1
|
Prakobdi C, Dhellemmes L, Leclercq L, Rydzek G, Cottet H. Surfactant-based coatings for protein separation by capillary electrophoresis - A review. Anal Chim Acta 2025; 1356:343945. [PMID: 40288884 DOI: 10.1016/j.aca.2025.343945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Capillary electrophoresis (CE) is a highly efficient and versatile analytical method for the separation of biomacromolecules such as proteins and peptides. One major concern to reach high separation efficiency is the adsorption of analytes on the capillary wall and the heterogeneity of the capillary surface charge which generates hydrodynamic dispersion due to local electroosmotic (EOF) fluctuations. RESULTS Double chain surfactants have been described as potential interesting candidates for capillary coatings in CE. They are notably offering a very homogenous surface charge leading to very high separation efficiency with reported values up to 1 million plates per meter. SIGNIFICANCE This review provides an overview of double chain surfactant coatings used in CE with an emphasis on the coating protocol, the nature of the surfactant, the preparation of the coating solution (concentration, temperature, sonication or extrusion), the physicochemical parameters affecting their properties (pH, ionic strength, nature of the anion in the coating solution, coating additives, capillary internal diameter), and the coating stability/durability.
Collapse
Affiliation(s)
| | - Laura Dhellemmes
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Gaulthier Rydzek
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
2
|
Sun X, Qian Y, Wang G, Wang Z, Hao J. Liquid Crystal Cubic Phases Constructed from Sophorolipids Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10931-10939. [PMID: 40272826 DOI: 10.1021/acs.langmuir.5c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Biosurfactants are considered to be desirable alternatives to synthetic surfactants. Sophorolipids produced by nonpathogenic yeast strains are one of the main types of glycolipid biosurfactants and have various applications. In this work, the aqueous phase behavior of the glycolipid-based biosurfactant sophorolipids (SL) was investigated using polarized microscopy, small-angle X-ray diffraction (SAXS), nuclear magnetic deuterium spectroscopy (2H NMR), transmission electron microscopy (TEM), freeze-etched transmission electron microscopy (FF-TEM), and dynamic light scattering (DLS). The binary phase diagram of the SL/H2O system was constructed, and a liquid crystalline cubic phase constructed by sophorolipids micelles was observed. A micellar phase at low concentrations (<50 wt %) was found. As the concentration increases, after a transition phase, it is a strictly micellar cubic phase at concentrations up to 70 wt %. The micellar cubic phase is an isotropic, highly viscous liquid crystal composed of three-dimensionally ordered arrangements of spherical micelles, which are arranged in simple cubic (CubI/Pm3m) or body-centered cubic (CubI/Im3m). The rheological properties at different concentrations and temperatures were studied. The micellar cubic phase is highly viscoelastic, and the viscosity tends to decrease uniformly with increasing temperatures (15-90 °C) and then returns to its original state after cooling, indicating that the micellar cubic phase possesses satisfactory reversibility at high temperature. The results are expected to be instructive for the application of the sophorolipids.
Collapse
Affiliation(s)
- Xinyu Sun
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Yuzhen Qian
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Guozhen Wang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Zeyi Wang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| |
Collapse
|
3
|
Tsoutsoura A, He Z, Alexandridis P. Phase Behavior and Structure of Poloxamer Block Copolymers in Protic and Aprotic Ionic Liquids. Molecules 2023; 28:7434. [PMID: 37959854 PMCID: PMC10650682 DOI: 10.3390/molecules28217434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Ionic liquids are promising media for self-assembling block copolymers in applications such as energy storage. A robust design of block copolymer formulations in ionic liquids requires fundamental knowledge of their self-organization at the nanoscale. To this end, here, we focus on modeling two-component systems comprising a Poly(ethylene oxide)-poly (propylene oxide)-Poly(ethylene oxide) (PEO-PPO-PEO) block copolymer (Pluronic P105: EO37PO58EO37) and room temperature ionic liquids (RTILs): protic ethylammonium nitrate (EAN), aprotic ionic liquids (1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), or 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4). Rich structural polymorphism was exhibited, including phases of micellar (sphere) cubic, hexagonal (cylinder), bicontinuous cubic, and lamellar (bilayer) lyotropic liquid crystalline (LLC) ordered structures in addition to solution regions. The characteristic scales of the structural lengths were obtained using small-angle X-ray scattering (SAXS) data analysis. On the basis of phase behavior and structure, the effects of the ionic liquid solvent on block copolymer organization were assessed and contrasted to those of molecular solvents, such as water and formamide.
Collapse
Affiliation(s)
| | | | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA (Z.H.)
| |
Collapse
|
4
|
Uyama M, Steitz R, Trapp M, Noirez L, Bayer S, Gradzielski M. Microscopic Analysis of the Water/Glycerol/EO30PS System in Bulk and on a Solid Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12206-12215. [PMID: 37589758 DOI: 10.1021/acs.langmuir.3c01490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Surfactant systems are often employed in cosmetic formulations where they dry on skin as a surface, thereby becoming increasingly concentrated systems. To better understand this drying process, we focused on the difference of self-assembled structures of the water/glycerol/polyoxyethylene (30) phytosteryl ether (EO30PS) system in bulk and on a solid substrate because the interaction between the substrate and the surfactant may have a substantial effect on the self-assembly, which may be related to the bulk structure but in detail may also differ strongly from the bulk situation. In bulk, small-angle neutron scattering (SANS) experiments showed that with increasing loss of water, the degree of ordering increases but changes of the aggregate structure are rather small. The results indicate that ellipsoidal micelles of EO30PS are densely packed and simply become more ordered in bulk during the drying process. On the other hand, neutron reflectometry revealed that EO30PS molecules adsorb onto a Si surface in the form of bilayers and analysis indicates that at a high concentration (c = 20 wt %), there are on average two bilayers (a double bilayer) on the Si substrate. The adsorbed membrane structure of EO30PS is rather thin with respect to its hydrophobic part, indicating tilted molecules, containing only some solvent, and being not highly ordered. These experimental results then allow for a much deeper understanding of the structural properties of practical formulations as they are applied, for instance, in cosmetic lotions.
Collapse
Affiliation(s)
- Makoto Uyama
- Shiseido Co., Ltd. MIRAI Technology Institute, Yokohama, Kanagawa 220-0011, Japan
| | - Roland Steitz
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Marcus Trapp
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Laurence Noirez
- Laboratoire Léon Brillouin CEA-CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette Cedex, France
| | - Sebastian Bayer
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 124, Sekr. TC7, 10623 Berlin, Germany
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 124, Sekr. TC7, 10623 Berlin, Germany
| |
Collapse
|
5
|
Söderman O. Nuclear Magnetic Resonance Studies of Bicontinuous Liquid Crystalline Phases of Cubic Symmetry: Transport Properties from 2H Nuclear Magnetic Resonance Relaxation Rates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37327483 DOI: 10.1021/acs.langmuir.3c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ternary system didodecyltrimethylammonium bromide, 1-decanol, and water forms an extended reversed continuous phase of cubic symmetry at 25 °C. The cubic phase belongs to the space group Im3m, as shown by small-angle X-ray experiments. We present extensive deuterium NMR relaxation data from this cubic phase for 1-decanol, deuterated at the carbon adjacent to the hydroxyl carbon position. 2H spin-lattice (R1) and spin-spin (R2) relaxation rates were measured over the existence region of the cubic phase, which extends from 0.2 to 0.6 in volume fraction of the dividing bilayer surface of the cubic phase. The data are interpreted with an existing theoretical framework for NMR spin relaxation in bicontinuous cubic phases, which takes its starting point in the description of bicontinuous phases using periodic minimal surfaces. Specifically, we obtain the self-diffusion coefficient over the minimal surface in one unit cell for 1-decanol. We also present pulsed field gradient NMR-derived self-diffusion data for didodecyltrimethylammonium bromide and compare the two sets of data. The diffusion data for both components show a mild, if any, dependence on the volume fraction of the bilayer surface. Furthermore, we present diffusion data for the water component in the cubic phase. Finally, we discuss the influences of the choice of the value of the product of the deuterium quadrupole constant and the order parameter S. Within the framework of the model used to analyze the relaxation data, a value for this parameter is required. As an initial value, we rely on measurements of deuterium quadrupolar splittings from deuterated decanol in an anisotropic phase.
Collapse
Affiliation(s)
- Olle Söderman
- Division of Physical Chemistry, Lund University, P. O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
6
|
Flavell W, Neophytou A, Demetriadou A, Albrecht T, Chakrabarti D. Programmed Self-Assembly of Single Colloidal Gyroids for Chiral Photonic Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211197. [PMID: 36864647 DOI: 10.1002/adma.202211197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/08/2023] [Indexed: 06/09/2023]
Abstract
Gyroid structures are of extensive interest because they provide a rich platform for chiroptics as well as topological photonics. While the double-gyroid morphology as a bicontinuous structure is not uncommon in self-assembled soft materials, direct self-assembly of single-network gyroids has proven elusive. Here, an enantiomorphic pair of single-gyroid crystals comprising colloidal spheres is presented, and two distinct routes are demonstrated for programmed self-assembly of each single colloidal gyroid enantiomorph from rationally designed patchy spheres. The designer colloidal patchy spheres, which closely hew to their synthetic feasibility, are chiral, having either two staggered rectangular patches at opposite poles or four circular patches arranged in a well-defined geometry. The single colloidal gyroid, as well as its inverse structure, is shown to support a wide complete photonic bandgap in addition to exhibiting rich chiroptical properties, making them attractive chiral photonic crystals. The versatility of this single colloidal gyroid, the bottom-up routes devised here in silico, and the robustness of the design space for the chiral colloidal patchy spheres together make a strong case for single colloidal gyroids to supersede colloidal diamond, as a target for programmed self-assembly, in the quest for photonic crystals operating at optical frequencies.
Collapse
Affiliation(s)
- Wesley Flavell
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andreas Neophytou
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Angela Demetriadou
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tim Albrecht
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
7
|
Ogawa S, Takahashi I. Short-Chain Mono-Alkyl β-D-Glucoside Crystals—Do They Form a Cubic Crystal Structure? Molecules 2022; 27:molecules27144359. [PMID: 35889235 PMCID: PMC9320782 DOI: 10.3390/molecules27144359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional liquid crystal (LC) phases, cubic LC phases, have been extensively studied as fascinating molecular assembled systems formed by amphiphilic compounds. However, similar structures have only been seen in rare instances in lipid crystal states in glycolipid crystal studies. In this study, we prepared short-chain n-alkyl β-D-glucosides (CnG) with an alkyl chain length n ranging from 4 to 6 and investigated their crystal structures. First, differential thermal analysis (DTA) and thermogravimetric analysis (TG) measurements showed the formation of hydrated crystals for C4G and C5G, respectively. Second, the crystal structures of CnG (n = 4, 5, 6) in both anhydrous and hydrated states were examined using a temperature-controlled powder X-ray diffraction (PXRD) measurement. Both hydrate and anhydrous crystals of C4G and C5G with critical packing parameters (CPPs) less than 0.33 formed cubic crystal phases. Bilayer lengths, calculated from the main diffraction peaks in each PXRD profile, depended on crystalline moisture for C5G, but no significant change was confirmed for C4G, indicating that the properties of each hydrophilic layer differ. However, C6G with a CPP of 0.42 formed a crystal structure with a modulated lamellar structure similar to C7G and C8G with similar CPP values. Thus, a glycolipid motif concept with a cubic crystal structure was demonstrated.
Collapse
Affiliation(s)
- Shigesaburo Ogawa
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bio-Industry, Tokyo University of Agriculture, 196 Yasaka, Hokkaido 099-2493, Japan
- Correspondence: (S.O.); (I.T.)
| | - Isao Takahashi
- Department of Physics, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan
- Correspondence: (S.O.); (I.T.)
| |
Collapse
|
8
|
Chen C, Poppe M, Poppe S, Wagner M, Tschierske C, Liu F. Tetrahedral Liquid-Crystalline Networks: An A15-Like Frank-Kasper Phase Based on Rod-Packing. Angew Chem Int Ed Engl 2022; 61:e202203447. [PMID: 35470526 PMCID: PMC9321821 DOI: 10.1002/anie.202203447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 11/10/2022]
Abstract
The Pm 3 ‾ n cubic and other low-symmetry Frank-Kasper phases are known to be formed by soft spheres, ranging from metals to block copolymer micelles and colloidal nanoparticles. Here, we report a series of X-shaped polyphiles composed of sticky rods and two non-symmetric branched side-chains, which self-assemble into the first example of a cubic liquid-crystalline phase representing a tetrahedral network of rods with a Pm 3 ‾ n lattice. It is the topological dual to the Weaire-Phelan foam, being the Voronoi tessellation of the A15 sphere packing, from which this network is obtained by Delaunay triangulation.
Collapse
Affiliation(s)
- Changlong Chen
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behaviour of MaterialsXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Marco Poppe
- Department of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes Str. 206120Halle/SaaleGermany
| | - Silvio Poppe
- Department of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes Str. 206120Halle/SaaleGermany
| | - Matthias Wagner
- Department of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes Str. 206120Halle/SaaleGermany
| | - Carsten Tschierske
- Department of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes Str. 206120Halle/SaaleGermany
| | - Feng Liu
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behaviour of MaterialsXi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
9
|
Chen C, Poppe M, Poppe S, Wagner M, Tschierske C, Liu F. Tetrahedral Liquid‐Crystalline Networks: An A15‐Like Frank–Kasper Phase Based on Rod‐Packing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Changlong Chen
- Shaanxi International Research Center for Soft Matter State Key Laboratory for Mechanical Behaviour of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Marco Poppe
- Department of Chemistry Martin Luther University Halle-Wittenberg Kurt-Mothes Str. 2 06120 Halle/Saale Germany
| | - Silvio Poppe
- Department of Chemistry Martin Luther University Halle-Wittenberg Kurt-Mothes Str. 2 06120 Halle/Saale Germany
| | - Matthias Wagner
- Department of Chemistry Martin Luther University Halle-Wittenberg Kurt-Mothes Str. 2 06120 Halle/Saale Germany
| | - Carsten Tschierske
- Department of Chemistry Martin Luther University Halle-Wittenberg Kurt-Mothes Str. 2 06120 Halle/Saale Germany
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter State Key Laboratory for Mechanical Behaviour of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
10
|
Monoolein Cubic Phase Containing Cellulose Nanocrystal as a Release Modulator for a Negatively Charged Compound. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-020-0365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Rodlike 4,6-diamino-1,3,5-triazine derivatives, effect of the core length on mesophase behavior and their application as LE-LCD device. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Li P, Reinhardt MI, Dyer SS, Moore KE, Imran OQ, Gin DL. Effects of structural modification of (alkyldiene-imidazolium bromide)-based gemini monomers on the formation of the lyotropic bicontinuous cubic phase. SOFT MATTER 2021; 17:9259-9263. [PMID: 34636835 DOI: 10.1039/d1sm01100f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Seven homologues of an amphiphilic gemini monomer were synthesized and screened for the ability to form a bicontinuous cubic (Q) lyotropic liquid crystal phase. Four of these homologues form a Q phase with glycerol or water that can be cross-linked with retention of the nanoporous structure, with one exhibiting a well-ordered Q phase with a wider phase window than the parent monomer.
Collapse
Affiliation(s)
- Patrick Li
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA.
| | - Maria I Reinhardt
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA.
| | - Samantha S Dyer
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA.
| | - Kara E Moore
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA.
| | - Omar Q Imran
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06510, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Douglas L Gin
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
13
|
1,10-Phenanthroline-based hexacatenar LCs with complex self-assembly, photophysical and binding selectivity behaviors. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Bicontinuous Gyroid Phase of a Water-Swollen Wedge-Shaped Amphiphile: Studies with In-Situ Grazing-Incidence X-ray Scattering and Atomic Force Microscopy. MATERIALS 2021; 14:ma14112892. [PMID: 34071178 PMCID: PMC8198821 DOI: 10.3390/ma14112892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
We report on formation of a bicontinuous double gyroid phase by a wedge-shaped amphiphilic mesogen, pyridinium 4′-[3″,4″,5″-tris-(octyloxy)benzoyloxy]azobenzene-4-sulfonate. It is found that this compound can self-organize in zeolite-like structures adaptive to environmental conditions (e.g., temperature, humidity, solvent vapors). Depending on the type of the phase, the structure contains 1D, 2D, or 3D networks of nanometer-sized ion channels. Of particular interest are bicontinuous phases, such as the double gyroid phase, as they hold promise for applications in separation and energy. Specially designed environmental cells compatible with grazing-incidence X-ray scattering and atomic force microscopy enable simultaneous measurements of structural parameters/morphology during vapor-annealing treatment at different temperatures. Such in-situ approach allows finding the environmental conditions at which the double gyroid phase can be formed and provide insights on the supramolecular structure of thin films at different spatial levels.
Collapse
|
15
|
Gradzielski M, Duvail M, de Molina PM, Simon M, Talmon Y, Zemb T. Using Microemulsions: Formulation Based on Knowledge of Their Mesostructure. Chem Rev 2021; 121:5671-5740. [PMID: 33955731 DOI: 10.1021/acs.chemrev.0c00812] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microemulsions, as thermodynamically stable mixtures of oil, water, and surfactant, are known and have been studied for more than 70 years. However, even today there are still quite a number of unclear aspects, and more recent research work has modified and extended our picture. This review gives a short overview of how the understanding of microemulsions has developed, the current view on their properties and structural features, and in particular, how they are related to applications. We also discuss more recent developments regarding nonclassical microemulsions such as surfactant-free (ultraflexible) microemulsions or ones containing uncommon solvents or amphiphiles (like antagonistic salts). These new findings challenge to some extent our previous understanding of microemulsions, which therefore has to be extended to look at the different types of microemulsions in a unified way. In particular, the flexibility of the amphiphilic film is the key property to classify different microemulsion types and their properties in this review. Such a classification of microemulsions requires a thorough determination of their structural properties, and therefore, the experimental methods to determine microemulsion structure and dynamics are reviewed briefly, with a particular emphasis on recent developments in the field of direct imaging by means of electron microscopy. Based on this classification of microemulsions, we then discuss their applications, where the application demands have to be met by the properties of the microemulsion, which in turn are controlled by the flexibility of their amphiphilic interface. Another frequently important aspect for applications is the control of the rheological properties. Normally, microemulsions are low viscous and therefore enhancing viscosity has to be achieved by either having high concentrations (often not wished for) or additives, which do not significantly interfere with the microemulsion. Accordingly, this review gives a comprehensive account of the properties of microemulsions, including most recent developments and bringing them together from a united viewpoint, with an emphasis on how this affects the way of formulating microemulsions for a given application with desired properties.
Collapse
Affiliation(s)
- Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Magali Duvail
- ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| | - Paula Malo de Molina
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain.,IKERBASQUE - Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Miriam Simon
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Thomas Zemb
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| |
Collapse
|
16
|
Isoprenoid-chained lipid EROCOC 17+4: a new matrix for membrane protein crystallization and a crystal delivery medium in serial femtosecond crystallography. Sci Rep 2020; 10:19305. [PMID: 33168855 PMCID: PMC7652841 DOI: 10.1038/s41598-020-76277-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022] Open
Abstract
In meso crystallization of membrane proteins relies on the use of lipids capable of forming a lipidic cubic phase (LCP). However, almost all previous crystallization trials have used monoacylglycerols, with 1-(cis-9-octadecanoyl)-rac-glycerol (MO) being the most widely used lipid. We now report that EROCOC17+4 mixed with 10% (w/w) cholesterol (Fig. 1) serves as a new matrix for crystallization and a crystal delivery medium in the serial femtosecond crystallography of Adenosine A2A receptor (A2AR). The structures of EROCOC17+4-matrix grown A2AR crystals were determined at 2.0 Å resolution by serial synchrotron rotation crystallography at a cryogenic temperature, and at 1.8 Å by LCP-serial femtosecond crystallography, using an X-ray free-electron laser at 4 and 20 °C sample temperatures, and are comparable to the structure of the MO-matrix grown A2AR crystal (PDB ID: 4EIY). Moreover, X-ray scattering measurements indicated that the EROCOC17+4/water system did not form the crystalline LC phase at least down to - 20 °C, in marked contrast to the equilibrium MO/water system, which transforms into the crystalline LC phase below about 17 °C. As the LC phase formation within the LCP-matrix causes difficulties in protein crystallography experiments in meso, this feature of EROCOC17+4 will expand the utility of the in meso method.
Collapse
|
17
|
Wang HF, Chiu PT, Yang CY, Xie ZH, Hung YC, Lee JY, Tsai JC, Prasad I, Jinnai H, Thomas EL, Ho RM. Networks with controlled chirality via self-assembly of chiral triblock terpolymers. SCIENCE ADVANCES 2020; 6:6/42/eabc3644. [PMID: 33055164 PMCID: PMC7556840 DOI: 10.1126/sciadv.abc3644] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/28/2020] [Indexed: 06/02/2023]
Abstract
Nanonetwork-structured materials can be found in nature and synthetic materials. A double gyroid (DG) with a pair of chiral networks but opposite chirality can be formed from the self-assembly of diblock copolymers. For triblock terpolymers, an alternating gyroid (GA) with two chiral networks from distinct end blocks can be formed; however, the network chirality could be positive or negative arbitrarily, giving an achiral phase. Here, by taking advantage of chirality transfer at different length scales, GA with controlled chirality can be achieved through the self-assembly of a chiral triblock terpolymer. With the homochiral evolution from monomer to multichain domain morphology through self-assembly, the triblock terpolymer composed of a chiral end block with a single-handed helical polymer chain gives the chiral network from the chiral end block having a particular handed network. Our real-space analyses reveal the preferred chiral sense of the network in the GA, leading to a chiral phase.
Collapse
Affiliation(s)
- Hsiao-Fang Wang
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C
| | - Po-Ting Chiu
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C
| | - Chih-Ying Yang
- Institute of Photonics Technologies, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C
| | - Zhi-Hong Xie
- Institute of Photonics Technologies, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C
| | - Yu-Chueh Hung
- Institute of Photonics Technologies, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C
| | - Jing-Yu Lee
- Department of Chemical Engineering, National Chung Cheng University, No.168, Sec. 1, University Rd., Minhsiung, Chia-Yi, Taiwan 62142, R.O.C
| | - Jing-Cherng Tsai
- Department of Chemical Engineering, National Chung Cheng University, No.168, Sec. 1, University Rd., Minhsiung, Chia-Yi, Taiwan 62142, R.O.C
| | - Ishan Prasad
- Department of Polymer Science and Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Hiroshi Jinnai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Edwin L Thomas
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C.
| |
Collapse
|
18
|
Cui C, Deng Y, Han L. Bicontinuous cubic phases in biological and artificial self-assembled systems. SCIENCE CHINA MATERIALS 2020; 63:686-702. [PMID: 32219007 PMCID: PMC7094945 DOI: 10.1007/s40843-019-1261-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Nature has created innumerable life forms with miraculous hierarchical structures and morphologies that are optimized for different life events through evolution over billions of years. Bicontinuous cubic structures, which are often described by triply periodic minimal surfaces (TPMSs) and their constant mean curvature (CMC)/parallel surface companions, are of special interest to various research fields because of their complex form with unique physical functionalities. This has prompted the scientific community to fully understand the formation, structure, and properties of these materials. In this review, we summarize and discuss the formation mechanism and relationships of the relevant biological structures and the artificial self-assembly systems. These structures can be formed through biological processes with amazing regulation across a great length scales; nevertheless, artificial construction normally produces the structure corresponding to the molecular size and shape. Notably, the block copolymeric system is considered to be an applicable and attractive model system for the study of biological systems due to their versatile design and rich phase behavior. Some of the phenomena found in these two systems are compared and discussed, and this information may provide new ideas for a comprehensive understanding of the relationship between molecular shape and resulting interface curvature and the self-assembly process in living organisms. We argue that the co-polymeric system may serve as a model to understand these biological systems and could encourage additional studies of artificial self-assembly and the creation of new functional materials.
Collapse
Affiliation(s)
- Congcong Cui
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001 China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| |
Collapse
|
19
|
Andrzejewska W, Wilkowska M, Skrzypczak A, Kozak M. Ammonium Gemini Surfactants Form Complexes with Model Oligomers of siRNA and dsDNA. Int J Mol Sci 2019; 20:ijms20225546. [PMID: 31703275 PMCID: PMC6887939 DOI: 10.3390/ijms20225546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Dimeric cationic surfactants (gemini-type) are a group of amphiphilic compounds with potential use in gene therapy as effective carriers for nucleic acid transfection (i.e., siRNA, DNA, and plasmid DNA). Our studies have shown the formation of lipoplexes composed of alkanediyl-α,ω-bis[(oxymethyl)dimethyldodecylammonium] chlorides and selected 21-base-pair nucleic acid (dsDNA and siRNA) oligomers. To examine the structure and physicochemical properties of these systems, optical microscopy, circular dichroism spectroscopy (CD), small-angle X-ray scattering of synchrotron radiation (SR-SAXS), and agarose gel electrophoresis (AGE) were used. The lengths of spacer groups of the studied surfactants had a significant influence on the surfactants’ complexing properties. The lowest charge ratio (p/n) at which stable lipoplexes were observed was 1.5 and the most frequently occurring microstructure of these lipoplexes were cubic and micellar phases for dsDNA and siRNA, respectively. The cytotoxicity tests on HeLa cells indicated the non-toxic concentration of surfactants to be at approximately 10 µM. The dicationic gemini surfactants studied form complexes with siRNA and dsDNA oligomers; however, the complexation process is more effective towards siRNA. Therefore these systems could be applied as transfection systems for therapeutic nucleic acids.
Collapse
Affiliation(s)
- Weronika Andrzejewska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland; (W.A.); (M.W.)
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Michalina Wilkowska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland; (W.A.); (M.W.)
| | - Andrzej Skrzypczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland; (W.A.); (M.W.)
- Joint SAXS Laboratory, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- Correspondence: ; Tel.: +48-61-829-5266
| |
Collapse
|
20
|
Liu C, Gao H, Li T, Xiao Y, Cheng X. Bisthiophene/triazole based 4,6-diamino-1,3,5-triazine triblock polyphiles: Synthesis, self-assembly and metal binding properties. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Tassler S, Dobner B, Lampp L, Ziółkowski R, Malinowska E, Wölk C, Brezesinski G. DNA Delivery Systems Based on Peptide-Mimicking Cationic Lipids-The Effect of the Co-Lipid on the Structure and DNA Binding Capacity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4613-4625. [PMID: 30840475 PMCID: PMC6727600 DOI: 10.1021/acs.langmuir.8b04139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/27/2019] [Indexed: 06/09/2023]
Abstract
In continuation of previous work, we present a new promising DNA carrier, OO4, a highly effective peptide-mimicking lysine-based cationic lipid. The structural characteristics of the polynucleotide carrier system OO4 mixed with the commonly used co-lipid DOPE and the saturated phospholipid DPPE have been studied in two-dimensional and three-dimensional model systems to understand their influence on the physical-chemical properties. The phase behavior of pure OO4 and its mixtures with DOPE and DPPE was studied at the air-water interface using a Langmuir film balance combined with infrared reflection-absorption spectroscopy. In bulk, the self-assembling structures in the presence and absence of DNA were determined by small-angle and wide-angle X-ray scattering. The amount of adsorbed DNA to cationic lipid bilayers was measured using a quartz crystal microbalance. The choice of the co-lipid has an enormous influence on the structure and capability of binding DNA. DOPE promotes the formation of nonlamellar lipoplexes (cubic and hexagonal structures), whereas DPPE promotes the formation of lamellar lipoplexes. The correlation of the observed structures with the transfection efficiency and serum stability indicates that OO4/DOPE 1:3 lipoplexes with a DNA-containing cubic phase encapsulated in multilamellar structures seem to be most promising.
Collapse
Affiliation(s)
- Stephanie Tassler
- Max
Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg
1, 14476 Potsdam, Germany
| | - Bodo Dobner
- Institute
of Pharmacy, Martin-Luther-University (MLU)
Halle-Wittenberg, Wolfgang-Langenbeck-Straße
4, 06120 Halle (Saale), Germany
| | - Lisa Lampp
- Institute
of Pharmacy, Martin-Luther-University (MLU)
Halle-Wittenberg, Wolfgang-Langenbeck-Straße
4, 06120 Halle (Saale), Germany
| | - Robert Ziółkowski
- Faculty
of Chemistry, Department of Microbioanalytics, The Chair of Medical
Biotechnology, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warszawa, Poland
| | - Elżbieta Malinowska
- Faculty
of Chemistry, Department of Microbioanalytics, The Chair of Medical
Biotechnology, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warszawa, Poland
| | - Christian Wölk
- Institute
of Pharmacy, Martin-Luther-University (MLU)
Halle-Wittenberg, Wolfgang-Langenbeck-Straße
4, 06120 Halle (Saale), Germany
| | - Gerald Brezesinski
- Max
Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg
1, 14476 Potsdam, Germany
| |
Collapse
|
22
|
Liu HK, Ren LJ, Wu H, Ma YL, Richter S, Godehardt M, Kübel C, Wang W. Unraveling the Self-Assembly of Heterocluster Janus Dumbbells into Hybrid Cubosomes with Internal Double-Diamond Structure. J Am Chem Soc 2018; 141:831-839. [DOI: 10.1021/jacs.8b08016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hong-Kai Liu
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, People’s Republic of China
| | - Li-Jun Ren
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, People’s Republic of China
| | - Han Wu
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, People’s Republic of China
| | - Yong-Li Ma
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, People’s Republic of China
| | - Sven Richter
- Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany
| | - Michael Godehardt
- Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany
| | - Christian Kübel
- Karlsruhe Nano Micro Facility and Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Wei Wang
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, People’s Republic of China
| |
Collapse
|
23
|
Reilly T, Mohamed MI, Lehmann TE, Alvarado V. Amphiphilic second-order phase transitions determined through NMR. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Urandur S, Marwaha D, Gautam S, Banala VT, Sharma M, Mishra PR. Nonlamellar liquid crystals: a new paradigm for the delivery of small molecules and bio-macromolecules. Ther Deliv 2018; 9:667-689. [PMID: 30189809 DOI: 10.4155/tde-2018-0038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/19/2018] [Indexed: 01/03/2025] Open
Abstract
The aim of this article is to collate the recent developments in the field of drug delivery, medical therapeutics and diagnostics specifically involving the nonlamellar liquid crystalline (NLC) systems. This review highlights different NLC phases having cubic, hexagonal and sponge internal structures, and their application in the field of drug delivery, such as dose reduction, toxicity reduction and therapeutic efficacy enhancement either in the form of nanoparticles, colloidal dispersion or gels. In addition, application of NLC systems as vehicles for peptides, proteins and as a theranostic system in cancer and other disease conditions is also elaborated, which is a growing platform of interest. Overall, the present review gives us a complete outlook on applications of NLC systems in the field of medicine.
Collapse
Affiliation(s)
- Sandeep Urandur
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Venkatesh T Banala
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat R Mishra
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
25
|
Prasad I, Jinnai H, Ho RM, Thomas EL, Grason GM. Anatomy of triply-periodic network assemblies: characterizing skeletal and inter-domain surface geometry of block copolymer gyroids. SOFT MATTER 2018; 14:3612-3623. [PMID: 29683466 DOI: 10.1039/c8sm00078f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Triply-periodic networks (TPNs), like the well-known gyroid and diamond network phases, abound in soft matter assemblies, from block copolymers (BCPs), lyotropic liquid crystals and surfactants to functional architectures in biology. While TPNs are, in reality, volume-filling patterns of spatially-varying molecular composition, physical and structural models most often reduce their structure to lower-dimensional geometric objects: the 2D interfaces between chemical domains; and the 1D skeletons that thread through inter-connected, tubular domains. These lower-dimensional structures provide a useful basis of comparison to idealized geometries based on triply-periodic minimal, or constant-mean curvature surfaces, and shed important light on the spatially heterogeneous packing of molecular constituents that form the networks. Here, we propose a simple, efficient and flexible method to extract a 1D skeleton from 3D volume composition data of self-assembled networks. We apply this method to both self-consistent field theory predictions as well as experimental electron microtomography reconstructions of the double-gyroid phase of an ABA triblock copolymer. We further demonstrate how the analysis of 1D skeleton, 2D inter-domain surfaces, and combinations therefore, provide physical and structural insight into TPNs, across multiple length scales. Specifically, we propose and compare simple measures of network chirality as well as domain thickness, and analyze their spatial and statistical distributions in both ideal (theoretical) and non-ideal (experimental) double gyroid assemblies.
Collapse
Affiliation(s)
- Ishan Prasad
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Hiroshi Jinnai
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Edwin L Thomas
- Department of Material Science and Nano Engineering, Rice University, Houston, TX 77005, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
26
|
Speziale C, Ghanbari R, Mezzenga R. Rheology of Ultraswollen Bicontinuous Lipidic Cubic Phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5052-5059. [PMID: 29648837 DOI: 10.1021/acs.langmuir.8b00737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rheological studies of liquid crystalline systems based on monopalmitolein and 5 or 8% of 1,2 distearoylphosphatidylglycerol are reported. Such cubic phases have been shown to possess unusually large water channels because of their ability of accommodating up to 80 wt % of water, a feature that renders these systems suitable for crystallizing membrane proteins with large extracellular domains. Their mechanical properties are supposed to be substantially different from those of traditional cubic phases. Rheological measurements were carried out on cubic phases of both Pn3 m and Ia3 d symmetries. It was verified that these ultraswollen cubic phases are less rigid than the normal cubic phases, with the Pn3 m being softer that the Ia3 d ones. Furthermore, for the Pn3 m case, the longest relaxation time is shown to decrease logarithmically with increasing surface area per unit volume, proving the critical role of the density of interfaces in establishing the macroscopic viscoelastic properties of the bicontinuous cubic phases.
Collapse
Affiliation(s)
- Chiara Speziale
- Department of Health Science & Technology , ETH Zürich , Schmelzbergstrasse 9, LFO, E23 , 8092 Zürich , Switzerland
| | - Reza Ghanbari
- Department of Health Science & Technology , ETH Zürich , Schmelzbergstrasse 9, LFO, E23 , 8092 Zürich , Switzerland
| | - Raffaele Mezzenga
- Department of Health Science & Technology , ETH Zürich , Schmelzbergstrasse 9, LFO, E23 , 8092 Zürich , Switzerland
- Department of Materials , ETH Zürich , Wolfgang-Pauli-Strasse 10 , CH-8093 Zurich , Switzerland
| |
Collapse
|
27
|
Fruchart M, Jeon SY, Hur K, Cheianov V, Wiesner U, Vitelli V. Soft self-assembly of Weyl materials for light and sound. Proc Natl Acad Sci U S A 2018; 115:E3655-E3664. [PMID: 29610349 PMCID: PMC5910856 DOI: 10.1073/pnas.1720828115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Soft materials can self-assemble into highly structured phases that replicate at the mesoscopic scale the symmetry of atomic crystals. As such, they offer an unparalleled platform to design mesostructured materials for light and sound. Here, we present a bottom-up approach based on self-assembly to engineer 3D photonic and phononic crystals with topologically protected Weyl points. In addition to angular and frequency selectivity of their bulk optical response, Weyl materials are endowed with topological surface states, which allow for the existence of one-way channels, even in the presence of time-reversal invariance. Using a combination of group-theoretical methods and numerical simulations, we identify the general symmetry constraints that a self-assembled structure has to satisfy to host Weyl points and describe how to achieve such constraints using a symmetry-driven pipeline for self-assembled material design and discovery. We illustrate our general approach using block copolymer self-assembly as a model system.
Collapse
Affiliation(s)
- Michel Fruchart
- Lorentz Institute, Leiden University, Leiden 2300 RA, The Netherlands;
| | - Seung-Yeol Jeon
- Center for Computational Science, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kahyun Hur
- Center for Computational Science, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Vadim Cheianov
- Lorentz Institute, Leiden University, Leiden 2300 RA, The Netherlands
| | - Ulrich Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14850
| | - Vincenzo Vitelli
- Lorentz Institute, Leiden University, Leiden 2300 RA, The Netherlands;
- Department of Physics, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
28
|
Poppe M, Chen C, Ebert H, Poppe S, Prehm M, Kerzig C, Liu F, Tschierske C. Transition from nematic to gyroid-type cubic soft self-assembly by side-chain engineering of π-conjugated sticky rods. SOFT MATTER 2017; 13:4381-4392. [PMID: 28573294 DOI: 10.1039/c7sm00793k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A sequence of liquid crystalline phases, involving cybotactic nematics, a lamellar phase, bicontinuous cubics and triangular honeycombs, was observed for oligo(phenylene ethynylene) based X-shaped bolapolyphiles with two long lateral alkyl chains and sticky ends provided by glycerol groups. In the cubic phase with Ia3[combining macron]d lattice - which is tailored by alkyl chain engineering - the aromatic cores are organized on the gyroid minimal surface in 3D curved layers of almost parallel aligned π-conjugated rods. It is shown that this type of cubic phase is a general mode of soft self-assembly of X-shaped bolapolyphiles at the cross-over from the (long or short range) lamellar to the triangular honeycomb-like organization. Cubic phase formation is found only in a narrow range with respect to temperature and chain-length for the non-fluorinated compounds and in much wider ranges for related core-fluorinated molecules.
Collapse
Affiliation(s)
- Marco Poppe
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Str. 2, D-06120 Halle/Saale, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Steer D, Kang M, Leal C. Soft nanostructured films for directing the assembly of functional materials. NANOTECHNOLOGY 2017; 28:142001. [PMID: 28145900 DOI: 10.1088/1361-6528/aa5d77] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lipids are a class of biological small molecules with hydrophilic and hydrophobic constituents forming the structural membranes in cells. Over the past century an extensive understanding of lipid biology and biophysics has been developed illuminating lipids as an intricate, highly tunable, and hierarchical soft-matter system. In addition to serving as cell membrane models, lipids have been investigated as microphase separated structures in aqueous solutions. In terms of applications lipids have been realized as powerful structural motifs for the encapsulation and cellular delivery of genetic material. More recently, lipids have also revealed promise as thin film materials, exhibiting long-range periodic nano-scale order and tunable orientation. In this review we summarize the pertinent understanding of lipid nanostructure development in bulk aqueous systems followed by the current and potential perturbations to these results induced by introduction of a substrate. These effects are punctuated by a summary of our published results in the field of lipid thin films with added nucleic acids and key results introducing hard materials into lipid nanostructured substrates.
Collapse
Affiliation(s)
- D Steer
- Materials Science and Engineering, University of Illinois at Urbana Champaign, United States of America
| | | | | |
Collapse
|
30
|
Akbar S, Anwar A, Ayish A, Elliott JM, Squires AM. Phytantriol based smart nano-carriers for drug delivery applications. Eur J Pharm Sci 2017; 101:31-42. [PMID: 28137471 DOI: 10.1016/j.ejps.2017.01.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/14/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
From the last couple of decades, lyotropic liquid crystals have garnered enormous attentions in medical and pharmaceutical sciences. Non-toxic, chemically stable, and biocompatible properties of these liquid crystal systems are contributing to their applications for drug delivery. Among a large variety of liquid crystal phases, inverse bicontinuous cubic and inverse hexagonal mesophases have been extensively investigated for their ability to encapsulate and controlled release of bioactive molecules of various sizes and polarity. The concept of changing the drug release rate in situ by simply changing the mesophase structure is much more fascinating. The encapsulation of bioactive compounds in mesophase systems of desirable features in sub-micron sized particles such as hexosomes and cubosomes, at ambient and high temperature is bringing innovation in the development of new drug applications. This review article outlines unique structural features of cubosomes and hexosomes, their methods of productions, factors affecting their formations and their potential utilization as smart nano-carriers for biopharmaceuticals in drug delivery applications.
Collapse
Affiliation(s)
- Samina Akbar
- Department of Basic Sciences and Humanities, University of Engineering and Technology, KSK Campus, GT Road, Lahore, Pakistan.
| | - Aneela Anwar
- Department of Basic Sciences and Humanities, University of Engineering and Technology, KSK Campus, GT Road, Lahore, Pakistan
| | | | - Joanne M Elliott
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD
| | - Adam M Squires
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD
| |
Collapse
|
31
|
Cheng H, Zhang R, Li T, Peng X, Xia M, Xiao Y, Cheng X. Synthesis and self-assembly of bent core polycatenar mesogens with binding selectivity to Hg2+. NEW J CHEM 2017. [DOI: 10.1039/c7nj00225d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Target compounds can self-assemble into CubI/Pm3̄nLC phases and organogels, simultaneously; these compounds have binding selectivity to Hg2+.
Collapse
Affiliation(s)
- Huifang Cheng
- Key Laboratory of Medicinal Chemistry for Natural Resources
- Chemistry Department
- Yunnan University
- Kunming
- P. R. China
| | - Ruilin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources
- Chemistry Department
- Yunnan University
- Kunming
- P. R. China
| | - Taihao Li
- Key Laboratory of Medicinal Chemistry for Natural Resources
- Chemistry Department
- Yunnan University
- Kunming
- P. R. China
| | - Xiongwei Peng
- Key Laboratory of Medicinal Chemistry for Natural Resources
- Chemistry Department
- Yunnan University
- Kunming
- P. R. China
| | - Meng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resources
- Chemistry Department
- Yunnan University
- Kunming
- P. R. China
| | - Yulong Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resources
- Chemistry Department
- Yunnan University
- Kunming
- P. R. China
| | - Xiaohong Cheng
- Key Laboratory of Medicinal Chemistry for Natural Resources
- Chemistry Department
- Yunnan University
- Kunming
- P. R. China
| |
Collapse
|
32
|
Ahmadi S, Heidelberg T. Modelling and molecular dynamics simulation studies on a hexagonal glycolipid assembly. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0958-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Chanpuriya S, Kim K, Zhang J, Lee S, Arora A, Dorfman KD, Delaney KT, Fredrickson GH, Bates FS. Cornucopia of Nanoscale Ordered Phases in Sphere-Forming Tetrablock Terpolymers. ACS NANO 2016; 10:4961-72. [PMID: 27055118 DOI: 10.1021/acsnano.6b00495] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report the phase behavior of a series of poly(styrene)-b-poly(isoprene)-b-poly(styrene)'-b-poly(ethylene oxide) (SIS'O) tetrablock terpolymers. This study was motivated by self-consistent field theory (SCFT) calculations that anticipate a rich array of sphere-forming morphologies with variations in the molecular symmetry parameter τ = NS/(NS + NS'), where N is the block degree of polymerization and the volume fraction of O is less than about 0.22. Eight SIS'O samples, with τ ranging from 0.21 to 0.73, were synthesized and investigated using small-angle X-ray scattering and transmission electron microscopy, yielding evidence of nine different spherical phases: hexagonal, FCC, HCP, BCC, rhombohedral (tentative), liquid-like packing, dodecagonal quasicrystal, and Frank-Kasper σ and A15 phases. At temperatures close to the order-disorder transition, these tetrablocks behave as pseudo-[SIS']-O diblocks and form equilibrium morphologies mediated by facile chain exchange between micelles. Transition from equilibrium to nonequilibrium behavior occurs at a temperature (Terg) several tens of degrees below the order-disorder transition temperature, speculated to be coincident with the loss of ergodicity, as chain exchange is arrested due to increased segregation strength between the core (O) and corona (SIS') blocks. Nonequilibrium ordered structures form when T < Terg; these are interpreted using SCFT calculations to elucidate the free energy landscape driving ordering in the S and I block matrix. These experiments demonstrate a profound dependence on phase stability with variations in τ and temperature, providing insights into the formation of ordered phase symmetry in this class of asymmetric multiblock polymers.
Collapse
Affiliation(s)
- Siddharth Chanpuriya
- Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Kyungtae Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Jingwen Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sangwoo Lee
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Akash Arora
- Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Kris T Delaney
- Materials Research Laboratory, University of California , Santa Barbara, California 93106, United States
| | - Glenn H Fredrickson
- Materials Research Laboratory, University of California , Santa Barbara, California 93106, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
34
|
Yamanoi M, Kawabata Y, Kato T. Effects of Oscillatory Shear on the Orientation of the Inverse Bicontinuous Cubic Phase in a Nonionic Surfactant/Water System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2863-2873. [PMID: 26947965 DOI: 10.1021/acs.langmuir.5b04372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The bicontinuous inverse cubic phase (V2 phase) formed in amphiphilic systems consists of bilayer networks with a long-range order. We have investigated effects of oscillatory shear on the orientation of the V2 phase with space group Ia3d formed in a nonionic surfactant (C12E2)/water system by using simultaneous measurements of rheology/small-angle X-ray scattering. It is shown that grain refining occurs by applying the large amplitude oscillatory shear (LAOS) with a strain amplitude (γ0) of ∼20, which gives the ratio of the loss modulus (G″) to the storage modulus (G') (G″/G' = tan δ) of ∼100. On the other hand, orientation of the cubic lattice occurs when the small amplitude (γ0 ≈ 0.0004) oscillatory shear (SAOS) in the linear regime is applied to the sample just after the LAOS. Interestingly, the orientation is strongly enhanced by the "medium amplitude" (γ0 ≈ 0.05) oscillatory shear ("MAOS") after the SAOS. When the MAOS is applied before applying the LAOS, orientation to a particular direction is not observed, indicating that the grain refining process by the LAOS is necessary for the orientation during the MAOS. The results of additional experiments show that the shear sequence "LAOS-MAOS" is effective for the orientation of the cubic lattice. When the LAOS and MAOS are applied to the sample alternatively, grain refining and orientation occur during the LAOS and MAOS, respectively, indicating reversibility of the orientation. It is shown that (i) the degree of the orientation is dependent on γ0 and the frequency (ω) of the MAOS and (ii) relatively higher orientation can be obtained for the combination of γ0 and ω, which gives tan δ = 2-3. The lattice constant does not change throughout all the shearing processes and is equal to that before shearing within the experimental errors, indicating that the shear melting does not occur. These results suggest a possibility to control the orientation of the cubic lattice only by changing the conditions of oscillatory shear without using the epitaxial transition from other anisotropic phases, such as the hexagonal and lamellar phases.
Collapse
Affiliation(s)
- Mutsumi Yamanoi
- Department of Chemistry, Tokyo Metropolitan University , 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Youhei Kawabata
- Department of Chemistry, Tokyo Metropolitan University , 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tadashi Kato
- Department of Chemistry, Tokyo Metropolitan University , 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
35
|
Matsumoto T, Ono A, Ichikawa T, Kato T, Ohno H. Construction of gyroid-structured matrices through the design of geminized amphiphilic zwitterions and their self-organization. Chem Commun (Camb) 2016; 52:12167-12170. [DOI: 10.1039/c6cc06840e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gemini amphiphilic zwitterions exhibit thermotropic bicontinuous cubic liquid-crystalline phases having a 3D continuous ionic domain.
Collapse
Affiliation(s)
- Takuro Matsumoto
- Department of Biotechnology
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
- Functional Ionic Liquid Laboratories
| | - Ayaka Ono
- Department of Biotechnology
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| | - Takahiro Ichikawa
- Department of Biotechnology
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
- Functional Ionic Liquid Laboratories
| | - Takashi Kato
- Department of Chemistry and Biotechnology
- The University of Tokyo
- Hongo
- Japan
| | - Hiroyuki Ohno
- Department of Biotechnology
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
- Functional Ionic Liquid Laboratories
| |
Collapse
|
36
|
Tangso KJ, Patel H, Lindberg S, Hartley PG, Knott R, Spicer PT, Boyd BJ. Controlling the Mesostructure Formation within the Shell of Novel Cubic/Hexagonal Phase Cetyltrimethylammonium Bromide-Poly(acrylamide-acrylic acid) Capsules for pH Stimulated Release. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24501-24509. [PMID: 26457761 DOI: 10.1021/acsami.5b05821] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The self-assembly of ordered structures in mixtures of oppositely charged surfactant and polymer systems has been exploited in various cleaning and pharmaceutical applications and continue to attract much interest since their discovery in the late twentieth century. The ability to control the electrostatic and hydrophobic interactions that dictate the formation of liquid crystalline phases in these systems is advantageous in manipulation of structure and rendering them responsive to external stimuli. Nanostructured capsules comprised of the cationic surfactant, cetyltrimethylammonium bromide (CTAB), and the diblock copolymer poly(acrylamide-acrylic acid) (PAAm-AA) were prepared to assess their potential as pH responsive nanomaterials. Crossed-polarizing light microscopy (CPLM) and small-angle X-ray scattering (SAXS) identified coexisting Pm3n cubic and hexagonal phases at the surfactant-polymer interface. The hydrophobic and electrostatic interactions between the oppositely charged components were studied by varying temperature and solution pH, respectively, and were found to influence the liquid crystalline nanostructure formed. The lattice parameter of the mesophases and the fraction of cubic phase in the system decreased upon heating. Acidic conditions resulted in the loss of the highly ordered structures due to protonation of the carboxylic acid group, and subsequent reduction of attractive forces previously present between the oppositely charged molecules. The rate of release of the model hydrophilic drug, Rhodamine B (RhB), from nanostructured macro-sized capsules significantly increased when the pH of the solution was adjusted from pH 7 to pH 2. This allowed for immediate release of the compound of interest "on demand", opening new options for structured materials with increased functionality over typical layer-by-layer capsules.
Collapse
Affiliation(s)
- Kristian J Tangso
- Drug Delivery, Disposition and Dynamics and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Hetika Patel
- School of Pharmacy, University College London , 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Seth Lindberg
- The Procter and Gamble Company , Corporate Engineering Technical Laboratories Building, Cincinnati, Ohio 45069, United States
| | - Patrick G Hartley
- Commonwealth Scientific and Industrial Research Organization , Bag 10, Clayton South, Victoria 3169, Australia
| | - Robert Knott
- Bragg Institute, Australian Nuclear Science and Technology Organization , Menai, New South Wales 2234, Australia
| | - Patrick T Spicer
- School of Chemical Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
37
|
Goujon N, Forsyth M, Dumée LF, Bryant G, Byrne N. Characterization of the phase behaviour of a novel polymerizable lyotropic ionic liquid crystal. Phys Chem Chem Phys 2015; 17:23059-68. [PMID: 26271610 DOI: 10.1039/c5cp03797b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The development of new polymerizable lyotropic liquid crystals (LLCs) utilizing charged amphiphilic molecules such as those based on long chain imidazolium compounds, is a relatively new design direction for producing robust membranes with controllable nano-structures. Here we have developed a novel polymerizable ionic liquid based LLC, 1-hexadecyl-3-methylimidazolium acrylate (C16mimAcr), where the acrylate anion acts as the polymerizable moiety. The phase behaviour of the C16mimAcr upon the addition of water was characterized using small and wide angle X-ray scatterings, differential scanning calorimetry and polarized optical microscopy. We compare the phase behaviour of this new polymerizable LLC to that of the well known LLC chloride analogue, 1-hexadecyl-3-methylimidazolium chloride (C16mimCl). We find that the C16mimAcr system has a more complex phase behaviour compared to the C16mimCl system. Additional lyotropic liquid crystalline mesophases such as hexagonal phase (H1) and discontinuous cubic phase (I1) are observed at 20 °C for the acrylate system at 50 and 65 wt% water respectively. The appearance of the hexagonal phase (H1) and discontinuous cubic phase (I1) for the acrylate system is likely due to the strong hydrating nature of the acrylate anion, which increases the head group area. The formation of these additional mesophases seen for the acrylate system, especially the hexagonal phase (H1), coupled with the polymerization functionality offers great potential in the design of advanced membrane materials with selective and anisotropic transport properties.
Collapse
Affiliation(s)
- Nicolas Goujon
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | | | | | | | | |
Collapse
|
38
|
Godoy CA, Valiente M, Pons R, Montalvo G. Effect of fatty acids on self-assembly of soybean lecithin systems. Colloids Surf B Biointerfaces 2015; 131:21-8. [PMID: 25938851 DOI: 10.1016/j.colsurfb.2015.03.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 11/25/2022]
Abstract
With the increasing interest in natural formulations for drug administration and functional foods, it is desirable a good knowledge of the phase behavior of lecithin/fatty acid formulations. Phase structure and properties of ternary lecithin/fatty acids/water systems are studied at 37°C, making emphasis in regions with relatively low water and fatty acid content. The effect of fatty acid saturation degree on the phase microstructure is studied by comparing a fully saturated (palmitic acid, C16:0), monounsaturated (oleic acid, C18:1), and diunsaturated (linoleic acid, C18:2) fatty acids. Phase determinations are based on a combination of polarized light microscopy and small-angle X-ray scattering measurements. Interestingly, unsaturated (oleic acid and linoleic acid) fatty acid destabilizes the lamellar bilayer. Slight differences are observed between the phase diagrams produced by the unsaturated ones: small lamellar, medium cubic and large hexagonal regions. A narrow isotropic fluid region also appears on the lecithin-fatty acid axis, up to 8wt% water. In contrast, a marked difference in phase microsctructure was observed between unsaturated and saturated systems in which the cubic and isotropic fluid phases are not formed. These differences are, probably, a consequence of the high Krafft point of the C16 saturated chains that imply rather rigid chains. However, unsaturated fatty acids result in more flexible tails. The frequent presence of, at least, one unsaturated chain in phospholipids makes it very likely a better mixing situation than in the case of more rigid chains. This swelling potential favors the formation of reverse hexagonal, cubic, and micellar phases. Both unsaturated fatty acid systems evolve by aging, with a reduction of the extension of reverse hexagonal phase and migration of the cubic phase to lower fatty acid and water contents. The kinetic stability of the systems seems to be controlled by the unsaturation of fatty acids.
Collapse
Affiliation(s)
- C A Godoy
- Departamento de Ingeniería de los procesos Agroalimentarios y Biotecnológicos (GIPAB), Universidad del Valle, A.A. 25360 Cali, Colombia
| | - M Valiente
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Pharmacy, University of Alcalá, Ctra. Madrid-Barcelona Km 33.6, E-28871 Alcalá de Henares, Madrid, Spain
| | - R Pons
- Department de Tecnologia Química i de Tensioactius, Institut de Química Avançada de Catalunya, IQAC-CSIC, E-08034 Barcelona, Spain
| | - G Montalvo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Pharmacy, University of Alcalá, Ctra. Madrid-Barcelona Km 33.6, E-28871 Alcalá de Henares, Madrid, Spain; University Institute of Research in Police Sciences (IUICP), University of Alcalá, Ctra. Madrid-Barcelona Km 33.6, E-28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
39
|
Rodrigues LR. Microbial surfactants: Fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J Colloid Interface Sci 2015; 449:304-16. [DOI: 10.1016/j.jcis.2015.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 12/29/2022]
|
40
|
Saranathan V, Seago AE, Sandy A, Narayanan S, Mochrie SGJ, Dufresne ER, Cao H, Osuji CO, Prum RO. Structural Diversity of Arthropod Biophotonic Nanostructures Spans Amphiphilic Phase-Space. NANO LETTERS 2015; 15:3735-42. [PMID: 25938382 DOI: 10.1021/acs.nanolett.5b00201] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, precise structural knowledge of many biophotonic nanostructures and the mechanisms controlling their development remain tentative, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multifunctional materials. Here, we use synchrotron small-angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 integumentary scales and setae from ∼127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply periodic bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered spongelike morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding lipid-bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.
Collapse
Affiliation(s)
- Vinodkumar Saranathan
- †Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
- ‡Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - Ainsley E Seago
- §CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Alec Sandy
- ∥Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Suresh Narayanan
- ∥Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | | | | | | | | | | |
Collapse
|
41
|
Eriksson S, Lasič S, Nilsson M, Westin CF, Topgaard D. NMR diffusion-encoding with axial symmetry and variable anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution. J Chem Phys 2015; 142:104201. [PMID: 25770532 PMCID: PMC4359170 DOI: 10.1063/1.4913502] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/12/2015] [Indexed: 11/14/2022] Open
Abstract
We introduce a nuclear magnetic resonance method for quantifying the shape of axially symmetric microscopic diffusion tensors in terms of a new diffusion anisotropy metric, DΔ, which has unique values for oblate, spherical, and prolate tensor shapes. The pulse sequence includes a series of equal-amplitude magnetic field gradient pulse pairs, the directions of which are tailored to give an axially symmetric diffusion-encoding tensor b with variable anisotropy bΔ. Averaging of data acquired for a range of orientations of the symmetry axis of the tensor b renders the method insensitive to the orientation distribution function of the microscopic diffusion tensors. Proof-of-principle experiments are performed on water in polydomain lyotropic liquid crystals with geometries that give rise to microscopic diffusion tensors with oblate, spherical, and prolate shapes. The method could be useful for characterizing the geometry of fluid-filled compartments in porous solids, soft matter, and biological tissues.
Collapse
Affiliation(s)
- Stefanie Eriksson
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | | | - Markus Nilsson
- Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - Carl-Fredrik Westin
- Department of Radiology, BWH, Harvard Medical School, Boston, Massachusetts MA 02215, USA
| | - Daniel Topgaard
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
42
|
Chong JY, Mulet X, Boyd BJ, Drummond CJ. Steric Stabilizers for Cubic Phase Lyotropic Liquid Crystal Nanodispersions (Cubosomes). ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2015. [DOI: 10.1016/bs.adplan.2014.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Malo de Molina P, Appavou MS, Gradzielski M. Oil-in-water microemulsion droplets of TDMAO/decane interconnected by the telechelic C18-EO150-C18: clustering and network formation. SOFT MATTER 2014; 10:5072-5084. [PMID: 24901947 DOI: 10.1039/c4sm00501e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effect of a doubly hydrophobically end-capped water soluble polymer (C18-PEO150-C18) on the properties of an oil-in-water (O/W) droplet microemulsion (R ∼ 2.85 nm) has been studied as a function of the amount of added telechelic polymer. Macroscopically one observes a substantial increase of viscosity once a concentration of ∼5 hydrophobic stickers per droplet is surpassed and effective cross-linking of the droplets takes place. SANS measurements show that the size of the individual droplets is not affected by the polymer addition but it induces attractive interactions at low concentration and repulsive ones at high polymer content. Measurements of the diffusion coefficient by DLS and FCS show increasing sizes at low polymer addition that can be attributed to the formation of clusters of microemulsion droplets interconnected by the polymer. At higher polymer content the network formation leads to an additional slow relaxation mode in DLS that can be related to the rheological behaviour, while the self-diffusion observed in FCS attains a lower plateau value, i.e., the microemulsion droplets remain effectively fixed within the network. The combination of SANS, DLS, and FCS allows us to derive a self-consistent picture of the evolution of structure and dynamics of the mixed system microemulsion/telechelic polymer as a function of the polymer content, which is not only relevant for controlling the macroscopic rheological properties but also with respect to the internal dynamics as it is, for instance, relevant for the release and transport of active agents.
Collapse
Affiliation(s)
- Paula Malo de Molina
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Straße des 17. Juni 124, Sekr. TC7, Technische Universität Berlin, D-10623 Berlin, Germany
| | | | | |
Collapse
|
44
|
Khvostichenko DS, Ng JJD, Perry SL, Menon M, Kenis PJA. Effects of detergent β-octylglucoside and phosphate salt solutions on phase behavior of monoolein mesophases. Biophys J 2014; 105:1848-59. [PMID: 24138861 DOI: 10.1016/j.bpj.2013.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/16/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022] Open
Abstract
Using small-angle x-ray scattering (SAXS), we investigated the phase behavior of mesophases of monoolein (MO) mixed with additives commonly used for the crystallization of membrane proteins from lipidic mesophases. In particular, we examined the effect of sodium and potassium phosphate salts and the detergent β-octylglucoside (βOG) over a wide range of compositions relevant for the crystallization of membrane proteins in lipidic mesophases. We studied two types of systems: 1), ternary mixtures of MO with salt solutions above the hydration boundary; and 2), quaternary mixtures of MO with βOG and salt solutions over a wide range of hydration conditions. All quaternary mixtures showed highly regular lyotropic phase behavior with the same sequence of phases (Lα, Ia3d, and Pn3m) as MO/water mixtures at similar temperatures. The effects of additives in quaternary systems agreed qualitatively with those found in ternary mixtures in which only one additive is present. However, quantitative differences in the effects of additives on the lattice parameters of fully hydrated mesophases were found between ternary and quaternary mixtures. We discuss the implications of these findings for mechanistic investigations of membrane protein crystallization in lipidic mesophases and for studies of the suitability of precipitants for mesophase-based crystallization methods.
Collapse
Affiliation(s)
- Daria S Khvostichenko
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | | | | | | |
Collapse
|
45
|
Robertson LA, Schenkel MR, Wiesenauer BR, Gin DL. Alkyl-bis(imidazolium) salts: a new amphiphile platform that forms thermotropic and non-aqueous lyotropic bicontinuous cubic phases. Chem Commun (Camb) 2014; 49:9407-9. [PMID: 24003443 DOI: 10.1039/c3cc44452j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New ionic amphiphiles with a hexyl-bridged bis(imidazolium) headgroup; Br(-), BF4(-), or Tf2N(-) anions; and a long n-alkyl tail can form thermotropic bicontinuous cubic liquid crystal phases in neat form and/or lyotropic bicontinuous cubic phases with several non-aqueous solvents or water.
Collapse
Affiliation(s)
- Lily A Robertson
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA.
| | | | | | | |
Collapse
|
46
|
Liu CK, Warr GG. Hexagonal closest-packed spheres liquid crystalline phases stabilised by strongly hydrated counterions. SOFT MATTER 2014; 10:83-7. [PMID: 24651949 DOI: 10.1039/c3sm52339j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The sequence and structure of lyotropic liquid crystals formed in C12-C16 alkyltrimethylammonium surfactants with hydrolysable and multivalent phosphate (PO4(3-), HPO4(2-) and H2PO4(-)), oxalate (HC2O4(-) and C2O4(2-)), and carbonate (HCO3(-)/CO3(2-)) counterions were determined using a concentration gradient method coupled with polarising optical microscopy and small angle X-ray scattering. In addition to the discrete cubic (I1, space group Pm3n) and hexagonal (H1, p6m) phases, almost all of these surfactants also formed the (previously) rare hexagonally closest-packed spheres (HCPS, P63/mmc) phase at compositions between the Pm3n cubic and L1 micellar phases. This structure has not been previously observed in cationic surfactants, but is readily achieved by using strongly hydrated counterions to stabilise spherical micelles at high concentrations.
Collapse
Affiliation(s)
- Connie K Liu
- School of Chemistry F11, The University of Sydney, NSW, 2006 Australia.
| | | |
Collapse
|
47
|
Tangso KJ, Fong WK, Darwish T, Kirby N, Boyd BJ, Hanley TL. Novel spiropyran amphiphiles and their application as light-responsive liquid crystalline components. J Phys Chem B 2013; 117:10203-10. [PMID: 23909814 DOI: 10.1021/jp403840m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Light-responsive materials formed by liquid crystalline lipids in water have potential application to drug delivery through inclusion of photochromic additives such as spiropyran. A series of novel analogues of spiropyran (SP) have been synthesized with an SP headgroup that possess a C8 (SP-OC), C12 (SP-L), and C16 (SP-P) tail to probe the influence of the length of the hydrophobic tail on their physicochemical properties and effect on behavior in liquid crystal matrices with a view to application as stimulus-responsive elements on ultraviolet irradiation. In addition, compounds possessing an oleyl (SP-OL) and phytanyl (SP-PHYT) tail, to mimic those of the "parent" reverse bicontinuous cubic (V2) phase forming lipids, glyceryl monooleate (GMO) and phytantriol, were also prepared. The photochromic compounds were characterized by their melting points and photophysical behavior in solution using techniques including hot stage microscopy (HSM), differential scanning calorimetry (DSC), and UV-visible spectroscopy. Their effect on the equilibrium nanostructure of bulk V2 phases and phase-switching kinetics after exposure to UV light was assessed using small-angle X-ray scattering (SAXS). The melting point of the SP derivatives decreased linearly with increasing chain length, which suggests that interactions between the head groups governed their melting point, rather than the van der Waals interactions between the tails. Changing the R group did not influence the equilibrium rate constants for the isomerization of SP. Phase transition temperatures of liquid crystalline (LC) matrices were influenced significantly by incorporation of the SP derivatives and were greatest when the photochromic compound possessed an intermediate tail length substituent compared to the short alkyl or bulkier moieties. The level of disruption of lipid packing, and hence phase structure, were dependent on the duration of UV exposure.
Collapse
Affiliation(s)
- Kristian J Tangso
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Tschierske C. Entwicklung struktureller Komplexität durch Selbstorganisation in flüssigkristallinen Systemen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300872] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Tschierske C. Development of structural complexity by liquid-crystal self-assembly. Angew Chem Int Ed Engl 2013; 52:8828-78. [PMID: 23934786 DOI: 10.1002/anie.201300872] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Indexed: 11/09/2022]
Abstract
Since the discovery of the liquid-crystalline state of matter 125 years ago, this field has developed into a scientific area with many facets. This Review presents recent developments in the molecular design and self-assembly of liquid crystals. The focus is on new exciting soft-matter structures distinct from the usually observed nematic, smectic, and columnar phases. These new structures have enhanced complexity, including multicompartment and cellular structures, periodic and quasiperiodic arrays of spheres, and new emergent properties, such as ferroelctricity and spontaneous achiral symmetry-breaking. Comparisons are made with developments in related fields, such as self-assembled monolayers, multiblock copolymers, and nanoparticle arrays. Measures of structural complexity used herein are the size of the lattice, the number of distinct compartments, the dimensionality, and the logic depth of the resulting supramolecular structures.
Collapse
Affiliation(s)
- Carsten Tschierske
- Institut für Chemie, Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle Saale, Germany.
| |
Collapse
|
50
|
Latypova L, Góźdź W, Pieranski P. Symmetry, topology and faceting in bicontinuous lyotropic crystals. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:88. [PMID: 23933989 DOI: 10.1140/epje/i2013-13088-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
Phase diagrams of phytantriol/ethanol/water and phytantriol/DSPG/ethanol/water systems are explored and experiments on facetings of Pn3m-in-L1 and Im3m-in-L1 crystals are performed. Observed crystal habits do not agree with the Friedel-Donnay-Harker rules. We argue that this paradox can be explained in terms of constraints imposed on Pn3m/L1 and Im3m/L1 interfaces by the bicontinuous topology of the cubic phases. We point out that when free edges of the surfactant bilayer are prohibited at these interfaces, the two labyrinthes separated by the bilayer cannot anymore be equivalent. The corresponding [Formula: see text] and [Formula: see text] symmetry breakings are unveiled by the abnormal facetings.
Collapse
Affiliation(s)
- L Latypova
- Laboratoire de Physique des Solides, Université Paris-Sud, Bât. 510, 91405 Orsay Cedex, France
| | | | | |
Collapse
|