1
|
Huan P, Liu B. The gastropod Lottia peitaihoensis as a model to study the body patterning of trochophore larvae. Evol Dev 2024; 26:e12456. [PMID: 37667429 DOI: 10.1111/ede.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
The body patterning of trochophore larvae is important for understanding spiralian evolution and the origin of the bilateral body plan. However, considerable variations are observed among spiralian lineages, which have adopted varied strategies to develop trochophore larvae or even omit a trochophore stage. Some spiralians, such as patellogastropod mollusks, are suggested to exhibit ancestral traits by producing equal-cleaving fertilized eggs and possessing "typical" trochophore larvae. In recent years, we developed a potential model system using the patellogastropod Lottia peitaihoensis (= Lottia goshimai). Here, we introduce how the species were selected and establish sources and techniques, including gene knockdown, ectopic gene expression, and genome editing. Investigations on this species reveal essential aspects of trochophore body patterning, including organizer signaling, molecular and cellular processes connecting the various developmental functions of the organizer, the specification and behaviors of the endomesoderm and ectomesoderm, and the characteristic dorsoventral decoupling of Hox expression. These findings enrich the knowledge of trochophore body patterning and have important implications regarding the evolution of spiralians as well as bilateral body plans.
Collapse
Affiliation(s)
- Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Bogomolov AI, Voronezhskaya EE. An Increase in the Level of Intracellular Serotonin in Blastomeres Leads to the Disruption in the Spiral Cleavage Pattern in the Mollusc Lymnaea stagnalis. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Slipper snail tales: How Crepidula fornicata and Crepidula atrasolea became model molluscs. Curr Top Dev Biol 2022; 147:375-399. [PMID: 35337456 DOI: 10.1016/bs.ctdb.2021.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the great abundance and diversity of molluscs, only a few have attained "model research organism" status. One of those species is the slipper snail Crepidula fornicata. Its embryos were first used for classical lineage tracing studies in the late 19th century, and over a 100 years later they were "re-discovered" by our labs and used for modern fate mapping, gene perturbation, in vivo imaging, transcriptomics, and the first application of CRISPR/Cas9-mediated genome editing among the Spiralia/Lophotrochozoa. Simultaneously, other labs made extensive examinations of taxonomy, phylogeny, ecology, life-history, mode of development, larval feeding behavior, and responses to the environment in members of the family Calyptraeidae, which includes the genus Crepidula. Recently, we developed tools, resources, and husbandry protocols for another, direct-developing species, Crepidula atrasolea. This species is an ideal "lab rat" among molluscs. Together these species will be valuable for probing the cellular and molecular mechanisms underlying molluscan biology and evolution.
Collapse
|
4
|
Tan S, Huan P, Liu B. Molluscan dorsal-ventral patterning relying on BMP2/4 and Chordin provides insights into spiralian development and evolution. Mol Biol Evol 2021; 39:6424002. [PMID: 34751376 PMCID: PMC8789067 DOI: 10.1093/molbev/msab322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although a conserved mechanism relying on BMP2/4 and Chordin is suggested for animal dorsal–ventral (DV) patterning, this mechanism has not been reported in spiralians, one of the three major clades of bilaterians. Studies on limited spiralian representatives have suggested markedly diverse DV patterning mechanisms, a considerable number of which no longer deploy BMP signaling. Here, we showed that BMP2/4 and Chordin regulate DV patterning in the mollusk Lottia goshimai, which was predicted in spiralians but not previously reported. In the context of the diverse reports in spiralians, it conversely represents a relatively unusual case. We showed that BMP2/4 and Chordin coordinate to mediate signaling from the D-quadrant organizer to induce the DV axis, and Chordin relays the symmetry-breaking information from the organizer. Further investigations on L. goshimai embryos with impaired DV patterning suggested roles of BMP signaling in regulating the behavior of the blastopore and the organization of the nervous system. These findings provide insights into the evolution of animal DV patterning and the unique development mode of spiralians driven by the D-quadrant organizer.
Collapse
Affiliation(s)
- Sujian Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
5
|
Lyons DC, Perry KJ, Batzel G, Henry JQ. BMP signaling plays a role in anterior-neural/head development, but not organizer activity, in the gastropod Crepidula fornicata. Dev Biol 2020; 463:135-157. [PMID: 32389712 PMCID: PMC7444637 DOI: 10.1016/j.ydbio.2020.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
BMP signaling is involved in many aspects of metazoan development, with two of the most conserved functions being to pattern the dorsal-ventral axis and to specify neural versus epidermal fates. An active area of research within developmental biology asks how BMP signaling was modified over evolution to build disparate body plans. Animals belonging to the superclade Spiralia/Lophotrochozoa are excellent experimental subjects for studying the evolution of BMP signaling because a highly conserved, stereotyped early cleavage program precedes the emergence of distinct body plans. In this study we examine the role of BMP signaling in one representative, the slipper snail Crepidula fornicata. We find that mRNAs encoding BMP pathway components (including the BMP ligand decapentaplegic, and BMP antagonists chordin and noggin-like proteins) are not asymmetrically localized along the dorsal-ventral axis in the early embryo, as they are in other species. Furthermore, when BMP signaling is perturbed by adding ectopic recombinant BMP4 protein, or by treating embryos with the selective Activin receptor-like kinase-2 (ALK-2) inhibitor Dorsomorphin Homolog 1 (DMH1), we observe no obvious effects on dorsal-ventral patterning within the posterior (post-trochal) region of the embryo. Instead, we see effects on head development and the balance between neural and epidermal fates specifically within the anterior, pre-trochal tissue derived from the 1q1 lineage. Our experiments define a window of BMP signaling sensitivity that ends at approximately 44-48 hours post fertilization, which occurs well after organizer activity has ended and after the dorsal-ventral axis has been determined. When embryos were exposed to BMP4 protein during this window, we observed morphogenetic defects leading to the separation of the anterior, 1q lineage from the rest of the embryo. The 1q-derived organoid remained largely undifferentiated and was radialized, while the post-trochal portion of the embryo developed relatively normally and exhibited clear signs of dorsal-ventral patterning. When embryos were exposed to DMH1 during the same time interval, we observed defects in the head, including protrusion of the apical plate, enlarged cerebral ganglia and ectopic ocelli, but otherwise the larvae appeared normal. No defects in shell development were noted following DMH1 treatments. The varied roles of BMP signaling in the development of several other spiralians have recently been examined. We discuss our results in this context, and highlight the diversity of developmental mechanisms within spiral-cleaving animals.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Scripps Institution of Oceanography, U.C. San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Kimberly J Perry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Grant Batzel
- Scripps Institution of Oceanography, U.C. San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jonathan Q Henry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Wada H, Phuangphong S, Hashimoto N, Nagai K. Establishment of the novel bivalve body plan through modification of early developmental events in mollusks. Evol Dev 2020; 22:463-470. [PMID: 32291900 DOI: 10.1111/ede.12334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mollusks have a wide variety of body plans, which develop through conserved early embryogenesis, namely spiral embryonic development and trochophore larvae. Although the comparative study of mollusks has attracted the interest of evolutionary developmental biology researchers, less attention has been paid to bivalves. In this review, we focused on the evolutionary process from single-shell ancestors to bivalves, which possess bilaterally separated shells. Our study tracing the lineage of shell field cells in bivalves did not support the old hypothesis that shell plate morphology is due to modification of the spiral cleavage pattern. Rather, we suggest that modification of the shell field induction process is the key to understanding the evolution of shell morphology. The novel body plan of bivalves cannot be established solely via separating shell plates, but rather requires the formation of additional organs, such as adductor muscles. The evolutionary biology of bivalves offers a unique view on how multiple organs evolve in a coordinated manner to establish a novel body plan.
Collapse
Affiliation(s)
- Hiroshi Wada
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Supanat Phuangphong
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoki Hashimoto
- Pearl Research Institute, K. Mikimoto & Co., Ltd., Shima, Mie, Japan
| | - Kiyohito Nagai
- Pearl Research Institute, K. Mikimoto & Co., Ltd., Shima, Mie, Japan
| |
Collapse
|
7
|
Girstmair J, Telford MJ. Reinvestigating the early embryogenesis in the flatworm Maritigrella crozieri highlights the unique spiral cleavage program found in polyclad flatworms. EvoDevo 2019; 10:12. [PMID: 31285819 PMCID: PMC6588950 DOI: 10.1186/s13227-019-0126-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/08/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Spiral cleavage is a conserved, early developmental mode found in several phyla of Lophotrochozoans resulting in highly diverse adult body plans. While the cleavage pattern has clearly been broadly conserved, it has also undergone many modifications in various taxa. The precise mechanisms of how different adaptations have altered the ancestral spiral cleavage pattern are an important ongoing evolutionary question, and adequately answering this question requires obtaining a broad developmental knowledge of different spirally cleaving taxa. In flatworms (Platyhelminthes), the spiral cleavage program has been lost or severely modified in most taxa. Polyclad flatworms, however, have retained the pattern up to the 32-cell stage. Here we study early embryogenesis of the cotylean polyclad flatworm Maritigrella crozieri to investigate how closely this species follows the canonical spiral cleavage pattern and to discover any potential deviations from it. RESULTS Using live imaging recordings and 3D reconstructions of embryos, we give a detailed picture of the events that occur during spiral cleavage in M. crozieri. We suggest, contrary to previous observations, that the four-cell stage is a product of unequal cleavages. We show that that the formation of third and fourth micromere quartets is accompanied by strong blebbing events; blebbing also accompanies the formation of micromere 4d. We find an important deviation from the canonical pattern of cleavages with clear evidence that micromere 4d follows an atypical cleavage pattern, so far exclusively found in polyclad flatworms. CONCLUSIONS Our findings highlight that early development in M. crozieri deviates in several important aspects from the canonical spiral cleavage pattern. We suggest that some of our observations extend to polyclad flatworms in general as they have been described in both suborders of the Polycladida, the Cotylea and Acotylea.
Collapse
Affiliation(s)
- Johannes Girstmair
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Maximilian J. Telford
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| |
Collapse
|
8
|
Namigai† EKO, Shimeld SM. Live Imaging of Cleavage Variability and Vesicle Flow Dynamics in Dextral and Sinistral Spiralian Embryos. Zoolog Sci 2019; 36:5-16. [DOI: 10.2108/zs180088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/13/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Erica K. O. Namigai†
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, U. K
| | - Sebastian M. Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, U. K
| |
Collapse
|
9
|
Henry JQ, Lyons DC, Perry KJ, Osborne C. Establishment and activity of the D quadrant organizer in the marine gastropod Crepidula fornicata. Dev Biol 2017; 431:282-296. [DOI: 10.1016/j.ydbio.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/15/2017] [Accepted: 09/02/2017] [Indexed: 10/18/2022]
|
10
|
Carrillo-Baltodano AM, Meyer NP. Decoupling brain from nerve cord development in the annelid Capitella teleta: Insights into the evolution of nervous systems. Dev Biol 2017; 431:134-144. [DOI: 10.1016/j.ydbio.2017.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/17/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
11
|
Abstract
Spiralian development is characterized by stereotypic cell geometry and spindle orientation in early cleavage stage embryos, as well as conservation of ultimate fates of descendent clones. Diverse taxa such as molluscs, annelids, flatworms, and nemerteans exhibit spiralian development, but it is a mystery how such a conserved developmental program gives rise to such diverse body plans. This review highlights examples of variation during early development among spiralians, emphasizing recent experimental studies in the annelid Capitella teleta Blake, Grassle and Eckelbarger, 2009. Intracellular fate mapping studies in C. teleta reveal that many of its cells’ fates are shared among spiralians, but it also has a novel origin for trunk mesoderm (3c and 3d micromeres). Studies have identified an inductive signal in spiralians that has “organizing activity” and that influences cell fates in the surrounding embryo. Capitella teleta also has an organizing activity; however, surprisingly, it is localized to a different cell, it signals at a different developmental stage, and likely utilizes a distinct molecular signaling pathway compared with that in molluscs. A model is presented to provide a mechanistic explanation of evolutionary changes in the cellular identity of the organizer. Detailed experimental investigations in spiralian embryos demonstrate variation in developmental features that may influence the evolution of novel forms.
Collapse
Affiliation(s)
- Elaine C. Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, Saint Augustine, FL 32080, USA
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, Saint Augustine, FL 32080, USA
| |
Collapse
|
12
|
Kostyuchenko RP, Dondua AK. Peculiarities of isolated blastomere development of the polyhaete Alitta virens. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417030067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Vellutini BC, Martín-Durán JM, Hejnol A. Cleavage modification did not alter blastomere fates during bryozoan evolution. BMC Biol 2017; 15:33. [PMID: 28454545 PMCID: PMC5408385 DOI: 10.1186/s12915-017-0371-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Stereotypic cleavage patterns play a crucial role in cell fate determination by precisely positioning early embryonic blastomeres. Although misplaced cell divisions can alter blastomere fates and cause embryonic defects, cleavage patterns have been modified several times during animal evolution. However, it remains unclear how evolutionary changes in cleavage impact the specification of blastomere fates. Here, we analyze the transition from spiral cleavage - a stereotypic pattern remarkably conserved in many protostomes - to a biradial cleavage pattern, which occurred during the evolution of bryozoans. RESULTS Using 3D-live imaging time-lapse microscopy (4D-microscopy), we characterize the cell lineage, MAPK signaling, and the expression of 16 developmental genes in the bryozoan Membranipora membranacea. We found that the molecular identity and the fates of early bryozoan blastomeres are similar to the putative homologous blastomeres in spiral-cleaving embryos. CONCLUSIONS Our work suggests that bryozoans have retained traits of spiral development, such as the early embryonic fate map, despite the evolution of a novel cleavage geometry. These findings provide additional support that stereotypic cleavage patterns can be modified during evolution without major changes to the molecular identity and fate of embryonic blastomeres.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
14
|
Goulding MQ, Lambert JD. Mollusc models I. The snail Ilyanassa. Curr Opin Genet Dev 2016; 39:168-174. [PMID: 27497839 DOI: 10.1016/j.gde.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/07/2016] [Accepted: 07/07/2016] [Indexed: 11/27/2022]
Abstract
Ilyanassa obsoleta has been a model system for experimental embryology for over a century. Here we highlight new insight into early cell lineage specification in Ilyanassa. As in all molluscs and other spiralians, stereotyped cleavage patterns establish a homunculus of regional founder cells. Ongoing studies are beginning to dissect mechanisms of asymmetric cell division that specify these cells' fates. This is only part of the story: overlaid on intrinsic cell identities is a graded 'organizer' signal, and emerging evidence suggests wider roles for short-range intercellular signaling. Modern methods, combined with the intrinsic experimental advantages of Ilyanassa, offer attractive opportunities for studying basic developmental cell biology as well as its evolution over a wide range of phylogenetic scales.
Collapse
Affiliation(s)
- Morgan Q Goulding
- Division of Natural Science, Bethel University, McKenzie, TN 38201, United States.
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| |
Collapse
|
15
|
Fischer AHL, Pang K, Henry JQ, Martindale MQ. A cleavage clock regulates features of lineage-specific differentiation in the development of a basal branching metazoan, the ctenophore Mnemiopsis leidyi. EvoDevo 2014; 5:4. [PMID: 24485336 PMCID: PMC3909359 DOI: 10.1186/2041-9139-5-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/20/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND An important question in experimental embryology is to understand how the developmental potential responsible for the generation of distinct cell types is spatially segregated over developmental time. Classical embryological work showed that ctenophores, a group of gelatinous marine invertebrates that arose early in animal evolution, display a highly stereotyped pattern of early development and a precocious specification of blastomere fates. Here we investigate the role of autonomous cell specification and the developmental timing of two distinct ctenophore cell types (motile compound comb-plate-like cilia and light-emitting photocytes) in embryos of the lobate ctenophore, Mnemiopsis leidyi. RESULTS In Mnemiopsis, 9 h after fertilization, comb plate cilia differentiate into derivatives of the E lineage, while the bioluminescent capability begins in derivatives of the M lineage. Arresting cleavage with cytochalasin B at the 1-, 2- or 4-cell stage does not result in blastomere death; however, no visible differentiation of the comb-plate-like cilia or bioluminescence was observed. Cleavage arrest at the 8- or 16-cell stage, in contrast, results in the expression of both differentiation products. Fate-mapping experiments indicate that only the lineages of cells that normally express these markers in an autonomous fashion during normal development express these traits in cleavage-arrested 8- and 16-cell stage embryos. Lineages that form comb plates in a non-autonomous fashion (derivatives of the M lineage) do not. Timed actinomycin D and puromycin treatments show that transcription and translation are required for comb formation and suggest that the segregated material might be necessary for activation of the appropriate genes. Interestingly, even in the absence of cytokinesis, differentiation markers appear to be activated at the correct times. Treatments with a DNA synthesis inhibitor, aphidicolin, show that the number of nuclear divisions, and perhaps the DNA to cytoplasmic ratio, are critical for the appearance of lineage-specific differentiation. CONCLUSION Our work corroborates previous studies demonstrating that the cleavage program is causally involved in the spatial segregation and/or activation of factors that give rise to distinct cell types in ctenophore development. These factors are segregated independently to the appropriate lineage at the 8- and the 16-cell stages and have features of a clock, such that comb-plate-like cilia and light-emitting photoproteins appear at roughly the same developmental time in cleavage-arrested embryos as they do in untreated embryos. Nuclear division, which possibly affects DNA-cytoplasmic ratios, appears to be important in the timing of differentiation markers. Evidence suggests that the 60-cell stage, just prior to gastrulation, is the time of zygotic gene activation. Such cleavage-clock-regulated phenomena appear to be widespread amongst the Metazoa and these cellular and molecular developmental mechanisms probably evolved early in metazoan evolution.
Collapse
Affiliation(s)
- Antje HL Fischer
- Developmental Biology Unit, European Molecular Biology Laboratory Heidelberg, Meyerhof Strasse 1, Heidelberg 69117, Germany
- current address: Molecular and Cell Biology Department, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Kevin Pang
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA
- current address: Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, Bergen N-5008, Norway
| | - Jonathan Q Henry
- Department of Cell and Structural Biology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience, Univ. Florida, 9505 Oceanshore Blvd, St, Augustine, FL 32080, USA
| |
Collapse
|
16
|
Amiel AR, Henry JQ, Seaver EC. An organizing activity is required for head patterning and cell fate specification in the polychaete annelid Capitella teleta: New insights into cell–cell signaling in Lophotrochozoa. Dev Biol 2013; 379:107-22. [DOI: 10.1016/j.ydbio.2013.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 11/16/2022]
|
17
|
Chan XY, Lambert JD. Patterning a spiralian embryo: A segregated RNA for a Tis11 ortholog is required in the 3a and 3b cells of the Ilyanassa embryo. Dev Biol 2011; 349:102-12. [DOI: 10.1016/j.ydbio.2010.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 01/10/2023]
|
18
|
|
19
|
Henry JJ, Collin R, Perry KJ. The slipper snail, Crepidula: an emerging lophotrochozoan model system. THE BIOLOGICAL BULLETIN 2010; 218:211-229. [PMID: 20570845 DOI: 10.1086/bblv218n3p211] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recent developmental and genomic research focused on "slipper snails" in the genus Crepidula has positioned Crepidula fornicata as a de facto model system for lophotrochozoan development. Here we review recent developments, as well as earlier reports demonstrating the widespread use of this system in studies of development and life history. Recent studies have resulted in a well-resolved fate map of embryonic cell lineage, documented mechanisms for axis determination and D quadrant specification, preliminary gene expression patterns, and the successful application of loss- and gain-of-function assays. The recent development of expressed sequence tags and preliminary genomics work will promote the use of this system, particularly in the area of developmental biology. A wealth of comparative information on phylogenetic relationships, variation in mode of development within the family, and numerous studies on larval biology and metamorphosis, primarily in Crepidula fornicata, make these snails a powerful tool for studies of the evolution of the mechanisms of development in the Mollusca and Lophotrochozoa. By bringing a review of the current state of knowledge of Crepidula life histories and development together with some detailed experimental methods, we hope to encourage further use of this system in various fields of investigation.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois, 601 S. Goodwin Ave, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
20
|
Lyons DC, Weisblat DA. D quadrant specification in the leech Helobdella: actomyosin contractility controls the unequal cleavage of the CD blastomere. Dev Biol 2009; 334:46-58. [PMID: 19607823 PMCID: PMC3077801 DOI: 10.1016/j.ydbio.2009.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/27/2009] [Accepted: 07/04/2009] [Indexed: 10/20/2022]
Abstract
The unequal division of the CD blastomere at second cleavage is critical in establishing the second embryonic axis in the leech Helobdella, as in other unequally cleaving spiralians. When CD divides, the larger D and smaller C blastomeres arise invariantly on the left and right sides of the embryo, respectively. Here we show that stereotyped cellular dynamics, including the formation of an intercellular blastocoel, culminate in a morphological left-right asymmetry in the 2-cell embryo, which precedes cytokinesis and predicts the chirality of the second cleavage. In contrast to the unequal first cleavage, the unequal second cleavage does not result from down-regulation of one centrosome, nor from an asymmetry within the spindle itself. Instead, the unequal cleavage of the CD cell entails a symmetric mitotic apparatus moving and anisotropically growing rightward in an actomyosin-dependent process. Our data reveal that mechanisms controlling the establishment of the D quadrant differ fundamentally even among the monophyletic clitellate annelids. Thus, while the homologous spiral cleavage pattern is highly conserved in this clade, it has diverged significantly at the level of cell biological mechanisms. This combination of operational conservation and mechanistic divergence begins to explain how the spiral cleavage program has remained so refractory to change while, paradoxically, accommodating numerous modifications throughout evolution.
Collapse
Affiliation(s)
- Deirdre C. Lyons
- 385 Life Sciences Addition, Department of Molecular & Cell Biology, U.C. Berkeley, Berkeley CA 94720, 510 642 2697
| | - David A. Weisblat
- 385 Life Sciences Addition, Department of Molecular & Cell Biology, U.C. Berkeley, Berkeley CA 94720, 510 642 8309
| |
Collapse
|
21
|
|
22
|
Lambert JD. Mesoderm in spiralians: the organizer and the 4d cell. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:15-23. [PMID: 17577229 DOI: 10.1002/jez.b.21176] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Spiralia is a clade of protostome invertebrate phyla that share a highly conserved mode of early development. Spiralian development is characterized by regularities in the arrangement of early cleavages, the fates of the cells that are produced by these divisions, and the development of the distinctive trochophore larva. Because of the strong conservation in early development, homologies can be identified between cells in divergent taxa. Some of the most striking examples of conservation in the spiralian embryo are in the cells that generate the mesoderm. The specification of the mesodermal precursors has been well characterized by embryological approaches, and recently the molecular mechanisms of mesoderm specification are starting to be elucidated. This review examines the development of mesoderm in spiralians in a comparative context, with particular focus on the relationship between the mesendodermal cell 4d and the embryonic organizer.
Collapse
Affiliation(s)
- J David Lambert
- Department of Biology, University of Rochester, Rochester, New York 14627, USA.
| |
Collapse
|
23
|
Gonzales EE, van der Zee M, Dictus WJAG, van den Biggelaar J. Brefeldin A and monensin inhibit the D quadrant organizer in the polychaete annelids Arctonoe vittata and Serpula columbiana. Evol Dev 2007; 9:416-31. [PMID: 17845514 DOI: 10.1111/j.1525-142x.2007.00172.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The D quadrant organizer is a developmental signaling center that is localized to the vegetal D quadrant in different spiral-cleaving lophotrochozoan embryos and may be homologous to axial organizing regions in other metazoans. Patterning by this organizing center creates a secondary developmental axis and is required for the transition from spiral to bilateral cleavage and later establishment of the adult body plan. Organizer specification in equal-cleaving embryos is thought to involve inductive interactions between opposing animal and vegetal blastomeres. To date, experimental demonstration of this interaction has been limited to molluscs and nemerteans. Here, we examine three families of equal-cleaving polychaete annelids for evidence of animal-vegetal contact. We find that contact is present in the polynoid, Arctonoe vittata, but is absent in the serpulid, Serpula columbiana, and in the oweniid, Oweniia fusiformis. To interfere with cell signaling during the period predicted for organizer specification and patterning in A. vittata and S. columbiana, we use two general inhibitors of protein processing and secretion: Brefeldin A (BFA) and monensin. In A. vittata, we detail subsequent embryonic and larval adult development and show that treatment with either chemical results in radialization of the embryo and subsequent body plan. Radialized larvae differentiate many larval and adult structures despite the loss of bilateral symmetry but do so in either a radially symmetric or four-fold radially symmetric fashion. Our results suggest that the D quadrant organizer is functionally conserved in equal-cleaving polychaetes, but that details of its specification, induction, and patterning have diverged relative to other spiral-cleaving phyla.
Collapse
Affiliation(s)
- Eric E Gonzales
- Department of Developmental Biology, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Henry JJ, Perry KJ. MAPK activation and the specification of the D quadrant in the gastropod mollusc, Crepidula fornicata. Dev Biol 2007; 313:181-95. [PMID: 18022612 DOI: 10.1016/j.ydbio.2007.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/24/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
Embryos of the gastropod snail Crepidula fornicata exhibit a typical spiral cleavage pattern. Although a small polar lobe is formed at the first and second cleavage divisions, the embryo of C. fornicata exhibits a mode of development similar to that of equal-cleaving spiralians in which the D quadrant is conditionally specified by inductive interactions involving the derivatives of the first quartet micromeres. This study demonstrates that mitogen activated protein kinases, MAPK, are initially activated in the progeny of the first quartet micromeres, just prior to the birth of the third quartet (e.g., late during the 16-cell and subsequently during the 20-cell stages). Afterwards, MAPK is activated in 3D just prior to the 24-cell stage, transiently in 4d and finally in a subset of animal micromeres immediately following those stages. This pattern of MAPK activation differs from that reported for other spiralians. Using an inhibitor of MAPK kinase (MEK), we demonstrated that activated MAPK is required for the specification of the 3D macromere, during the late 16-cell through early 24-cell stages. This corresponds to the interval when the progeny of the first quartet micromeres specify the D quadrant macromere. Activated MAPK is not required in 3D later during the 24-cell stage or in the embryonic organizer, 4d, for its normal activity. Likewise, activated MAPK is not required in the animal micromeres during subsequent stages of development. Additional experiments suggest that the polar lobe, though not required for normal development, may play a role in restricting the activation of MAPK and biasing the specification of the 3D macromere.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801, USA.
| | | |
Collapse
|
25
|
Koop D, Richards GS, Wanninger A, Gunter HM, Degnan BM. The role of MAPK signaling in patterning and establishing axial symmetry in the gastropod Haliotis asinina. Dev Biol 2007; 311:200-12. [PMID: 17916345 DOI: 10.1016/j.ydbio.2007.08.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 08/14/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Gastropods are members of the Spiralia, a diverse group of invertebrates that share a common early developmental program, which includes spiral cleavage and a larval trochophore stage. The spiral cleavage program results in the division of the embryo into four quadrants. Specification of the dorsal (D) quadrant is intimately linked with body plan organization and in equally cleaving gastropods occurs when one of the vegetal macromeres makes contact with overlying micromeres and receives an inductive signal that activates a MAPK signaling cascade. Following the induction of the 3D macromere, the embryo begins to gastrulate and assumes a bilateral cleavage pattern. Here we inhibit MAPK activation in 3D with U0126 and examine its effect on the formation and patterning of the trochophore, using a suite of territory-specific markers. The head (pretrochal) region appears to maintain quadri-radial symmetry in U0126-treated embryos, supporting a role for MAPK signaling in 3D in establishing dorsoventral polarity in this region. Posterior (posttrochal) structures - larval musculature, shell and foot--fail to develop in MAPK inhibited trochophores. Inhibition of 3D specification by an alternative method--monensin treatment--yields similar abnormal trochophores. However, genes that are normally expressed in the ectodermal structures (shell and foot) are detected in U0126- and monensin-perturbed larvae in patterns that suggest that this region has latent dorsoventral polarity that is manifested even in the absence of D quadrant specification.
Collapse
Affiliation(s)
- Demian Koop
- School of Integrative Biology, University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | |
Collapse
|
26
|
Henry JQ, Perry KJ, Martindale MQ. Cell specification and the role of the polar lobe in the gastropod mollusc Crepidula fornicata. Dev Biol 2006; 297:295-307. [PMID: 16919619 DOI: 10.1016/j.ydbio.2006.04.441] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/27/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
A small polar lobe forms at the first and second cleavage divisions in the gastropod mollusc Crepidula fornicata. These lobes normally fuse with the blastomeres that give rise to the D quadrant at the two- and four-cell stages (cells ultimately generating the 4d mesentoblast and D quadrant organizer). Significantly, removal of the small polar lobe had no noticeable effect on subsequent development of the veliger larva. The behavior of the polar lobe and characteristic early cell shape changes involving protrusion of the 3D macromere at the 24-cell suggest that the D quadrant is specified prior to the sixth cleavage division. On the other hand, blastomere deletion experiments indicate that the D quadrant is not determined until the time of formation of the 4d blastomere (mesentoblast). In fact, embryos can undergo regulation to form normal-appearing larvae if the prospective D blastomere or 3D macromere is removed. Removal of the 4d mesentoblast leads to highly disorganized, radial development. Removal of the first quartet micromeres at the 8-cell stage also leads to the development of radialized larvae. These findings indicate that the embryos of C. fornicata follow the mode of development exhibited by equal-cleaving spiralians, which involves conditional specification of the D quadrant organizer via inductive interactions, presumably from the first quartet micromeres.
Collapse
Affiliation(s)
- Jonathan Q Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
27
|
Kostyuchenko RP, Dondua AK. Development of the prototroch in embryogenesis of Nereis virens (polychaeta). Russ J Dev Biol 2006. [DOI: 10.1134/s1062360406020020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Nakamoto A, Arai A, Shimizu T. Specification of polarity of teloblastogenesis in the oligochaete annelid Tubifex: cellular basis for bilateral symmetry in the ectoderm. Dev Biol 2004; 272:248-61. [PMID: 15242804 DOI: 10.1016/j.ydbio.2004.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 04/30/2004] [Accepted: 05/05/2004] [Indexed: 11/16/2022]
Abstract
Ectodermal teloblastogenesis in the oligochaete annelid Tubifex is a spatiotemporally regulated process that gives rise to four bilateral pairs of ectoteloblasts (N, O, P, and Q) that assume distinct fates. Ectoteloblasts on either side of the embryo arise from an invariable sequence of asymmetric cell divisions of a proteloblast, NOPQ, which occur with a defined orientation with respect to the embryonic axes: the N teloblast is generated first and located ventralmost, and the Q teloblast, which is generated next, is located dorsalmost; finally, the O and P teloblasts are generated by almost equal division of their precursor cell, OP. Polarity of teloblastogenesis on one side of the embryo is a mirror image of the other; this mirror symmetry of ectoteloblasts about the embryo's midline gives rise to the bilaterally symmetric organization of the ectoderm. In this study, we examined whether cellular interactions are involved in specification of polarity of asymmetric cell divisions in NOPQ cells. A set of cell transplantation experiments demonstrated that NOPQ cells are initially uncommitted in terms of division pattern and cell fates: If a left NOPQ cell is transplanted to the right side of a host embryo, it exhibits a polarity comparable to that of right NOPQ cells. The results of another set of cell transplantation experiments suggest that contact between NOPQ cells serves as an external cue for their polarization, irrespective of their position in the embryo, and that in the absence of host NOPQ cells, transplanted NOPQ cells can be polarized according to positional information residing in the host embryo. The competence of NOPQ cells to respond to external cues tapers down before their division into N and OPQ. A set of cell ablation experiments demonstrated that neighboring cells such as posteriorly located M teloblasts and anterolaterally located micromeres play a role in controlling spatial aspects of NOPQ's behavior that gives rise to their division along the dorsoventral axis. These results suggest that NOPQ cells, which do not initially have a rigidly fixed polarity, become polarized through external cues. Possible sources of signals for this polarizing induction are discussed in the light of the present results.
Collapse
Affiliation(s)
- Ayaki Nakamoto
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | |
Collapse
|
29
|
Henry JQ, Okusu A, Martindale MQ. The cell lineage of the polyplacophoran, Chaetopleura apiculata: variation in the spiralian program and implications for molluscan evolution. Dev Biol 2004; 272:145-60. [PMID: 15242797 DOI: 10.1016/j.ydbio.2004.04.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 04/09/2004] [Accepted: 04/12/2004] [Indexed: 10/26/2022]
Abstract
Polyplacophorans, or chitons, are an important group of molluscs, which are argued to have retained many plesiomorphic features of the molluscan body plan. Polyplacophoran trochophore larvae posses several features that are distinctly different from those of their sister trochozoan taxa, including modifications of the ciliated prototrochal cells, the postrochal position of the larval eyes or ocelli, epidermal calcareous spicules, and a collection of serially reiterated epidermal shell plates. Despite these differences, chitons demonstrate a canonical pattern of equal spiral cleavage shared by other spiralian phyla that permits the identification of homologous cells across this animal clade. Cell lineage analysis using intracellular labeling on one chiton species, Chaetopleura apiculata, shows that the ocelli are generated from different lineal precursors (second-quartet micromeres: 2a, 2c) compared to those in all other spiralians studied to date (first-quartet micromeres: 1a, 1c). This situation implies that significant changes have also occurred in terms of the inductive interactions that control eye development in the spiralians. Although radical departures from the spiralian developmental program are seen in some molluscs (i.e., cephalopods), the findings presented here indicate that important changes can occur even within the highly constrained framework of the spiral cleavage program. Among spiralians, variation has been reported for the origin of the anterior, sensory, apical organ, which arises from the 1c and 1d micromeres in C. apiculata. The prototroch of C. apiculata consists of two to three irregular rows of ciliated cells but arise from 1q and 2q daughters, similar to that of Ischnochiton rissoi, as well as the gastropod, Patella vulgata. Despite certain early claims, there is no supporting evidence that any of the shell plates arise pretrochally in C. apiculata. The first seven of eight definitive shell plates that arise in the larva originate from shell secreting grooves in the postrochal region (derived from 2c, 2d, 3d). Earlier descriptions indicate that the eighth plate arises later at metamorphosis, and as this is formed posteriorly, it too forms in the postrochal region. On the other hand, epidermal spicules originate from both pretrochal and postrochal cells (1a,1d, 2a, 2c, 3c, 3d). The significance of these observations is discussed in light of various hypotheses concerning the origin of the conchiferan shell. This study reveals conservation, as well as evolutionary novelty, in the assignment of specific cell fates in the spiralians.
Collapse
Affiliation(s)
- Jonathan Q Henry
- Department of Cell and Structural Biology, University of Illinois, Urbana 61801, USA.
| | | | | |
Collapse
|
30
|
Abstract
Spiralian development is shared by several protostome phyla and characterized by regularities in early cleavage, fate map, and larva. Experimental evidence from multiple spiralian species implicates cells in the D quadrant lineage as the organizer of future axial development of the embryo. However, the mechanisms by which the D quadrant is specified differ between species with equal and unequal spiral cleavage. Equally cleaving mollusc embryos establish the D quadrant via cell-cell interactions between the micromeres and macromeres at the 24- to 36-cell stage. In unequally cleaving embryos, the D quadrant is established at the 4-cell stage via asymmetries in the first 2 cell divisions. We have begun to explore the molecular mechanisms of D quadrant patterning in spiralians. Previously, we showed that, in the unequally cleaving embryo of the mollusc Ilyanassa obsoleta, the MAPK pathway is activated and functionally required in 3D and also in the micromeres known to require a signal from 3D. Here, we examine the role of MAPK signaling in 4 spiralians with equal cleavage. In 3 equally cleaving molluscs, the chiton Chaetopleura, the limpet Tectura, and the snail Lymnaea, the MAPK pathway is activated in the 3D cell but not in the overlying micromeres. In the equally cleaving embryo of the polychaete annelid Hydroides, MAPK activation was not detected in the 3D macromere but was observed in one of its daughter cells, 4d. In addition, inhibiting Tectura MAPK activation disrupts differentiation of 3D and cells induced by it, supporting a functional role for MAPK in axis specification in equally cleaving spiralians. Thus, MAPK signaling may have a conserved role in the D quadrant organizer cell 3D in molluscs. However, there have been at least 2 evolutionary changes in the activation of the MAPK pathway during spiralian evolution. MAPK function in the Ilyanassa micromeres is a recent cooption and, since the divergence of annelids and molluscs, there has been a shift in onset of MAPK activation between 3D and 4d. We propose that this latter shift correlates with a change in the timing of specification of the secondary embryonic axis.
Collapse
Affiliation(s)
- J David Lambert
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
31
|
Abstract
Many members of the spiralian phyla (i.e., annelids, echiurans, vestimentiferans, molluscs, sipunculids, nemerteans, polyclad turbellarians, gnathostomulids, mesozoans) exhibit early, equal cleavage divisions. In the case of the equal-cleaving molluscs, animal-vegetal inductive interactions between the derivatives of the first quartet micromeres and the vegetal macromeres specify which macromere becomes the 3D cell during the interval between fifth and sixth cleavage. The 3D macromere serves as a dorsal organizer and gives rise to the 4d mesentoblast. Even though it has been argued that this situation represents the ancestral condition among the Spiralia, these inductive events have only been documented in equal-cleaving molluscs. Embryos of the nemertean Cerebratulus lacteus also undergo equal, spiral cleavage, and the fate map of these embryos is similar to that of other spiralians. The role of animal first quartet micromeres in the establishment of the dorsal (D) cell quadrant was examined in C. lacteus by removing specific combinations of micromeres at the eight-cell stage. To follow the development of various cell quadrants, one quadrant was labeled with DiI at the four-cell stage, and specific first quartet micromeres were removed from discrete positions relative to the location of the labeled quadrant. The results indicate that the first quartet is required for normal development, as removal of all four micromeres prevented dorsoventral axis formation. In most cases, when either one or two adjacent first quartet micromeres were removed from one side of the embryo, the cell quadrant on the opposite side, with its macromere centered under the greatest number of the remaining animal micromeres, ultimately became the D quadrant. Twins containing duplicated dorsoventral axes were generated by removal of two opposing first quartet micromeres. Thus, any cell quadrant can become the D quadrant, and the dorsoventral axis is established after the eight-cell stage. While it is not yet clear exactly when key inductive interactions take place that establish the D quadrant in C. lacteus, contacts between the progeny of animal micromeres and vegetal macromeres are established during the interval between the fifth and sixth round of cleavage divisions (i.e., 32- to 64-cell stages). These findings argue that this mechanism of cell and axis determination has been conserved among equal-cleaving spiralians.
Collapse
Affiliation(s)
- Jonathan Henry
- Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
32
|
Lartillot N, Lespinet O, Vervoort M, Adoutte A. Expression pattern ofBrachyuryin the molluscPatella vulgatasuggests a conserved role in the establishment of the AP axis in Bilateria. Development 2002; 129:1411-21. [PMID: 11880350 DOI: 10.1242/dev.129.6.1411] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the characterisation of a Brachyury ortholog (PvuBra) in the marine gastropod Patella vulgata. In this mollusc, the embryo displays an equal cleavage pattern until the 32-cell stage. There, an inductive event takes place that sets up the bilateral symmetry, by specifying one of the four initially equipotent vegetal macromeres as the posterior pole of all subsequent morphogenesis. This macromere, usually designated as 3D, will subsequently act as an organiser. We show that 3D expresses PvuBra as soon as its fate is determined. As reported for another mollusc (J. D. Lambert and L. M. Nagy (2001) Development128, 45-56), we found that 3D determination and activity also involve the activation of the MAP kinase ERK, and we further show that PvuBra expression in 3D requires ERK activity. PvuBra expression then rapidly spreads to neighbouring cells that cleave in a bilateral fashion and whose progeny will constitute the posterior edge of the blastopore during gastrulation, suggesting a role for PvuBra in regulating cell movements and cleavage morphology in Patella. Until the completion of gastrulation, PvuBra expression is maintained at the posterior pole, and along the developing anterior-posterior axis. Comparing this expression pattern with what is known in other Bilateria, we advocate that Brachyury might have a conserved role in the regulation of anterior-posterior patterning among Bilateria, through the maintenance of a posterior growth zone, suggesting that a teloblastic mode of axis formation might be ancestral to the Bilateria.
Collapse
Affiliation(s)
- Nicolas Lartillot
- Centre de Génétique Moléculaire, CNRS batiment 26, 1 Avenue de la Terrasse, F-91198 Gif Sur Yvette, France.
| | | | | | | |
Collapse
|
33
|
Shimotori T, Goto T. Establishment of Axial Properties in the Arrow Worm Embryo, Paraspadella gotoi (Chaetognatha): Developmental Fate of the First Two Blastomeres. Zoolog Sci 1999. [DOI: 10.2108/zsj.16.459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Boyer BC, Henry JJ, Martindale MQ. The cell lineage of a polyclad turbellarian embryo reveals close similarity to coelomate spiralians. Dev Biol 1998; 204:111-23. [PMID: 9851846 DOI: 10.1006/dbio.1998.9084] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent molecular evidence suggests the turbellarian Platyhelminthes may represent the extant basal members of the Spiralia and therefore probably exhibit ancient features of the spiralian developmental program. The stereotypic quartet spiral cleavage pattern of the polyclad turbellarian embryo, among other features, indicates that this group may be closely related to the ancestral flatworm; however, polyclad embryos have been the subject of few experimental studies. Here we report the results of a cell lineage analysis of the embryo of the polyclad Hoploplana inquilina based on microinjection of DiI into cleavage-stage blastomeres following formation of each of the four quartets of micromeres. The first quartet gives rise to most of the lateral and anterior ectoderm of the Müller's larva; the second quartet forms largely dorsal and ventral ectoderm as well as the circular muscles; the third quartet forms only small clones of ectoderm; and only the 4d cell of the fourth quartet contributes to larval structure, forming the longitudinal muscles, mesenchyme, and probably endoderm. Our results demonstrate a striking similarity between the cell lineages of polyclad and higher spiralian embryos, in which the four quadrants also bear the same relationships to the larval axes and give rise to comparable larval structures, including derivation of mesoderm from both ectodermal (2b) and endodermal precursors (4d).
Collapse
Affiliation(s)
- B C Boyer
- Marine Biological Laboratory, Woods Hole, Massachusetts, 02543, USA
| | | | | |
Collapse
|
35
|
Dictus WJ, Damen P. Cell-lineage and clonal-contribution map of the trochophore larva of Patella vulgata (mollusca). Mech Dev 1997; 62:213-26. [PMID: 9152012 DOI: 10.1016/s0925-4773(97)00666-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molluscan development is characterised by its extremely regular cleavage pattern. In numerous molluscs the fate of various early-cleavage stage blastomeres has been determined and fate maps have been constructed. On the basis of similarities between these fate maps, a generalised molluscan cell-lineage map has been constructed. Recently, the validity of this map has been challenged. In this study, the cell-lineage of the first-, second-, and third-quartet micromeres and third-generation macromeres of the equally-cleaving gastropod mollusc Patella vulgata was studied by fluorescent cell-lineage tracer injection followed by epifluorescence microscopy and confocal laser scanning microscopy. For the first time, a complete cell-lineage map, in the form of a clonal-contribution map of the trochophore, has been constructed with the use of fluorescent cell-lineage tracers. This map both agrees and differs in a number of respects with the generalised cell-lineage map of molluscs. The most important deviation is that the micromere 2d, formerly referred to as the first somatoblast, is not the only cell that forms the foot and shell gland in Patella.
Collapse
Affiliation(s)
- W J Dictus
- Department of Experimental Zoology, University of Utrecht, The Netherlands
| | | |
Collapse
|
36
|
DAMEN WIMG, KLERKX ANKEH, VAN LOON ANDRÉE. Cell-specific gene regulation in early molluscan development. INVERTEBR REPROD DEV 1997. [DOI: 10.1080/07924259.1997.9672557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Damen P, Dictus WJAG. Spatial and temporal coincidence of induction processes and gap-junctional communication in Patella vulgata (Mollusca, Gastropoda). ACTA ACUST UNITED AC 1996; 205:401-409. [DOI: 10.1007/bf00377220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1995] [Accepted: 02/27/1996] [Indexed: 11/24/2022]
|
38
|
Damen P, Dictus WJ. Organiser role of the stem cell of the mesoderm in prototroch patterning in Patella vulgata (Mollusca, Gastropoda). Mech Dev 1996; 56:41-60. [PMID: 8798146 DOI: 10.1016/0925-4773(96)00510-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During early development of the gastropod mollusc Patella vulgata, the stem cell of the mesoderm (3D-macromere) is induced. As a result of this induction, the embryo becomes dorsoventrally organised. At about the same time in development, ciliated cells, so-called trochoblasts, are formed. Later in development, some trochoblasts deciliate and, together with the ciliated trochoblast, form the dorsoventrally organised prototroch, the locomotory organ of the larva. In order to study the role of the 3D-macromere in the specification of trochoblasts and in the induction of the dorsoventral organisation of the prototroch, induction of 3D has been prevented in various ways. it is shown that preventing 3D-induction results in the formation of a radially symmetrical prototroch. The trochoblasts of all four quadrants developed like corresponding trochoblasts of the A-quadrant. Somewhere between 30 and 120 min after fifth cleavage the 3D-macromere induces the formation of specific trochoblasts and organises the dorsoventral pattern of the prototroch. Besides a role of the 3D-macromere, a role of other cells has been demonstrated in the conditionally specified deciliation of trochoblasts.
Collapse
Affiliation(s)
- P Damen
- Department of Experimental Zoology, University of Utrecht, The Netherlands
| | | |
Collapse
|
39
|
Establishment of the dorsoventral axis in nemertean embryos: Evolutionary considerations of spiralian development. ACTA ACUST UNITED AC 1994. [DOI: 10.1002/dvg.1020150108] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Damen P, Dictus WJAG. Cell-lineage analysis of the prototroch of the gastropod molluscPatella vulgata shows conditional specification of some trochoblasts. ACTA ACUST UNITED AC 1994; 203:187-198. [PMID: 28305882 DOI: 10.1007/bf00636334] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/1993] [Accepted: 07/16/1993] [Indexed: 11/26/2022]
Abstract
Embryos of many spirally cleaving species possess a characteristic cell type, the trochoblasts. These cells differentiate early in development into ciliated cells and give rise to the prototroch, the locomotory organ of the trochophore larva. As a necessary prelude to the investigation of the mechanisms that are responsible for specification of trochoblasts in the equally cleaving gastropod molluscPatella vulgata, the cell-lineage of the prototroch was studied. This was done by microinjection of the cell-lineage tracer lucifer yellow-dextran in trochoblasts and by scanning electron microscopical analysis of formation of the prototroch. The results show that trochoblasts that form the prototroch are of different clonal origin and that the four quadrants of the embryo have an unequal contribution to the prototroch. Since the four quadrants of the equally cleaving embryo are initially equipotent, some trochoblasts must become conditionally specified. Other trochoblasts seem to become autonomously specified. After initial ciliation some trochoblasts become deciliated and for some cells the choice between a larval and an adult cell fate is conditionally specified. Cell-lineage analysis demonstrates that the various autonomously and conditionally specified trochoblasts are organised according to the dorsoventral axis of the embryo. Possible mechanisms that can account for the conditional specification of trochoblasts - including a role for the 3D macromere, which forms the primary mesoderm and is responsible for the formation of the dorsoventral axis of the embryo - are discussed.
Collapse
Affiliation(s)
- Peter Damen
- Department of Experimental Zoology, University of Utrecht, Padualaan 8, NL-3584, CH Utrecht, The Netherlands
| | - Wim J A G Dictus
- Department of Experimental Zoology, University of Utrecht, Padualaan 8, NL-3584, CH Utrecht, The Netherlands
| |
Collapse
|
41
|
van den Biggelaar JAM, Faber J. Spiral cleavage and cell position contribute to the specification of the dorsoventral axis in the embryo of the archaeogastropodHaliotis tuberculata. J Morphol 1994; 219:21-33. [DOI: 10.1002/jmor.1052190105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
van den Biggelaar JAM. Cleavage pattern in embryos ofHaliotis tuberculata (Archaeogastropoda) and gastropod phylogeny. J Morphol 1993; 216:121-139. [DOI: 10.1002/jmor.1052160203] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Localized activity of Ca 2+-stimulated ATPase and transcellular ionic currents during mesoderm induction in embryos ofLymnaea stagnalis (Mollusca). ACTA ACUST UNITED AC 1991; 200:320-329. [PMID: 28305906 DOI: 10.1007/bf00665527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1991] [Accepted: 07/26/1991] [Indexed: 11/27/2022]
Abstract
InLymnaea stagnalis, mesoderm induction occurs at the 24-cell stage, when the apical tip of the macromere 3D establishes a close contact with a number of micromeres. Via its tip, the macromere 3D is supposed to receive an inductive signal from the micromeres, resulting in the determination of the mesodermal stem cell 4d at the next division. In view of the possibility that transcellular ionic currents might somehow be involved, either in the processes that bring about this particular configuration of blastomeres or in the induction process itself, we mapped the electric field around the embryo during the 24-cell stage, using a vibrating probe. We detected a reversal of the current direction as compared to the uncleaved egg, whilst the polarity of the field along the animal-vegetal axis was maintained. We also mapped the localization of Ca2+-stimulated AT-Pase, an enzyme that drives the Ca2+-efflux from the cell. We found that this enzyme is localized exclusively along the cytoplasmic face of the apical plasma membrane of macromere 3D, and that its presence is restricted to the period from 110 to 135 min after the fifth cleavage, when there is close contact between macormere 3D and the micromeres. Since the localization of the Ca2+-stimulated ATPase coincides both in time and space with the induction of the mesoderm-mother cell, we suggest that localized calcium fluxes may play a role in this induction process.
Collapse
|
44
|
Boring L. Cell-cell interactions determine the dorsoventral axis in embryos of an equally cleaving opisthobranch mollusc. Dev Biol 1989; 136:239-53. [PMID: 2806721 DOI: 10.1016/0012-1606(89)90145-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dorsoventral polarity in molluscan embryos can arise by two distinct mechanisms, where the mechanism employed is strongly correlated with the cleavage pattern of the early embryo. In species with unequal cleavage, the dorsal lineage, or "D quadrant", is determined in a cell-autonomous manner by the inheritance of cytoplasmic determinants. However, in gastropod molluscs with equal cleavage, cell-cell interactions are required to specify the fate of the dorsal blastomere. During the fifth cleavage interval in equally cleaving embryos, one of the vegetal macromeres makes exclusive contacts with the animal micromeres, and this macromere will give rise to the mesodermal precursor cell at the next division, thereby identifying the dorsal quadrant. This study examines D-quadrant determination in an equally cleaving species from a group of previously uninvestigated gastropods, the subclass Opisthobranchia. Blastomere ablation experiments were performed on embryos of Haminoea callidegenita to (i) determine the developmental potential of macromeres before and after fifth cleavage, and (ii) examine the role of micromere-macromere interactions in the establishment of bilateral symmetry. The results suggest that the macromeres are developmentally equivalent prior to fifth cleavage, but become nonequivalent soon afterward. The dorsoventral axis corresponds to the displacement of the micromeres over one macromere early in the fifth cleavage interval. This unusual cellular topology is hypothesized to result from constraints imposed on micromere-macromere interactions in an embryo that develops from a large egg and forms a stereoblastula (no cleavage cavity). Ablation of the entire first quarter of micromeres results in embryos which remain radially symmetrical in the vegetal hemisphere, indicating that micromere-macromere interactions are required for the elaboration of bilateral symmetry properties. Therefore, inductive interactions between cells may represent a general strategy for dorsoventral axis determination in equally cleaving gastropods.
Collapse
Affiliation(s)
- L Boring
- Friday Harbor Laboratories, University of Washington, Seattle 98195
| |
Collapse
|
45
|
Kühtreiber WM, van Dongen CA. Microinjection of lectins, hyaluronidase, and hyaluronate fragments interferes with cleavage delay and mesoderm induction in embryos of Patella vulgata. Dev Biol 1989; 132:436-41. [PMID: 2494090 DOI: 10.1016/0012-1606(89)90239-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In embryos of Patella vulgata at the 32-cell stage, one of the four vegetally located macromeres makes contacts with overlying animal micromeres. As a result, this macromere (designated 3D) divides significantly later than the other macromeres and forms the mesodermal stem cell 4d. Shortly before and during this interaction two types of extracellular matrix are present: a basal lamina-like layer on the tips of the micromeres and a loose fibrillar meshwork in the blastocoel. In this paper we examine the role of the matrix in cleavage delay and mesoderm determination. The microinjection of extracellular matrix-binding lectins, or of hyaluronidase, or of decasaccharide fragments of hyaluronate into the blastocoel results in embryos in which either no or two macromeres are delayed in cleavage and are presumably determined as mesodermal stem cells. We suggest that the fibrillar meshwork is needed for macromere elongation toward the micromeres and that the basal lamina-like layer is involved in the determination process itself.
Collapse
Affiliation(s)
- W M Kühtreiber
- Department of Experimental Zoology, University of Utrecht, The Netherlands
| | | |
Collapse
|
46
|
Monensin interferes with the determination of the mesodermal cell line in embryos of Patella vulgata. ACTA ACUST UNITED AC 1988; 197:10-18. [DOI: 10.1007/bf00376036] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/1987] [Accepted: 08/19/1987] [Indexed: 10/26/2022]
|
47
|
The organizing role of the D quadrant as revealed through the phenomenon of twinning in the polycheate Ch�topterus variopedatus. ACTA ACUST UNITED AC 1987; 196:499-510. [DOI: 10.1007/bf00399874] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/1987] [Accepted: 07/17/1987] [Indexed: 10/26/2022]
|
48
|
Development of in vitro fertilized embryos of the polyclad flatworm, Hoploplana inquilina, following blastomere separation and deletion. ACTA ACUST UNITED AC 1987; 196:158-164. [DOI: 10.1007/bf00376309] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/1986] [Accepted: 11/12/1986] [Indexed: 11/25/2022]
|
49
|
The presence of an extracellular matrix between cells involved in the determination of the mesoderm bands in embryos ofPatella vulgata (Mollusca, gastropoda). ACTA ACUST UNITED AC 1986; 195:265-275. [DOI: 10.1007/bf02438960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1985] [Accepted: 01/24/1986] [Indexed: 10/24/2022]
|
50
|
Martindale MQ. The ‘organizing’ role of the D quadrant in an equal-cleaving spiralian,Lymnaea stagnalisas studied by UV laser deletion of macromeres at intervals between third and fourth quartet formation. ACTA ACUST UNITED AC 1986. [DOI: 10.1080/01688170.1986.10510198] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|