1
|
Seeger DR, Murphy CC, Murphy EJ. Astrocyte arachidonate and palmitate uptake and metabolism is differentially modulated by dibutyryl-cAMP treatment. Prostaglandins Leukot Essent Fatty Acids 2016; 110:16-26. [PMID: 27255639 DOI: 10.1016/j.plefa.2016.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 12/29/2022]
Abstract
Astrocytes play a vital role in brain lipid metabolism; however the impact of the phenotypic shift in astrocytes to a reactive state on arachidonic acid metabolism is unknown. Therefore, we determined the impact of dibutyryl-cAMP (dBcAMP) treatment on radiolabeled arachidonic acid ([1-(14)C]20:4n-6) and palmitic acid ([1-(14)C]16:0) uptake and metabolism in primary cultured murine cortical astrocytes. In dBcAMP treated astrocytes, total [1-(14)C]20:4n-6 uptake was increased 1.9-fold compared to control, while total [1-(14)C]16:0 uptake was unaffected. Gene expression of long-chain acyl-CoA synthetases (Acsl), acyl-CoA hydrolase (Acot7), fatty acid binding protein(s) (Fabp) and alpha-synuclein (Snca) were determined using qRT-PCR. dBcAMP treatment increased expression of Acsl3 (4.8-fold) and Acsl4 (1.3-fold), which preferentially use [1-(14)C]20:4n-6 and are highly expressed in astrocytes, consistent with the increase in [1-(14)C]20:4n-6 uptake. However, expression of Fabp5 and Fabp7 were significantly reduced by 25% and 45%, respectively. Acot7 (20%) was also reduced, suggesting dBcAMP treatment favors acyl-CoA formation. dBcAMP treatment enhanced [1-(14)C]20:4n-6 (2.2-fold) and [1-(14)C]16:0 (1.6-fold) esterification into total phospholipids, but the greater esterification of [1-(14)C]20:4n-6 is consistent with the observed uptake through increased Acsl, but not Fabp expression. Although total [1-(14)C]16:0 uptake was not affected, there was a dramatic decrease in [1-(14)C]16:0 in the free fatty acid pool as esterification into the phospholipid pool was increased, which is consistent with the increase in Acsl3 and Acsl4 expression. In summary, our data demonstrates that dBcAMP treatment increases [1-(14)C]20:4n-6 uptake in astrocytes and this increase appears to be due to increased expression of Acsl3 and Acsl4 coupled with a reduction in Acot7 expression.
Collapse
Affiliation(s)
- D R Seeger
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - C C Murphy
- Department of Nutrition, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - E J Murphy
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| |
Collapse
|
2
|
Wu L, Miao S, Zou LB, Wu P, Hao H, Tang K, Zeng P, Xiong J, Li HH, Wu Q, Cai L, Ye DY. Lipoxin A4 inhibits 5-lipoxygenase translocation and leukotrienes biosynthesis to exert a neuroprotective effect in cerebral ischemia/reperfusion injury. J Mol Neurosci 2012; 48:185-200. [PMID: 22661361 DOI: 10.1007/s12031-012-9807-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/07/2012] [Indexed: 12/31/2022]
Abstract
Lipoxin A(4) (LXA(4)), a biologically active eicosanoid with anti-inflammatory and pro-resolution properties, was recently found to have neuroprotective effects in brain ischemia. As 5-lipoxygenase (5-LOX) and leukotrienes are generally considered to aggravate cerebral ischemia/reperfusion (I/R) injury, we investigated their effects on LXA(4)-mediated neuroprotection by studying middle cerebral artery occlusion (MCAO)/reperfusion in rats and oxygen-glucose deprivation (OGD)/recovery in neonatal rat astrocyte primary cultures. LXA(4) effectively reduced infarct volumes and brain edema, and improved neurological scores in the MCAO/reperfusion experiments; this effect was partially blocked by butoxycarbonyl-Phe-Leu-Phe-Leu-Phe (Boc2), a specific antagonist of the LXA(4) receptor (ALXR). Total 5-LOX expression did not change, regardless of treatment, but LXA(4) could inhibit nuclear translocation induced by MCAO or OGD. We also found that LXA(4) inhibits the upregulation of both leukotriene B(4) (LTB(4)) and leukotriene C(4) (LTC(4)) and the phosphorylation of extracellular signal-regulated kinase (ERK) induced by MCAO or OGD. The phosphorylation of the 38-kDa protein kinase (p38) and c-Jun N-terminal kinase (JNK) was not altered throughout the experiment. These results suggest that the neuroprotective effects of LXA(4) are probably achieved by anti-inflammatory mechanisms that are partly mediated by ALXR and through an ERK signal transduction pathway.
Collapse
Affiliation(s)
- Le Wu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Normal brain function requires proper supply of oxygen and glucose in a timely and local manner. This is achieved through an orchestrated intercellular communication between neurones, astrocytes and microvessels that results in a rapid and restricted increase in cerebral blood flow, a process known as neurovascular coupling. Astrocytic end-feet make close contacts with neuronal synapses and blood vessels and, given their ability to release vasoactive signals following neuronal activation, have been recognized as key intermediaries in the neurovascular response. Both dilating and constricting signals appear to be released from astrocytes upon increases in intracellular Ca(2+) concentration, and both dilatation and constriction of brain vessels have been observed in previous studies. In this article, we discuss the various astrocyte-derived vasodilating and vasoconstricting signals, their interactions and effects on astrocytes and vascular smooth muscle cells, and suggest the importance of the intrinsic properties of the latter cell type on the overall neurovascular response. We present a working model in which the rise in astrocytic Ca(2+) following neuronal activation leads not only to the rapid activation of calcium-activated K(+) channels in astrocytic end-feet, but also to their modulation by metabolites of the arachidonic acid pathway, which in general have been proposed to act on vascular smooth muscle cells rather than on astrocytes. We propose that this latter mechanism may in turn modulate K(+) signalling from astrocytes to smooth muscle cells, influencing the overall effects of the vasodilating and vasoconstricting signals released during neuronal activation.
Collapse
Affiliation(s)
- Jessica A Filosa
- Department of Psychiatry, University of Cincinnati, 2170 East Galbraith Road, Room 239-A, Cincinnati, OH 45237, USA.
| | | |
Collapse
|
4
|
Zhou Y, Wei EQ, Fang SH, Chu LS, Wang ML, Zhang WP, Yu GL, Ye YL, Lin SC, Chen Z. Spatio-temporal properties of 5-lipoxygenase expression and activation in the brain after focal cerebral ischemia in rats. Life Sci 2006; 79:1645-56. [PMID: 16824548 DOI: 10.1016/j.lfs.2006.05.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/13/2006] [Accepted: 05/23/2006] [Indexed: 12/29/2022]
Abstract
The role of 5-lipoxygenase (5-LOX) in brain injury after cerebral ischemia has been reported; however, the spatio-temporal properties of 5-LOX expression and the enzymatic activation are unclear. To determine these properties, we observed post-ischemic 5-LOX changes from 3 h to 14 days after reperfusion in rats with transient focal cerebral ischemia induced by 30 min of middle cerebral artery occlusion. We found that the expression of 5-LOX, both mRNA and protein, was increased in the ischemic core 12-24 h after reperfusion, and in the boundary zone adjacent to the ischemic core 7-14 days after reperfusion. The increased 5-LOX was primarily localized in the neurons in the ischemic core at 24 h, but in the proliferated astrocytes in the boundary zone 14 days after reperfusion. As 5-LOX metabolites, the level of cysteinyl-leukotrienes in the ischemic brain was substantially increased 3 h to 24 h, near control at 3 days, and moderately increased again 7 days after reperfusion; whereas the level of LTB(4) was increased mildly 3 h but substantially 7-14 days after reperfusion. Thus, we conclude that 5-LOX expression and the enzymatic activity are increased after focal cerebral ischemia, and spatio-temporally involved in neuron injury in the acute phase and astrocyte proliferation in the late phase.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pharmacology, School of Medicine, Zhejiang University, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
De Lago E, Gustafsson SB, Fernández-Ruiz J, Nilsson J, Jacobsson SOP, Fowler CJ. Acyl-based anandamide uptake inhibitors cause rapid toxicity to C6 glioma cells at pharmacologically relevant concentrations. J Neurochem 2006; 99:677-88. [PMID: 16899063 DOI: 10.1111/j.1471-4159.2006.04104.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Compounds blocking the uptake of the endogenous cannabinoid anandamide (AEA) have been used to explore the functions of the endogenous cannabinoid system in the CNS both in vivo and in vitro. In this study, the effects of four commonly used acyl-based uptake inhibitors [N-(4-hydroxyphenyl)arachidonylamide (AM404), N-(4-hydroxy-2-methylphenyl) arachidonoyl amide (VDM11), (5Z,8Z,11Z,14Z)-N-(3-furanylmethyl)-5,8,11,14-eicosatetraenamide (UCM707) and (9Z)-N-[1-((R)-4-hydroxybenzyl)-2-hydroxyethyl]-9-octadecen-amide (OMDM2)] and the related compound arvanil on C6 glioma cell viability were investigated. All five compounds reduced the ability of the cells to accumulate calcein, reduced the total nucleic acid content and increased the activity of lactate dehydrogenase recovered in the cell medium. AM404 (10 microm) and VDM11 (10 microm) acted rapidly, reducing cell viability after 3 h of exposure when cell densities of 5,000 per well were used. In contrast, UCM707 (30 microm), OMDM2 (10 microm) and the related compound arvanil (10 microm) produced a more slowly developing effect on cell viability, although robust effects were seen after 6-9 h of exposure. At higher cell densities, the toxicities of AM404 and UCM707 were reduced. Comparison of the compounds with arachidonic acid, arachidonic acid methyl ester, AEA, arachidonoyl glycine and oleic acid suggested that the toxicity of the arachidonoyl-based compounds was related primarily to the acyl side-chain rather than the head group. A variety of pre-treatments blocking possible metabolic pathways and receptor targets were tested, but the only consistent protective treatment against the effects of these compounds was the antioxidant N-acetyl-L-cysteine. It is concluded that AM404, VDM11, UCM707 and OMDM2 produce a rapid loss of C6 glioma cell viability over the same concentration range as is required for the inhibition of AEA uptake in vitro, albeit with a longer latency. Such effects should be kept in mind when acyl-derived compounds are used to probe the function of the endocannabinoid system in the CNS, particularly in chronic administration protocols.
Collapse
Affiliation(s)
- Eva De Lago
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
From a structural perspective, the predominant glial cell of the central nervous system, the astrocyte, is positioned to regulate synaptic transmission and neurovascular coupling: the processes of one astrocyte contact tens of thousands of synapses, while other processes of the same cell form endfeet on capillaries and arterioles. The application of subcellular imaging of Ca2+ signaling to astrocytes now provides functional data to support this structural notion. Astrocytes express receptors for many neurotransmitters, and their activation leads to oscillations in internal Ca2+. These oscillations induce the accumulation of arachidonic acid and the release of the chemical transmitters glutamate, d-serine, and ATP. Ca2+ oscillations in astrocytic endfeet can control cerebral microcirculation through the arachidonic acid metabolites prostaglandin E2 and epoxyeicosatrienoic acids that induce arteriole dilation, and 20-HETE that induces arteriole constriction. In addition to actions on the vasculature, the release of chemical transmitters from astrocytes regulates neuronal function. Astrocyte-derived glutamate, which preferentially acts on extrasynaptic receptors, can promote neuronal synchrony, enhance neuronal excitability, and modulate synaptic transmission. Astrocyte-derived d-serine, by acting on the glycine-binding site of the N-methyl-d-aspartate receptor, can modulate synaptic plasticity. Astrocyte-derived ATP, which is hydrolyzed to adenosine in the extracellular space, has inhibitory actions and mediates synaptic cross-talk underlying heterosynaptic depression. Now that we appreciate this range of actions of astrocytic signaling, some of the immediate challenges are to determine how the astrocyte regulates neuronal integration and how both excitatory (glutamate) and inhibitory signals (adenosine) provided by the same glial cell act in concert to regulate neuronal function.
Collapse
Affiliation(s)
- Philip G Haydon
- Silvio Conte Center for Integration at the Tripartite Synapse, Department of Neuroscience, University of Pennsylvania School of Medicine, PA 19104, USA.
| | | |
Collapse
|
7
|
Fowler CJ, Jonsson KO, Andersson A, Juntunen J, Järvinen T, Vandevoorde S, Lambert DM, Jerman JC, Smart D. Inhibition of C6 glioma cell proliferation by anandamide, 1-arachidonoylglycerol, and by a water soluble phosphate ester of anandamide: variability in response and involvement of arachidonic acid. Biochem Pharmacol 2003; 66:757-67. [PMID: 12948856 DOI: 10.1016/s0006-2952(03)00392-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It has previously been shown that the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) inhibit the proliferation of C6 glioma cells in a manner that can be prevented by a combination of capsazepine (Caps) and cannabinoid (CB) receptor antagonists. It is not clear whether the effect of 2-AG is due to the compound itself, due to the rearrangement to form 1-arachidonoylglycerol (1-AG) or due to a metabolite. Here, it was found that the effects of 2-AG can be mimicked with 1-AG, both in terms of its potency and sensitivity to antagonism by Caps and CB receptor antagonists. In order to determine whether the effect of Caps could be ascribed to actions upon vanilloid receptors, the effect of a more selective vanilloid receptor antagonist, SB366791 was investigated. This compound inhibited capsaicin-induced Ca(2+) influx into rVR1-HEK293 cells with a pK(B) value of 6.8+/-0.3. The combination of SB366791 and CB receptor antagonists reduced the antiproliferative effect of 1-AG, confirming a vanilloid receptor component in its action. 1-AG, however, showed no direct effect on Ca(2+) influx into rVR1-HEK293 cells indicative of an indirect effect upon vanilloid receptors. Identification of the mechanism involved was hampered by a large inter-experimental variation in the sensitivity of the cells to the antiproliferative effects of 1-AG. A variation was also seen with anandamide, which was not a solubility issue, since its water soluble phosphate ester showed the same variability. In contrast, the sensitivity to methanandamide, which was not sensitive to antagonism by the combination of Caps and CB receptor antagonists, but has similar physicochemical properties to anandamide, did not vary between experiments. This variation greatly reduces the utility of these cells as a model system for the study of the antiproliferative effects of anandamide. Nevertheless, it was possible to conclude that the antiproliferative effects of anandamide were not solely mediated by either its hydrolysis to produce arachidonic acid or its CB receptor-mediated activation of phospholipase A(2) since palmitoyltrifluoromethyl ketone did not prevent the response to anandamide. The same result was seen with the fatty acid amide hydrolase inhibitor palmitoylethylamide. Increasing intracellular arachidonic acid by administration of arachidonic acid methyl ester did not affect cell proliferation, and the modest antiproliferative effect of umbelliferyl arachidonate was not prevented by a combination of Caps and CB receptor antagonists.
Collapse
Affiliation(s)
- Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-90187 Umeå, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sergeeva M, Strokin M, Wang H, Ubl JJ, Reiser G. Arachidonic acid in astrocytes blocks Ca(2+) oscillations by inhibiting store-operated Ca(2+) entry, and causes delayed Ca(2+) influx. Cell Calcium 2003; 33:283-92. [PMID: 12618149 DOI: 10.1016/s0143-4160(03)00011-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ATP-elicited oscillations of the concentration of free intracellular Ca(2+) ([Ca(2+)](i)) in rat brain astrocytes were abolished by simultaneous arachidonic acid (AA) addition, whereas the tetraenoic analogue 5,8,11,14-eicosatetraynoic acid (ETYA) was ineffective. Inhibition of oscillations is due to suppression by AA of intracellular Ca(2+) store refilling. Short-term application of AA, but not ETYA, blocked Ca(2+) influx, which was evoked by depletion of stores with cyclopiazonic acid (CPA) or thapsigargin (Tg). Addition of AA after ATP blocked ongoing [Ca(2+)](i) oscillations. Prolonged AA application without or with agonist could evoke a delayed [Ca(2+)](i) increase. This AA-induced [Ca(2+)](i) rise developed slowly, reached a plateau after 5 min, could be reversed by addition of bovine serum albumin (BSA), that scavenges AA, and was blocked by 1 microM Gd(3+), indicative for the influx of extracellular Ca(2+). Specificity for AA as active agent was demonstrated by ineffectiveness of C16:0, C18:0, C20:0, C18:2, and ETYA. Moreover, the action of AA was not affected by inhibitors of oxidative metabolism of AA (ibuprofen, MK886, SKF525A). Thus, AA exerted a dual effect on astrocytic [Ca(2+)](i), firstly, a rapid reduction of capacitative Ca(2+) entry thereby suppressing [Ca(2+)](i) oscillations, and secondly inducing a delayed activation of Ca(2+) entry, also sensitive to low Gd(3+) concentration.
Collapse
Affiliation(s)
- Marina Sergeeva
- Institut für Neurobiochemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
9
|
Sergeeva M, Strokin M, Wang H, Ubl JJ, Reiser G. Arachidonic acid and docosahexaenoic acid suppress thrombin-evoked Ca2+ response in rat astrocytes by endogenous arachidonic acid liberation. J Neurochem 2002; 82:1252-61. [PMID: 12358772 DOI: 10.1046/j.1471-4159.2002.01052.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Arachidonic (AA) and docosahexaenoic acid (DHA) are the major polyunsaturated fatty acids (PUFAs) in the brain. However, their influence on intracellular Ca2+ signalling is still widely unknown. In astrocytes, the amplitude of thrombin- induced Ca2+ response was time-dependently diminished by AA and DHA, or by the AA tetraynoic analogue ETYA, but not by eicosapentaenoic acid (EPA). Thrombin-elicited Ca2+ response was reduced (20-30%) by 1-min exposure to AA or DHA. Additionally, 1-min application of AA or DHA together with thrombin in Ca2+-free medium blocked Ca2+ influx, which followed after readdition of extracellular Ca2+. EPA and ETYA, however, were ineffective. Long-term treatment of astrocytes with AA and DHA, but not EPA reduced the amplitude of the thrombin-induced Ca2+ response by up to 80%. AA and DHA caused a comparable decrease in intracellular Ca2+ store content. Only DHA and AA, but not EPA or ETYA, caused liberation of endogenous AA by cytosolic phospholipase A2 (cPLA2). Therefore, we reasoned that the suppression of Ca2+ response to thrombin by AA and DHA could be due to release of endogenous AA. Possible participation of AA metabolites, however, was excluded by the finding that specific inhibitors of the different oxidative metabolic pathways of AA were not able to abrogate the inhibitory AA effect. In addition, thrombin evoked AA release via activation of cPLA2. From our data we propose a novel model of positive/negative-feed-back in which agonist-induced release of AA from membrane phospholipids promotes further AA release and then suppresses agonist-induced Ca2+ responses.
Collapse
Affiliation(s)
- Marina Sergeeva
- Institut für Neurobiochemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Germany
| | | | | | | | | |
Collapse
|
10
|
Winkler AS, Baethmann A, Peters J, Kempski O, Staub F. Mechanisms of arachidonic acid induced glial swelling. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:419-23. [PMID: 10762721 DOI: 10.1016/s0169-328x(00)00017-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Accumulation of arachidonic acid (AA) in the brain during ischaemia may contribute to development of brain oedema. In this study we investigated the effect of selected drugs on AA-induced cytotoxic brain oedema in C6 glioma cells. Suspended C6 glioma cells were preincubated with drugs and AA (0.1 mM) was added. When no drug was administered cell volume increased immediately after the addition of AA with a maximum cell swelling of 13.1+/-1.9% at 15 min (mean +/- S.E. M.). Preincubation of cells with BW 755C, a dual inhibitor of cyclo- and lipoxygenases, showed no reduction in cell swelling from AA, whereas superoxide dismutase, amiloride and the protein kinase inhibitor H-9370 led to a significant attenuation of volume increase (p<0.05). The role of Na(+) ions during cell swelling from AA was evaluated after pretreatment of C6 glioma cells with ouabain. This resulted in a reversal of cell swelling (p<0.01). We conclude that there is potential involvement of free radicals, signal transduction systems and intracellular accumulation of Na(+) ions in glial cell swelling from AA.
Collapse
Affiliation(s)
- A S Winkler
- Institute for Surgical Research, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | |
Collapse
|
11
|
Martínez AD, Sáez JC. Arachidonic acid-induced dye uncoupling in rat cortical astrocytes is mediated by arachidonic acid byproducts. Brain Res 1999; 816:411-23. [PMID: 9878857 DOI: 10.1016/s0006-8993(98)01016-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arachidonic acid (AA) induced a concentration- and time-dependent reduction in gap junction-mediated dye coupling between cultured astrocytes. The effect was greatly diminished by inhibition of cyclooxygenases and lipoxygenases. The action of a low concentration of AA (5 microM) was also prevented by Ca2+-free extracellular solution or a high concentration of melatonin, a potent free radical scavenger, but not by Nomega-nitro-l-arginine, a nitric oxide (NO) synthase inhibitor. Thus, this effect may depend on Ca2+ influx and oxygen free radicals but not on NO generation. Cellular uncoupling induced by a high (100 microM), but not a low, AA concentration was rapidly reversed by washing with albumin containing solution. After reversal from 5 min but not 2.5 min inhibition with a high AA concentration dye coupling between astrocytes became refractory to a low concentration of AA, suggesting desensitization of the response elicited by a low concentration of the fatty acid. Dye uncoupling occurred without changes in levels and state of phosphorylation (immunoblotting and 32P-incorporation) of connexin43, the main astrocyte gap junctional protein. However, maximal cell uncoupling induced by a low (Slow action) but not by a high (Fast action) AA concentration was paralleled by a reduction in connexin43 (immunofluorescence) at cell-to-cell contacts. It is proposed that the AA-induced dye uncoupling is mediated by byproducts that induce rapid channel closure or slow removal of connexin43 gap junctions.
Collapse
Affiliation(s)
- A D Martínez
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago,
| | | |
Collapse
|