1
|
Fu M, Zhang Y, Peng B, Luo N, Zhang Y, Zhu W, Yang F, Chen Z, Zhang Q, Li Q, Chen X, Liu Y, Long G, Hu G, Peng X. All-trans retinoic acid inhibits glioblastoma progression and attenuates radiation-induced brain injury. JCI Insight 2024; 9:e179530. [PMID: 39513361 PMCID: PMC11601587 DOI: 10.1172/jci.insight.179530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Radiotherapy (RT) remains a primary treatment modality for glioblastoma (GBM), but it induces cellular senescence and is strongly implicated in GBM progression and RT-related injury. Recently, eliminating senescent cells has emerged as a promising strategy for treating cancer and for mitigating radiation-induced brain injury (RBI). Here, we investigated the impact of all-trans retinoic acid (RA) on radiation-induced senescence. The findings of this study revealed that RA effectively eliminated astrocytes, which are particularly prone to senescence after radiation, and that the removal of senescence-associated secretory phenotype factor-producing astrocytes inhibited GBM cell proliferation in vitro. Moreover, RA-mediated clearance of senescent cells improved survival in GBM-bearing mice and alleviated radiation-induced cognitive impairment. Through RNA sequencing, we found that the AKT/mTOR/PPARγ/Plin4 signaling pathway is involved in RA-mediated clearance of senescent cells. In summary, these results suggest that RA could be a potential senolytic drug for preventing GBM progression and improving RBI.
Collapse
Affiliation(s)
- Min Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Zhu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxian Long
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Pournajaf S, Afsordeh N, Pourgholami MH. In vivo C6 glioma models: an update and a guide toward a more effective preclinical evaluation of potential anti-glioblastoma drugs. Rev Neurosci 2024; 35:183-195. [PMID: 37651618 DOI: 10.1515/revneuro-2023-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Glioblastoma multiform (GBM) is the most common primary brain tumor with a poor prognosis and few therapeutic choices. In vivo, tumor models are useful for enhancing knowledge of underlying GBM pathology and developing more effective therapies/agents at the preclinical level, as they recapitulate human brain tumors. The C6 glioma cell line has been one of the most widely used cell lines in neuro-oncology research as they produce tumors that share the most similarities with human GBM regarding genetic, invasion, and expansion profiles and characteristics. This review provides an overview of the distinctive features and the different animal models produced by the C6 cell line. We also highlight specific applications of various C6 in vivo models according to the purpose of the study and offer some technical notes for more convenient/repeatable modeling. This work also includes novel findings discovered in our laboratory, which would further enhance the feasibility of the model in preclinical GBM investigations.
Collapse
Affiliation(s)
- Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Nastaran Afsordeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | | |
Collapse
|
3
|
Slika H, Karimov Z, Alimonti P, Abou-Mrad T, De Fazio E, Alomari S, Tyler B. Preclinical Models and Technologies in Glioblastoma Research: Evolution, Current State, and Future Avenues. Int J Mol Sci 2023; 24:16316. [PMID: 38003507 PMCID: PMC10671665 DOI: 10.3390/ijms242216316] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is the most common malignant primary central nervous system tumor and one of the most debilitating cancers. The prognosis of patients with glioblastoma remains poor, and the management of this tumor, both in its primary and recurrent forms, remains suboptimal. Despite the tremendous efforts that are being put forward by the research community to discover novel efficacious therapeutic agents and modalities, no major paradigm shifts have been established in the field in the last decade. However, this does not mirror the abundance of relevant findings and discoveries made in preclinical glioblastoma research. Hence, developing and utilizing appropriate preclinical models that faithfully recapitulate the characteristics and behavior of human glioblastoma is of utmost importance. Herein, we offer a holistic picture of the evolution of preclinical models of glioblastoma. We further elaborate on the commonly used in vitro and vivo models, delving into their development, favorable characteristics, shortcomings, and areas of potential improvement, which aids researchers in designing future experiments and utilizing the most suitable models. Additionally, this review explores progress in the fields of humanized and immunotolerant mouse models, genetically engineered animal models, 3D in vitro models, and microfluidics and highlights promising avenues for the future of preclinical glioblastoma research.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Ziya Karimov
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
- Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| | - Paolo Alimonti
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Tatiana Abou-Mrad
- Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emerson De Fazio
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| |
Collapse
|
4
|
Sahu U, Barth RF, Otani Y, McCormack R, Kaur B. Rat and Mouse Brain Tumor Models for Experimental Neuro-Oncology Research. J Neuropathol Exp Neurol 2022; 81:312-329. [PMID: 35446393 PMCID: PMC9113334 DOI: 10.1093/jnen/nlac021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rodent brain tumor models have been useful for developing effective therapies for glioblastomas (GBMs). In this review, we first discuss the 3 most commonly used rat brain tumor models, the C6, 9L, and F98 gliomas, which are all induced by repeated injections of nitrosourea to adult rats. The C6 glioma arose in an outbred Wistar rat and its potential to evoke an alloimmune response is a serious limitation. The 9L gliosarcoma arose in a Fischer rat and is strongly immunogenic, which must be taken into consideration when using it for therapy studies. The F98 glioma may be the best of the 3 but it does not fully recapitulate human GBMs because it is weakly immunogenic. Next, we discuss a number of mouse models. The first are human patient-derived xenograft gliomas in immunodeficient mice. These have failed to reproduce the tumor-host interactions and microenvironment of human GBMs. Genetically engineered mouse models recapitulate the molecular alterations of GBMs in an immunocompetent environment and “humanized” mouse models repopulate with human immune cells. While the latter are rarely isogenic, expensive to produce, and challenging to use, they represent an important advance. The advantages and limitations of each of these brain tumor models are discussed. This information will assist investigators in selecting the most appropriate model for the specific focus of their research.
Collapse
Affiliation(s)
- Upasana Sahu
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Yoshihiro Otani
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ryan McCormack
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Balveen Kaur
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Foley JF, Phadke DP, Hardy O, Hardy S, Miller V, Madan A, Howard K, Kruse K, Lord C, Ramaiahgari S, Solomon GG, Shah RR, Pandiri AR, Herbert RA, Sills RC, Merrick BA. Whole exome sequencing in the rat. BMC Genomics 2018; 19:487. [PMID: 29925311 PMCID: PMC6011395 DOI: 10.1186/s12864-018-4858-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The rat genome was sequenced in 2004 with the aim to improve human health altered by disease and environmental influences through gene discovery and animal model validation. Here, we report development and testing of a probe set for whole exome sequencing (WES) to detect sequence variants in exons and UTRs of the rat genome. Using an in-silico approach, we designed probes targeting the rat exome and compared captured mutations in cancer-related genes from four chemically induced rat tumor cell lines (C6, FAT7, DSL-6A/C1, NBTII) to validated cancer genes in the human database, Catalogue of Somatic Mutations in Cancer (COSMIC) as well as normal rat DNA. Paired, fresh frozen (FF) and formalin-fixed, paraffin-embedded (FFPE) liver tissue from naive rats were sequenced to confirm known dbSNP variants and identify any additional variants. RESULTS Informatics analysis of available gene annotation from rat RGSC6.0/rn6 RefSeq and Ensembl transcripts provided 223,636 unique exons representing a total of 26,365 unique genes and untranslated regions. Using this annotation and the Rn6 reference genome, an in-silico probe design generated 826,878 probe sequences of which 94.2% were uniquely aligned to the rat genome without mismatches. Further informatics analysis revealed 25,249 genes (95.8%) covered by at least one probe and 23,603 genes (93.5%) had every exon covered by one or more probes. We report high performance metrics from exome sequencing of our probe set and Sanger validation of annotated, highly relevant, cancer gene mutations as cataloged in the human COSMIC database, in addition to several exonic variants in cancer-related genes. CONCLUSIONS An in-silico probe set was designed to enrich the rat exome from isolated DNA. The platform was tested on rat tumor cell lines and normal FF and FFPE liver tissue. The method effectively captured target exome regions in the test DNA samples with exceptional sensitivity and specificity to obtain reliable sequencing data representing variants that are likely chemically induced somatic mutations. Genomic discovery conducted by means of high throughput WES queries should benefit investigators in discovering rat genomic variants in disease etiology and in furthering human translational research.
Collapse
Affiliation(s)
- Julie F. Foley
- Biomolecular Screening Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr. Research Triangle Park, Durham, NC USA
| | | | - Owen Hardy
- Agilent Technologies, Santa Clara, CA USA
| | - Sara Hardy
- Agilent Technologies, Santa Clara, CA USA
| | | | - Anup Madan
- Covance Genomics Laboratory, Redmond, WA USA
| | | | | | - Cara Lord
- Covance Genomics Laboratory, Redmond, WA USA
| | - Sreenivasa Ramaiahgari
- Biomolecular Screening Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr. Research Triangle Park, Durham, NC USA
| | - Gregory G. Solomon
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC USA
| | | | - Arun R. Pandiri
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC USA
| | - Ronald A. Herbert
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC USA
| | - Robert C. Sills
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC USA
| | - B. Alex Merrick
- Biomolecular Screening Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr. Research Triangle Park, Durham, NC USA
| |
Collapse
|
6
|
Conde M, Michen S, Wiedemuth R, Klink B, Schröck E, Schackert G, Temme A. Chromosomal instability induced by increased BIRC5/Survivin levels affects tumorigenicity of glioma cells. BMC Cancer 2017; 17:889. [PMID: 29282022 PMCID: PMC5745881 DOI: 10.1186/s12885-017-3932-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/18/2017] [Indexed: 01/02/2023] Open
Abstract
Background Survivin, belonging to the inhibitor of apoptosis (IAP) gene family, is abundantly expressed in tumors. It has been hypothesized that Survivin facilitates carcinogenesis by inhibition of apoptosis resulting in improved survival of tumorigenic progeny. Additionally, Survivin plays an essential role during mitosis. Together with its molecular partners Aurora B, Borealin and inner centromere protein it secures bipolar chromosome segregation. However, whether increased Survivin levels contribute to progression of tumors by inducing chromosomal instability remains unclear. Methods We overexpressed Survivin in U251-MG, SVGp12, U87-MG, HCT116 and p53-deficient U87-MGshp53 and HCT116p53−/− cells. The resulting phenotype was investigated by FACS-assisted cell cycle analysis, Western Blot analysis, confocal laser scan microscopy, proliferation assays, spectral karyotyping and in a U251-MG xenograft model using immune-deficient mice. Results Overexpression of Survivin affected cells with knockdown of p53, cells harboring mutant p53 and SV40 large T antigen, respectively, resulting in the increase of cell fractions harboring 4n and >4n DNA contents. Increased γH2AX levels, indicative of DNA damage were monitored in all Survivin-transduced cell lines, but only in p53 wild type cells this was accompanied by an attenuated S-phase entry and activation of p21waf/cip. Overexpression of Survivin caused a DNA damage response characterized by increased appearance pDNA-PKcs foci in cell nuclei and elevated levels of pATM S1981 and pCHK2 T68. Additionally, evolving structural chromosomal aberrations in U251-MG cells transduced with Survivin indicated a DNA-repair by non-homologous end joining recombination. Subcutaneous transplantation of U251-MG cells overexpressing Survivin and mycN instead of mycN oncogene alone generated tumors with shortened latency and decreased apoptosis. Subsequent SKY-analysis of Survivin/mycN-tumors revealed an increase in structural chromosomal aberrations in cells when compared to mycN-tumors. Conclusions Our data suggest that increased Survivin levels promote adaptive evolution of tumors through combining induction of genetic heterogeneity with inhibition of apoptosis. Electronic supplementary material The online version of this article (10.1186/s12885-017-3932-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Conde
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Susanne Michen
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ralf Wiedemuth
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany. .,German Cancer Consortium (DKTK), partner site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), Dresden, Germany.
| |
Collapse
|
7
|
Xu H, Chen Q, Wang H, Xu P, Yuan R, Li X, Bai L, Xue M. Inhibitory effects of lapachol on rat C6 glioma in vitro and in vivo by targeting DNA topoisomerase I and topoisomerase II. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:178. [PMID: 27852319 PMCID: PMC5112657 DOI: 10.1186/s13046-016-0455-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/09/2016] [Indexed: 12/29/2022]
Abstract
Background Lapachol is a natural naphthoquinone compound that possesses extensive biological activities. The aim of this study is to investigate the inhibitory effects of lapachol on rat C6 glioma both in vitro and in vivo, as well as the potential mechanisms. Methods The antitumor effect of lapachol was firstly evaluated in the C6 glioma model in Wistar rats. The effects of lapachol on C6 cell proliferation, apoptosis and DNA damage were detected by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS)/ phenazinemethosulfate (PMS) assay, hoechst 33358 staining, annexin V-FITC/PI staining, and comet assay. Effects of lapachol on topoisomerase I (TOP I) and topoisomerase II (TOP II) activities were detected by TOP I and TOP II mediated supercoiled pBR322 DNA relaxation assays and molecular docking. TOP I and TOP II expression levels in C6 cells were also determined. Results High dose lapachol showed significant inhibitory effect on the C6 glioma in Wistar rats (P < 0.05). It was showed that lapachol could inhibit proliferation, induce apoptosis and DNA damage of C6 cells in dose dependent manners. Lapachol could inhibit the activities of both TOP I and II. Lapachol-TOP I showed relatively stronger interaction than that of lapachol-TOP II in molecular docking study. Also, lapachol could inhibit TOP II expression levels, but not TOP I expression levels. Conclusion These results showed that lapachol could significantly inhibit C6 glioma both in vivo and in vitro, which might be related with inhibiting TOP I and TOP II activities, as well as TOP II expression.
Collapse
Affiliation(s)
- Huanli Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, No.10 Youanmenwaixitoutiao, Fengtai District, Beijing, 100069, China
| | - Qunying Chen
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, No.10 Youanmenwaixitoutiao, Fengtai District, Beijing, 100069, China
| | - Hong Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, No.10 Youanmenwaixitoutiao, Fengtai District, Beijing, 100069, China
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, No.10 Youanmenwaixitoutiao, Fengtai District, Beijing, 100069, China
| | - Ru Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, No.10 Youanmenwaixitoutiao, Fengtai District, Beijing, 100069, China
| | - Xiaorong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, No.10 Youanmenwaixitoutiao, Fengtai District, Beijing, 100069, China
| | - Lu Bai
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, No.10 Youanmenwaixitoutiao, Fengtai District, Beijing, 100069, China
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, No.10 Youanmenwaixitoutiao, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
8
|
Gaelzer MM, Santos MSD, Coelho BP, de Quadros AH, Simão F, Usach V, Guma FCR, Setton-Avruj P, Lenz G, Salbego CG. Hypoxic and Reoxygenated Microenvironment: Stemness and Differentiation State in Glioblastoma. Mol Neurobiol 2016; 54:6261-6272. [DOI: 10.1007/s12035-016-0126-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023]
|
9
|
Tabu K, Muramatsu N, Mangani C, Wu M, Zhang R, Kimura T, Terashima K, Bizen N, Kimura R, Wang W, Murota Y, Kokubu Y, Nobuhisa I, Kagawa T, Kitabayashi I, Bradley M, Taga T. A Synthetic Polymer Scaffold Reveals the Self-Maintenance Strategies of Rat Glioma Stem Cells by Organization of the Advantageous Niche. Stem Cells 2016; 34:1151-62. [DOI: 10.1002/stem.2299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/18/2015] [Accepted: 12/02/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Kouichi Tabu
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Nozomi Muramatsu
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Christian Mangani
- EaStChem, School of Chemistry; University of Edinburgh; Edinburgh London United Kingdom
| | - Mei Wu
- EaStChem, School of Chemistry; University of Edinburgh; Edinburgh London United Kingdom
| | - Rong Zhang
- EaStChem, School of Chemistry; University of Edinburgh; Edinburgh London United Kingdom
- School of Materials Science and Engineering; Changzhou University; Changzhou Jiangsu China
| | - Taichi Kimura
- Department of Pathology, Laboratory of Cancer Research; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Kazuo Terashima
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Norihisa Bizen
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Ryosuke Kimura
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Wenqian Wang
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Yoshitaka Murota
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Yasuhiro Kokubu
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Tetsushi Kagawa
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| | - Issay Kitabayashi
- Division of Hematological Malignancy; National Cancer Center Research Institute; Tokyo Japan
| | - Mark Bradley
- EaStChem, School of Chemistry; University of Edinburgh; Edinburgh London United Kingdom
| | - Tetsuya Taga
- Department of Stem Cell Regulation; Medical Research Institute, Tokyo Medical and Dental University (TMDU); Tokyo Japan
| |
Collapse
|
10
|
Lichti CF, Wildburger NC, Shavkunov AS, Mostovenko E, Liu H, Sulman EP, Nilsson CL. The proteomic landscape of glioma stem-like cells. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Kegelman TP, Hu B, Emdad L, Das SK, Sarkar D, Fisher PB. In vivo modeling of malignant glioma: the road to effective therapy. Adv Cancer Res 2015; 121:261-330. [PMID: 24889534 DOI: 10.1016/b978-0-12-800249-0.00007-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite an increased emphasis on developing new therapies for malignant gliomas, they remain among the most intractable tumors faced today as they demonstrate a remarkable ability to evade current treatment strategies. Numerous candidate treatments fail at late stages, often after showing promising preclinical results. This disconnect highlights the continued need for improved animal models of glioma, which can be used to both screen potential targets and authentically recapitulate the human condition. This review examines recent developments in the animal modeling of glioma, from more established rat models to intriguing new systems using Drosophila and zebrafish that set the stage for higher throughput studies of potentially useful targets. It also addresses the versatility of mouse modeling using newly developed techniques recreating human protocols and sophisticated genetically engineered approaches that aim to characterize the biology of gliomagenesis. The use of these and future models will elucidate both new targets and effective combination therapies that will impact on disease management.
Collapse
Affiliation(s)
- Timothy P Kegelman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Bin Hu
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
12
|
Stylli SS, Luwor RB, Ware TM, Tan F, Kaye AH. Mouse models of glioma. J Clin Neurosci 2015; 22:619-26. [DOI: 10.1016/j.jocn.2014.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
|
13
|
Fernandez-Palomo C, Bräuer-Krisch E, Laissue J, Vukmirovic D, Blattmann H, Seymour C, Schültke E, Mothersill C. Use of synchrotron medical microbeam irradiation to investigate radiation-induced bystander and abscopal effects in vivo. Phys Med 2015; 31:584-95. [PMID: 25817634 DOI: 10.1016/j.ejmp.2015.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 01/01/2023] Open
Abstract
The question of whether bystander and abscopal effects are the same is unclear. Our experimental system enables us to address this question by allowing irradiated organisms to partner with unexposed individuals. Organs from both animals and appropriate sham and scatter dose controls are tested for expression of several endpoints such as calcium flux, role of 5HT, reporter assay cell death and proteomic profile. The results show that membrane related functions of calcium and 5HT are critical for true bystander effect expression. Our original inter-animal experiments used fish species whole body irradiated with low doses of X-rays, which prevented us from addressing the abscopal effect question. Data which are much more relevant in radiotherapy are now available for rats which received high dose local irradiation to the implanted right brain glioma. The data were generated using quasi-parallel microbeams at the biomedical beamline at the European Synchrotron Radiation Facility in Grenoble France. This means we can directly compare abscopal and "true" bystander effects in a rodent tumour model. Analysis of right brain hemisphere, left brain and urinary bladder in the directly irradiated animals and their unirradiated partners strongly suggests that bystander effects (in partner animals) are not the same as abscopal effects (in the irradiated animal). Furthermore, the presence of a tumour in the right brain alters the magnitude of both abscopal and bystander effects in the tissues from the directly irradiated animal and in the unirradiated partners which did not contain tumours, meaning the type of signal was different.
Collapse
Affiliation(s)
- Cristian Fernandez-Palomo
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | - Elke Bräuer-Krisch
- European Synchrotron Radiation Facility, BP 220 6, rue Jules Horowitz, 38043 Grenoble, France
| | - Jean Laissue
- University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland
| | - Dusan Vukmirovic
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | - Colin Seymour
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Elisabeth Schültke
- Department of Radiotherapy, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Carmel Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
14
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|
15
|
Interrogation of gossypol therapy in glioblastoma implementing cell line and patient-derived tumour models. Br J Cancer 2014; 111:2275-86. [PMID: 25375271 PMCID: PMC4264441 DOI: 10.1038/bjc.2014.529] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM), being a highly vascularised and locally invasive tumour, is an attractive target for anti-angiogenic and anti-invasive therapies. The GBM/endothelial cell response to gossypol/temozolomide (TMZ) treatment was investigated with a particular aim to assess treatment effects on cancer hallmarks. METHODS Cell viability, endothelial tube formation and GBM tumour cell invasion were variously assessed following combined treatment in vitro. The U87MG-luc2 subcutaneous xenograft model was used to investigate therapeutic response in vivo. Viable tumour response to treatment was interrogated using immunohistochemistry. Combined treatment protocols were also tested in primary GBM patient-derived cultures. RESULTS An endothelial/GBM cell viability inhibitory effect, as well as an anti-angiogenic and anti-invasive response, to combined treatment have been demonstrated in vitro. A significantly greater anti-proliferative (P=0.020, P=0.030), anti-angiogenic (P=0.040, P<0.0001) and pro-apoptotic (P=0.0083, P=0.0149) response was observed when combined treatment was compared with single gossypol/TMZ treatment response, respectively. GBM cell line and patient-specific response to gossypol/TMZ treatment was observed. CONCLUSIONS Our results indicate that response to a combined gossypol/TMZ treatment is related to inhibition of tumour-associated angiogenesis, invasion and proliferation and warrants further investigation as a novel targeted GBM treatment strategy.
Collapse
|
16
|
Characterization of the 9L gliosarcoma implanted in the Fischer rat: an orthotopic model for a grade IV brain tumor. Tumour Biol 2014; 35:6221-33. [PMID: 24633919 DOI: 10.1007/s13277-014-1783-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/19/2014] [Indexed: 10/25/2022] Open
Abstract
Among rodent models for brain tumors, the 9L gliosarcoma is one of the most widely used. Our 9L-European Synchrotron Radiation Facility (ESRF) model was developed from cells acquired at the Brookhaven National Laboratory (NY, USA) in 1997 and implanted in the right caudate nucleus of syngeneic Fisher rats. It has been largely used by the user community of the ESRF during the last decade, for imaging, radiotherapy, and chemotherapy, including innovative treatments based on particular irradiation techniques and/or use of new drugs. This work presents a detailed study of its characteristics, assessed by magnetic resonance imaging (MRI), histology, immunohistochemistry, and cytogenetic analysis. The data used for this work were from rats sampled in six experiments carried out over a 3-year period in our lab (total number of rats = 142). The 9L-ESRF tumors were induced by a stereotactic inoculation of 10(4) 9L cells in the right caudate nucleus of the brain. The assessment of vascular parameters was performed by MRI (blood volume fraction and vascular size index) and by immunostaining of vessels (rat endothelial cell antigen-1 and type IV collagen). Immunohistochemistry and regular histology were used to describe features such as tumor cell infiltration, necrosis area, nuclear pleomorphism, cellularity, mitotic characteristics, leukocytic infiltration, proliferation, and inflammation. Moreover, for each of the six experiments, the survival of the animals was assessed and related to the tumor growth observed by MRI or histology. Additionally, the cytogenetic status of the 9L cells used at ESRF lab was investigated by comparative genomics hybridization analysis. Finally, the response of the 9L-ESRF tumor to radiotherapy was estimated by plotting the survival curves after irradiation. The median survival time of 9L-ESRF tumor-bearing rats was highly reproducible (19-20 days). The 9L-ESRF tumors presented a quasi-exponential growth, were highly vascularized with a high cellular density and a high proliferative index, accompanied by signs of inflammatory responses. We also report an infiltrative pattern which is poorly observed on conventional 9 L tumor. The 9L-ESRF cells presented some cytogenetic specificities such as altered regions including CDK4, CDKN2A, CDKN2B, and MDM2 genes. Finally, the lifespan of 9L-ESRF tumor-bearing rats was enhanced up to 28, 35, and 45 days for single doses of 10, 20, and 2 × 20 Gy, respectively. First, this report describes an animal model that is used worldwide. Second, we describe few features typical of our model if compared to other 9L models worldwide. Altogether, the 9L-ESRF tumor model presents characteristics close to the human high-grade gliomas such as high proliferative capability, high vascularization and a high infiltrative pattern. Its response to radiotherapy demonstrates its potential as a tool for innovative radiotherapy protocols.
Collapse
|
17
|
Massip A, Arcondéguy T, Touriol C, Basset C, Prats H, Lacazette E. E2F1 activates p53 transcription through its distal site and participates in apoptosis induction in HPV-positive cells. FEBS Lett 2013; 587:3188-94. [PMID: 23954287 DOI: 10.1016/j.febslet.2013.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
The p53 tumor suppressor protein, one of the most extensively studied proteins, plays a pivotal role in cellular checkpoints that respond to DNA damage to prevent tumorigenesis. However, the transcriptional control of the p53 gene has not been fully characterized. We report that the transcription factor E2F1 binds only to the E2F1 distal site of the p53 promoter in the human papillomavirus positive carcinoma HeLa cell line. Moreover, we showed that etoposide, a DNA damaging agent, activates p53 transcription through the E2F1 pathway. This increase correlates with apoptosis induction as disruption of this pathway led to reduced apoptosis stimulation by the DNA damaging agent.
Collapse
Affiliation(s)
- Anthony Massip
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, 1 Avenue Jean Poulhes, Toulouse, France
| | | | | | | | | | | |
Collapse
|
18
|
Vogelbaum MA, Tong JX, Higashikubo R, Gutmann DH, Rich KM. Transfection of C6 glioma cells with the bax gene and increased sensitivity to treatment with cytosine arabinoside. Neurosurg Focus 2012; 3:Article3. [PMID: 17206779 DOI: 10.3171/foc.1997.3.5.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Genes known to be involved in the regulation of apoptosis include members of the bcl-2 gene family, such as inhibitors of apoptosis (bcl-2 and bcl-xl) and promotors of apoptosis (bax). The authors investigated a potential approach for the treatment of malignant gliomas by using a gene transfection technique to manipulate the level of an intracellular protein involved in the control of apoptosis. The authors transfected the murine bax gene, which had been cloned into a mammalian expression vector, into the C6 rat glioma cell line. Overexpression of the bax gene resulted in a decreased growth rate (average doubling time of 32.96 hours compared with 22.49 hours for untransfected C6, and 23.11 hours for clones transfected with pcDNA3 only), which may be caused, in part, by an increased rate of spontaneous apoptosis (0.77 +/- 0.15% compared with 0.42 +/- 0.08% for the vector-only transfected C6 cell line; p = 0.038, two-tailed Student's t-test). Treatment with 1 microM of cytosine arabinoside (ara-C) resulted in significantly more cells undergoing apoptosis in the cell line overexpressing bax than in the vector-only control cell line (23.57 +/- 2.6% compared with 5.3 +/- 0.7% terminal deoxynucleotidyl transferase--mediated biotinylated--deoxyuridine triphosphate nick-end labeling technique-positive cells; p = 0.007). Furthermore, measurements of growth curves obtained immediately after treatment with 0.5 microM ara-C demonstrated a prolonged growth arrest of at least 6 days in the cell line overexpressing bax. These results can be used collectively to argue that overexpression of bax results in increased sensitivity of C6 cells to ara-C and that increasing bax expression may be a useful strategy, in general, for increasing the sensitivity of gliomas to antineoplastic treatments.
Collapse
Affiliation(s)
- M A Vogelbaum
- Department of Neurological Surgery and Neurology, and Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | |
Collapse
|
19
|
Kroonen J, Artesi M, Capraro V, Nguyen-Khac MT, Willems M, Chakravarti A, Bours V, Robe PA. Casein kinase 2 inhibition modulates the DNA damage response but fails to radiosensitize malignant glioma cells. Int J Oncol 2012; 41:776-82. [PMID: 22614258 DOI: 10.3892/ijo.2012.1489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/23/2012] [Indexed: 11/06/2022] Open
Abstract
Inhibitors of casein kinase 2 (CK2), a regulator of cell proliferation and mediator of the DNA damage response, are being evaluated in clinical trials for the treatment of cancers. Apigenin was capable of inhibiting the activation of CK2 following γ irradiation in LN18 and U87 malignant glioma cells. Apigenin and siRNA-mediated CK2 protein depletion further inhibited NF-κB activation and altered the Tyr68 phosphorylation of Chk2 kinase, a DNA damage response checkpoint kinase, following irradiation. However, CK2 inhibition did not decrease the ability of these glioma cells to repair double-strand DNA breaks, as assessed by COMET assays and γ-H2Ax staining. Likewise, apigenin and siRNA-induced depletion of CK2 failed to sensitize glioma cells to the cytotoxic effect of 2 to 10 G-rays of γ irradiation, as assessed by clonogenic assays. These results contrast with those found in other cancer types, and urge to prudence regarding the inclusion of malignant glioma patients in clinical trials that assess the radiosensitizing role of CK2 inhibitors in solid cancers.
Collapse
Affiliation(s)
- Jérôme Kroonen
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Oppel F, Müller N, Schackert G, Hendruschk S, Martin D, Geiger KD, Temme A. SOX2-RNAi attenuates S-phase entry and induces RhoA-dependent switch to protease-independent amoeboid migration in human glioma cells. Mol Cancer 2011; 10:137. [PMID: 22070920 PMCID: PMC3228695 DOI: 10.1186/1476-4598-10-137] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 11/09/2011] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND SOX2, a high mobility group (HMG)-box containing transcription factor, is a key regulator during development of the nervous system and a persistent marker of neural stem cells. Recent studies suggested a role of SOX2 in tumor progression. In our previous work we detected SOX2 in glioma cells and glioblastoma specimens. Herein, we aim to explore the role of SOX2 for glioma malignancy in particular its role in cell proliferation and migration. METHODS Retroviral shRNA-vectors were utilized to stably knockdown SOX2 in U343-MG and U373-MG cells. The resulting phenotype was investigated by Western blot, migration/invasion assays, RhoA G-LISA, time lapse video imaging, and orthotopic xenograft experiments. RESULTS SOX2 depletion results in pleiotropic effects including attenuated cell proliferation caused by decreased levels of cyclinD1. Also an increased TCF/LEF-signaling and concomitant decrease in Oct4 and Nestin expression was noted. Furthermore, down-regulation of focal adhesion kinase (FAK) signaling and of downstream proteins such as HEF1/NEDD9, matrix metalloproteinases pro-MMP-1 and -2 impaired invasive proteolysis-dependent migration. Yet, cells with knockdown of SOX2 switched to a RhoA-dependent amoeboid-like migration mode which could be blocked by the ROCK inhibitor Y27632 downstream of RhoA-signaling. Orthotopic xenograft experiments revealed a higher tumorigenicity of U343-MG glioma cells transduced with shRNA targeting SOX2 which was characterized by increased dissemination of glioma cells. CONCLUSION Our findings suggest that SOX2 plays a role in the maintenance of a less differentiated glioma cell phenotype. In addition, the results indicate a critical role of SOX2 in adhesion and migration of malignant gliomas.
Collapse
Affiliation(s)
- Felix Oppel
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Fetscherstr 74, 01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Induction of p21-dependent senescence by an NAE inhibitor, MLN4924, as a mechanism of growth suppression. Neoplasia 2011; 13:561-9. [PMID: 21677879 DOI: 10.1593/neo.11420] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 03/31/2011] [Accepted: 04/04/2011] [Indexed: 12/17/2022] Open
Abstract
Cullin-RING ubiquitin ligase (CRL), with its founding member of SKP1-Cullins-F-box proteins (SCF) E3 ubiquitin ligase, is the largest family of E3 ligases, which requires cullin neddylation for its activation. Recently, an inhibitor of NEDD8 activating enzyme (NAE), MLN4924, was reported to block cullin neddylation and inactivate CRL/SCF E3, resulting in apoptosis induction and tumor suppression both in vitro and in vivo. We report here that apoptosis is not the sole mechanism by which MLN4924 suppresses tumor cell growth because apoptosis is moderately induced by the drug in some cancer cell lines and drug-induced growth suppression is only partially blocked by a pan-caspase inhibitor, z-VAD. MLN4924 treatment induces the characteristics of senescence phenotypes as evidenced by enlarged and flattened cellular morphology and positive staining of senescence-associated β-Gal. MLN4924-induced senescence is associated with cellular response to DNA damage, triggered by accumulation of DNA-licensing proteins CDT1 and ORC1, as a result of inactivation of CRL/SCF E3s. The senescence occurs in the manner independent of pRB/p16 and p53, but dependent on p21, a known substrate of CRL/SCF E3s and a mediator of senescence, which accumulates on CRL/SCF inactivation by MLN4924. Furthermore, MLN4924-induced senescence is irreversible and coupled with persistent accumulation of p21 and sustained activation of DNA damage response. Our study reveals a novel mechanism of MLN4924 action and showed that MLN4924 could be further developed as an effective anticancer agent by inducing apoptosis and irreversible senescence.
Collapse
|
22
|
Castro MG, Candolfi M, Kroeger K, King GD, Curtin JF, Yagiz K, Mineharu Y, Assi H, Wibowo M, Ghulam Muhammad AKM, Foulad D, Puntel M, Lowenstein PR. Gene therapy and targeted toxins for glioma. Curr Gene Ther 2011; 11:155-80. [PMID: 21453286 DOI: 10.2174/156652311795684722] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/08/2011] [Indexed: 12/12/2022]
Abstract
The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of 15-18 months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors.
Collapse
Affiliation(s)
- Maria G Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
GBM (glioblastoma multiforme) is a highly aggressive brain tumour with very poor prognosis despite multi-modalities of treatment. Furthermore, recent failure of targeted therapy for these tumours highlights the need of appropriate rodent models for preclinical studies. In this review, we highlight the most commonly used rodent models (U251, U86, GL261, C6, 9L and CNS-1) with a focus on the pathological and genetic similarities to the human disease. We end with a comprehensive review of the CNS-1 rodent model.
Collapse
|
24
|
Shu M, Zheng X, Wu S, Lu H, Leng T, Zhu W, Zhou Y, Ou Y, Lin X, Lin Y, Xu D, Zhou Y, Yan G. Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells. Mol Cancer 2011; 10:59. [PMID: 21592405 PMCID: PMC3129318 DOI: 10.1186/1476-4598-10-59] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 05/19/2011] [Indexed: 01/19/2023] Open
Abstract
Background Astrocytomas are the most common and aggressive brain tumors characterized by their highly invasive growth. Gain of chromosome 7 with a hot spot at 7q32 appears to be the most prominent aberration in astrocytoma. Previously reports have shown that microRNA-335 (miR-335) resided on chromosome 7q32 is deregulated in many cancers; however, the biological function of miR-335 in astrocytoma has yet to be elucidated. Results We report that miR-335 acts as a tumor promoter in conferring tumorigenic features such as growth and invasion on malignant astrocytoma. The miR-335 level is highly elevated in C6 astrocytoma cells and human malignant astrocytomas. Ectopic expression of miR-335 in C6 cells dramatically enhances cell viability, colony-forming ability and invasiveness. Conversely, delivery of antagonist specific for miR-335 (antagomir-335) to C6 cells results in growth arrest, cell apoptosis, invasion repression and marked regression of astrocytoma xenografts. Further investigation reveals that miR-335 targets disheveled-associated activator of morphogenesis 1(Daam1) at posttranscriptional level. Moreover, silencing of endogenous Daam1 (siDaam1) could mimic the oncogenic effects of miR-335 and reverse the growth arrest, proapoptotic and invasion repression effects induced by antagomir-335. Notably, the oncogenic effects of miR-335 and siDAAM1 together with anti-tumor effects of antagomir-335 are also confirmed in human astrocytoma U87-MG cells. Conclusion These findings suggest an oncogenic role of miR-335 and shed new lights on the therapy of malignant astrocytomas by targeting miR-335.
Collapse
Affiliation(s)
- Minfeng Shu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bai RY, Staedtke V, Riggins GJ. Molecular targeting of glioblastoma: Drug discovery and therapies. Trends Mol Med 2011; 17:301-312. [PMID: 21411370 DOI: 10.1016/j.molmed.2011.01.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/10/2011] [Accepted: 01/21/2011] [Indexed: 12/19/2022]
Abstract
Despite advances in treatment for glioblastoma multiforme (GBM), patient prognosis remains poor. Although there is growing evidence that molecular targeting could translate into better survival for GBM, current clinical data show limited impact on survival. Recent progress in GBM genomics implicate several activated pathways and numerous mutated genes. This molecular diversity can partially explain therapeutic resistance and several approaches have been postulated to target molecular changes. Furthermore, most drugs are unable to reach effective concentrations within the tumor owing to elevated intratumoral pressure, restrictive vasculature and other limiting factors. Here, we describe the preclinical and clinical developments in treatment strategies of GBM. We review the current clinical trials for GBM and discuss the challenges and future directions of targeted therapies.
Collapse
Affiliation(s)
- Ren-Yuan Bai
- Departments of Neurosurgery, Johns Hopkins University School of Medicine, CRB II Rm. 257, 1550 Orleans Street, Baltimore, MD 21231, USA
| | - Verena Staedtke
- Departments of Neurosurgery, Johns Hopkins University School of Medicine, CRB II Rm. 257, 1550 Orleans Street, Baltimore, MD 21231, USA
| | - Gregory J Riggins
- Departments of Neurosurgery, Johns Hopkins University School of Medicine, CRB II Rm. 257, 1550 Orleans Street, Baltimore, MD 21231, USA
| |
Collapse
|
26
|
Altinoz MA, Gedikoglu G, Sav A, Ozcan E, Ozdilli K, Bilir A, Del Maestro RF. MEDROXYPROGESTERONE ACETATE INDUCES C6 GLIOMA CHEMOSENSITIZATION VIA ANTIDEPRESSANT-LIKE LYSOSOMAL PHOSPHOLIPIDOSIS/MYELINOSISIN VITRO. Int J Neurosci 2009; 117:1465-80. [PMID: 17729157 DOI: 10.1080/00207450701540062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The authors have previously shown that medroxyprogesterone acetate (MPA) inhibits growth and increases drug sensitivity in C6 glioma with myeloid bodies. Myeloid bodies can occur in cells either due to robust toxicity with mitochondrial membrane disruption or due to milder events such as seen in lysosomal-phospholipidosis. Exact patterns of myelinosis accompanying to MPA chemo-sensitization is important, because uncoupling of nuclear versus mitochondrial toxicity of anti-neoplastics by MPA would lead to safer employment of glioma chemotherapy with reduced neurotoxicity. By monitoring and comparing cell kinetics with fine structural features of cell death, the authors estimated subcellular effects accompanying growth-inhibitory drug actions in C6 glioma. The analysis revealed that MPA induced mainly lysosomal phospholipidosis, while inhibiting clonogenicity alone and augmenting procarbazine efficacy. It induced apoptosis in combination with cisplatin. It reduced mitochondrial-damage-based early cytotoxicity of methotrexate, yet it did not hinder its anti-clonogenic efficacy. Progesterone analogues - similar to antidepressants - inhibit cholesterol esterification, and this efficacy relates with their P-glycoprotein inhibition. Reducing esterification and plasma-membrane localization of cholesterol may lead MPA induction of lysosomal phospholipidosis, growth indolency, and drug sensitization in glioma.
Collapse
|
27
|
Barth RF, Kaur B. Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 2009; 94:299-312. [PMID: 19381449 DOI: 10.1007/s11060-009-9875-7] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 03/16/2009] [Indexed: 02/08/2023]
Abstract
In this review we will describe eight commonly used rat brain tumor models and their application for the development of novel therapeutic and diagnostic modalities. The C6, 9L and T9 gliomas were induced by repeated injections of methylnitrosourea (MNU) to adult rats. The C6 glioma has been used extensively for a variety of studies, but since it arose in an outbred Wistar rat, it is not syngeneic to any inbred strain, and its potential to evoke an alloimmune response is a serious limitation. The 9L gliosarcoma has been used widely and has provided important information relating to brain tumor biology and therapy. The T9 glioma, although not generally recognized, was and probably still is the same as the 9L. Both of these tumors arose in Fischer rats and can be immunogenic in syngeneic hosts, a fact that must be taken into consideration when used in therapy studies, especially if survival is the endpoint. The RG2 and F98 gliomas were both chemically induced by administering ethylnitrosourea (ENU) to pregnant rats, the progeny of which developed brain tumors that subsequently were propagated in vitro and cloned. They are either weakly or non-immunogenic and have an invasive pattern of growth and uniform lethality, which make them particularly attractive models to test new therapeutic modalities. The CNS-1 glioma was induced by administering MNU to a Lewis rat. It has an infiltrative pattern of growth and is weakly immunogenic, which should make it useful in experimental neuro-oncology. Finally, the BT4C glioma was induced by administering ENU to a BD IX rat, following which brain cells were propagated in vitro until a tumorigenic clone was isolated. This tumor has been used for a variety of studies to evaluate new therapeutic modalities. The Avian Sarcoma Virus (ASV) induced tumors, and a continuous cell line derived from one of them designated RT-2, have been useful for studies in which de novo tumor induction is an important requirement. These tumors also are immunogenic and this limits their usefulness for therapy studies. It is essential to recognize the limitations of each of the models that have been described, and depending upon the nature of the study to be conducted, it is important that the appropriate model be selected.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, 165 Hamilton Hall, Columbus, OH 43210, USA.
| | | |
Collapse
|
28
|
BH3 mimetics reactivate autophagic cell death in anoxia-resistant malignant glioma cells. Neoplasia 2008; 10:873-85. [PMID: 18670645 DOI: 10.1593/neo.07842] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 05/21/2008] [Accepted: 05/21/2008] [Indexed: 11/18/2022] Open
Abstract
Here, we investigated the specific roles of Bcl-2 family members in anoxia tolerance of malignant glioma. Flow cytometry analysis of cell death in 17 glioma cell lines revealed drastic differences in their sensitivity to oxygen withdrawal (<0.1% O(2)). Cell death correlated with mitochondrial depolarization, cytochrome C release, and translocation of green fluorescent protein (GFP)-tagged light chain 3 to autophagosomes but occurred in the absence of caspase activation or phosphatidylserine exposure. In both sensitive and tolerant glioma cell lines, anoxia caused a significant up-regulation of BH3-only genes previously implicated in mediating anoxic cell death in other cell types (BNIP3, NIX, PUMA, and Noxa). In contrast, we detected a strong correlation between anoxia resistance and high expression levels of antiapoptotic Bcl-2 family proteins Bcl-xL, Bcl-2, and Mcl-1 that function to neutralize the proapoptotic activity of BH3-only proteins. Importantly, inhibition of both Bcl-2 and Bcl-xL with the small-molecule BH3 mimetics HA14-1 and BH3I-2' and by RNA interference reactivated anoxia-induced autophagic cell death in previously resistant glioma cells. Our data suggest that endogenous BH3-only protein induction may not be able to compensate for the high expression of antiapoptotic Bcl-2 family proteins in anoxia-resistant astrocytomas. They also support the conjecture that BH3 mimetics may represent an exciting new approach for the treatment of malignant glioma.
Collapse
|
29
|
Purow BW, Sundaresan TK, Burdick MJ, Kefas BA, Comeau LD, Hawkinson MP, Su Q, Kotliarov Y, Lee J, Zhang W, Fine HA. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis 2008; 29:918-25. [PMID: 18359760 DOI: 10.1093/carcin/bgn079] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Notch pathway plays a key role in the development and is increasingly recognized for its importance in cancer. We demonstrated previously the overexpression of Notch-1 and its ligands in gliomas and showed that their knockdown inhibits glioma cell proliferation and survival. To elucidate the mechanisms downstream of Notch-1 in glioma cells, we performed microarray profiling of glioma cells transfected with Notch-1 small interfering RNA. Notable among downregulated transcripts was the epidermal growth factor receptor (EGFR), known to be overexpressed or amplified in gliomas and prominent in other cancers as well. Further studies confirmed that Notch-1 inhibition decreased EGFR messenger RNA (mRNA) and EGFR protein in glioma and other cell lines. Transfection with Notch-1 increased EGFR expression. Additionally, we found a significant correlation in levels of EGFR and Notch-1 mRNA in primary high-grade human gliomas. Subsequent experiments showed that p53, an activator of the EGFR promoter, is regulated by Notch-1. Experiments with p53-positive and -null cell lines confirmed that p53 partially mediates the effects of Notch-1 on EGFR expression. These results show for the first time that Notch-1 upregulates EGFR expression and also demonstrate Notch-1 regulation of p53 in gliomas. These observations have significant implications for understanding the mechanisms of Notch in cancer and development.
Collapse
Affiliation(s)
- Benjamin W Purow
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hetschko H, Voss V, Seifert V, Prehn JHM, Kögel D. Upregulation of DR5 by proteasome inhibitors potently sensitizes glioma cells to TRAIL-induced apoptosis. FEBS J 2008; 275:1925-36. [PMID: 18341587 DOI: 10.1111/j.1742-4658.2008.06351.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study was undertaken to explore the potential of new therapeutic approaches designed to reactivate cell death pathways in apoptosis-refractory gliomas and to characterize the underlying molecular mechanisms of this reactivation. Here we investigated the sensitivity of a panel of glioma cell lines (U87, U251, U343, U373, MZ-54, and MZ-18) to apoptosis induced by the death receptor ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), TRAIL in combination with gamma irradiation, and TRAIL in combination with proteasome inhibitors (MG132 and epoxomicin). Analysis of these six glioma cell lines revealed drastic differences in their sensitivity to these treatments, with two of the six cell lines revealing no significant induction of cell death in response to TRAIL alone. Interestingly, the proteasome inhibitors MG132 and epoxomicin were capable of potentiating TRAIL-induced apoptosis in TRAIL-sensitive U87 and U251 cells and of reactivating apoptosis in TRAIL-resistant U343 and U373 cells. In contrast, gamma irradiation had no synergistic effects with TRAIL in the two TRAIL-resistant cell lines. RNA interference against death receptor 5 (DR5) revealed that reactivation of TRAIL-induced apoptosis by proteasome inhibitors depended on enhanced transcription and surface expression of DR5. Transient knockdown of the transcription factor GADD153/C/EBP homologous protein and application of the synthetic c-Jun N-terminal kinase inhibitor SP600125 indicated that enhanced DR5 expression occurred independently of GADD153/C/EBP homologous protein, but required activation of the c-Jun N-terminal kinase/c-Jun signaling pathway. Novel therapeutic approaches using TRAIL or agonistic TRAIL receptor antibodies in combination with proteasome inhibitors may represent a promising approach to reactivate apoptosis in therapy-resistant high-grade gliomas.
Collapse
Affiliation(s)
- Holger Hetschko
- Department of Neurosurgery, Centre for Neurology and Neurosurgery, Johann Wolfgang Goethe University Clinics, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
31
|
Kim EH, Sohn S, Kwon HJ, Kim SU, Kim MJ, Lee SJ, Choi KS. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Res 2007; 67:6314-24. [PMID: 17616690 DOI: 10.1158/0008-5472.can-06-4217] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant gliomas are resistant to various proapoptotic therapies, such as radiotherapy and conventional chemotherapy. In this study, we show that selenite is preferentially cytotoxic to various human glioma cells over normal astrocytes via autophagic cell death. Overexpression of Akt, survivin, XIAP, Bcl-2, or Bcl-xL failed to block selenite-induced cell death, suggesting that selenite treatment may offer a potential therapeutic strategy against malignant gliomas with apoptotic defects. Before selenite-induced cell death in glioma cells, disruption of the mitochondrial cristae, loss of mitochondrial membrane potential, and subsequent entrapment of disorganized mitochondria within autophagosomes or autophagolysosomes along with degradation of mitochondrial proteins were noted, showing that selenite induces autophagy in which mitochondria serve as the main target. At the early phase of selenite treatment, high levels of superoxide anion were generated and overexpression of copper/zinc superoxide dismutase or manganese superoxide dismutase, but not catalase, significantly blocked selenite-induced mitochondrial damage and subsequent autophagic cell death. Furthermore, treatment with diquat, a superoxide generator, induced autophagic cell death in glioma cells. Taken together, our study clearly shows that superoxide anion generated by selenite triggers mitochondrial damage and subsequent mitophagy, leading to irreversible cell death in glioma cells.
Collapse
Affiliation(s)
- Eun Hee Kim
- Department of Molecular Science and Technology, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Bencokova Z, Pauron L, Devic C, Joubert A, Gastaldo J, Massart C, Balosso J, Foray N. Molecular and cellular response of the most extensively used rodent glioma models to radiation and/or cisplatin. J Neurooncol 2007; 86:13-21. [PMID: 17611717 DOI: 10.1007/s11060-007-9433-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 06/07/2007] [Indexed: 01/21/2023]
Abstract
Purpose Anti-glioma strategies are generally based on trials involving rodent models whose choice remains based on proliferative capacity and availability. Recently, our group obtained the most protracted survival of rats bearing F98 gliomas by combining synchrotron X-rays and intracerebral cisplatin injection (Biston et al., Cancer Res, 64:2317-2323, 2004). The response to such treatment was suggested to be dependent on BRCA1, a tumour suppressor known to be involved in the response to radiation and cisplatin. In order to verify the impact of BRCA1 functionality upon success of anti-glioma trials, radiobiological features and BRCA1-dependent stress signalling were investigated in the most extensively used rodent glioma models. Methods Cell death pathways, cell cycle arrests, DNA repair and stress signalling were evaluated in response to radiation and cisplatin in C6, 9L and F98 models. Results Rodent glioma models showed a large spectrum of cellular radiation response. Surprisingly, BRCA1 was found to be functionally impaired in C6 and F98 favouring genomic instability, tumour heterogeneity and tolerance of unrepaired DNA damage. Significance Our findings strengthened the importance of the choice of the glioma model on genetic and radiobiological bases, inasmuch as all these rat glioma models are induced by nitrosourea-mediated mutagenesis that may favour specific gene mutations. Particularly, BRCA1 status may condition the response to anti-glioma treatments. Furthermore, since BRCA1 acts as a tumour suppressor in a number of malignancies, our findings raise also the question of the implication of BRCA1 in brain tumours formation.
Collapse
Affiliation(s)
- Zuzana Bencokova
- Inserm, U647, ID17, European Synchrotron Radiation Facility, Grenoble, 38043, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Benítez JA, Arregui L, Vergara P, Segovia J. Targeted-simultaneous expression of Gas1 and p53 using a bicistronic adenoviral vector in gliomas. Cancer Gene Ther 2007; 14:836-46. [PMID: 17599090 DOI: 10.1038/sj.cgt.7701076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The targeted expression of transgenes is one of the principal goals of gene therapy, and it is particularly relevant for the treatment of brain tumors. In this study, we examined the effect of the overexpression of human gas1 (growth arrest specific 1) and human p53 cDNAs, both under the transcriptional control of a promoter of the human glial fibrillary acidic protein (gfa2), employing adenoviral expression vectors, in glioma cells. We showed that the targeted overexpression of gas1 and p53 (AdSGas1 and AdSp53, respectively) in rat glioma cells (C6) reduced the number of viable cells and induced apoptosis. Moreover, the adenovirally targeted expression of these genes also reduced tumor growth in vivo. Unexpectedly, there was no additive effect when both gas1 and p53 were simultaneously expressed in the same cells using a bicistronic adenoviral vector. We suggest that Gas1 does not act in combination with p53 in the C6 and U373 glioma cell lines, inducing apoptosis and cell cycle arrest. Our results indicate that the targeted expression of tumor suppressor genes (gas1 and p53) regulated by the gfa2 promoter, together with adenoviral vectors may provide an interesting approach for adjuvant selective glioma gene therapy.
Collapse
Affiliation(s)
- J A Benítez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | | | | | | |
Collapse
|
34
|
Hart LS, Ornelles D, Koumenis C. The Adenoviral E4orf6 Protein Induces Atypical Apoptosis in Response to DNA Damage. J Biol Chem 2007; 282:6061-7. [PMID: 17172468 DOI: 10.1074/jbc.m610405200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Adenoviral proteins interact with host-cell proteins to either exploit or inhibit cellular functions for the purpose of viral propagation. E4orf6, the 34-kDa gene product of the E4 gene, interacts with the double-strand break repair (DSBR) protein DNA-dependent protein kinase and cooperates with binding partner E1B-55K to degrade MRE11, preventing viral DNA concatemer formation. We previously demonstrated that E4orf6 radiosensitizes human tumor cells through the inhibition of DSBR, notably in the absence of E1B-55K. Here, we report that E4orf6 prolongs the signaling of DNA damage by inhibiting the activity of protein phosphatase 2A (PP2A), the phosphatase responsible for dephosphorylating gammaH2AX. The inhibition of PP2A occurs without significant disruption of the DNA re-ligation rate. Prolonged signaling of DNA damage in the presence of E4orf6 initiates caspase-dependent and independent cell death. This is accompanied by poly(ADP-ribose) polymerase (PARP) hyperactivation and the translocation of apoptosis-inducing factor (AIF) from the mitochondria to the nucleus. Knockdown of AIF by shRNA rescues the radiosensitization induced by E4orf6. Taken together, these data suggest that E4orf6 disrupts cellular DSBR signaling by inhibiting PP2A, leading to prolonged H2AX phosphorylation, hyperactivation of PARP, and AIF translocation to the nucleus. The function of E4orf6 as an inhibitor of PP2A and activator of PARP in the absence of other adenoviral gene products is of importance in delineating the adenovirus-host cell interplay.
Collapse
Affiliation(s)
- Lori S Hart
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
35
|
Tsurushima H, Yuan X, Dillehay LE, Leong KW. Radio-responsive gene therapy for malignant glioma cells without the radiosensitive promoter: Caspase-3 gene therapy combined with radiation. Cancer Lett 2007; 246:318-23. [PMID: 16644107 DOI: 10.1016/j.canlet.2006.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 03/13/2006] [Indexed: 12/13/2022]
Abstract
Caspase-3 plays a critical role as an executioner of apoptosis. The aim of this study is to evaluate the potential of the combination of caspase-3 gene therapy and radiation treatment. We prepared a plasmid (pCI-CSP3) that contained the human caspase-3 gene and the cytomegalovirus promoter. We introduced this plasmid into U251 and U87 human glioma cells and subjected the cells to radiation treatment. The degree of cell death and apoptosis were evaluated. None of the cell lines underwent apoptosis by the overexpression of caspase-3 alone, but the degree of cell death and apoptosis were markedly enhanced by the addition of radiation treatment. Next, we prepared another plasmid (EGR-CSP3) that contained the caspase-3 gene and a radiation-sensitive promoter. Each treatment system using either pCI-CSP3 or EGR-CSP3 showed radio response. The treatment system using pCI-CSP3 more effectively induced apoptosis than that using EGR-CSP3. Caspase-3 gene therapy in combination with radiation treatment has the potential to serve as a radio-responsive gene therapy without any radiation-sensitive promoter.
Collapse
Affiliation(s)
- Hideo Tsurushima
- Department of Biomedical Engineering, Medical School, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
36
|
Temme A, Rodriguez JA, Hendruschk S, Günes S, Weigle B, Schäkel K, Schmitz M, Bachmann M, Schackert G, Rieber EP. Nuclear localization of Survivin renders HeLa tumor cells more sensitive to apoptosis by induction of p53 and Bax. Cancer Lett 2006; 250:177-93. [PMID: 17084966 DOI: 10.1016/j.canlet.2006.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 09/14/2006] [Accepted: 09/22/2006] [Indexed: 11/29/2022]
Abstract
Clinical studies have shown that nuclear expression of the inhibitor of apoptosis protein Survivin in tumor cells predicted a favorable prognosis whereas cytosolic-localized protein caused a decreased overall survival. Therefore Survivin's subcellular localization may be important for its anti-apoptotic capacity. To address this question, we investigated localization and function of Survivin in normal human lung fibroblasts (NHLFs) and HeLa tumor cells. NHLFs of early passages expressed Survivin in the nucleus and were highly sensitive to C2 ceramide, which induces the mitochondrial apoptotic pathway. In contrast, NHLFs at higher passages relocated Survivin to the cytosol and became more resistant to C2 ceramide. Blocking nuclear export of Survivin by leptomycin B in HeLa cells increased susceptibility to C2 ceramide. In addition, transduction of HeLa cells with Survivin fused to a nuclear localization signal augmented basal expression levels of p53 and Bax and enhanced sensitivity for intrinsic apoptosis. Those findings suggest that a predominant nuclear localization of Survivin increases the sensitivity for pro-apoptotic stimuli, whereas nuclear export enables Survivin to fulfill its inhibitor of apoptosis function. A therapeutic intervention which holds Survivin in the nucleus of tumor cells might improve cancer therapy.
Collapse
Affiliation(s)
- Achim Temme
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
de la Peña L, Burgan WE, Carter DJ, Hollingshead MG, Satyamitra M, Camphausen K, Tofilon PJ. Inhibition of Akt by the alkylphospholipid perifosine does not enhance the radiosensitivity of human glioma cells. Mol Cancer Ther 2006; 5:1504-10. [PMID: 16818509 DOI: 10.1158/1535-7163.mct-06-0091] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Akt has been implicated as a molecular determinant of cellular radiosensitivity. Because it is often constitutively activated or overexpressed in malignant gliomas, it has been suggested as a target for brain tumor radiosensitization. To evaluate the role of Akt in glioma radioresponse, we have determined the effects of perifosine, a clinically relevant alkylphospholipid that inhibits Akt activation, on the radiosensitivity of three human glioma cell lines (U87, U251, and LN229). Each of the glioma cell lines expressed clearly detectable levels of phosphorylated Akt indicative of constitutive Akt activity. Exposure to a perifosine concentration that reduced survival by approximately 50% significantly reduced the level of phosphorylated Akt as well as Akt activity. Cell survival analysis using a clonogenic assay, however, revealed that this Akt-inhibiting perifosine treatment did not enhance the radiosensitivity of the glioma cell lines. This evaluation was then extended to an in vivo model using U251 xenografts. Perifosine delivered to mice bearing U251 xenografts substantially reduced tumor phosphorylated Akt levels and inhibited tumor growth rate. However, the combination of perifosine and radiation resulted in a less than additive increase in tumor growth delay. Thus, in vitro and in vivo data indicate that the perifosine-mediated decrease in Akt activity does not enhance the radiosensitivity of three genetically disparate glioma cell lines. These results suggest that, although Akt may influence the radiosensitivity of other tumor types, it does not seem to be a target for glioma cell radiosensitization.
Collapse
Affiliation(s)
- Lorena de la Peña
- Molecular Radiation Therapeutics Branch, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
King GD, Curtin JF, Candolfi M, Kroeger K, Lowenstein PR, Castro MG. Gene therapy and targeted toxins for glioma. Curr Gene Ther 2006; 5:535-57. [PMID: 16457645 PMCID: PMC1629033 DOI: 10.2174/156652305774964631] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted, this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors.
Collapse
Affiliation(s)
- Gwendalyn D King
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | | | | | | | | | |
Collapse
|
39
|
Altinoz MA, Bilir A, Del Maestro RF, Tuna S, Ozcan E, Gedikoglu G. Noscapine and diltiazem augment taxol and radiation-induced S-phase arrest and clonogenic death of C6 glioma in vitro. ACTA ACUST UNITED AC 2006; 65:478-84; discussion 485. [PMID: 16630910 DOI: 10.1016/j.surneu.2005.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 06/27/2005] [Indexed: 10/24/2022]
Abstract
BACKGROUND Radiation therapy after surgical resection is the approved treatment of gliomas, and survival benefits are reported with taxane-based chemotherapy. We investigated whether these regimes could be augmented with blood-brain barrier permeable drugs, N and D. Noscapine is an opioid antitussive, which acts anti cancer via blocking microtubule dynamics. Diltiazem is a calcium channel-blocking cardiac antiarrythmic, which also blocks tumor growth and P-glycoprotein. METHODS Effects of N (11.1 micromol/L), D (11.1 micromol/L), and T (11.7 micromol/L) were monitored in C6 glioma cells via S phase, colony formation, and fine structure analysis. RESULTS Taxol depleted S phase from 35.2% to 12.2%. Both N and D synergistically augmented T-mediated S-phase depletion, and they also effectively reduced colonies, which were more potent by N by 49%. Taxol reduced colonies by 98%, and there were almost no surviving colonies in copresence of T with either N or D. Colony reduction by radiotherapy was increased strongly by T and significantly by N. Taxol and radiation profoundly increased number of mitochondria. Both D and N suppressed this increase via myelinosis and autophagy. CONCLUSION Noscapine and D should be further tested in animal models because of their potential and already-present clinical applicability.
Collapse
Affiliation(s)
- Meric A Altinoz
- Golden Horn (Halic) University, Capa, Istanbul 34390, Turkey.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The p53 tumor suppressor gene (TP53) is the most frequently altered gene in human cancer and is also found mutated in several types of brain tumors. Loss of p53 function plays a central role in the development of cancer. The characterization of the biochemical pathways by which p53 alteration triggers tumorigenesis is the foundation for the design of novel therapeutic approaches. Investigations of the intracellular mechanisms at the origin of p53 tumor suppressive functions have shown that p53 is a transcription factor able to sense a variety of cellular insults and induce a dual response: cell growth arrest/senescence or apoptosis. Less well studied are p53's influences on extracellular events such as tumor angiogenesis, immunology and invasion. Here, we review these findings and specifically discuss their implications for brain tumor genesis, molecular diagnosis and prognosis. Of clinical importance are the findings that brain tumors with wild type (wt) or mutant p53 status may respond differently to radiation therapy and that novel therapeutic strategies using TP53 gene transfer or specifically targeting tumor cells with mutated p53 are being evaluated in clinical trials.
Collapse
Affiliation(s)
- Giulia Fulci
- Laboratory of Tumor Biology and Genetics, Neurosurgery Dept., University Hospital (CHUV), 1011 Lausanne, Switzerland
- Laboratory of Molecular Neuro‐Oncology, Department of Neurological Surgery and Winship Cancer Center, Emory University, Atlanta, Georgia 30322, USA
| | - Nobuaki Ishii
- Laboratory of Tumor Biology and Genetics, Neurosurgery Dept., University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Erwin G. Van Meir
- Laboratory of Tumor Biology and Genetics, Neurosurgery Dept., University Hospital (CHUV), 1011 Lausanne, Switzerland
- Laboratory of Molecular Neuro‐Oncology, Department of Neurological Surgery and Winship Cancer Center, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
41
|
Lee YS, Wan J, Kim BJ, Bae MA, Song BJ. Ubiquitin-dependent degradation of p53 protein despite phosphorylation at its N terminus by acetaminophen. J Pharmacol Exp Ther 2006; 317:202-8. [PMID: 16330492 PMCID: PMC1409809 DOI: 10.1124/jpet.105.096719] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that acetaminophen (APAP, 4-hydroxyacetanilide) caused apoptosis of C6 glioma cells. Therefore, we hypothesized that the level of p53, which usually stimulates apoptosis, might be increased after APAP exposure. However, APAP exposure for 24 h markedly decreased the p53 content and its downstream target p21 in a concentration-dependent manner. Reduction of p53 was not accompanied by a decrease in p53 mRNA in C6 glioma cells, suggesting that p53 was mainly affected at the protein level. Unexpectedly, APAP stimulated phosphorylation of p53 at Ser15, Ser20, and Ser37, which usually elevates p53 content. However, phosphorylation of these residues did not prevent APAP-induced decrease in p53. The p53 reduction was independent from the level of phospho-Akt, which is known to promote p53 degradation. Immunoblot analysis of the immunoprecipitated p53 revealed that increased amounts of murine double minute 2 (mdm2) and ubiquitin were bound to p53 during its degradation. Lactacystin and N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132), inhibitors of proteasomal proteolysis, prevented the decrease, supporting the proteasomal degradation of p53 upon APAP exposure. Pretreatment with chlormethiazole, an inhibitor of ethanol-inducible CYP2E1, significantly lowered the CYP2E1 enzyme activity and the rate of APAP-induced cell death while it prevented the reduction of p53 and p21 in C6 glioma cells. A nontoxic analog of APAP, 3-hydroxyacetanilde, did not reduce p53 and p21 contents in C6 glioma cells and LLC-PK1 porcine kidney cells. Taken together, our results show that APAP or its reactive metabolite(s) can directly reduce the p53 content through mdm2-mediated ubiquitin conjugation, despite phosphorylation of p53 at its N terminus.
Collapse
Key Words
- apap, acetaminophen
- cyp2e1, ethanol-inducible cytochrome p450 2e1 isoform
- cmz, chlormethiazole
- dmso, dimethyl sulfoxide
- 5-fu, 5-fluorouracil
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- hrp, horse radish peroxidase
- mdm2, murine double minute 2
- napqi, n-acetyl-p-benzoquinoneimine
- pbs, phosphate buffered saline
Collapse
Affiliation(s)
- Yun-Sik Lee
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, Maryland, USA (YSL, JW, BJK, MAB, BJS)
| | - Jie Wan
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, Maryland, USA (YSL, JW, BJK, MAB, BJS)
| | - Bong-Jo Kim
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, Maryland, USA (YSL, JW, BJK, MAB, BJS)
| | - Myung-Ae Bae
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, Maryland, USA (YSL, JW, BJK, MAB, BJS)
| | - Byoung J. Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, Maryland, USA (YSL, JW, BJK, MAB, BJS)
| |
Collapse
|
42
|
Angelastro JM, Canoll PD, Kuo J, Weicker M, Costa A, Bruce JN, Greene LA. Selective destruction of glioblastoma cells by interference with the activity or expression of ATF5. Oncogene 2006; 25:907-16. [PMID: 16170340 DOI: 10.1038/sj.onc.1209116] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glioblastoma multifome is the most common and most aggressive primary brain tumor with no current curative therapy. We found expression of the bZip transcription factor ATF5 in all 29 human glioblastomas and eight human and rat glioma cell lines assessed. ATF5 is not detectably expressed by mature brain neurons and astrocytes, but is expressed by reactive astrocytes. Interference with ATF5 function or expression in all glioma cell lines tested causes marked apoptotic cell death. In contrast, such manipulations do not affect survival of ATF5-expressing cultured astrocytes or of several other cell types that express this protein. In a proof-of-principle experiment, retroviral delivery of a function-blocking mutant form of ATF5 into a rat glioma model evokes death of the infected tumor cells, but not of infected brain cells outside the tumors. The widespread expression of ATF5 in glioblastomas and the selective effect of interference with ATF5 function/expression on their survival suggest that ATF5 may be an attractive target for therapeutic intervention in such tumors.
Collapse
Affiliation(s)
- J M Angelastro
- Department of Pathology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Temme A, Herzig E, Weigle B, Morgenroth A, Schmitz M, Kiessling A, Rieger MA, Schackert HK, Rieber EP. Inhibition of malignant glioma cell growth by a survivin mutant retrovirus. Hum Gene Ther 2005; 16:209-22. [PMID: 15761261 DOI: 10.1089/hum.2005.16.209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor that is resistant to conventional radiotherapy and chemotherapy. The median survival time of patients with GBM has remained less than 2 years despite concerted efforts to improve therapy. As a new approach to treat GBM we generated retroviral particles encoding mutant survivin for transduction of glioma cells. We demonstrate here that retroviral overexpression of a nonphosphorylatable Thr-34 --> Ala mutant of survivin (survivinT34A), in the glioma cell lines U373 and H4 resulted in a marked increase in the percentage of cells bearing multiple nuclei, which was accompanied by significantly decreased cell proliferation, and in greater numbers of cells with hypodiploid DNA content. Administration of the broad caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethyl-ketone did not reduce the cell death rate. Yet increased nuclear translocation of apoptosis-inducing factor (AIF) was observed in cells transduced with survivinT34A, indicating caspase-independent cell death. Transduction of retroviral vectors encoding wild-type survivin also led to the appearance of multinuclear cells. In contrast to mutant survivin, overexpressed wild-type survivin did not increase the cell death rate and no enhanced nuclear AIF translocation was observed. We suggest that retroviral vectors delivering mutant survivinT34A might be employed for the treatment of glioblastoma.
Collapse
Affiliation(s)
- A Temme
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fischer U, Steffens S, Frank S, Rainov NG, Schulze-Osthoff K, Kramm CM. Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/ 5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene 2005; 24:1231-43. [PMID: 15592511 DOI: 10.1038/sj.onc.1208290] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Suicide gene transfer using thymidine kinase (TK) and ganciclovir (GCV) treatment or the cytosine deaminase (CD)/5-fluorocytosine (5-FC) system represents the most widely used approach for gene therapy of cancer. However, molecular pathways and resistance mechanisms remain controversial for GCV-mediated cytotoxicity, and are virtually unknown for the CD/5-FC system. Here, we elucidated some of the cellular pathways in glioma cell lines that were transduced to express the TK or CD gene. In wild-type p53-expressing U87 cells, exposure to GCV and 5-FC resulted in a weak p53 response, although apoptosis was efficiently induced. Cell death triggered by GCV and 5-FC was independent of death receptors, but accompanied by mitochondrial alterations. Whereas expression of Bax remained unaffected, in particular, GCV and also 5-FC caused a decline in the level of Bcl-2. Similar findings were obtained in 9L and T98G glioma cells that express mutant p53, and also underwent mitochondrial apoptosis in both the TK/GCV and CD/5-FC system. Upon treatment of 9L cells with 5-FC, Bcl-xL expression slowly declined, whereas exposure to GCV resulted in the rapid proapoptotic phosphorylation of Bcl-xL. These data suggest that TK/GCV- and CD/5-FC-induced apoptosis does neither require p53 nor death receptors, but converges at a mitochondrial pathway triggered by different mechanisms of modulation of Bcl-2 proteins.
Collapse
Affiliation(s)
- Ute Fischer
- Institute of Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Karpati G, Nalbantoglu J. The principles of molecular therapies for glioblastoma. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 55:151-63. [PMID: 12968535 DOI: 10.1016/s0074-7742(03)01006-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- George Karpati
- Montreal Neurological Institute, Montreal QC H3A 2B4, Canada
| | | |
Collapse
|
46
|
Quiñones A, Dobberstein KU, Rainov NG. The egr-1 gene is induced by DNA-damaging agents and non-genotoxic drugs in both normal and neoplastic human cells. Life Sci 2003; 72:2975-92. [PMID: 12706485 DOI: 10.1016/s0024-3205(03)00230-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The human egr-1 gene encodes a zinc finger transcription factor induced by endogenous and exogenous stimuli such as growth factors, cytokines, and mitogens. Egr-1 regulates other genes involved in growth and differentiation. The present study investigated the influence of genotoxic agents, such as chemotherapy drugs and other DNA damaging agents, on egr-1 expression in normal and neoplastic cells. A transcriptional fusion between the human egr-1 promoter and the enhanced green fluorescent protein (EGFP) gene was used for direct visualization of intracellular Egr-1 regulation. The transcriptional activity of the egr-1 promoter in this reporter system faithfully reflects intrinsic egr-1 expression and induction, as demonstrated by FACS analysis of fluorescence and by RT-PCR for egr-1. EGFP was expressed under the control of the egr-1 promoter in stably transfected immortalized cell lines, such as HEK293, T98G, LNZ308, and 9L, which were then treated with genotoxic agents.A multitude of DNA damaging agents and therapeutic drugs caused significant upregulation of egr-1 transcription. Furthermore, cytotoxic compounds without a direct DNA damaging effect, such as resveratrol and vincristine, which interfere with DNA replication and cell division, were also able to activate egr-1 transcription. This suggests that cell cycle arrest rather than DNA damage seems to be the condition triggering egr-1 transcription. Moreover, treatment with the MAP kinase (MAPK) inhibitor SB203580, which specifically blocks the stress inducible p38/SAPK2 pathway, did not alter egr-1 induction. On the other hand, treatment with the inhibitor PD98059, which specifically blocks the MAPK/ERK pathway, partially suppressed the induction effect. In addition, the egr-1 induction effect caused by genotoxic stress was found to be at least in part independent from the cellular p53 status, as it was observed in p53-deficient as well as in wild type p53 cell lines. These results suggest that induction of egr-1, a gene to which until now no relation to DNA repair has been assigned, may belong to the fundamental cellular responses elicited by genotoxic and mitotic stress in normal as well as in neoplastic cells, and that enhanced levels of Egr-1 protein may be needed to regulate genes involved in DNA repair, cell survival, and apoptosis.
Collapse
Affiliation(s)
- Ariel Quiñones
- Department of General Surgery, ECHO-Laboratory, Martin-Luther-University, D-06097, Halle, Germany
| | | | | |
Collapse
|
47
|
Abstract
Malignant gliomas remain amongst the most difficult cancer to treat. Viral-based gene therapies have been employed for the last decade in preclinical and clinical modes as a novel treatment modality. In this review, such therapies are summarized. The overwhelming majority of clinical studies point one to conclude that methodologies that will increase tumor infection/transduction will lead to enhanced therapeutic results.
Collapse
Affiliation(s)
- E Antonio Chiocca
- Molecular Neuro-oncology Laboratory, Neurosurgery Service, Massachusetts General Hospital-East, Charlestown, Massachusetts 02129, USA.
| | | | | |
Collapse
|
48
|
Arafat WO, Buchsbaum DJ, Gómez-Navarro J, Tawil SA, Olsen C, Xiang J, El-Akad H, Salama AM, Badib AO, Stackhouse MA, Curiel DT. An adenovirus encoding proapoptotic Bax synergistically radiosensitizes malignant glioma. Int J Radiat Oncol Biol Phys 2003; 55:1037-50. [PMID: 12605984 DOI: 10.1016/s0360-3016(02)04488-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE We explore the utility of the adenovirus-mediated delivery of proapoptotic Bax for enhancing the cytotoxicity of radiotherapy (RT) in RT-refractory glioma cells. MATERIALS AND METHODS Cell lines D54 MG and U87 MG (p53 wild-type), and U251 MG and U373 MG (p53 mutant), and patient-derived astrocytes were evaluated. Cells were irradiated and infected with an inducible adenovirus encoding Bax. Cell proliferation, colony formation assay, quantification of early apoptotic alteration in the plasma membrane by fluorescence-activated cell sorter using annexin V, and nuclear staining with H33258 were used to evaluate apoptosis. The capacity of the combined treatment to induce regression of subcutaneous D54 MG tumors was tested in nude mice. A dose of 5 Gy was administered every other day, four times, for a total dose of 20 Gy. One day after each irradiation, tumors were injected with 1 x 10(9) plaque-forming units (PFU). RESULTS Apoptotic death was enhanced by the combination of Ad/Bax and RT. In D54 MG, levels of apoptosis after RT alone, Ad/Bax alone, or the combination were, respectively, 12.3%, 32.1%, and 78.5%. In contrast, treatment of astrocytes did not significantly induce apoptosis. A colony-formation assay showed a 2-log inhibition with respect to controls after combined treatment, irrespective of the endogenous levels of p53. The other apoptosis assays also showed the defining characteristics of apoptosis in the combination group. Remarkably, combined treatment induced regression of tumors in mice. CONCLUSIONS Ad/Bax synergistically radiosensitizes glioma, with a seemingly favorable therapeutic index.
Collapse
Affiliation(s)
- Waleed O Arafat
- Division of Human Gene Therapy, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Takakura K. Research progress in the last quarter of the 20th century at the University of Tokyo and Tokyo Women's Medical University. Neurosurgery 2003; 52:424-33; discussion 433-4. [PMID: 12535374 DOI: 10.1227/01.neu.0000044563.60999.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2002] [Accepted: 08/13/2002] [Indexed: 11/19/2022] Open
Abstract
Professor Keiji Sano described the history of neurosurgery in Japan until 1975. After World War II, not only neurosurgery but all fields of medicine were devastated in Japan. Professor Sano contributed greatly to the reform and modernization of neurosurgery during that very difficult era in Japan. He performed much research by himself and also as a leader of research groups on stereotactic and functional neurosurgery, cerebrovascular diseases, head injuries, and brain tumors. He organized the Fifth International Congress of Neurological Surgery in Tokyo in 1973. I succeeded in the chairmanship of the Department of Neurosurgery of the University of Tokyo in 1981. We have performed research on the treatment of brain tumors and cerebrovascular diseases. To obtain the best results for brain tumor treatment, we have introduced several new radiotherapeutic methods, such as the gamma knife, heavy-particle irradiation, and the photon radiosurgery system. To improve surgical treatment, we have energetically engaged in medical engineering research on computer-assisted surgical systems (intraoperative monitoring and navigation systems). We have also performed much research on chemotherapy and immunotherapy. In the field of cerebrovascular diseases, the main research projects have been focused on the mechanism and treatment of vasospasm and brain edema after subarachnoid hemorrhage. I summarize the results of our research performed in the Department of Neurosurgery of the University of Tokyo until 1992 and at Tokyo Women's Medical University after 1992, in the last quarter of the 20th century.
Collapse
|
50
|
Zamorano A, Lamas M, Vergara P, Naranjo JR, Segovia J. Transcriptionally mediated gene targeting of gas1 to glioma cells elicits growth arrest and apoptosis. J Neurosci Res 2003; 71:256-63. [PMID: 12503088 DOI: 10.1002/jnr.10461] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Induction of growth arrest-specific genes (gas1) prevents cell proliferation and/or leads to apoptosis in different cell types. In neurons, it has been recently reported that mild excitotoxic neuronal death is associated with gas1 induction, and that overexpression of Gas1 induces apoptosis in terminally differentiated neurons or in proliferating neuroblastoma cells. In the present study, we have analysed the effects of the transcriptionally mediated targeting of gas1 to C6 rat glioma cells. Expression of Gas1 decreased glial proliferation and induced C6 cell apoptosis. While the identity of the caspase(s) responsible for Gas1-induced apoptosis in neurons has remained elusive, in C6 glioma cells, overexpression of Gas1 reproducibly activated caspase-3. Our results support the concept of targeted expression of gas1 as a potentially useful gene therapy strategy in the treatment of human gliomas.
Collapse
Affiliation(s)
- Absalom Zamorano
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México, DF
| | | | | | | | | |
Collapse
|