1
|
Li X, Li M, Hu Z, Zhou L, Zheng M, Jiao D, Qin J, Fu B, Zheng X, Wei H. Tumor-infiltrating platelets promote the growth of lung adenocarcinoma. Transl Oncol 2024; 39:101813. [PMID: 38235621 PMCID: PMC10628888 DOI: 10.1016/j.tranon.2023.101813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 01/19/2024] Open
Abstract
PURPOSE Platelets could promote tumor growth and metastasis. However, the role of platelets in different subtypes of non-small cell lung cancer (NSCLC) and platelet infiltration in local tumor tissue remain unclear. METHODS Initially, platelet infiltration in lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SCC) was estimated by CD41 expression using immunohistochemistry. Subsequently, co-incubation of NSCLC cell lines and platelets was performed to compare the ability of binding platelets. Subcutaneous tumor models were established to assess the ability of platelets to promote tumor growth. Then, RNA-seq data of NSCLC was used to identify differentially expressed genes and enriched pathways. Lastly, a clinical cohort comprising of ADC and SCC patients as well as meta-analysis was analyzed to compare the difference of coagulation associated clinical parameters. RESULTS We found high platelet infiltration in ADC, especially of advanced disease and metastases, whereas few platelets were observed in SCC. Moreover, ADC cell lines exhibited strong ability of binding platelets compared with SCC cell lines. Platelets could also promote the growth of ADC cell lines in vivo. Furthermore, coagulation cascades and fibrinogen were upregulated in ADC. And chemical inhibition of GPIIb/IIIa-fibrinogen axis reduced the binding of ADC cells and platelets. ADC patients were also in a hypercoagulable state characterized by higher d-dimer level and shorter clotting time. Finally, meta-analysis identified a higher risk of venous thromboembolism (VTE) in ADC patients and low molecular weight heparin (LMWH) treatment was effective at reducing this risk. CONCLUSIONS This study identified the differences of platelet infiltration and coagulation between ADC and SCC patients, which may inform the development of anticoagulation therapies for NSCLC.
Collapse
Affiliation(s)
- Xiaohui Li
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ming Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Ziming Hu
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Li Zhou
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Defeng Jiao
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jingkun Qin
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Binqing Fu
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaohu Zheng
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Haiming Wei
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
2
|
Thaler J, Prager G, Pabinger I, Ay C. Plasma Clot Properties in Patients with Pancreatic Cancer. Cancers (Basel) 2023; 15:4030. [PMID: 37627058 PMCID: PMC10452192 DOI: 10.3390/cancers15164030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic cancer is one of the most prothrombotic malignancies. Plasma clot properties may be altered in patients with pancreatic cancer, and circulating tissue factor (TF) may play an important role. We applied a modified plasma clot formation assay (only CaCl2 and phospholipids were added to initiate clotting) and a standard clotting assay (lipidated TF was also added) to investigate whether plasma clot properties are altered in pancreatic cancer patients (n = 40, 23 female) compared to sex-matched healthy controls. The modified assay was also performed in the presence of a TF blocking antibody. With this modified assay, we detected an increased plasma clot formation rate (Vmax) and an increased delta absorbance (ΔAbs, indicating fibrin fiber thickness) in patients compared to controls. These differences were not detected with the standard clotting assay. Following addition of a TF blocking antibody in in our modified assay, Vmax decreased significantly in patients only, ΔAbs significantly decreased in patients and in healthy controls, the lag phase did not change, and the time to peak fibrin generation increased in patients only. Taken together, these findings indicate the presence of a prothrombotic state in pancreatic cancer patients, which depends on TF and is detectable with our modified assay but not with a standard clotting assay.
Collapse
Affiliation(s)
- Johannes Thaler
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (I.P.); (C.A.)
| | - Gerald Prager
- Clinical Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (I.P.); (C.A.)
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (I.P.); (C.A.)
| |
Collapse
|
3
|
Lv J, Zhou Y, Zhou N, Wang Z, Chen J, Chen H, Wang D, Zhou L, Wei K, Zhang H, Tang K, Ma J, Liu Y, Wan Y, Zhang Y, Zhang H, Huang B. Epigenetic modification of CSDE1 locus dictates immune recognition of nascent tumorigenic cells. Sci Transl Med 2023; 15:eabq6024. [PMID: 36724242 DOI: 10.1126/scitranslmed.abq6024] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Weak immunogenicity of tumor cells is a root cause for the ultimate failure of immunosurveillance and immunotherapy. Although tumor evolution can be shaped by immunoediting toward a less immunogenic phenotype, mechanisms governing the initial immunogenicity of primordial tumor cells or original cancer stem cells remain obscure. Here, using a single tumor-repopulating cell (TRC) to form tumors in immunodeficient or immunocompetent mice, we demonstrated that immunogenic heterogeneity is an inherent trait of tumorigenic cells defined by the activation status of signal transducer and activator of transcription 1 (STAT1) protein in the absence of immune pressure. Subsequent investigation identified that the RNA binding protein cold shock domain-containing protein E1 (CSDE1) can promote STAT1 dephosphorylation by stabilizing T cell protein tyrosine phosphatase (TCPTP). A methyltransferase SET and MYN domain-containing 3 (SMYD3) was further identified to mediate H3K4 trimethylation of CSDE1 locus, which was under the regulation of mechanotransduction by cell-matrix and cell-cell contacts. Thus, owing to the differential epigenetic modification and subsequent differential expression of CSDE1, nascent tumorigenic cells may exhibit either a high or low immunogenicity. This identified SMYD3-CSDE1 pathway represents a potential prognostic marker for cancer immunotherapy effectiveness that requires further investigation.
Collapse
Affiliation(s)
- Jiadi Lv
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, China
| | - Yabo Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, China
| | - Nannan Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, China
| | - Zhenfeng Wang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, China
| | - Jie Chen
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, China
| | - Haoran Chen
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, China
| | - Dianheng Wang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, China
| | - Li Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, China
| | - Keke Wei
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huafeng Zhang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingwei Ma
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuying Liu
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, China
| | - Yonghong Wan
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yi Zhang
- Biotherapy Center and Cancer Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Haizeng Zhang
- Department of Medical Oncology, National Cancer Center, Cancer Hospital, CAMS and Peking Union Medical College, Beijing 100021, China
| | - Bo Huang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Lehtonen AJ, Arasalo O, Srbova L, Heilala M, Pokki J. Magnetic microrheometry of tumor-relevant stiffness levels and probabilistic quantification of viscoelasticity differences inside 3D cell culture matrices. PLoS One 2023; 18:e0282511. [PMID: 36947558 PMCID: PMC10032533 DOI: 10.1371/journal.pone.0282511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
The progression of breast cancer involves cancer-cell invasions of extracellular matrices. To investigate the progression, 3D cell cultures are widely used along with different types of matrices. Currently, the matrices are often characterized using parallel-plate rheometry for matrix viscoelasticity, or liquid-like viscous and stiffness-related elastic characteristics. The characterization reveals averaged information and sample-to-sample variation, yet, it neglects internal heterogeneity within matrices, experienced by cancer cells in 3D culture. Techniques using optical tweezers and magnetic microrheometry have measured heterogeneity in viscoelasticity in 3D culture. However, there is a lack of probabilistic heterogeneity quantification and cell-size-relevant, microscale-viscoelasticity measurements at breast-tumor tissue stiffness up to ≃10 kPa in Young's modulus. Here, we have advanced methods, for the purpose, which use a magnetic microrheometer that applies forces on magnetic spheres within matrices, and detects the spheres displacements. We present probabilistic heterogeneity quantification using microscale-viscoelasticity measurements in 3D culture matrices at breast-tumor-relevant stiffness levels. Bayesian multilevel modeling was employed to distinguish heterogeneity in viscoelasticity from the effects of experimental design and measurement errors. We report about the heterogeneity of breast-tumor-relevant agarose, GrowDex, GrowDex-collagen and fibrin matrices. The degree of heterogeneity differs for stiffness, and phase angle (i.e. ratio between viscous and elastic characteristics). Concerning stiffness, agarose and GrowDex show the lowest and highest heterogeneity, respectively. Concerning phase angle, fibrin and GrowDex-collagen present the lowest and the highest heterogeneity, respectively. While this heterogeneity information involves softer matrices, probed by ≃30 μm magnetic spheres, we employ larger ≃100 μm spheres to increase magnetic forces and acquire a sufficient displacement signal-to-noise ratio in stiffer matrices. Thus, we show pointwise microscale viscoelasticity measurements within agarose matrices up to Young's moduli of 10 kPa. These results establish methods that combine magnetic microrheometry and Bayesian multilevel modeling for enhanced heterogeneity analysis within 3D culture matrices.
Collapse
Affiliation(s)
- Arttu J Lehtonen
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Ossi Arasalo
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Linda Srbova
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Maria Heilala
- Department of Applied Physics, Aalto University, Espoo, Finland
| | - Juho Pokki
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| |
Collapse
|
5
|
Repurposing Drugs in Small Animal Oncology. Animals (Basel) 2022; 13:ani13010139. [PMID: 36611747 PMCID: PMC9817697 DOI: 10.3390/ani13010139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Repurposing drugs in oncology consists of using off-label drugs that are licensed for various non-oncological medical conditions to treat cancer. Repurposing drugs has the advantage of using drugs that are already commercialized, with known mechanisms of action, proven safety profiles, and known toxicology, pharmacokinetics and pharmacodynamics, and posology. These drugs are usually cheaper than new anti-cancer drugs and thus more affordable, even in low-income countries. The interest in repurposed anti-cancer drugs has led to numerous in vivo and in vitro studies, with some promising results. Some randomized clinical trials have also been performed in humans, with certain drugs showing some degree of clinical efficacy, but the true clinical benefit for most of these drugs remains unknown. Repurposing drugs in veterinary oncology is a very new concept and only a few studies have been published so far. In this review, we summarize both the benefits and challenges of using repurposed anti-cancer drugs; we report and discuss the most relevant studies that have been previously published in small animal oncology, and we suggest potential drugs that could be clinically investigated for anti-cancer treatment in dogs and cats.
Collapse
|
6
|
González-Cruz AO, Hernández-Juárez J, Ramírez-Cabrera MA, Balderas-Rentería I, Arredondo-Espinoza E. Peptide-based drug-delivery systems: A new hope for improving cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Humphries BA, Aliabouzar M, Quesada C, Bevoor A, Ho KK, Farfel A, Buschhaus JM, Rajendran S, Fabiilli ML, Luker GD. Ultrasound-Induced Mechanical Compaction in Acoustically Responsive Scaffolds Promotes Spatiotemporally Modulated Signaling in Triple Negative Breast Cancer. Adv Healthc Mater 2022; 11:e2101672. [PMID: 35106975 PMCID: PMC9117464 DOI: 10.1002/adhm.202101672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/10/2022] [Indexed: 11/06/2022]
Abstract
Cancer cells continually sense and respond to mechanical cues from the extracellular matrix (ECM). Interaction with the ECM can alter intracellular signaling cascades, leading to changes in processes that promote cancer cell growth, migration, and survival. The present study used a recently developed composite hydrogel composed of a fibrin matrix and phase-shift emulsion, termed an acoustically responsive scaffold (ARS), to investigate effects of local mechanical properties on breast cancer cell signaling. Treatment of ARSs with focused ultrasound drives acoustic droplet vaporization (ADV) in a spatiotemporally controlled manner, inducing local compaction and stiffening of the fibrin matrix adjacent to the matrix-bubble interface. Combining ARSs and live single cell imaging of triple-negative breast cancer cells, it is discovered that both basal and growth-factor stimulated activities of protein kinase B (also known as Akt) and extracellular signal-regulated kinase (ERK), two major kinases driving cancer progression, negatively correlate with increasing distance from the ADV-induced bubble both in vitro and in a mouse model. Together, these data demonstrate that local changes in ECM compaction regulate Akt and ERK signaling in breast cancer and support further applications of the novel ARS technology to analyze spatial and temporal effects of ECM mechanics on cell signaling and cancer biology.
Collapse
Affiliation(s)
- Brock A. Humphries
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan
| | - Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Carole Quesada
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Avinash Bevoor
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan
| | - Kenneth K.Y. Ho
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan
| | - Alex Farfel
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan
| | - Johanna M. Buschhaus
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Shrila Rajendran
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan
| | - Mario L. Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Gary D. Luker
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
8
|
Kakabadze MZ, Paresishvili T, Mardaleishvili K, Vadachkoria Z, Kipshidze N, Jangavadze M, Karalashvili L, Ghambashidze K, Chakhunashvili D, Kakabadze Z. Local drug delivery system for the treatment of tongue squamous cell carcinoma in rats. Oncol Lett 2021; 23:13. [PMID: 34820012 PMCID: PMC8607325 DOI: 10.3892/ol.2021.13131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
The present study describes a local drug delivery system with two functions, which can suppress tumor growth and accelerate wound healing. Thе system consists of a two-layer multicomponent fibrin-based gel (MCPFTG). The internal layer of MCPFTG, which is in direct contact with the wound surface, contains cisplatin placed on a CultiSpher-S collagen microcarrier. The external layer of MCPFTG consists of a CultiSpher-S microcarrier with lyophilized bone marrow stem cells (BMSCs). The efficacy of MCPFTG was evaluated in a rat model of squamous cell carcinoma of the tongue created with 4-nitroquinoline 1-oxide. The results of the study showed that, within 20–25 days, a non-healing wound of the tongue was formed in animals that underwent only 85% resection of squamous cell carcinoma, while rapid progression of the residual tumor was concomitantly observed. Immunohistochemical methods revealed high expression of cyclin D1 and low expression of E-cadherin in these animals. Additionally, high expression of p63 and Ki-67 was noted. In 80% of animals with squamous cell carcinoma of the tongue that were treated with MCPFTG after 85% tumor resection, a noticeable suppression of tumor growth was evident throughout 150 days, and tumor recurrence was not detected. Immunohistochemistry revealed low or moderate expression of cyclin D1, and high expression of E-cadherin throughout the whole observation period. The MCPFTG-based local drug delivery system was shown to be effective in suppressing tumor growth and preventing recurrence. MCPFTG decreased the toxicity of cisplatin and enhanced its antitumor activity. In addition, lyophilized paracrine BMSC factors present in MCPFTG accelerated wound healing after tumor removal. Thus, the present study suggests novel opportunities for the development of a multifunctional drug delivery system for the treatment of squamous cell carcinoma.
Collapse
Affiliation(s)
- Mariam Z Kakabadze
- Department of Clinical Anatomy and Operative Surgery, Iv. Javakhishvili Tbilisi State University, 0179 Tbilisi, Georgia
| | - Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | | | - Zurab Vadachkoria
- Department of Child and Adolescent Maxillo-facial Surgery and Surgical Stomatology, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Nicholas Kipshidze
- Department of Interventional Cardiology, Cardiovascular Research Foundation, New York, NY 10019, USA
| | - Mikheil Jangavadze
- Department of Clinical Anatomy and Operative Surgery, Iv. Javakhishvili Tbilisi State University, 0179 Tbilisi, Georgia
| | - Lia Karalashvili
- Department of Clinical Anatomy, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Ketevan Ghambashidze
- Department of Clinical Anatomy, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - David Chakhunashvili
- Department of Clinical Anatomy, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| |
Collapse
|
9
|
Asano Y, Iwaki T, Umemura K, Kanayama N, Itoh H. Fibrin-mediated growth restriction of early-stage human trophoblasts is switched to growth promotion through fibrinolysis. Hum Reprod 2021; 36:3108-3121. [PMID: 34597378 DOI: 10.1093/humrep/deab223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/02/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Does fibrin promote trophoblast growth in human and mouse blastocysts during early embryo implantation? SUMMARY ANSWER Mouse blastocysts were unaffected by fibrin; however, human blastocysts were significantly suppressed by fibrin in trophoblast growth and then switched to growth promotion through increased fibrinolysis with urokinase-type plasminogen activator (uPA) activity. WHAT IS KNOWN ALREADY Fibrin(ogen) plays an important role in various physiological processes and is also critical for maintaining feto-maternal attachment during pregnancy. The addition of fibrin to embryo transfer media has been used to increase implantation rates in human ART; however, its mechanism of action' in vitro has not yet been characterized. STUDY DESIGN, SIZE, DURATION Vitrified mouse and human blastocysts were warmed and individually cultured in vitro for up to 120 and 168 h, respectively, on a fibrin substrate. Blastocysts were cultured at 37°C in 6% CO2, 5% O2 and 89% N2. Blastocyst development and related fibrinolytic factors were analyzed. PARTICIPANTS/MATERIALS, SETTING, METHODS ICR strain mouse embryos were purchased from a commercial supplier. Human blastocysts were donated with informed consent from two fertility centers. Mouse and human blastocysts cultured on fibrin-coated plates were compared to those on non-coated and collagen-coated plates in vitro. Trophoblast growth and fibrin degradation were assessed based on the cell area and fibrin-free area, respectively. Fibrinolytic factors were detected in supernatants using plasminogen-casein zymography. The fibrinolytic activity of blastocysts was investigated using a selective uPA inhibitor, exogenous uPA, plasminogen activator inhibitor-1 (PAI-1) inhibitor and fibrin degradation products (FDPs). Fibrinolysis-related mRNA expression level was detected using quantitative real-time PCR. MAIN RESULTS AND THE ROLE OF CHANCE Fibrin did not affect the developmental speed or morphology of mouse blastocysts, and a large fibrin-degrading region was observed in the attachment stage. In contrast, fibrin significantly suppressed the outgrowth of trophoblasts in human blastocysts, and trophoblasts grew after the appearance of small fibrin-degrading regions. uPA was identified as a fibrinolytic factor in the conditioned medium, and uPA activity was significantly weaker in human blastocysts than in mouse blastocysts. The inhibition of uPA significantly reduced the outgrowth of trophoblasts in mouse and human blastocysts. Human blastocysts expressed PLAU (uPA), PLAUR (uPA receptor), SERPINE1 (PAI-1) and SERPINB2 (PAI-2), whereas mouse blastocysts were limited to Plau, Plaur and Serpine1. In a subsequent experiment on human blastocysts, the addition of exogenous uPA and the PAI-1 inhibitor promoted trophoblast growth in the presence of fibrin, as did the addition of FDPs. LIMITATIONS, REASONS FOR CAUTION This model excludes maternal factors and may not be fully reproduced in vivo. Donated human embryos are surplus embryos that may inherently exhibit reduced embryonic development. In addition, donated ART-derived embryos may exhibit weak uPA activity, because women with sufficient uPA-active embryos may not originally require ART. The present study used orthodox culture methods, and results may change with the application of recently developed protocols for culture blastocysts beyond the implantation stage. WIDER IMPLICATIONS OF THE FINDINGS The present results suggest that the distinct features of trophoblast outgrowth in human blastocysts observed in the presence of fibrin are regulated by a phenotypic conversion induced by contact with fibrin and FDPs. Mouse embryos did not exhibit the human phenomenon, indicating that the present results may be limited to humans. STUDY FUNDING/COMPETING INTEREST(S) The present study was supported by the Department of Obstetrics and Gynecology at the Hamamatsu University School of Medicine and Kishokai Medical Corporation. None of the authors have any conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yukiko Asano
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Infertility, Royal Bell Clinic, Nagoya, Japan
| | - Takayuki Iwaki
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuo Umemura
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naohiro Kanayama
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
10
|
Fibrinolytic nanocages dissolve clots in the tumor microenvironment, improving the distribution and therapeutic efficacy of anticancer drugs. Exp Mol Med 2021; 53:1592-1601. [PMID: 34667244 PMCID: PMC8569170 DOI: 10.1038/s12276-021-00688-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Fibrin, one of the components of the extracellular matrix (ECM), acts as a transport barrier within the core of tumors by constricting the blood vessels and forming clots, leading to poor intratumoral distribution of anticancer drugs. Our group previously developed a microplasmin-based thrombolytic ferritin nanocage that efficiently targets and dissolves clots without causing systemic fibrinolysis or disrupting hemostatic clots. We hypothesized that the thrombolytic nanocage-mediated degradation of fibrin clots in the tumor ECM can lead to enhanced intratumoral drug delivery, especially for nanosized anticancer drugs. Fibrin clot deposition worsens after surgery and chemotherapy, further hindering drug delivery. Moreover, the risk of venous thromboembolism (VTE) also increases. Here, we used thrombolytic nanocages with multivalent clot-targeting peptides and fibrin degradation enzymes, such as microplasmin, to dissolve fibrin in the tumor microenvironment and named them fibrinolytic nanocages (FNCs). These FNCs target tumor clots specifically and effectively. FNCs efficiently dissolve fibrin clots inside of the tumor vessels, suggesting that they can mitigate the risk of VTE in cancer patients. Coadministration of FNC and doxorubicin led to improved chemotherapeutic activity in a syngeneic mouse melanoma model. Furthermore, the FNCs increased the distribution of Doxil/doxorubicin nanoparticles within mouse tumors. These results suggest that fibrinolytic cotherapy might help improve the therapeutic efficacy of anticancer nanomedicines. Thus, microplasmin-based fibrinolytic nanocages are promising candidates for this strategy due to their hemostatic safety and ability to home in on the tumor.
Collapse
|
11
|
Wojtukiewicz MZ, Mysliwiec M, Matuszewska E, Sulkowski S, Zimnoch L, Politynska B, Wojtukiewicz AM, Tucker SC, Honn KV. Heterogeneous Expression of Proangiogenic and Coagulation Proteins in Gliomas of Different Histopathological Grade. Pathol Oncol Res 2021; 27:605017. [PMID: 34257567 PMCID: PMC8262224 DOI: 10.3389/pore.2021.605017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/09/2021] [Indexed: 12/01/2022]
Abstract
Brain gliomas are characterized by remarkably intense invasive growth and the ability to create new blood vessels. Angiogenesis is a key process in the progression of these tumors. Coagulation and fibrinolysis factors play a role in promoting angiogenesis. The aim of the study was to evaluate the expression of proangiogenic proteins (VEGF and bFGF) and hemostatic proteins (TF, fibrinogen, fibrin, D-dimers) associated with neoplastic cells and vascular endothelial cells in brain gliomas of various degrees of malignancy. Immunohistochemical tests were performed using the ABC method with the use of mono- and polyclonal antibodies. The obtained results indicated that both neoplastic cells and vascular endothelial cells in gliomas of various degrees of malignancy are characterized by heterogeneous expression of proteins of the hemostatic system and angiogenesis markers. The strongest expression of proangiogenic factors and procoagulant factors was demonstrated in gliomas of higher-grade malignancy.
Collapse
Affiliation(s)
- Marek Z Wojtukiewicz
- Department of Oncology, Medical University of Bialystok, Bialystok, Poland.,Department of Clinical Oncology, Comprehensive Cancer Center of Bialystok, Bialystok, Poland
| | - Marta Mysliwiec
- Department of Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Elwira Matuszewska
- Department of Clinical Oncology, Comprehensive Cancer Center of Bialystok, Bialystok, Poland
| | - Stanislaw Sulkowski
- Department of General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Lech Zimnoch
- Department of General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Politynska
- Department of Philosophy and Human Psychology, Medical University of Bialystok, Bialystok, Poland.,Robinson College, University of Cambridge, Cambridge, United Kingdom
| | - Anna M Wojtukiewicz
- Department of Philosophy and Human Psychology, Medical University of Bialystok, Bialystok, Poland
| | - Stephanie C Tucker
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Wayne State University, Detroit, MI, United States.,Karmanos Cancer Institute, Detroit, MI, United States
| | - Kenneth V Honn
- Department of Chemistry, Wayne State University, Detroit, MI, United States
| |
Collapse
|
12
|
Ferreira AK, Cristofaro B, Menezes MC, de Oliveira AK, Tashima AK, de Melo RL, Silva CCF, Rodriguez MGP, Carvalho DCDOS, de Azevedo RA, Junior PLDS, Mambelli LI, Portaro FV, Pardanaud L, Eichmann A, Sant'Anna OA, Faria M. Alphastatin-C a new inhibitor of endothelial cell activation is a pro-arteriogenic agent in vivo and retards B16-F10 melanoma growth in a preclinical model. Oncotarget 2020; 11:4770-4787. [PMID: 33473260 PMCID: PMC7771711 DOI: 10.18632/oncotarget.27839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/23/2018] [Indexed: 12/04/2022] Open
Abstract
Most characterized angiogenic modulators are proteolytic fragments of structural plasma and/or matrix components. Herein, we have identified a novel anti-angiogenic peptide generated by the in vitro hydrolysis of the C-terminal moiety of the fibrinogen alpha chain, produced by the snake venom metalloprotease bothropasin (SVMP), a hemorrhagic proteinase in Bothrops jararaca venom. The 14-amino acids peptide (alphastatin-C) is a potent antagonist of basic fibroblast growth factor, induced endothelial cell (HUVEC-CS) proliferation, migration and capillary tube formation in matrigel. It also inhibits cell adhesion to fibronectin. The basis of the antagonism between bFGF and alphastatin-C is elucidated by the inhibition of various bFGF induced signaling pathways and their molecular components modification, whenever the combination of the stimuli is provided, in comparison to the treatment with bFGF only. To corroborate to the potential therapeutic use of alphastatin-C, we have chosen to perform in vivo assays in two distinct angiogenic settings. In chick model, alphastatin-C inhibits chorioallantoic membrane angiogenesis. In mouse, it efficiently reduces tumor number and volume in a melanoma model, due to the impairment of tumor neovascularization in treated mice. In contrast, we show that the alphastatin-C peptide induces arteriogenesis, increasing pial collateral density in neonate mice. alphastatin-C is an efficient new antiangiogenic FGF-associated agent in vitro, it is an inhibitor of embryonic and tumor vascularization in vivo while, it is an arteriogenic agent. The results also suggest that SVMPs can be used as in vitro biochemical tools to process plasma and/or matrix macromolecular components unraveling new angiostatic peptides.
Collapse
Affiliation(s)
- Adilson Kleber Ferreira
- Department of Immunology, Laboratory of Tumor Immunology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil.,Alchemypet, Veterinary Dignostic Medicine, CIETEC/IPEN, Department of Oncology, University of Sao Paulo, Sao Paulo, Brazil
| | - Brunella Cristofaro
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
| | - Milene Cristina Menezes
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| | - Ana Karina de Oliveira
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| | - Alexandre Keiji Tashima
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil.,Department of Biochemistry, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Robson Lopes de Melo
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| | | | | | | | | | | | - Lisley Inata Mambelli
- Department of Immunology, Laboratory of Tumor Immunology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Luc Pardanaud
- Cardiovascular Research Center and the Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.,INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Anne Eichmann
- Cardiovascular Research Center and the Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.,INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Osvaldo Augusto Sant'Anna
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| | - Mxarcella Faria
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Wood CJ, Chu ML, Selmic LE, Mayhew PD, Holt DE, Martano M, Séguin B, Singh A, Boston SE, Lux C, Liptak JM. Effect of perioperative desmopressin in cats with mammary carcinoma treated with bilateral mastectomy. Vet Comp Oncol 2020; 19:724-734. [PMID: 32619339 DOI: 10.1111/vco.12636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/04/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022]
Abstract
Perioperative administration of desmopressin has shown to significantly decrease rates of local recurrence and metastasis, and increase survival times in dogs with grade II and III mammary carcinomas. The objective of this study was to compare the oncologic outcome of cats with mammary carcinoma treated with bilateral mastectomy with or without perioperative administration of desmopressin. Medical records from nine veterinary institutions were searched to identify cats diagnosed with mammary carcinoma treated with bilateral mastectomy. Sixty cats treated with single-session or staged bilateral mastectomy were included. There were no significant differences in oncologic outcomes found between cats treated and not treated with desmopressin. No adverse effects were seen in any of the cats treated with perioperative desmopressin. Postoperative complications occurred in 18 cats (38.3%) treated with single-session bilateral mastectomy and in three cats (23.1%) treated with staged bilateral mastectomy (P = .48). Histologic grade and a modification of a proposed five-stage histologic staging system were both prognostic for disease-free interval. Incomplete histologic excision was associated with significantly increased rates of metastasis and tumour progression, and a shorter median survival time (MST). Cats that developed local recurrence also had a significantly shorter MST. The results of this study do not support the use of perioperative desmopressin to improve outcome when performing bilateral mastectomy for the treatment of mammary carcinoma in cats.
Collapse
Affiliation(s)
| | - Margaret L Chu
- VCA Canada - Alta Vista Animal Hospital, Ottawa, Ontario, Canada
| | - Laura E Selmic
- Department of Veterinary Clinical Science, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Philipp D Mayhew
- School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - David E Holt
- Section of Surgery, Matthew J. Ryan Veterinary Hospital, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marina Martano
- Department of Veterinary Medical Sciences, University of Parma, Parma, Italy
| | - Bernard Séguin
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Ameet Singh
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sarah E Boston
- VCA Canada - 404 Veterinary Emergency and Referral, Newmarket, Ontario, Canada
| | - Cassie Lux
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Julius M Liptak
- VCA Canada - Alta Vista Animal Hospital, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Kou Y, Feng R, Chen J, Duan L, Wang S, Hu Y, Zhang N, Wang T, Deng Y, Song Y. Development of a nattokinase–polysialic acid complex for advanced tumor treatment. Eur J Pharm Sci 2020; 145:105241. [DOI: 10.1016/j.ejps.2020.105241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/04/2020] [Accepted: 01/27/2020] [Indexed: 02/08/2023]
|
15
|
Zhang B, Pang Z, Hu Y. Targeting hemostasis-related moieties for tumor treatment. Thromb Res 2020; 187:186-196. [PMID: 32032807 DOI: 10.1016/j.thromres.2020.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Under normal conditions, the hemostatic system, that includes the involvement of the coagulation response and platelets, is anatomically and functionally inseparable from the vasculature. However, the hemostatic response always occurs in a wide range of tumors because of the high expression of coagulation initiator tissue factor (TF) in many tumor tissues, and due to the leakage of coagulation factors and platelets from the circulation system into the tumor interstitium through abnormal tumor vessels. Therefore, in addition to TF, these coagulation factors, platelets, the central moiety thrombin, the final product fibrin, and fibronectin, which is capable of stabilizing coagulation clots, are also abundant in tumors. These hemostasis-related moieties (HRMs), including TF, thrombin, fibrin, fibronectin, and platelets, are also closely associated with tumor progression, e.g., primary tumor growth and distal metastasis. The hemostatic response only occurs under pathological conditions, such as tumors, thrombosis, and atherosclerosis other than in normal tissues. The HRMs within tumors are also highly specific, establishing functional and therapeutic targets for tumor treatment. Therefore, strategies including active targeting to these moieties, modulation of HRMs deposited in the tumor microenvironment to improve tumor drug delivery, activation of prodrug by the coagulation complex formed during coagulation response, and direct inhibition of the tumor-promoting activity of HRMs could be designed for tumor therapy. In this review, we summarize various strategies that target HRMs for tumor treatment.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
16
|
Huang W, Hu H, Zhang Q, Wu X, Wei F, Yang F, Gan L, Wang N, Yang X, Guo AY. Regulatory networks in mechanotransduction reveal key genes in promoting cancer cell stemness and proliferation. Oncogene 2019; 38:6818-6834. [PMID: 31406247 PMCID: PMC6988105 DOI: 10.1038/s41388-019-0925-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Abstract
Tumor-repopulating cells (TRCs) are cancer stem cell (CSC)-like cells with highly tumorigenic and self-renewing abilities, which were selected from tumor cells in soft three-dimensional (3D) fibrin gels with unidentified mechanisms. Here we evaluated the transcriptome alteration during TRCs generation in 3D culture and revealed that a variety of molecules related with integrin/membrane and stemness were continuously altered by mechanical environment. Some key regulators such as MYC/STAT3/hsa-miR-199a-5p, were changed in the TRCs generation. They regulated membrane genes and the downstream mechanotransduction pathways such as Hippo/WNT/TGF-β/PI3K-AKT pathways, thus further affecting the expression of downstream cancer-related genes. By integrating networks for membrane proteins, the WNT pathway and cancer-related genes, we identified key molecules in the selection of TRCs, such as ATF4, SLC3A2, CCT3, and hsa-miR-199a-5p. Silencing ATF4 or CCT3 inhibited the selection and growth of TRCs whereas reduction of SLC3A2 or hsa-miR-199a-5p promoted TRCs growth. Further studies showed that CCT3 promoted cell proliferation and stemness in vitro, while its suppression inhibited TRCs-induced tumor formation. We also contemplated CCT3 as a stemness-related gene. Our findings provide insights in the mechanism of TRCs selection through transcriptome analysis.
Collapse
Affiliation(s)
- Wei Huang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Hui Hu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Qiong Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xian Wu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Fuxiang Wei
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Fang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Ning Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - An-Yuan Guo
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China.
| |
Collapse
|
17
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
18
|
Liu Y, Lv J, Liang X, Yin X, Zhang L, Chen D, Jin X, Fiskesund R, Tang K, Ma J, Zhang H, Dong W, Mo S, Zhang T, Cheng F, Zhou Y, Xie J, Wang N, Huang B. Fibrin Stiffness Mediates Dormancy of Tumor-Repopulating Cells via a Cdc42-Driven Tet2 Epigenetic Program. Cancer Res 2018; 78:3926-3937. [DOI: 10.1158/0008-5472.can-17-3719] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/14/2018] [Accepted: 05/11/2018] [Indexed: 11/16/2022]
|
19
|
Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy. Oncotarget 2018; 7:62607-62618. [PMID: 27566585 PMCID: PMC5308750 DOI: 10.18632/oncotarget.11546] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/10/2016] [Indexed: 01/04/2023] Open
Abstract
Effective delivery of nanomedicines to tumor tissues depends on both the tumor microenvironment and nanomedicine properties. Accordingly, tumor microenvironment modification or advanced design of nanomedicine was emerging to improve nanomedicine delivery to tumors. However, few studies have emphasized the necessity to optimize the tumor microenvironment and nanomedicine properties simultaneously to improve tumor treatment. In the present study, imatinib mesylate (IMA) was used to normalize the tumor microenvironment including platelet-derived growth factor receptor-β expression inhibition, tumor vessel normalization, and tumor perfusion improvement as demonstrated by immunofluorescence staining. In addition, the effect of tumor microenvironment normalization on tumor delivery of nanomedicines with different sizes was carefully investigated. It was shown that IMA treatment significantly reduced the accumulation of nanoparticles (NPs) around 110 nm but enhanced the accumulation of micelles around 23 nm by in vivo fluorescence imaging experiment. Furthermore, IMA treatment limited the distribution of NPs inside tumors but increased that of micelles with a more homogeneous pattern. Finally, the anti-tumor efficacy study displayed that IMA pretreatment could significantly increase the therapeutic effects of paclitaxel-loaded micelles. All-together, a new strategy to improve nanomedicine delivery to tumor was provided by optimizing both nanomedicine size and the tumor microenvironment simultaneously, and it will have great potential in clinics for tumor treatment.
Collapse
|
20
|
Kirtane AR, Sadhukha T, Kim H, Khanna V, Koniar B, Panyam J. Fibrinolytic Enzyme Cotherapy Improves Tumor Perfusion and Therapeutic Efficacy of Anticancer Nanomedicine. Cancer Res 2017; 77:1465-1475. [PMID: 28108516 DOI: 10.1158/0008-5472.can-16-1646] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/17/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
Abstract
Elevated interstitial fluid pressure and solid stress within tumors contribute to poor intratumoral distribution of nanomedicine. In this study, we hypothesized that the presence of fibrin in tumor extracellular matrix contributes to hindered intratumoral distribution of nanocarriers and that this can be overcome through the use of a fibrinolytic enzyme such as tissue plasminogen activator (tPA). Analysis of fibrin expression in human tumor biopsies showed significant fibrin staining in nearly all tumor types evaluated. However, staining was heterogeneous across and within tumor types. We determined the effect of fibrin on the diffusion, intratumoral distribution, and therapeutic efficacy of nanocarriers. Diffusivity of nanocarriers in fibrin matrices was limited and could be improved significantly by coincubation with tPA. In vivo, coadministration of tPA improved the anticancer efficacy of nanoparticle-encapsulated paclitaxel in subcutaneous syngeneic mouse melanoma and orthotopic xenograft lung cancer models. Furthermore, treatment with tPA led to decompression of blood vessels and improved tumor perfusion. Cotreatment with tPA resulted in greater intratumoral penetration of a model nanocarrier (Doxil), leading to enhanced availability of the drug in the tumor core. Fibrinolytics such as tPA are already approved for other indications. Fibrinolytic cotherapy is therefore a rapidly translatable strategy for improving therapeutic effectiveness of anticancer nanomedicine. Cancer Res; 77(6); 1465-75. ©2017 AACR.
Collapse
Affiliation(s)
- Ameya R Kirtane
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Tanmoy Sadhukha
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Hyunjoon Kim
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Vidhi Khanna
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Brenda Koniar
- Research Animal Resources, University of Minnesota, Minneapolis, Minnesota
| | - Jayanth Panyam
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota. .,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
21
|
Hsieh JY, Smith TD, Meli VS, Tran TN, Botvinick EL, Liu WF. Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen. Acta Biomater 2017; 47:14-24. [PMID: 27662809 DOI: 10.1016/j.actbio.2016.09.024] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022]
Abstract
Fibrin is a major component of the provisional extracellular matrix formed during tissue repair following injury, and enables cell infiltration and anchoring at the wound site. Macrophages are dynamic regulators of this process, advancing and resolving inflammation in response to cues in their microenvironment. Although much is known about how soluble factors such as cytokines and chemokines regulate macrophage polarization, less is understood about how insoluble and adhesive cues, specifically the blood coagulation matrix fibrin, influence macrophage behavior. In this study, we observed that fibrin and its precursor fibrinogen elicit distinct macrophage functions. Culturing macrophages on fibrin gels fabricated by combining fibrinogen with thrombin stimulated secretion of the anti-inflammatory cytokine, interleukin-10 (IL-10). In contrast, exposure of macrophages to soluble fibrinogen stimulated high levels of inflammatory cytokine tumor necrosis factor alpha (TNF-α). Macrophages maintained their anti-inflammatory behavior when cultured on fibrin gels in the presence of soluble fibrinogen. In addition, adhesion to fibrin matrices inhibited TNF-α production in response to stimulation with LPS and IFN-γ, cytokines known to promote inflammatory macrophage polarization. Our data demonstrate that fibrin exerts a protective effect on macrophages, preventing inflammatory activation by stimuli including fibrinogen, LPS, and IFN-γ. Together, our study suggests that the presentation of fibrin(ogen) may be a key switch in regulating macrophage phenotype behavior, and this feature may provide a valuable immunomodulatory strategy for tissue healing and regeneration. STATEMENT OF SIGNIFICANCE Fibrin is a fibrous protein resulting from blood clotting and provides a provisional matrix into which cells migrate and to which they adhere during wound healing. Macrophages play an important role in this process, and are needed for both advancing and resolving inflammation. We demonstrate that culture of macrophages on fibrin matrices exerts an anti-inflammatory effect, whereas the soluble precursor fibrinogen stimulates inflammatory activation. Moreover, culture on fibrin completely abrogates inflammatory signaling caused by fibrinogen or known inflammatory stimuli including LPS and IFN-γ. Together, these studies show that the presentation of fibrin(ogen) is important for regulating a switch between macrophage pro- and anti-inflammatory behavior.
Collapse
Affiliation(s)
- Jessica Y Hsieh
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States
| | - Tim D Smith
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States
| | - Vijaykumar S Meli
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States
| | - Thi N Tran
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States
| | - Elliot L Botvinick
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States
| | - Wendy F Liu
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States.
| |
Collapse
|
22
|
Zhang B, Jiang T, She X, Shen S, Wang S, Deng J, Shi W, Mei H, Hu Y, Pang Z, Jiang X. Fibrin degradation by rtPA enhances the delivery of nanotherapeutics to A549 tumors in nude mice. Biomaterials 2016; 96:63-71. [PMID: 27149664 DOI: 10.1016/j.biomaterials.2016.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 11/26/2022]
Abstract
Effective drug delivery to a tumor depends on favorable blood perfusion within the tumor. As an important component of tumor extracellular matrix, fibrin is abundant near tumor vessels. Inspired by the distinct distribution pattern and vessel-dependent production of fibrin, we hypothesized that fibrin depletion in tumors decompresses tumor vessels to improve tumor blood perfusion and accordingly enhance drug delivery to tumors rich in vessels. In the present study, we attempted to employ a clinically used thrombolytic drug, recombinant tissue plasminogen activator (rtPA), to modulate fibrin deposition in tumors. We then combined this drug with a nanoparticle drug delivery system for tumor therapy. RtPA treatment (25 mg/kg/d i. p. administration for two weeks) successfully depleted fibrin deposition and enhanced blood perfusion within A549 tumor xenografts. Furthermore, rtPA treatment also improved the in vivo delivery of 115-nm nanoparticles to tumor tissues. Finally, rtPA combined with therapeutic agent-loaded nanoparticles resulted in the most effective shrinkage of A549 tumor xenografts compared with the control groups. Overall, the present study provides a new strategy to enhance the delivery of nanotherapeutics to tumors rich in vessels.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, PR China
| | - Ting Jiang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, PR China
| | - Xiaojian She
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Shun Shen
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Sheng Wang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, PR China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, PR China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, PR China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, PR China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, PR China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, PR China.
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, PR China.
| | - Xinguo Jiang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, PR China
| |
Collapse
|
23
|
Chaabane L, Tei L, Miragoli L, Lattuada L, von Wronski M, Uggeri F, Lorusso V, Aime S. In Vivo MR Imaging of Fibrin in a Neuroblastoma Tumor Model by Means of a Targeting Gd-Containing Peptide. Mol Imaging Biol 2015; 17:819-28. [DOI: 10.1007/s11307-015-0846-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
24
|
Peng P, Shen J, Dong JB, Zhang Y. Preoperative plasma fibrinogen predicts cervical metastasis in patients with stage I/II carcinoma of the tongue. Int J Oral Maxillofac Surg 2014; 43:393-8. [DOI: 10.1016/j.ijom.2013.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 07/23/2013] [Accepted: 09/26/2013] [Indexed: 11/28/2022]
|
25
|
Thacker RI, Retzinger AC, Cash JG, Dentler MD, Retzinger GS. Extracellular transport of cell-size particles and tumor cells by dendritic cells in culture. Exp Mol Pathol 2013; 95:385-91. [PMID: 24145002 DOI: 10.1016/j.yexmp.2013.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022]
Abstract
Many particulate materials of sizes approximating that of a cell disseminate after being introduced into the body. While some move about within phagocytic inflammatory cells, others appear to move about outside of, but in contact with, such cells. In this report, we provide unequivocal photomicroscopic evidence that cultured, mature, human dendritic cells can transport in extracellular fashion over significant distances both polymeric beads and tumor cells. At least in the case of polymeric beads, both fibrinogen and the β2-integrin subunit, CD18, appear to play important roles in the transport process. These discoveries may yield insight into a host of disease-related phenomena, including and especially tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Robert I Thacker
- Amnis Corporation, EMD-Millipore, Seattle, WA 98119, United States
| | | | | | | | | |
Collapse
|
26
|
Rajangam T, An SSA. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomedicine 2013; 8:3641-62. [PMID: 24106425 PMCID: PMC3792008 DOI: 10.2147/ijn.s43945] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Over the past two decades, many types of natural and synthetic polymer-based micro- and nanocarriers, with exciting properties and applications, have been developed for application in various types of tissue regeneration, including bone, cartilage, nerve, blood vessels, and skin. The development of suitable polymers scaffold designs to aid the repair of specific cell types have created diverse and important potentials in tissue restoration. Fibrinogen (Fbg)- and fibrin (Fbn)-based micro- and nanostructures can provide suitable natural matrix environments. Since these primary materials are abundantly available in blood as the main coagulation proteins, they can easily interact with damaged tissues and cells through native biochemical interactions. Fbg- and Fbn-based micro and nanostructures can also be consecutively furnished/or encapsulated and specifically delivered, with multiple growth factors, proteins, and stem cells, in structures designed to aid in specific phases of the tissue regeneration process. The present review has been carried out to demonstrate the progress made with micro and nanoscaffold applications and features a number of applications of Fbg- and Fbn-based carriers in the field of biomaterials, including the delivery of drugs, active biomolecules, cells, and genes, that have been effectively used in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Thanavel Rajangam
- Department of Bionanotechnology, Gachon University, Seongnam-Si, Republic of Korea
| | | |
Collapse
|
27
|
Xu W, Hu X, Pan W. Tissue engineering concept in the research of the tumor biology. Technol Cancer Res Treat 2013; 13:149-59. [PMID: 23862747 DOI: 10.7785/tcrt.2012.500363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tumor is a heterogeneous complex, which lives in a three-dimensional environment flush with biopathophysiological and biomechanical signals. This signaling abundant extracellular milieu co-evolving from cell-cell and cell-host interaction guides the development and the generation of the tumor. There has been a recent surge of interest in studying the tumor biology that more closely mirror what happens in living organisms, especially in cancer research. Incorporating cancer cells in the 3D mimicking environment instead of monolayers is reasonable for maintaining in vivo cancer behaviors in spatial and temporal context. However, 3D culture for cancer still presents a challenge for researchers in this field. Tissue engineering, originally aiming at designing the artificial organs, provided a feasible approach to recreate such complex mechanical and biochemical interplay. Aside from reproducing bionic environment, tissue engineering has been routinely introduced into cancer study to build three dimensional structures not only to develop molecular therapeutics, but also to screen for toxic effects of drugs or radiotherapy sensitivity. In this article, we focused on the recent advances of the well-defined tissue-engineering biomaterials in the application in tumor biology. We also discussed the fabrications of the scaffolds from different materials, which might contribute to future cancer research.
Collapse
Affiliation(s)
- Wen Xu
- Gastroenterology Department, The Second Affiliated Hospital of Zhejiang University, School of Medicine, #88 Jiefang Road, Hangzhou, Zhejiang, 310009 China.
| | | | | |
Collapse
|
28
|
Goszczyński T, Nevozhay D, Wietrzyk J, Omar MS, Boratyński J. The antileukemic activity of modified fibrinogen–methotrexate conjugate. Biochim Biophys Acta Gen Subj 2013; 1830:2526-30. [DOI: 10.1016/j.bbagen.2012.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 11/07/2012] [Accepted: 11/10/2012] [Indexed: 01/29/2023]
|
29
|
Liu J, Tan Y, Zhang H, Zhang Y, Xu P, Chen J, Poh YC, Tang K, Wang N, Huang B. Soft fibrin gels promote selection and growth of tumorigenic cells. NATURE MATERIALS 2012; 11:734-41. [PMID: 22751180 PMCID: PMC3405191 DOI: 10.1038/nmat3361] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/17/2012] [Indexed: 05/15/2023]
Abstract
The identification of stem-cell-like cancer cells through conventional methods that depend on stem cell markers is often unreliable. We developed a mechanical method for selecting tumorigenic cells by culturing single cancer cells in fibrin matrices of ~100 Pa in stiffness. When cultured within these gels, primary human cancer cells or single cancer cells from mouse or human cancer cell lines grew within a few days into individual round colonies that resembled embryonic stem cell colonies. Subcutaneous or intravenous injection of 10 or 100 fibrin-cultured cells in syngeneic or severe combined immunodeficiency mice led to the formation of solid tumours at the site of injection or at the distant lung organ much more efficiently than control cancer cells selected using conventional surface marker methods or cultured on conventional rigid dishes or on soft gels. Remarkably, as few as ten such cells were able to survive and form tumours in the lungs of wild-type non-syngeneic mice.
Collapse
Affiliation(s)
- Jing Liu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 China
| | - Youhua Tan
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Huafeng Zhang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 China
| | - Pingwei Xu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 China
| | - Junwei Chen
- Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Yeh-Chuin Poh
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 China
| | - Ning Wang
- Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Correspondence should be addressed to: Ning Wang () or Bo Huang ()
| | - Bo Huang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 China
- Department of Immunology, Institute of Basic Medical Sciences of Chinese Academy of Medical Sciences, Beijing 100005 China
- Correspondence should be addressed to: Ning Wang () or Bo Huang ()
| |
Collapse
|
30
|
LIU CHIBO, PAN CHUNQIN, LIANG YONG. Screening and identification of serum proteomic biomarkers for gastric adenocarcinoma. Exp Ther Med 2012; 3:1005-1009. [PMID: 22970007 PMCID: PMC3438544 DOI: 10.3892/etm.2012.515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/20/2012] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to screen for possible serum biomarkers for gastric adenocarcinoma. Surface-enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS) was used to screen serum samples from 109 cases of gastric adenocarcinoma and 106 control subjects (60 healthy subjects, 30 patients with chronic superficial gastritis and 16 cases of chronic atrophic gastritis). The differentially expressed protein peaks were selected and isolated using high performance liquid chromatography (HPLC) and processed with enzyme prior to liquid chromatography-mass spectrometry tandem mass spectrometry (LC-MS/MS) analysis and data mining with software XCalibur program components BioWorks 3.2. Among the gastric cancer cases, three differentially expressed protein peaks were selected as potential serum biomarkers: the m/z peaks at 5,906.5 showed increased expression (8.53±4.33 in the cancer group, and 0.88±0.31 in the control group); the m/z peaks at 6,635.7 and 8,716.3 showed decreased expression (6.54±2.44 and 0.93±0.29, respectively, in the cancer group and 17.56±4.43 and 2.16±0.98, respectively, in the control group) (P<0.01). The m/z peaks at 5,906.5, 6,635.7 and 8,716.3, were identified as fibrinogen α-chain, apolipo-protein A-II and apolipoprotein C-I. The combined use of the three biomarkers distinguished the cancer group patients from the control group samples at a sensitivity of 93.85% (61/65) and a specificity of 94.34% (50/53). In conclusion, fibrinogen α-chain, apolipoprotein A-II and apolipoprotein C-I were identified as potential markers for gastric cancer and appear to have diagnostic value for clinical applications.
Collapse
Affiliation(s)
- CHIBO LIU
- Departments of Clinical Laboratory and
| | | | - YONG LIANG
- Tumorology, Taizhou Municipal Hospital, Taizhou, Zhejiang,
P.R. China
| |
Collapse
|
31
|
Tatti O, Arjama M, Ranki A, Weiss SJ, Keski-Oja J, Lehti K. Membrane-type-3 matrix metalloproteinase (MT3-MMP) functions as a matrix composition-dependent effector of melanoma cell invasion. PLoS One 2011; 6:e28325. [PMID: 22164270 PMCID: PMC3229567 DOI: 10.1371/journal.pone.0028325] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 11/05/2011] [Indexed: 11/19/2022] Open
Abstract
In primary human melanoma, the membrane-type matrix metalloproteinase, MT3-MMP, is overexpressed in the most aggressive nodular-type tumors. Unlike MT1-MMP and MT2-MMP, which promote cell invasion through basement membranes and collagen type I-rich tissues, the function of MT3-MMP in tumor progression remains unclear. Here, we demonstrate that MT3-MMP inhibits MT1-MMP-driven melanoma cell invasion in three-dimensional collagen, while yielding an altered, yet MT1-MMP-dependent, form of expansive growth behavior that phenocopies the formation of nodular cell colonies. In melanoma cell lines originating from advanced primary or metastatic lesions, endogenous MT3-MMP expression was associated with limited collagen-invasive potential. In the cell lines with highest MT3-MMP expression relative to MT1-MMP, collagen-invasive activity was increased following stable MT3-MMP gene silencing. Consistently, MT3-MMP overexpression in cells derived from less advanced superficially spreading melanoma lesions, or in the MT3-MMP knockdown cells, reduced MT1-MMP-dependent collagen invasion. Rather than altering MT1-MMP transcription, MT3-MMP interacted with MT1-MMP in membrane complexes and reduced its cell surface expression. By contrast, as a potent fibrinolytic enzyme, MT3-MMP induced efficient invasion of the cells in fibrin, a provisional matrix component frequently found at tumor-host tissue interfaces and perivascular spaces of melanoma. Since MT3-MMP was significantly upregulated in biopsies of human melanoma metastases, these results identify MT3-MMP as a matrix-dependent modifier of the invasive tumor cell functions during melanoma progression.
Collapse
Affiliation(s)
- Olga Tatti
- Research Programs Unit, Molecular Cancer Biology, University of Helsinki, Helsinki, Finland
- Departments of Pathology and Virology, Haartman Institute, Helsinki University Central Hospital, Helsinki, Finland
| | - Mariliina Arjama
- Research Programs Unit, Molecular Cancer Biology, University of Helsinki, Helsinki, Finland
- Departments of Pathology and Virology, Haartman Institute, Helsinki University Central Hospital, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology and Allergology, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Stephen J. Weiss
- Division of Molecular Medicine and Genetics, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jorma Keski-Oja
- Research Programs Unit, Molecular Cancer Biology, University of Helsinki, Helsinki, Finland
- Departments of Pathology and Virology, Haartman Institute, Helsinki University Central Hospital, Helsinki, Finland
| | - Kaisa Lehti
- Research Programs Unit, Molecular Cancer Biology, University of Helsinki, Helsinki, Finland
- Departments of Pathology and Virology, Haartman Institute, Helsinki University Central Hospital, Helsinki, Finland
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
32
|
Clinical use of the low-molecular-weight heparins in cancer patients: focus on the improved patient outcomes. THROMBOSIS 2011; 2011:530183. [PMID: 22084664 PMCID: PMC3195390 DOI: 10.1155/2011/530183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/17/2011] [Indexed: 11/17/2022]
Abstract
Patients with malignant neoplastic diseases represent a high-risk population relative to thromboembolic disease. With the advent of improved and accessible diagnostic technology, for example, ultrasound and/or spiral CT scans, timely diagnosis of venous thromboembolic events (VTE) is readily accomplished. The introduction of low-molecular-weight heparin (LMWH) approximately two decades ago (in contrast to unfractionated heparin and vitamin K antagonists) has provided a class of agents with a favorable therapeutic index. In the review to follow, the literature regarding the use of LMWH in oncologic patient populations is summarized. Topics addressed include prophylaxis, and treatment as well as consideration of the potential anti-neoplastic properties of this class of drugs.
Collapse
|
33
|
Khoury JD, Adcock DM, Chan F, Symanowski JT, Tiefenbacher S, Goodman O, Paz L, Ma Y, Ward DC, Vogelzang NJ, Fink LM. Increases in quantitative D-dimer levels correlate with progressive disease better than circulating tumor cell counts in patients with refractory prostate cancer. Am J Clin Pathol 2010; 134:964-9. [PMID: 21088161 DOI: 10.1309/ajcph92sxylikkts] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Changes in quantitative D-dimer levels, circulating tumor cell (CTC) counts, and prostate-specific antigen (PSA) levels were measured in 28 patients with refractory castration-resistant prostate cancer to assess their concordance during the course of therapy and their relationship with risk of progressive disease. A significant correlation was identified between changes in PSA and both CTC counts and D-dimer levels (r = 0.67 and 0.58, respectively; P < .001). In addition, there was a significant correlation between changes in CTC count and D-dimer level (r = 0.62; P < .001). A significantly stronger concordance between these biomarkers was noted for increasing values (sensitivity, 72%-77.8%) compared with decreasing values (specificity, 43.8%-71.4%). Notably, increases in PSA and D-dimer levels, not CTC counts, were associated with increased risks for progressive disease (P < .024). Increases in quantitative D-dimer levels correlate with progressive disease better than CTC counts in patients with refractory prostate cancer.
Collapse
|
34
|
Castellana D, Toti F, Freyssinet JM. Membrane microvesicles: macromessengers in cancer disease and progression. Thromb Res 2010; 125 Suppl 2:S84-8. [PMID: 20434014 DOI: 10.1016/s0049-3848(10)70021-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thrombotic complications have been documented in patients with cancer, and associated with tumor progression. Cancer patients have an increased level of circulating submicrometric (0.1-1 microm) membrane fragments termed microvesicles (MV) or microparticles. Variations in MV levels and phenotypes make them relevant pathogenic markers of thrombotic disorders and vascular damage. MV are released from the plasma membrane of activated or apoptotic cells, and are considered efficient effectors of the hemostatic or thrombotic responses. They are mostly characterized by the presence of procoagulant phospholipids at their surface and eventually that of tissue factor depending on the cells they originate from. These procoagulant entities allow them to initiate and propagate thrombotic reactions within the blood vessels. MV are also recognized as proximal or remote mediators of cell-to-cell communication. The mechanisms through which MV interact with target cells remain unclear although a number of studies suggest involvement of MV-cell fusion and/or ligand-receptor interactions. It has however to be emphasized that MV do not necessarily elicit deleterious responses. This review focuses on the role of MV in cancer-associated thrombosis.
Collapse
|
35
|
Chen HT, Tsou HK, Tsai CH, Kuo CC, Chiang YK, Chang CH, Fong YC, Tang CH. Thrombin enhanced migration and MMPs expression of human chondrosarcoma cells involves PAR receptor signaling pathway. J Cell Physiol 2010; 223:737-745. [PMID: 20175118 DOI: 10.1002/jcp.22083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Thrombin is a multifunctional protease that can activate hemostasis and coagulation through the cleavage of fibrinogen to form fibrin clots. Thrombin also plays a crucial role in migration and metastasis of human cancer cells. However, the effect of thrombin on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that thrombin increased the migration and expression of matrix metalloproteinase (MMP)-2 and MMP-13 in human chondrosarcoma cells (JJ012 and SW1353 cells). By using pharmacological inhibitors or activators or genetic inhibition by the protease-activated receptor (PAR), we found that the PAR1 and PAR4 receptor but not PAR3 receptor are involved in thrombin-mediated cell migration and MMPs expression. Thrombin-mediated migration and MMPs up-regulation was attenuated by phospholipase C (PLC), protein kinase C, and c-Src inhibitor. Activations of PLCbeta, PKCalpha, c-Src, and NF-kappaB pathways after thrombin treatment was demonstrated, and thrombin-induced MMPs expression and migration activity was inhibited by the specific inhibitors and mutants of PLC, PKC, c-Src, and NF-kappaB cascades. Taken together, our results indicated that thrombin enhances the migration of chondrosarcoma cells by increasing MMP-2 and MMP-13 expression through the PAR/PLC/PKCalpha/c-Src/NF-kappaB signal transduction pathway.
Collapse
Affiliation(s)
- Hsien-Te Chen
- Department of Orthopaedic, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ay C, Vormittag R, Dunkler D, Simanek R, Chiriac AL, Drach J, Quehenberger P, Wagner O, Zielinski C, Pabinger I. D-dimer and prothrombin fragment 1 + 2 predict venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol 2009; 27:4124-9. [PMID: 19636003 DOI: 10.1200/jco.2008.21.7752] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Venous thromboembolism (VTE) is a well-recognized complication of cancer. Laboratory parameters might be useful to assess the VTE risk in patients with cancer. The aim of this study was to investigate D-dimer and prothrombin fragment 1 + 2 (F 1 + 2), which reflect activation of blood coagulation and fibrinolysis, for prediction of cancer-associated VTE. PATIENTS AND METHODS In a prospective, observational, cohort study of 821 patients with newly diagnosed cancer or progression of disease who did not recently receive chemotherapy, radiotherapy, or surgery were enrolled and followed for a median of 501 days (interquartile range, 255 to 731 days). The malignancies in these patients were as follows: breast (n = 132), lung (n = 119), stomach (n = 35), lower gastrointestinal tract (n = 106), pancreas (n = 46), kidney (n = 22), and prostate (n = 101) cancers; high-grade glioma (n = 102); malignant lymphoma (n = 94); multiple myeloma (n = 17); and other tumor types (n = 47). The study end point was occurrence of objectively confirmed symptomatic or fatal VTE. RESULTS VTE occurred in 62 patients (7.6%). The cutoff level for elevated D-dimer and elevated F 1 + 2 was set at the 75th percentile of the total study population. In multivariable analysis that included elevated D-dimer, elevated F 1 + 2, age, sex, surgery, chemotherapy, and radiotherapy, the hazard ratios (HRs) of VTE in patients with elevated D-dimer (HR, 1.8; 95% CI, 1.0 to 3.2; P = .048) and elevated F 1 + 2 (HR, 2.0; 95% CI, 1.2 to 3.6; P = .015) were statistically significantly increased. The cumulative probability of developing VTE after 6 months was highest in patients with both elevated D-dimer and elevated F 1 + 2 (15.2%) compared with patients with nonelevated D-dimer and nonelevated F 1 + 2 (5.0%; P < .001). CONCLUSION High D-dimer and F 1 + 2 levels independently predict occurrence of VTE in patients with cancer.
Collapse
Affiliation(s)
- Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Waehringer GuerA-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Depasquale I, Thompson WD. Prognosis in human melanoma: PAR-1 expression is superior to other coagulation components and VEGF. Histopathology 2008; 52:500-9. [DOI: 10.1111/j.1365-2559.2008.02978.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Lu DY, Chen XL, Ding J. Treatment of solid tumors and metastases by fibrinogen-targeted anticancer drug therapy. Med Hypotheses 2007; 68:188-93. [PMID: 16956730 DOI: 10.1016/j.mehy.2006.06.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 06/30/2006] [Indexed: 11/29/2022]
Abstract
The accumulation of fibrin/fibrinogen and other coagulation factors in and around solid tumors and metastatic foci has been recognized for a century as an aspect of cancer pathology. On this basis, anticoagulants and fibrinolytic agents have been deployed as adjuvant anticancer therapies, but they have proved clinically useful for only a small proportion of tumors and they only control the functions of the coagulant components. Overuse or long-term application of anticoagulants and fibrinolytic agents often lead to undesirable side-effects. Here, we propose that anticancer drugs that act by different mechanisms can inhibit tumor-associated coagulation, and it may be possible to develop drugs that specifically targeting tumor-related coagulation, have specific cytotoxic effects on tumor and metastatic cells. We provide laboratory and clinical evidence supporting the hypothesis and offer proposals for future applications.
Collapse
Affiliation(s)
- Da Yong Lu
- School of Life Sciences, Department of Bioengineering, Shanghai University, 99 Shangda Rd., Shanghai 200444, China.
| | | | | |
Collapse
|
39
|
Yang RS, Chiang HS, Tang CH, Yeh CS, Huang TF. Rhodostomin inhibits thrombin-enhanced adhesion of ROS 17/2.8 cells through the blockade of alphavbeta3 integrin. Toxicon 2006; 46:387-93. [PMID: 16051297 DOI: 10.1016/j.toxicon.2005.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 05/13/2005] [Accepted: 05/31/2005] [Indexed: 11/20/2022]
Abstract
Osteosarcoma is a very malignant bone tumor which has a high metastatic potential and usually lead to poor prognosis. The adhesion of tumor cells to the endothelium or extracellular matrix (ECM) is an essential step in the metastatic cascade. We investigated the effect of thrombin on the adhesion activity of the osteosarcoma cell line, ROS 17/2.8. Incubation with the low concentrations of thrombin (0.01-5 U/ml, 5 min to 24 h) elevated the adhesion activity of ROS 17/2.8 to both human umbilical vein endothelial cells (HUVEC) and extracellular matrix, with the peak effect at the concentration of 0.5 U/ml for 30 min at 37 degrees C. The ROS 17/2.8 cells responded to thrombin by a peak effect of increased adhesion to HUVEC (5.5 folds vs. control) and fibronectin (4.8 folds) after thrombin pretreatment (0.5 U/ml, 30 min, 37 degrees C). Pretreatment with monoclonal antibodies against beta3 integrins, including anti-alphavbeta3, 10E5 and 7E3, effectively antagonized the thrombin-enhanced cell adhesion activity, whereas anti-alpha3beta1 and anti-alpha5beta1 did not antagonize the enhanced cell adhesion. Rhodostomin, an Arg-Gly-Asp (RGD)-containing snake venom peptide, and synthetic peptide RGDS also blocked the thrombin-enhanced ROS 17/2.8 cell adhesion. This study demonstrated that thrombin enhanced the cell adhesion of ROS 17/2.8 cells to HUVEC or ECM through an upregulation of beta3 integrins, and rhodostomin was a strong inhibitor on thrombin-enhanced cell adhesion, either to HUVEC or fibronectin substratum.
Collapse
Affiliation(s)
- Rong-Sen Yang
- Department of Orthopaedics, College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
40
|
Iwaki T, Sandoval-Cooper MJ, Brechmann M, Ploplis VA, Castellino FJ. A fibrinogen deficiency accelerates the initiation of LDL cholesterol-driven atherosclerosis via thrombin generation and platelet activation in genetically predisposed mice. Blood 2006; 107:3883-91. [PMID: 16434491 DOI: 10.1182/blood-2005-09-3780] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mice with combined deficiencies of the low-density lipoprotein receptor (LDLR(-/-)) and the catalytic component of an apolipoprotein B-edisome complex (APOBEC1(-/-)) that converts apoB-100 to apoB-48 have been characterized, and this model of LDL cholesterol-driven atherosclerosis was applied to an investigation of the role of fibrinogen (Fg) in the genesis and progression of the plaque. LDLR(-/-)/APOBEC1(-/-)/FG(-/-) (L(-/-)/A(-/-)/FG(-/-)) triple-deficient mice presented more advanced plaque in their aortic trees and aortic sinuses at 24, 36, and 48 weeks of age compared to L(-/-)/A(-/-) mice, a feature that may result from enhanced platelet activation in these former mice. This is supported by the presence of hypercoagulability, increased CD61 and CD62P on resting platelets, and higher plasma soluble P-selectin in L(-/-)/A(-/-)/FG(-/-) mice as compared to L(-/-)/A(-/-), FG(-/-), or wild-type mice. The elevated higher molecular weight forms of von Willebrand factor (VWF) in L(-/-)/A(-/-)/FG(-/-) mice, revealed by increased VWF collagen binding activity, perhaps resulting from down-regulation of its cleaving metalloproteinase, ADAMTS13, further indicates enhanced platelet activation. Thus, the earlier arterial plaque deposition in L(-/-)/A(-/-)/FG(-/-) mice appears to contain a contribution from enhanced levels of thrombin and activated platelets, a synergistic consequence of an Fg deficiency combined with a high LDL cholesterol concentration.
Collapse
Affiliation(s)
- Takayuki Iwaki
- W. M. Keck Center for Transgene Research, 230 Raclin-Carmichael Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
41
|
Yamashita H, Kitayama J, Nagawa H. Hyperfibrinogenemia is a useful predictor for lymphatic metastasis in human gastric cancer. Jpn J Clin Oncol 2005; 35:595-600. [PMID: 16186176 DOI: 10.1093/jjco/hyi150] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although abnormal hemostasis has been described in cancer patients, the precise association between the plasma fibrinogen level and lymphatic metastasis has not been reported in a large-scale clinical study. METHODS Preoperative plasma levels of fibrinogen as well as C-reactive protein (CRP) and carcinoembryonic antigen (CEA) were retrospectively examined in 649 patients who underwent surgery for gastric cancer, and the correlation between these factors and nodal status was evaluated. RESULTS Plasma fibrinogen level in patients with gastric cancer showed a positive association with nodal classification (P < 0.0001). Hyperfibrinogenemia (>310 mg/dl) as well as high CEA (>5 ng/ml) and CRP (>0.3 mg/dl) showed a significant association with nodal metastasis in univariate analysis. Multivariate analysis revealed that hyperfibrinogenemia had an independent association with nodal metastasis (odds ratio, 2.004 (1.140-3.521); P = 0.0157), whereas CEA and CRP were not independent factors. Hyperfibrinogenemia showed an independent association even in advanced cancer [odds ratio 2.611 (1.404-4.854), P = 0.0024, n = 319]. When the 649 gastric cancers were classified into intestinal-type and gastric-type adenocarcinomas, plasma fibrinogen level was correlated with nodal metastasis only in the intestinal-type. CONCLUSIONS Our results suggest that hyperfibrinogenemia may provide favorable circumstances for cancer cells to metastasize via the lymphatic system. Preoperative plasma fibrinogen level is a useful predictor of lymphatic metastasis in intestinal-type gastric cancer.
Collapse
Affiliation(s)
- Hiroharu Yamashita
- Department of Surgical Oncology, University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | |
Collapse
|
42
|
Bobek V, Kovarík J. Antitumor and antimetastatic effect of warfarin and heparins. Biomed Pharmacother 2004; 58:213-9. [PMID: 15183845 DOI: 10.1016/j.biopha.2003.11.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 11/10/2003] [Indexed: 02/06/2023] Open
Abstract
Experimental and clinical studies have shown an anticancer effect of anticoagulant drugs. The aim of this study is to review the mechanisms by which the common types of anticoagulants influence the primary tumor and metastatic processes of solid tumors. The review evaluates the interference of unfractionated heparin (UFH), low molecular weight heparin (LMWH) and warfarin on the growth of primary tumors and on the development of metastases. The first part of the review evaluates the effect on the growth and development of primary tumors. Attention is paid to the interference with proliferation of cancer cells, tumor angiogenesis and to the interference with the immune system. The second part of the review describes the metastatic process and the effect of anticoagulants on the cell motility and cancer cell adhesion. The third part refers to the outcomes of clinical studies with anticoagulant treatment in patients with cancer. The problem of thromboembolic disease in patients with advanced cancer is also mentioned. The anticoagulants are more effective in inhibition of stages of the metastatic cascade than in the influence on primary tumors. They can interfere with tumor angiogenesis, immunity system, cancer cell motility and adhesion. The first clinical trials showed an effect on the development of primary tumors and survival of patients namely with lung cancer.
Collapse
Affiliation(s)
- Vladimir Bobek
- Department of Molecular Biology, Third Faculty of Medicine Charles University Prague, Ruska 87, 10034 Prague, Czech Republic.
| | | |
Collapse
|
43
|
Lu DY, Chi J, Lin LP, Huang M, Xu B, Ding J. Effect of Anti-Cancer Drugs on the Binding of 125I-Fibrinogen to Two Leukaemia Cell Lines In Vitro. J Int Med Res 2004; 32:488-91. [PMID: 15458280 DOI: 10.1177/147323000403200505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Anti-cancer drugs may be able to inhibit tumour growth and metastasis by blocking fibrinogen- and/or fibrin-related pathways. To test this hypothesis, the effect of various anti-neoplastic drugs on the binding of 125I-Fibrinogen to two leukaemia cell lines, HL60 and P388, was investigated. All the drugs tested inhibited the binding of fibrinogen to leukaemia cells. This effect was particularly marked for drugs that act as inhibitors of protein synthesis. Since these anti-neoplastic drugs do not have anti-coagulant actions, these results provide evidence for the potential of targeting tumour fibrinogen as a new form of cancer chemotherapy.
Collapse
Affiliation(s)
- D Y Lu
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
44
|
Profumo A, Turci M, Damonte G, Ferri F, Magatti D, Cardinali B, Cuniberti C, Rocco M. Kinetics of Fibrinopeptide Release by Thrombin as a Function of CaCl2Concentration: Different Susceptibility of FPA and FPB and Evidence for a Fibrinogen Isoform-Specific Effect at Physiological Ca2+Concentration†. Biochemistry 2003; 42:12335-48. [PMID: 14567695 DOI: 10.1021/bi034411e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kinetics of release of fibrinopeptide A (FPA) and B (FPB) by thrombin were investigated on unfractionated fibrinogen samples as a function of CaCl(2) concentration. A 50 mM Tris, 104 mM NaCl, pH 7.4 (TBS) buffer, to which 1 mM EDTA-Na(2) (TBE) or 2.5 (TBC2.5), 14 (TBC14), and 30 mM CaCl(2) (TBC30) was alternatively added, was employed. The % FPA versus time curves were fitted with single stretched-exponential growth functions, where the stretch parameter beta likely reflects substrate polydispersity (beta = 1, monodisperse). For TBE, TBS, TBC14, and TBC30, we found beta approximately 1, with corresponding normalized rate constants (K(a)) of 3.8, 4.2, 2.7, and 1.9 x 10(-5) [(NIHu/L)s](-1). Surprisingly, in TBC2.5 we found beta = 0.69, with an "average" K(a) of 3.5 x 10(-5) [(NIHu/L)s](-1). This effect disappeared [beta = 0.97, K(a) = 2.7 x 10(-5) [(NIHu/L)s](-1)] with an increase in the ionic strength I to that of TBC30 with 186 mM NaCl (TBCaNa buffer). FPB releases were instead consistent with a nonstretched consecutive exponential growth function, except in TBC30 where some FPB appeared to be cleaved independently. Log-log plots of K(a) versus Ca(2+) concentration, Cl(-) concentration, or I showed a strong linear correlation with only the latter two except in TBCaNa, again suggesting specific effects of the physiological Ca(2+) concentration and I on FPA release. The corresponding K(b) plots showed instead that both total depletion and high Ca(2+) hampered FPB release. To further investigate the TBC2.5 beta = 0.69 effect, FG polydispersity was assessed by Western blot analyses. The thrombin-binding gamma'-chain isoform was approximately 4%, resulting in a bound:free thrombin ratio of approximately 25:75. With regard to the C-terminal ends of the Aalpha-chains, approximately 45% were either intact or lightly degraded, while the remaining approximately 55% were more degraded. Fitting the % FPA release data in TBC2.5 with a sum of two exponentials resulted in a faster component and a slower component (K(a1)/K(a2) approximately 6), with a ratio of approximately 48:52. While a role for the gamma'-chain isoform cannot be excluded, this good correlation with the C-terminal degradation of the Aalpha-chains suggests their calcium-dependent involvement in FPA release.
Collapse
Affiliation(s)
- Aldo Profumo
- U.O. Biologia Strutturale, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lalla RV, Tanzer ML, Kreutzer DL. Identification of a region of the fibrin molecule involved in upregulation of interleukin-8 expression from human oral squamous cell carcinoma cells. Arch Oral Biol 2003; 48:263-71. [PMID: 12663071 DOI: 10.1016/s0003-9969(03)00005-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of studies have implicated the fibrin-coagulation-fibrinolysis system in human tumour progression. Interleukin-8 (IL-8) mediates most of the angiogenic activity induced by human oral squamous cell carcinoma (OSCC) cells. We have recently demonstrated that: (1) fibrin is present in association with IL-8 expressing human OSCC cells in vivo and (2) in situ fibrin polymerisation induces a specific, dose and time-dependent upregulation of IL-8 expression from human OSCC cells in vitro. Our present studies extend this observation by demonstrating that in addition to fibrin formed in situ, both fibrin-derived liquid expressates (soluble fibrin) and preformed fibrin clots induced an over eight-fold stimulation of IL-8 expression from human OSCC cells as compared to media controls. IL-8 upregulation by soluble fibrin was dose-dependent. A monoclonal antibody against the N terminal region of the beta chain of human fibrin (Bbeta15-42) inhibited 67% of soluble fibrin-induced IL-8 expression from human OSCC cells. A peptide (GHRP), representing the sequence at the N terminus of this region, induced a dose-dependent stimulation of IL-8 expression, further confirming the role of this region. These studies directly support our hypothesis that fibrin induces protumourigenic factor expression from tumour cells, thus promoting tumour progression. Future studies to further characterise the role of the Bbeta15-42 region in tumour cell activation may lead to the design of peptide antagonists with important therapeutic potential.
Collapse
Affiliation(s)
- Rajesh V Lalla
- Department of Oral Diagnosis, Division of Oral Medicine, University of Connecticut School of Dental Medicine, Farmington, CT 06030, USA.
| | | | | |
Collapse
|
46
|
Giron S, Tejera AM, Ripoll GV, Gomez DE, Alonso DF. Desmopressin inhibits lung and lymph node metastasis in a mouse mammary carcinoma model of surgical manipulation. J Surg Oncol 2002; 81:38-44. [PMID: 12210026 DOI: 10.1002/jso.10141] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVES Desmopressin (DDAVP) is a synthetic derivative of vasopressin with hemostatic and fibrinolytic properties that has been used during surgery in patients with bleeding disorders. Our aim was to investigate the effect of DDAVP on lung and lymph node metastatic cell colonization using a preclinical mouse mammary carcinoma model of subcutaneous tumor manipulation and surgical excision. METHODS Female BALB/c mice bearing the highly aggressive F3II mammary carcinoma were subjected to repeated manipulations of primary tumors (0.5 kg/cm(2) during 2 min), followed (or not) by surgical excision. DDAVP was administered intravenously 30 min before and 24 h after each manipulation or surgery, at a dose of 2 microg/kg. At the end of the experiment, mice were sacrificed and necropsied. RESULTS Tumor manipulation induced dissemination to the axillary nodes and increased up to 6-fold the number of metastatic lung nodules. Perioperative treatment with DDAVP dramatically reduced regional metastasis. The incidence of lymph node involvement in manipulated animals was 12% with DDAVP and 87% without treatment (P < 0.02). Histopathological analysis of axillary nodes from DDAVP-treated animals showed sinusal histiocytosis and no evidence of cancer cells. Metastatic lung nodules were also reduced about 65% in animals treated with DDAVP (P = 0.026). CONCLUSIONS Our results suggest a potential clinical application of DDAVP in the management of breast cancer, as well as other aggressive solid tumors. DDAVP may be useful to reduce the risk of metastatic cell colonization both during and after surgical manipulation.
Collapse
Affiliation(s)
- Santiago Giron
- Laboratory of Molecular Oncology, Quilmes National University, Bernal, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
47
|
Ono K, Ishihara M, Ishikawa K, Ozeki Y, Deguchi H, Sato M, Hashimoto H, Saito Y, Yura H, Kurita A, Maehara T. Periodate-treated, non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) affects angiogenesis and inhibits subcutaneous induced tumour growth and metastasis to the lung. Br J Cancer 2002; 86:1803-12. [PMID: 12087470 PMCID: PMC2375397 DOI: 10.1038/sj.bjc.6600307] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2001] [Revised: 03/12/2002] [Accepted: 03/14/2002] [Indexed: 02/06/2023] Open
Abstract
Periodate-treated, non-anticoagulant heparin-carrying polystyrene consists of about ten periodate-oxidized, alkaline-degraded low molecular weight-heparin chains linked to a polystyrene core and has a markedly lower anti-coagulant activity than heparin. In this study, we evaluated the effect of non-anticoagulant heparin-carrying polystyrene on tumour growth and metastasis. Non-anticoagulant heparin-carrying polystyrene has a higher activity to inhibit vascular endothelial growth factor-165-, fibroblast growth factor-2- or hepatocyte growth factor-induced human microvascular endothelial cell growth than heparin, ten periodate-oxidized-heparin and ten periodate-oxidized-low molecular weight-heparin, which is probably due to the heparin-clustering effect of non-anticoagulant heparin-carrying polystyrene. Non-anticoagulant heparin-carrying polystyrene inhibited human microvascular endothelial cell, B16 melanoma and Lewis lung cancer cell adhesion to Matrigel-coated plates. Non-anticoagulant heparin-carrying polystyrene also showed strong inhibitory activities in the tubular formation of endothelial cells on Matrigel and B16-melanoma and Lewis lung cancer cell invasion in a Matrigel-coated chamber assay. In vivo studies showed that growth of subcutaneous induced tumours and lung metastasis of B16-melanoma and Lewis lung cancer cells were more effectively inhibited by non-anticoagulant heparin-carrying polystyrene than ten periodate-oxidized-heparin and ten periodate-oxidized-low molecular weight-heparin. Furthermore, non-anticoagulant heparin-carrying polystyrene markedly reduced the number of CD34-positive vessels in subcutaneous Lewis lung cancer tumours, indicating a strong inhibition of angiogenesis. These results suggest that non-anticoagulant heparin-carrying polystyrene has an inhibitory activity on angiogenesis and tumour invasion and may be very useful in cancer therapy.
Collapse
Affiliation(s)
- K Ono
- Department of Surgery II, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513 Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Iwaki T, Sandoval-Cooper MJ, Paiva M, Kobayashi T, Ploplis VA, Castellino FJ. Fibrinogen stabilizes placental-maternal attachment during embryonic development in the mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1021-34. [PMID: 11891199 PMCID: PMC1867160 DOI: 10.1016/s0002-9440(10)64923-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In humans, maternal fibrinogen (Fg) is required to support pregnancies by maintaining hemostatic balance and stabilizing uteroplacental attachment at the fibrinoid layer found at the fetal-maternal junction. To examine relationships between low Fg levels and early fetal loss, a genetic model of afibrinogenemia was developed. Pregnant mice homozygous for a deletion of the Fg-gamma chain, which results in a total Fg deficiency state (FG(-/-)), aborted the fetuses at the equivalent gestational stage seen in humans. Results obtained from timed matings of FG(-/-) mice showed that vaginal bleeding was initiated as early as embryonic day (E)6 to 7, a critical stage for maternal-fetal vascular development. The condition of afibrinogenemia retarded embryo-placental development, and consistently led to abortion and maternal death at E9.75. Lack of Fg did not alter the extent or distribution pattern of other putative factors of embryo-placental attachment, including laminin, fibronectin, and Factor XIII, indicating that the presence of fibrin(ogen) is required to confer sufficient stability at the placental-decidual interface. The results of these studies demonstrate that maternal Fg plays a critical role in maintenance of pregnancy in mice, both by supporting proper development of fetal-maternal vascular communication and stabilization of embryo implantation.
Collapse
Affiliation(s)
- Takayuki Iwaki
- W. M. Keck Center for Transgene Research, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | |
Collapse
|
49
|
Lu DY, Chen XL, Cao JY, Li Z, Xue HW, Luo LJ, Xu B. Effects of cancer chemotherapy on the blood fibrinogen concentrations of cancer patients. J Int Med Res 2000; 28:313-7. [PMID: 11191725 DOI: 10.1177/147323000002800608] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Blood fibrinogen concentrations and glutamic-pyruvic transaminase activities of 66 adult cancer inpatients (aged 22 - 70 years) were determined both before and after one or two chemotherapy regimens. The percentage of hepatoma patients with abnormal blood fibrinogen levels (< 1.5 or > 6.0 g/l) was higher (64.3% of 14 patients) than that in other cancer categories (19.2% of 52 patients). The mean blood fibrinogen concentrations of male (3.5 g/l) and female (4.5 g/l) cancer patients were higher than those previously reported for healthy humans (2.8 and 2.9 g/l, respectively). After chemotherapy, blood fibrinogen concentrations decreased in patients whose primary tumours were surgically removed (from 4.8 to 3.2 g/l) but increased (from 3.0 to 4.8 g/l) in those who did not undergo surgery. Glutamic-pyruvic transaminase activities did not appear to be related to blood fibrinogen levels. We conclude that the increase in mean blood fibrinogen levels of cancer patients is probably related to tumour growth. Different mechanisms may operate in patients with hepatoma.
Collapse
Affiliation(s)
- D Y Lu
- School of Life Sciences, Shanghai University, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Ploplis VA, Wilberding J, McLennan L, Liang Z, Cornelissen I, DeFord ME, Rosen ED, Castellino FJ. A total fibrinogen deficiency is compatible with the development of pulmonary fibrosis in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:703-8. [PMID: 10980108 PMCID: PMC1885710 DOI: 10.1016/s0002-9440(10)64582-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In addition to their well-known roles in hemostasis, fibrinogen (Fg) and fibrin (Fn) have been implicated in a number of other physiological and pathophysiological events. One of these involves the fibroproliferative response after acute lung injury, which is the focus of the current study. Mice with a total Fg deficiency (FG(-/-)) were generated by breeding heterozygous (FG(+/-)) pairs, each of which contained an allele with a targeted deletion of its Fg-gamma-chain gene. The resulting FG(-/-) animals did not possess detectable plasma Fg. FG(-/-) mice were then used to assess the roles of Fg and Fn in a bleomycin-induced acute lung injury model. Intratracheal administration of bleomycin in wild-type and FG(-/-) mice resulted in equivalent deposition of interstitial collagen and fibrotic lesions at days 7 and 14 after administration. This indicates that Fg and/or Fn are not essential for the development of bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- V A Ploplis
- W. M. Keck Center for Transgene Research and the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | | | |
Collapse
|