis within the adult DG occurs constitutively throughout postnatal life, and the rate of neurogenesis within the DG can be altered under various physiological and pathophysiological conditions. The process of adult neurogenesis within the DG is a multi-step process (proliferation, differentiation, migration, targeting, and synaptic integration) that ends with the formation of a post-mitotic functionally integrated new neuron. Various markers are expressed during specific stages of adult neurogenesis. The availability of such markers allows the time-course and fate of newly born cells to be followed within the DG in a detailed and precise fashion. Several of the available markers (e.g., PCNA, Ki-67, PH3, MCM2) are markers for proliferative events, whereas others are more specific for early phases of neurogenesis and gliogenesis within the adult DG (e.g., nestin, GFAP, Sox2, Pax6). In addition, markers are available allowing events to be distinguished that are related to later steps of gliogenesis (e.g., vimentin, BLBP, S100beta) or neurogenesis (e.g., NeuroD, PSA-NCAM, DCX).
Collapse
|
9
|
Larsen KB, Lutterodt MC, Møllgård K, Møller M. Expression of the homeobox genes OTX2 and OTX1 in the early developing human brain. J Histochem Cytochem 2010; 58:669-78. [PMID: 20354145 DOI: 10.1369/jhc.2010.955757] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In rodents, the Otx2 gene is expressed in the diencephalon, mesencephalon, and cerebellum and is crucial for the development of these brain regions. Together with Otx1, Otx2 is known to cooperate with other genes to develop the caudal forebrain and, further, Otx1 is also involved in differentiation of young neurons of the deeper cortical layers. We have studied the spatial and temporal expression of the two homeobox genes OTX2 and OTX1 in human fetal brains from 7 to 14 weeks postconception by in situ hybridization and immunohistochemistry. OTX2 was expressed in the diencephalon, mesencephalon, and choroid plexus, with a minor expression in the basal telencephalon. The expression of OTX2 in the hippocampal anlage was strong, with no expression in the adjacent neocortex. Contrarily, the OTX1 expression was predominantly located in the proliferative zones of the neocortex. At later stages, the OTX2 protein was found in the subcommissural organ, pineal gland, and cerebellum. The early expression of OTX2 and OTX1 in proliferative cell layers of the human fetal brain supports the concept that these homeobox genes are important in neuronal cell development and differentiation: OTX1 primarily in the neocortex, and OTX2 in the archicortex, diencephalon, rostral brain stem, and cerebellum.
Collapse
Affiliation(s)
- Karen B Larsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
10
|
Levy BDFA, Cunha JDC, Chadi G. Cellular analysis of S100Beta and fibroblast growth factor-2 in the dorsal root ganglia and sciatic nerve of rodents. focus on paracrine actions of activated satellite cells after axotomy. Int J Neurosci 2007; 117:1481-503. [PMID: 17729158 DOI: 10.1080/15569520701502716] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The role of satellite cells, a type of peripheral glia, in the paracrine mechanisms related to neuronal maintenance and plasticity in the dorsal root ganglia (DRG) needs to be further investigated. This study employed immunohistochemistry and image analysis to investigate basic fibroblast growth factor (bFGF, FGF-2) and S100Beta immunoreactivities in the DRG and sciatic nerve of the rat and mouse. Well-characterized antibodies against bovine (residues 1-24) and rat (residues 1-23) FGF-2 were employed. Furthermore, the state of satellite cell reaction and changes in the FGF-2/S100Beta immunoreactivity were analyzed after axotomy of rat sciatic nerve. Scattered neurons and the majority of the satellite cells of the rat DRG and also Schwann cells of the rat sciatic nerve stained for S100Beta. In the mouse, strong S100Beta was encountered in the majority of sensory neurons and Schwann cells. Moderate FGF-2 (residues 1-24) immunoreactivity was found in scattered small size neurons of the rat DRG. A strong FGF-2 (residues 1-23) immunoreactivity was achieved in the satellite cells of rat DRG. Both FGF-2 antisera showed strong labeling in the mouse DRG sensory neurons. Activated satellite cells of the axotomized DRG possessed increased amount of FGF-2 and S100Beta immunoreactivity as demonstrated by quantitative image analysis. The proximal stump of the lesioned rat sciatic nerve showed increased FGF-2 (residues 1-24 and 1-23) in the Schwann cells, myelin sheaths, and neuronal fibers, without changes in the level of S100Beta immunoreactivity. Results suggested a possible interaction between FGF-2 and S100Beta in activated satellite cells of the DRG, which might trigger paracrine actions in the axotomized sensory neurons.
Collapse
|
11
|
do Carmo Cunha J, de Freitas Azevedo Levy B, de Luca BA, de Andrade MSR, Gomide VC, Chadi G. Responses of reactive astrocytes containing S100beta protein and fibroblast growth factor-2 in the border and in the adjacent preserved tissue after a contusion injury of the spinal cord in rats: implications for wound repair and neuroregeneration. Wound Repair Regen 2007; 15:134-46. [PMID: 17244329 DOI: 10.1111/j.1524-475x.2006.00194.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper demonstrates glial reaction and changes in the S100beta protein and basic fibroblast growth factor (bFGF, FGF-2) in the border and in the adjacent preserved tissue of the rat spinal cord after a contusion. In view of the expression of FGF-2 and S100beta in reactive glial cells and their ability to promote gliogenesis and neuronal trophism, the molecules have been considered to participate in the wound repair and regenerative events after nervous tissue injury. Adult rats were submitted to a moderate spinal cord (10th thoracic level) contusion induced by a New York University Impactor by dropping a 10 g rod from a distance of 25 mm onto the dorsal surface of the exposed dura spinal cord. Impactor curves and parameters were used to monitor the severity of the trauma. Control rats were submitted to sham operation. The motor behavioral spontaneous recovery was demonstrated by means of a BBB test and the combining behavior score up to 3 weeks after injury. Animals were killed 72 hours, 2, and 3 weeks after surgery and spinal cords were processed for immunohistochemistry to show glial fibrillary acidic protein positive astrocytes and OX-42-positive microglia/macrophages as well as changes in the S100beta and FGF-2 in the border and in the adjacent preserved tissue of the lesioned cords. The changes in the immunoreaction products were quantified by means of morphometric/microdensitometric image analysis, and the cell type expressing S100beta and FGF-2 was analyzed by means of two-color immunofluorescence procedures. Massive increases of S100beta and FGF-2 were found in reactive astrocytes, not in reactive microglia, in the border and in the white and gray matters of adjacent preserved tissue of the contused spinal cord in the periods studied. The results are discussed in view of possible paracrine trophic actions of the reactive astrocytes, mediated by S100beta and FGF-2, triggering wound repair events in the border of the trauma, and also leading to neurotrophism and neuronal plasticity in the adjacent regions. These cellular and molecular responses may interfere with the pattern of behavioral recovery after a contusion injury of the spinal cord.
Collapse
Affiliation(s)
- Jinger do Carmo Cunha
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Oomman S, Strahlendorf H, Dertien J, Strahlendorf J. Bergmann glia utilize active caspase-3 for differentiation. Brain Res 2006; 1078:19-34. [PMID: 16700096 DOI: 10.1016/j.brainres.2006.01.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, functions associated with caspase have been modified from their well-established role in apoptosis. Although caspases are still regarded as mediators of apoptosis, some of the pro-apoptotic caspases, namely caspase-8, -14 and -3 also regulate differentiation in certain cell types, namely myelomonocytic cells, osteoblasts, skeletal muscle cells, keratinocytes, and T lymphocytes. In the central nervous system, non-apoptotic active caspase-3 expression has been located in proliferating and differentiating neuronal cells of the ventricular zone and external granular layer of the developing cerebellar cortex. We previously demonstrated that active caspase-3 expression was not limited to neuronal cells but also was located in the Bergmann glia of the postnatal cerebellum. In that study, active caspase-3 immunolabeling did not markedly colocalize with Ki67, a proliferation marker, but was present in differentiating Bergmann glia that expressed brain lipid binding protein (BLBP) and thus, by its localization, suggested a role in the differentiation of Bergmann glia. The current study addresses the function of caspase-3 in Bergmann glia development by utilizing a Bergmann glial culture preparation. Inhibition of caspase-3 activity by the peptide inhibitor, DMQD-FMK, increased the number of proliferating precursor glial cells and decreased the number of differentiating Bergmann glia, without significantly altering the non-glial active caspase-3 negative population. The transformation in the developmental state of Bergmann glia occurring after suppression of caspase-3 activity strongly suggests an involvement of this enzyme in promoting differentiation of Bergmann glia.
Collapse
Affiliation(s)
- Sowmini Oomman
- Department of Physiology, Room 5A163, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|
13
|
Gomide V, Chadi G. Glial bFGF and S100 immunoreactivities increase in ascending dopamine pathways following striatal 6-OHDA-induced partial lesion of the nigrostriatal system: a sterological analysis. Int J Neurosci 2005; 115:537-55. [PMID: 15809219 DOI: 10.1080/00207450590521064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
S100, a calcium-binding protein, and basic fibroblast growth factor (bFGF, FGF-2) are found predominantly in astrocytes in the central nervous system. Those molecules show trophic properties to neurons and are upregulated after brain lesions. The present study investigated the changes in the S100beta and bFGF immunoreactivities after a partial lesion of the rat midbrain ascending dopamine pathways induced by intrastriatal injection of 6-hydroxydopamine (6-OHDA). Stereological method revealed increases in the estimated total number and density of bFGF immunoreactive astroglial profiles in the ipsilateral pars compacta of the substantia nigra (SNc) and ventral tegmental area (VTA). Increases in the counts of astroglial S100beta immunoreactive profiles were found in the striatum, SNc, and VTA mainly ipsilateral but also in the contralateral nuclei. These results open up the possibility that interactions between astroglial S100beta and bFGF may be relevant to paracrine events related to repair and maintenance of remaining dopamine neurons following striatal 6-OHDA induced partial lesion of ascending midbrain dopamine pathway.
Collapse
Affiliation(s)
- Vânia Gomide
- Laboratory of Neuroregeneration, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
14
|
Gomide VC, Chadi G. The trophic factors S-100beta and basic fibroblast growth factor are increased in the forebrain reactive astrocytes of adult callosotomized rat. Brain Res 1999; 835:162-74. [PMID: 10415371 DOI: 10.1016/s0006-8993(99)01557-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
S-100 is a calcium-binding protein that is predominantly found in astrocytes of the central nervous system. In the present study, we investigated the temporal and spatial changes of S-100beta immunoreactivity after a stereotaxic mechanical lesion of the adult rat corpus callosum performed with an adjustable wire knife. Rats were killed 7, 14 and 28 days after surgery. S-100beta immunoreactivity was found within the cytoplasm and processes of quiescent putative astrocytes that were observed throughout the gray and white matters of the forebrain of sham-operated rats. Following callosotomy, the S-100beta immunoreactive profiles showed increased size and thick processes, as well as increased amount of S-100beta immunoreactivity. Unbiased stereologic analysis revealed a sustained and widespread increase of the Areal Fraction of S-100beta immunoreactive profiles in the medial and lateral regions of the white matter of callosotomized rats at the studied time-intervals. In the cerebral cortex of callosotomized rats, the estimated total number of S-100beta immunoreactive profiles was also increased 7 and 14 days after the lesion. Since the cellular and temporal changes in S-100beta immunoreactivity were closely similar to those described for basic fibroblast growth factor (bFGF) following brain lesions, we co-localized the S-100beta and bFGF immunoreactivities after callosotomy. bFGF immunoreactivity was found in the nuclei of S-100beta immunoreactive glial profiles throughout the forebrain regions of the sham-operated rats. bFGF immunoreactivity was increased in the nuclei of reactive S-100beta immunoreactive putative astrocytes in the forebrain white matter and in the cerebral cortex of callosotomized rats. These results indicate that after transection of the corpus callosum of adult rats, the reactive astrocytes may exert paracrine trophic actions through S-100beta and bFGF. Interactions between S-100beta and bFGF may be relevant to the events related to neuronal maintenance and repair following brain injury.
Collapse
Affiliation(s)
- V C Gomide
- Laboratory of Neurotrophic Factors and Neuronal Plasticity, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, 05508-900, Sao Paulo, Brazil
| | | |
Collapse
|
15
|
Ulfig N, Neudörfer F, Bohl J. Distribution patterns of vimentin-immunoreactive structures in the human prosencephalon during the second half of gestation. J Anat 1999; 195 ( Pt 1):87-100. [PMID: 10473296 PMCID: PMC1467968 DOI: 10.1046/j.1469-7580.1999.19510087.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuronal migration is guided by long radially oriented glial fibres. During late stages of development radial glial cells are transformed into astrocytes. A predominant intermediate filament protein within radial glial cells and immature astrocytes is vimentin. In this study fetal brain sections were used to demonstrate the transient features of vimentin-positive radial glia. In the lower half of the cerebral wall of the 6th gestational month bundles, curvature, and crossing of vimentin-positive fibres are regularly seen. Moreover, fibres terminating on vessels are observed. In the upper half fibres are radially oriented; when ascending towards the pial surface the number and diameter of fibres appears conspicuously decreased. Radially aligned fibres display numerous varicosities. In the 8th month the bulk of vimentin-positive fibres is encountered next to the ganglionic eminence and below isocortical cerebral fissures. The dentate gyrus is conspicuous due to its high amount of immunolabelled fibres. Furthermore, densely packed fibres are visible within the internal and external capsule and in the vicinity of the anterior commissure. Radial glial somata are found in the proliferative areas as well as in the adjacent white matter. In the latter location bipolar, monopolar and stellate vimentin-positive cells are present. The results demonstrate an area-specific distribution pattern of vimentin-positive structures which can be correlated with migrational events. Areas maturing late in development for instance, reveal dense immunolabelling in the 8th month. The orientation and position of radial fibres point to an additional developmental role of these fibres, i.e. their involvement in the guidance of growing axons. Moreover, the arrangement and morphology of vimentin-positive fibres, such as retraction of fibres or occurrence of varicosities, are indicative of degenerative events. Accordingly, a transformation of radial glial somata, their displacement towards the white matter and finally the growth of stellate processes can clearly be demonstrated.
Collapse
Affiliation(s)
- N Ulfig
- Department of Anatomy, University of Rostock, Germany
| | | | | |
Collapse
|
16
|
Cervós-Navarro J, Sharma HS, Westman J, Bongcam-Rudloff E. Glial reactions in the central nervous system following heat stress. PROGRESS IN BRAIN RESEARCH 1998; 115:241-74. [PMID: 9632939 DOI: 10.1016/s0079-6123(08)62039-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J Cervós-Navarro
- Institute of Neuropathology, Free University Berlin, Klinikum Steglitz, Berlin, Germany
| | | | | | | |
Collapse
|
17
|
Martínez-Galán JR, Pedraza P, Santacana M, Escobar del Ray F, Morreale de Escobar G, Ruiz-Marcos A. Early effects of iodine deficiency on radial glial cells of the hippocampus of the rat fetus. A model of neurological cretinism. J Clin Invest 1997; 99:2701-9. [PMID: 9169500 PMCID: PMC508116 DOI: 10.1172/jci119459] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The most severe brain damage associated with thyroid dysfunction during development is observed in neurological cretins from areas with marked iodine deficiency. The damage is irreversible by birth and related to maternal hypothyroxinemia before mid gestation. However, direct evidence of this etiopathogenic mechanism is lacking. Rats were fed diets with a very low iodine content (LID), or LID supplemented with KI. Other rats were fed the breeding diet with a normal iodine content plus a goitrogen, methimazole (MMI). The concentrations of -thyroxine (T4) and 3,5,3'triiodo--thyronine (T3) were determined in the brain of 21-d-old fetuses. The proportion of radial glial cell fibers expressing nestin and glial fibrillary acidic protein was determined in the CA1 region of the hippocampus. T4 and T3 were decreased in the brain of the LID and MMI fetuses, as compared to their respective controls. The number of immature glial cell fibers, expressing nestin, was not affected, but the proportion of mature glial cell fibers, expressing glial fibrillary acidic protein, was significantly decreased by both LID and MMI treatment of the dams. These results show impaired maturation of cells involved in neuronal migration in the hippocampus, a region known to be affected in cretinism, at a stage of development equivalent to mid gestation in humans. The impairment is related to fetal cerebral thyroid hormone deficiency during a period of development when maternal thyroxinemia is believed to play an important role.
Collapse
Affiliation(s)
- J R Martínez-Galán
- Unidad de Neuroanatomía del Instituto Cajal, Consejo Superior de Investigaciones Científicas and Facultad de Medicina de la Universidad Autónoma de Madrid, 28002 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Vecino E, Velasco A, Caminos E, Aijón J. Distribution of S100 immunoreactivity in the retina and optic nerve head of the teleost Tinca tinca L. Microsc Res Tech 1997; 36:17-25. [PMID: 9031258 DOI: 10.1002/(sici)1097-0029(19970101)36:1<17::aid-jemt2>3.0.co;2-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The distribution of S100 immunoreactivity within the normal and regenerating retina and optic nerve head of the teleost Tinca tinca L. has been investigated using the avidin-biotin complex (ABC) method and a polyclonal antibody against S100. Astrocytes and Müller cells were labeled with this antibody. This represents the first description of astrocytes localized in the optic nerve head and in the nerve fiber layer of the fish retina displaying a typical bipolar morphology. Horizontal cells in the inner nuclear layer were immunolabeled; we also observed species-specific S100 labeling of horizontal cells of the H1 subtype. No significant changes were seen in the S100 immunoreactive Müller cells, astrocytes, or horizontal cells in the tench retina after optic nerve crushing and during regeneration. These results might help to understand the function of glial cells in the normal and experimentally induced regenerating fish visual system.
Collapse
Affiliation(s)
- E Vecino
- Dpto. Biología Celular y Ciencias Morfológicas, Facultad de Medicina, Universidad del País Vasco, Vizcaya, Spain
| | | | | | | |
Collapse
|
19
|
Marks A, O'Hanlon D, Lei M, Percy ME, Becker LE. Accumulation of S100 beta mRNA and protein in cerebellum during infancy in Down syndrome and control subjects. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 36:343-8. [PMID: 8965656 DOI: 10.1016/0169-328x(95)00293-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
S100 protein is a 20 kDA calcium-binding protein that accumulates during CNS maturation in mammals. The human gene coding for the beta subunit of S100 protein (S100 beta) is located on chromosome 21, in a subtelomeric position in 21q22.3. In order to investigate the effect of trisomy 21 on S100 beta gene expression, we performed Southern, Northern and Western blot analysis on DNA, RNA and protein, respectively, extracted from the cerebellum of control and Down syndrome (DS) subjects aged 1-18 months. Southern blot analysis revealed a novel EcoRI polymorphism in the S100 beta gene in two of 15 DNA samples examined, and a 1.5 gene dosage for S100 beta in DS. Northern and Western blot analysis showed an approximately 10-fold increase in S100 beta mRNA and protein levels between 1 and 18 months. No differences in the rates of accumulation of S100 beta mRNA and protein were observed between DS and normal subjects. These results demonstrate an increase in S100 beta mRNA and protein levels during infancy indicative of postnatal astrocytic maturation and show that there is no gross deregulation in the expression of the S100 beta gene in DS as a consequence of trisomy 21.
Collapse
Affiliation(s)
- A Marks
- Banting and Best Department of Medical Research, University of Toronto, Ont., Canada
| | | | | | | | | |
Collapse
|
20
|
Janeczko K. Age-dependent changes in the proliferative response of S-100 protein-positive glial cells to injury in the rat brain. Int J Dev Neurosci 1994; 12:431-40. [PMID: 7817786 DOI: 10.1016/0736-5748(94)90027-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A mechanical injury was inflicted to the left cerebral hemisphere in rats of four age groups: newborns, 6, 14 and 30 days old. The injury was followed by [3H]thymidine injections at different time intervals. Brain sections were immunostained for S-100 protein and subjected to autoradiography. During microscopic observations of the injury region, locations and numbers of the autoradiographically labeled astrocytes expressing S-100 protein were recorded. On the basis of the observations, injury-induced changes in the total number of proliferating astrocytes, as well as in their distribution, were analysed quantitatively. In rats injured neonatally, as well as those injured on postnatal days 6 and 14, the reactive increase in the number of proliferating astrocytes began on the first post-traumatic day. In 30-day-old rats the increase was slower and appeared on day 2. The maximal increase in the astrocyte proliferative activity occurred in 6-day-old rats as early as day 1 after injury and was about eight times higher than that recorded in newborns, and nearly twice as high as that recorded in brains of 30-day-old rats. The results suggest that the intensity of astrocyte proliferative response to injury cannot be regarded as simply being proportional to the developmental progress of the brain tissue. Rather, these results indicate that changes in glial proliferative responses to injury follow a developmental time course, with a peak around the end of the first postnatal week.
Collapse
Affiliation(s)
- K Janeczko
- Department of Neuroanatomy, Jagiellonian University, Kraków, Poland
| |
Collapse
|
21
|
Gerlai R, Friend W, Becker L, O'Hanlon D, Marks A, Roder J. Female transgenic mice carrying multiple copies of the human gene for S100 beta are hyperactive. Behav Brain Res 1993; 55:51-9. [PMID: 8329126 DOI: 10.1016/0166-4328(93)90006-c] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Down syndrome (DS) (trisomy 21) is the most frequent genetic cause of mental retardation in man. The gene coding for the beta subunit of human S100 protein (S100 beta) has been mapped to chromosome 21. The dimeric form of S100 beta may function as a neurotrophic factor in the CNS and may also influence the establishment of hippocampal long-term potentiation (LTP). To study the behavioral consequences of overexpression of S100 beta in an animal model, we derived four lines of transgenic mice carrying multiple copies of the human S100 beta gene. The human S100 beta gene was expressed in the brain of these mice in a cell-specific and gene-dose-dependent manner. The motor and posture patterns of 16-month-old transgenic mice and their control (non-transgenic) littermates were studied in two tests, open field and bar-crossing, in order to examine novelty induced exploratory activities. Transgenic female mice were significantly hyperactive in both tests in comparison with their female control littermates. These differences were independent of the line of origin of the mice suggesting a causal relationship between the observed hyperactivity and the presence of multiple copies of the integrated human S100 beta gene. In contrast, transgenic males were not hyperactive in comparison with controls. Neither male nor female transgenic mice displayed any coordination defects. We speculate about how an interaction between the effects of elevated S100 beta levels and female specific hormonal changes could have resulted in the observed female restricted hyperactivity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Gerlai
- Division of Molecular Immunology and Neurobiology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ont., Canada
| | | | | | | | | | | |
Collapse
|
22
|
Stagaard Janas M, Nowakowski RS, Terkelsen OB, Møllgård K. Glial cell differentiation in neuron-free and neuron-rich regions. I. Selective appearance of S-100 protein in radial glial cells of the hippocampal fimbria in human fetuses. ANATOMY AND EMBRYOLOGY 1991; 184:549-58. [PMID: 1776701 DOI: 10.1007/bf00942577] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The proliferative cells of the developing hippocampal fiber tract fimbria have only the potential for gliogenesis; thus the developing fimbria provides an ideal model for the study of the development and differentiation of its constituent glial cells. In the first stage of development, the fimbrial primordium can be distinguished morphologically, and during the second stage, the fimbria becomes a well-defined fiber tract. In the third stage, a divergent immunocytochemical staining pattern clearly demarcates the neuron-free fimbria from the hippocampus, where a mixed neuro- and gliogenesis occurs. The distinct expression of S-100 protein in radial glial cells is restricted to the fimbria. During the final stage of development, the ventricular lining of the fimbria will mature into an ependyma. It is suggested that the S-100-positive radial glial cells of the fimbria, which probably retain their proliferative capacity, represent a homogeneous population of precursor cells that will give rise to the glial cells of the adult fimbria. The appearance of S-100 in the fimbrial radial glial cells seems to occur coincidentally with the establishment of hippocampal commissural connections. The S-100-positive radial glial cells of the fimbria may guide and segregate populations of growing axons by providing physical and chemical cues. Thus, S-100 protein per se seems to be intimately involved in modulation and regulation of axonal growth and patterning.
Collapse
Affiliation(s)
- M Stagaard Janas
- Institute of Medical Anatomy A, Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|