1
|
Raju R, Piña JO, Roth DM, Chattaraj P, Kidwai FK, Faucz FR, Iben J, Fridell G, Dale RK, D’Souza RN. Profiles of Wnt pathway gene expression during tooth morphogenesis. Front Physiol 2024; 14:1316635. [PMID: 38274045 PMCID: PMC10809389 DOI: 10.3389/fphys.2023.1316635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 01/27/2024] Open
Abstract
Mouse and human genetic studies indicate key roles of the Wnt10a ligand in odontogenesis. Previous studies have identified effectors and regulators of the Wnt signaling pathway actively expressed during key stages of tooth morphogenesis. However, limitations in multiplexing and spatial resolution hindered a more comprehensive analysis of these signaling molecules. Here, profiling of transcriptomes using fluorescent multiplex in situ hybridization and single-cell RNA-sequencing (scRNA-seq) provide robust insight into the synchronized expression patterns of Wnt10a, Dkk1, and Sost simultaneously during tooth development. First, we identified Wnt10a transcripts restricted to the epithelium at the stage of tooth bud morphogenesis, contrasting that of Sost and Dkk1 localization to the dental mesenchyme. By embryonic day 15.5 (E15.5), a marked shift of Wnt10a expression from dental epithelium to mesenchyme was noted, while Sost and Dkk1 expression remained enriched in the mesenchyme. By postnatal day 0 (P0), co-localization patterns of Wnt10a, Dkk1, and Sost were observed in both terminally differentiating and secreting odontoblasts of molars and incisors. Interestingly, Wnt10a exhibited robust expression in fully differentiated ameloblasts at the developing cusp tip of both molars and incisors, an observation not previously noted in prior studies. At P7 and 14, after the mineralization of dentin and enamel, Wnt10a expression was limited to odontoblasts. Meanwhile, Wnt modulators showed reduced or absent signals in molars. In contrast, strong signals persisted in ameloblasts (for Wnt10a) and odontoblasts (for Wnt10a, Sost, and Dkk1) towards the proximal end of incisors, near the cervical loop. Our scRNA-seq analysis used CellChat to further contextualize Wnt pathway-mediated communication between cells by examining ligand-receptor interactions among different clusters. The co-localization pattern of Wnt10a, Dkk1, and Sost in both terminally differentiating and secreting odontoblasts of molars and incisors potentially signifies the crucial ligand-modulator interaction along the gradient of cytodifferentiation starting from each cusp tip towards the apical region. These data provide cell type-specific insight into the role of Wnt ligands and mediators during epithelial-mesenchymal interactions in odontogenesis.
Collapse
Affiliation(s)
- Resmi Raju
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jeremie Oliver Piña
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Daniela M. Roth
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Parna Chattaraj
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Fahad K. Kidwai
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Fabio R. Faucz
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Gus Fridell
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ryan K. Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Rena N. D’Souza
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
2
|
Hashimoto M, Takahashi H, Tabata-Okubo K, Nagaoka N, Tokunaga K, Matsumori H, Ishihara Y, Kaku M, Iimura T, Hara T, Kamioka H. Bundling of collagen fibrils influences osteocyte network formation during bone modeling. Sci Rep 2023; 13:22028. [PMID: 38086873 PMCID: PMC10716128 DOI: 10.1038/s41598-023-48786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Osteocytes form a cellular network by gap junctions between their cell processes. This network is important since intercellular communication via the network is essential for bone metabolism. However, the factors that influence the formation of this osteocyte network remain unknown. As the early stage of osteocyte network formation occurs on the bone surface, we observed a newly formed trabecular bone surface by orthogonal focused ion beam-scanning electron microscopy. The embedding late osteoblast processes tended to avoid bundled collagen fibrils and elongate into sparse collagen fibrils. Then, we examined whether the inhibition of bundling of collagen fibrils using a potent lysyl oxidase inhibitor, β-aminopropionitrile (BAPN) changed the cellular network of the chick calvaria. The osteocyte shape of the control group was spindle-shape, while that of the BAPN group was sphere-shaped. In addition, the osteocyte processes of the control group were elongated vertically to the long axis of the cell body, whereas the osteocyte processes of the BAPN group were elongated radially. Therefore, it was suggested that the bundling of collagen fibrils influences normal osteocyte network formation during bone modeling.
Collapse
Affiliation(s)
- Mana Hashimoto
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-Ku, Okayama, Okayama, 700-8525, Japan
| | - Haruka Takahashi
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-Ku, Okayama, Okayama, 700-8525, Japan
| | - Kaori Tabata-Okubo
- Department of Orthodontics, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-Ku, Okayama, Okayama, 700-8525, Japan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, 2-5-1, Shikata-cho, Kita-Ku, Okayama, Okayama, 700-8525, Japan
| | - Kazuaki Tokunaga
- Nikon Corporation, 2-15-3 Konan, Minato-Ku, Tokyo, 108-6290, Japan
| | - Haruka Matsumori
- Nikon Corporation, 2-15-3 Konan, Minato-Ku, Tokyo, 108-6290, Japan
| | - Yoshihito Ishihara
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-Ku, Okayama, Okayama, 700-8525, Japan
| | - Masaru Kaku
- Division of Bio-prosthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, Niigata, 951-8514, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Kita-Ku, Sapporo, Hokkaido, 060-8586, Japan
| | - Toru Hara
- Research Center for Structural Materials, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-Ku, Okayama, Okayama, 700-8525, Japan.
| |
Collapse
|
3
|
Landscape of Well-Coordinated Fracture Healing in a Mouse Model Using Molecular and Cellular Analysis. Int J Mol Sci 2023; 24:ijms24043569. [PMID: 36834981 PMCID: PMC9964763 DOI: 10.3390/ijms24043569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The success of fracture healing relies on overlapping but coordinated cellular and molecular events. Characterizing an outline of differential gene regulation throughout successful healing is essential for identifying crucial phase-specific markers and may serve as the basis for engineering these in challenging healing situations. This study analyzed the healing progression of a standard closed femoral fracture model in C57BL/6N (age = 8 weeks) wild-type male mice. The fracture callus was assessed across various days post fracture (D = days 0, 3, 7, 10, 14, 21, and 28) by microarray, with D0 serving as a control. Histological analyses were carried out on samples from D7 until D28 to support the molecular findings. Microarray analysis revealed a differential regulation of immune response, angiogenesis, ossification, extracellular matrix regulation, mitochondrial and ribosomal genes during healing. In-depth analysis showed differential regulation of mitochondrial and ribosomal genes during the initial phase of healing. Furthermore, the differential gene expression showed an essential role of Serpin Family F Member 1 over the well-known Vascular Endothelial Growth Factor in angiogenesis, especially during the inflammatory phase. The significant upregulation of matrix metalloproteinase 13 and bone sialoprotein from D3 until D21 asserts their importance in bone mineralization. The study also shows type I collagen around osteocytes located in the ossified region at the periosteal surface during the first week of healing. Histological analysis of matrix extracellular phosphoglycoprotein and extracellular signal-regulated kinase stressed their roles in bone homeostasis and the physiological bone-healing process. This study reveals previously unknown and novel candidates, that could serve as a target for specific time points in healing and to remedy cases of impaired healing.
Collapse
|
4
|
Hanai A, Kawabata A, Nakajima K, Masuda K, Urakawa I, Abe M, Yamazaki Y, Fukumoto S. Single-cell RNA sequencing identifies Fgf23-expressing osteocytes in response to 1,25-dihydroxyvitamin D 3 treatment. Front Physiol 2023; 14:1102751. [PMID: 36776964 PMCID: PMC9911654 DOI: 10.3389/fphys.2023.1102751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23), a hormone, mainly produced by osteocytes, regulates phosphate and vitamin D metabolism. By contrast, 1,25-dihydroxyvitamin D3, the active form of vitamin D, has been shown to enhance FGF23 production. While it is likely that osteocytes are heterogenous in terms of gene expression profiles, specific subpopulations of Fgf23-expressing osteocytes have not been identified. Single-cell RNA sequencing (scRNA-seq) technology can characterize the transcriptome of an individual cell. Recently, scRNA-seq has been used for bone tissue analysis. However, owing to technical difficulties associated with isolation of osteocytes, studies using scRNA-seq analysis to characterize FGF23-producing osteocytes are lacking. In this study, we characterized osteocytes secreting FGF23 from murine femurs in response to calcitriol (1,25-dihydroxyvitamin D3) using scRNA-seq. We first detected Dmp1, Mepe, and Phex expression in murine osteocytes by in situ hybridization and used these as marker genes of osteocytes. After decalcification, enzyme digestion, and removal of CD45+ cells, femoral bone cells were subjected to scRNA-seq. We identified cell clusters containing osteocytes using marker gene expression. While Fgf23 expression was observed in some osteocytes isolated from femurs of calcitriol-injected mice, no Fgf23 expression was detected in untreated mice. In addition, the expression of several genes which are known to be changed after 1,25-dihydroxyvitamin D3 treatment such as Ccnd2, Fn1, Igfbp7, Pdgfa, and Timp1 was also affected by calcitriol treatment in Fgf23-expressing osteocytes, but not in those lacking Fgf23 expression, even after calcitriol administration. Furthermore, box-and-whisker plots indicated that Fgf23 expression was observed in osteocytes with higher expression levels of the Fam20c, Dmp1, and Phex genes, whose inactivating mutations have been shown to cause FGF23-related hypophosphatemic diseases. These results indicate that osteocytes are heterogeneous with respect to their responsiveness to 1,25-dihydroxyvitamin D3, and sensitivity to 1,25-dihydroxyvitamin D3 is one of the characteristics of osteocytes with Fgf23 expression. It is likely that there is a subpopulation of osteocytes expressing several genes, including Fgf23, involved in phosphate metabolism.
Collapse
Affiliation(s)
- Ayako Hanai
- R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan,Department of Endocrinology, Metabolism and Hematology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan,*Correspondence: Ayako Hanai,
| | | | | | | | | | - Masahiro Abe
- Department of Endocrinology, Metabolism and Hematology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | | | - Seiji Fukumoto
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
5
|
Goff E, Cohen A, Shane E, Recker RR, Kuhn G, Müller R. Large-scale osteocyte lacunar morphological analysis of transiliac bone in normal and osteoporotic premenopausal women. Bone 2022; 160:116424. [PMID: 35460961 DOI: 10.1016/j.bone.2022.116424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022]
Abstract
Bone's ability to adapt is governed by the network of embedded osteocytes, which inhabit individual pores called lacunae. The morphology of these lacunae and their resident osteocytes are known to change with age and diseases such as postmenopausal osteoporosis. However, it is unclear whether alterations in lacunar morphology are present in younger populations with osteoporosis. To investigate this, we implemented a previously validated methodology to image and quantify the three-dimensional morphometries of lacunae on a large scale with ultra-high-resolution micro-computed tomography (microCT) in transiliac bone biopsies from three groups of premenopausal women: control n = 39; idiopathic osteoporosis (IOP) n = 45; idiopathic low BMD (ILBMD) n = 19. Lacunar morphometric parameters were measured in both trabecular and cortical bone such as lacunar density (Lc.N/BV), lacunar volume (Lc.V), and lacunar sphericity (Lc.Sr). These were then compared against each other and also with previously measured tissue morphometries such as bone volume density (BV/TV), trabecular separation (Tb.Sp), trabecular number (Tb.N), and others. We detected no differences in lacunar morphology between the IOP, ILBMD and healthy premenopausal women. In contrast, we did find significant differences between lacunar morphologies including Lc.N/BV, Lc. V, and Lc. Sr in cortical and trabecular regions within all three groups (p < 0.001), which was consistent with our previous findings on a subgroup of the healthy group. Furthermore, we discovered strong correlations between Lc. Sr from trabecular regions with the measured BV/TV (R = -0.90, p < 0.05). The findings and comprehensive lacunar dataset we present here will be a crucial foundation for future investigations of the relationship between osteocyte lacunar morphology and disease.
Collapse
Affiliation(s)
- Elliott Goff
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Adi Cohen
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Elizabeth Shane
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Robert R Recker
- Department of Medicine, Creighton University Medical Center, Omaha, NE, USA
| | - Gisela Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Zou Z, Luo X, Chen Z, Zhang YS, Wen C. Emerging microfluidics-enabled platforms for osteoarthritis management: from benchtop to bedside. Theranostics 2022; 12:891-909. [PMID: 34976219 PMCID: PMC8692897 DOI: 10.7150/thno.62685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent debilitating age-related joint degenerative disease. It is a leading cause of pain and functional disability in older adults. Unfortunately, there is no cure for OA once the damage is established. Therefore, it promotes an urgent need for early detection and intervention of OA. Theranostics, combining therapy and diagnosis, emerges as a promising approach for OA management. However, OA theranostics is still in its infancy. Three fundamental needs have to be firstly fulfilled: i) a reliable OA model for disease pathogenesis investigation and drug screening, ii) an effective and precise diagnostic platform, and iii) an advanced fabrication approach for drug delivery and therapy. Meanwhile, microfluidics emerges as a versatile technology to address each of the needs and eventually boost the development of OA theranostics. Therefore, this review focuses on the applications of microfluidics, from benchtop to bedside, for OA modelling and drug screening, early diagnosis, and clinical therapy. We first introduce the basic pathophysiology of OA and point out the major unfilled research gaps in current OA management including lack of disease modelling and drug screening platforms, early diagnostic modalities and disease-modifying drugs and delivery approaches. Accordingly, we then summarize the state-of-the-art microfluidics technology for OA management from in vitro modelling and diagnosis to therapy. Given the existing promising results, we further discuss the future development of microfluidic platforms towards clinical translation at the crossroad of engineering and biomedicine.
Collapse
Affiliation(s)
- Zhou Zou
- Department of Biomedical Engineering, Faculty of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaohe Luo
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhengkun Chen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Currently at Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
7
|
Josephson TO, Moore JP, Maghami E, Freeman TA, Najafi AR. Computational study of the mechanical influence of lacunae and perilacunar zones in cortical bone microcracking. J Mech Behav Biomed Mater 2021; 126:105029. [PMID: 34971951 DOI: 10.1016/j.jmbbm.2021.105029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 02/01/2023]
Abstract
The mechanical behavior of cortical bone is influenced by microstructural components such as osteons, Haversian canals, and osteocyte lacunae that arise from biological remodeling processes. This study takes a computational approach to investigate the role of the perilacunar zones formed by the local remodeling processes of lacunar-dwelling osteocytes by utilizing phase-field finite element models based on histological imaging of human bone. The models simulated the microdamage accumulation that occurs in cortical bone under transverse compression in bone without lacunae, with lacunae, and with a perilacunar zone surrounding lacunae in order to investigate the role of these features. The results of the simulations found that while lacunae create stress concentration which initiate further damage, perilacunar regions can delay or prevent the emergence and growth of microcracks.
Collapse
Affiliation(s)
- Timothy O Josephson
- Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Jason P Moore
- Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Ebrahim Maghami
- Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Theresa A Freeman
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, 1015 Walnut Street, Philadelphia, 19107, PA, USA
| | - Ahmad R Najafi
- Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, 19104, PA, USA.
| |
Collapse
|
8
|
Padala SR, Kashyap B, Dekker H, Mikkonen JJW, Palander A, Bravenboer N, Kullaa AM. Irradiation affects the structural, cellular and molecular components of jawbones. Int J Radiat Biol 2021; 98:136-147. [PMID: 34855558 DOI: 10.1080/09553002.2022.2013568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Emerging evidence shows that changes in the bone and its microenvironment following radiotherapy are associated with either an inhibition or a state of low bone formation. Ionizing radiation is damaging to the jawbone as it increases the complication rate due to the development of hypovascular, hypocellular, and hypoxic tissue. This review summarizes and correlates the current knowledge on the effects of irradiation on the bone with an emphasis on jawbone, as these have been a less extensively studied area. CONCLUSIONS The stringent regulation of bone formation and bone resorption can be influenced by radiation, causing detrimental effects at structural, cellular, vascular, and molecular levels. It is also associated with a high risk of damage to surrounding healthy tissues and an increased risk of fracture. Technological advances and research on animal models as well as a few human bone tissue studies have provided novel insights into the ways in which bone can be affected by high, low and sublethal dose of radiation. The influence of radiation on bone metabolism, cellular properties, vascularity, collagen, and other factors like inflammation, reactive oxygen species are discussed.
Collapse
Affiliation(s)
- Sridhar Reddy Padala
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Bina Kashyap
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hannah Dekker
- Amsterdam University Medical Centers, Academic Centre for Dentistry Amsterdam (ACTA), Department of Oral and Maxillofacial Surgery/Oral Pathology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jopi J W Mikkonen
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anni Palander
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nathalie Bravenboer
- Amsterdam UMC, Department of Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Department of Internal Medicine, Division of Endocrinology and Center for Bone Quality, Leiden University Medical Center, Leiden, The Netherlands
| | - Arja M Kullaa
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
Choi RB, Robling AG. The Wnt pathway: An important control mechanism in bone's response to mechanical loading. Bone 2021; 153:116087. [PMID: 34271473 PMCID: PMC8478810 DOI: 10.1016/j.bone.2021.116087] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 10/25/2022]
Abstract
The conversion of mechanical energy into biochemical changes within living cells is process known as mechanotransduction. Bone is a quintessential tissue for studying the molecular mechanisms of mechanotransduction, as the skeleton's mechanical competence is crucial for vertebrate movement. Bone cell mechanotransduction is facilitated by a number of cell biological pathways, one of the most prominent of which is the Wnt signaling cascade. The Wnt co-receptor Lrp5 has been identified as a crucial protein for mechanical signaling in bone, and modifiers of Lrp5 activity play important roles in mediating signaling efficiency through Lrp5, including sclerostin, Dkk1, and the co-receptor Lrp4. Mechanical regulation of sclerostin is mediated by certain members of the Hdac family. Other mechanisms that influence Wnt signaling-some of which are mechanoresponsive-are coming to light, including R-spondins and their role in organizing the Rnf43/Znrf3 and Lgr4/5/6 complex that liberates Lrp5. While the identity of the key Wnt proteins involved in bone cell mechanical signaling are elusive, the likely pool of key players is narrowing. Identification of Wnt-based molecular targets that can be modulated pharmacologically to make mechanical stimulation (e.g., exercise) more beneficial is an emerging approach to improving skeletal integrity and reducing fracture risk.
Collapse
Affiliation(s)
- Roy B Choi
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
| |
Collapse
|
10
|
Goff E, Buccino F, Bregoli C, McKinley JP, Aeppli B, Recker RR, Shane E, Cohen A, Kuhn G, Müller R. Large-scale quantification of human osteocyte lacunar morphological biomarkers as assessed by ultra-high-resolution desktop micro-computed tomography. Bone 2021; 152:116094. [PMID: 34186251 DOI: 10.1016/j.bone.2021.116094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Ultra-high-resolution imaging of the osteocyte lacuno-canalicular network (LCN) three-dimensionally (3D) in a high-throughput fashion has greatly improved the morphological knowledge about the constituent structures - positioning them as potential biomarkers. Technologies such as serial focused ion beam/scanning electron microscopy (FIB/SEM) and confocal scanning laser microscopy (CLSM) can image in extremely high resolution, yet only capture a small number of lacunae. Synchrotron radiation computed tomography (SR-CT) can image with both high resolution and high throughput but has a limited availability. Desktop micro-computed tomography (micro-CT) provides an attractive balance: high-throughput imaging on the micron level without the restrictions of SR-CT availability. In this study, accuracy, reproducibility, and sensitivity of large-scale quantification of human osteocyte lacunar morphometries were assessed by ultra-high-resolution desktop micro-computed tomography. For this purpose, thirty-one transiliac human bone biopsies containing trabecular and cortical regions were imaged using ultra-high-resolution desktop micro-CT at a nominal isotropic voxel resolution of 1.2 µm. The resulting 3D images were segmented, component labeled, and the following morphometric parameters of 7.71 million lacunae were measured: Lacunar number (Lc.N), density (Lc.N/BV), porosity (Lc.TV/BV), volume (Lc.V), surface area (Lc.S), surface area to volume ratio (Lc.S/Lc.V), stretch (Lc.St), oblateness (Lc.Ob), sphericity (Lc.Sr), equancy (Lc.Eq), and angle (Lc.θ). Accuracy was quantified by comparing automated lacunar identification to manual identification. Mean true positive rate (TPR), false positive rate (FPR), and false negative rate (FNR) were 89.0%, 3.4%, and 11.0%, respectively. Regarding the reproducibility of lacunar morphometry from repeated measurements, precision errors were low (0.2-3.0%) and intraclass correlation coefficients were high (0.960-0.999). Significant differences between cortical and trabecular regions (p<0.001) existed for Lc.N/BV, Lc.TV/BV, local lacunar surface area (<Lc.S>), and local lacunar volume (<Lc.V>), all of which demonstrate the sensitivity of the method and are possible biomarker candidates. This study provides the foundation required for future large-scale morphometric studies using ultra-high-resolution desktop micro-CT and high-throughput analysis of millions of osteocyte lacunae in human bone samples.
Collapse
Affiliation(s)
- Elliott Goff
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Chiara Bregoli
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Jonathan P McKinley
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Basil Aeppli
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Robert R Recker
- Department of Medicine, Creighton University Medical Center, Omaha, NE, USA
| | - Elizabeth Shane
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Adi Cohen
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Gisela Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Kemp TD, Besler BA, Boyd SK. An inverse technique to identify participant-specific bone adaptation from serial CT measurements. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3515. [PMID: 34313396 DOI: 10.1002/cnm.3515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Simulated bone adaptation is framed as an interface evolution problem. The interface is extracted from a high-resolution computed tomography (CT) image of trabecular bone microarchitecture and modified by the level set equation. A model and its parameters determine the bone adaptation rate and thus the bone structure at any future time. This study develops an inverse problem and solver to identify model parameters from multiple high-resolution CT images of bone within the level set framework. We demonstrate the technique on a model of advection and mean curvature flow, termed curvature-driven adaptation. The inverse solver uses two CT scans to estimate model parameters, which map the bone surface from one image to the next. The solver was tested with synthetic images of bone changing according to the curvature-driven model with known model parameters. The algorithm recovered known model parameters excellently (R2 > .99, p < .001). A grid search indicated that the estimated model parameters were insensitive to hyper-parameter selection for learning rate 1e-5≤η≤ 5e-5 and gradient scaling factor 5e-5≤γ≤ 5e-4 . Finally, we tested the algorithm's sensitivity to salt-and-pepper noise of probability P , where .0 ≤P≤ .9. Model parameter accuracy did not change for P < .7, corresponding to Dice coefficients greater than .7. The inverse problem estimates bone adaptation parameters from multiple CT images of changing bone microarchitecture. In the future, this technique could be used to determine participant-specific bone adaptation parameters in vivo, validate bone adaptation models, and predict bone health.
Collapse
Affiliation(s)
- Tannis D Kemp
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bryce A Besler
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Steven K Boyd
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Meardon SA, Derrick TR, Willson JD, Baggaley M, Steinbaker CR, Marshall M, Willy RW. Peak and Per-Step Tibial Bone Stress During Walking and Running in Female and Male Recreational Runners. Am J Sports Med 2021; 49:2227-2237. [PMID: 34077287 DOI: 10.1177/03635465211014854] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Athletes, especially female athletes, experience high rates of tibial bone stress injuries (BSIs). Knowledge of tibial loads during walking and running is needed to understand injury mechanisms and design safe running progression programs. PURPOSE To examine tibial loads as a function of gait speed in male and female runners. STUDY DESIGN Controlled laboratory study. METHODS Kinematic and kinetic data were collected on 40 recreational runners (20 female, 20 male) during 4 instrumented gait speed conditions on a treadmill (walk, preferred run, slow run, fast run). Musculoskeletal modeling, using participant-specific magnetic resonance imaging and motion data, was used to estimate tibial stress. Peak tibial stress and stress-time impulse were analyzed using 2-factor multivariate analyses of variance (speed*sex) and post hoc comparisons (α = .05). Bone geometry and tibial forces and moments were examined. RESULTS Peak compression was influenced by speed (P < .001); increasing speed generally increased tibial compression in both sexes. Women displayed greater increases in peak tension (P = .001) and shear (P < .001) than men when transitioning from walking to running. Further, women displayed greater peak tibial stress overall (P < .001). Compressive and tensile stress-time impulse varied by speed (P < .001) and sex (P = .006); impulse was lower during running than walking and greater in women. A shear stress-time impulse interaction (P < .001) indicated that women displayed greater impulse relative to men when changing from a walk to a run. Compared with men, women displayed smaller tibiae (P < .001) and disproportionately lower tibial forces (P≤ .001-.035). CONCLUSION Peak tibial stress increased with gait speed, with a 2-fold increase in running relative to walking. Women displayed greater tibial stress than men and greater increases in stress when shifting from walking to running. Sex differences appear to be the result of smaller bone geometry in women and tibial forces that were not proportionately lower, given the womens' smaller stature and lower mass relative to men. CLINICAL RELEVANCE These results may inform interventions to regulate running-related training loads and highlight a need to increase bone strength in women. Lower relative bone strength in women may contribute to a sex bias in tibial BSIs, and female runners may benefit from a slower progression when initiating a running program.
Collapse
Affiliation(s)
- Stacey A Meardon
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina, USA
| | | | - John D Willson
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina, USA
| | - Michael Baggaley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | - Margaret Marshall
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina, USA
| | - Richard W Willy
- School of Physical Therapy and Rehabilitation Science, University of Montana, Missoula, Montana, USA
| |
Collapse
|
13
|
Li MCM, Chow SKH, Wong RMY, Qin L, Cheung WH. The role of osteocytes-specific molecular mechanism in regulation of mechanotransduction - A systematic review. J Orthop Translat 2021; 29:1-9. [PMID: 34036041 PMCID: PMC8138679 DOI: 10.1016/j.jot.2021.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/15/2021] [Accepted: 04/11/2021] [Indexed: 11/29/2022] Open
Abstract
Background Osteocytes, composing over 90% of bone cells, are well known for their mechanosensing abilities. Aged osteocytes with impaired morphology and function are less efficient in mechanotransduction which will disrupt bone turnover leading to osteoporosis. The aim of this systematic review is to delineate the mechanotransduction mechanism at different stages in order to explore potential target for therapeutic drugs. Methods A systematic literature search was performed in PubMed and Web of Science. Original animal, cell and clinical studies with available English full-text were included. Information was extracted from the included studies for review. Results The 26 studies included in this review provided evidence that mechanical loading are sensed by osteocytes via various sensing proteins and transduced to different signaling molecules which later initiate various biochemical responses. Studies have shown that osteocyte plasma membrane and cytoskeletons are emerging key players in initiating mechanotransduction. Bone regulating genes expressions are altered in response to load sensed by osteocytes, but the genes involved different signaling pathways and the spatiotemporal expression pattern had made mechanotransduction mechanism complicated. Most of the included studies described the important role of osteocytes in pathways that regulate mechanosensing and bone remodeling. Conclusions This systematic review provides an up-to-date insight to different steps of mechanotransduction. A better understanding of the mechanotransduction mechanism is beneficial in search of new potential treatment for osteoporotic patients. By delineating the unique morphology of osteocytes and their interconnected signaling network new targets can be discovered for drug development. Translational potential of this article This systematic review provides an up-to-date sequential overview and highlights the different osteocyte-related pathways and signaling molecules during mechanotransduction. This allows a better understanding of mechanotransduction for future development of new therapeutic interventions to treat patients with impaired mechanosensitivity.
Collapse
Affiliation(s)
- Meng Chen Michelle Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kwoon Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
- Corresponding author.Department of Orthopaedics and Traumatology, 5/F, Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
14
|
Novais A, Chatzopoulou E, Chaussain C, Gorin C. The Potential of FGF-2 in Craniofacial Bone Tissue Engineering: A Review. Cells 2021; 10:932. [PMID: 33920587 PMCID: PMC8073160 DOI: 10.3390/cells10040932] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Bone is a hard-vascularized tissue, which renews itself continuously to adapt to the mechanical and metabolic demands of the body. The craniofacial area is prone to trauma and pathologies that often result in large bone damage, these leading to both aesthetic and functional complications for patients. The "gold standard" for treating these large defects is autologous bone grafting, which has some drawbacks including the requirement for a second surgical site with quantity of bone limitations, pain and other surgical complications. Indeed, tissue engineering combining a biomaterial with the appropriate cells and molecules of interest would allow a new therapeutic approach to treat large bone defects while avoiding complications associated with a second surgical site. This review first outlines the current knowledge of bone remodeling and the different signaling pathways involved seeking to improve our understanding of the roles of each to be able to stimulate or inhibit them. Secondly, it highlights the interesting characteristics of one growth factor in particular, FGF-2, and its role in bone homeostasis, before then analyzing its potential usefulness in craniofacial bone tissue engineering because of its proliferative, pro-angiogenic and pro-osteogenic effects depending on its spatial-temporal use, dose and mode of administration.
Collapse
Affiliation(s)
- Anita Novais
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| | - Eirini Chatzopoulou
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
- Département de Parodontologie, Université de Paris, UFR Odontologie-Garancière, 75006 Paris, France
| | - Catherine Chaussain
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| | - Caroline Gorin
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| |
Collapse
|
15
|
Sharma V, Srinivasan A, Nikolajeff F, Kumar S. Biomineralization process in hard tissues: The interaction complexity within protein and inorganic counterparts. Acta Biomater 2021; 120:20-37. [PMID: 32413577 DOI: 10.1016/j.actbio.2020.04.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023]
Abstract
Biomineralization can be considered as nature's strategy to produce and sustain biominerals, primarily via creation of hard tissues for protection and support. This review examines the biomineralization process within the hard tissues of the human body with special emphasis on the mechanisms and principles of bone and teeth mineralization. We describe the detailed role of proteins and inorganic ions in mediating the mineralization process. Furthermore, we highlight the various available models for studying bone physiology and mineralization starting from the historical static cell line-based methods to the most advanced 3D culture systems, elucidating the pros and cons of each one of these methods. With respect to the mineralization process in teeth, enamel and dentin mineralization is discussed in detail. The key role of intrinsically disordered proteins in modulating the process of mineralization in enamel and dentine is given attention. Finally, nanotechnological interventions in the area of bone and teeth mineralization, diseases and tissue regeneration is also discussed. STATEMENT OF SIGNIFICANCE: This article provides an overview of the biomineralization process within hard tissues of the human body, which encompasses the detailed mechanism innvolved in the formation of structures like teeth and bone. Moreover, we have discussed various available models used for studying biomineralization and also explored the nanotechnological applications in the field of bone regeneration and dentistry.
Collapse
Affiliation(s)
- Vaibhav Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| | | | | | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
16
|
Shipov A, Zaslansky P, Riesemeier H, Segev G, Atkins A, Kalish-Achrai N, Weiner S, Shahar R. The influence of estrogen deficiency on the structural and mechanical properties of rat cortical bone. PeerJ 2021; 9:e10213. [PMID: 33520431 PMCID: PMC7811283 DOI: 10.7717/peerj.10213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/28/2020] [Indexed: 11/20/2022] Open
Abstract
Background Post-menopausal osteoporosis is a common health problem worldwide, most commonly caused by estrogen deficiency. Most of the information regarding the skeletal effects of this disease relates to trabecular bone, while cortical bone is less studied. The purpose of this study was to evaluate the influence of estrogen deficiency on the structure and mechanical properties of cortical bone. Methods Eight ovariectomized (OVH) and eight intact (control) Sprague Dawley rats were used.Structural features of femoral cortical bone were studied by light microscopy, scanning electron microscopy and synchrotron-based microcomputer-tomography and their mechanical properties determined by nano-indentation. Results Cortical bone of both study groups contains two distinct regions: organized circumferential lamellae and disordered bone with highly mineralized cartilaginous islands. Lacunar volume was lower in the OVH group both in the lamellar and disorganized regions (182 ± 75 µm3 vs 232 ± 106 µm3, P < 0.001 and 195 ± 86 µm3 vs. 247 ± 106 µm3, P < 0.001, respectively). Lacunar density was also lower in both bone regions of the OVH group (40 ± 18 ×103 lacunae/mm3 vs. 47 ± 9×103 lacunae/mm3 in the lamellar region, P = 0.003 and 63 ± 18×103lacunae/mm3 vs. 75 ± 13×103 lacunae/mm3 in the disorganized region, P < 0.001). Vascular canal volume was lower in the disorganized region of the bone in the OVH group compared to the same region in the control group (P < 0.001). Indentation moduli were not different between the study groups in both bone regions. Discussion Changes to cortical bone associated with estrogen deficiency in rats require high-resolution methods for detection. Caution is required in the application of these results to humans due to major structural differences between human and rat bone.
Collapse
Affiliation(s)
- Anna Shipov
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Paul Zaslansky
- Department for Operative and Preventive Dentistry. Centrum für Zahn-, Mund- und Kieferheilkunde, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Gilad Segev
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ayelet Atkins
- Department of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, Israel
| | - Noga Kalish-Achrai
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Stephen Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
17
|
Mechanical Properties. Biomed Mater 2021. [DOI: 10.1007/978-3-030-49206-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Abstract
Osteocytes are an ancient cell, appearing in fossilized skeletal remains of early fish and dinosaurs. Despite its relative high abundance, even in the context of nonskeletal cells, the osteocyte is perhaps among the least studied cells in all of vertebrate biology. Osteocytes are cells embedded in bone, able to modify their surrounding extracellular matrix via specialized molecular remodeling mechanisms that are independent of the bone forming osteoblasts and bone-resorbing osteoclasts. Osteocytes communicate with osteoclasts and osteoblasts via distinct signaling molecules that include the RankL/OPG axis and the Sost/Dkk1/Wnt axis, among others. Osteocytes also extend their influence beyond the local bone environment by functioning as an endocrine cell that controls phosphate reabsorption in the kidney, insulin secretion in the pancreas, and skeletal muscle function. These cells are also finely tuned sensors of mechanical stimulation to coordinate with effector cells to adjust bone mass, size, and shape to conform to mechanical demands.
Collapse
Affiliation(s)
- Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| |
Collapse
|
19
|
Steppe L, Liedert A, Ignatius A, Haffner-Luntzer M. Influence of Low-Magnitude High-Frequency Vibration on Bone Cells and Bone Regeneration. Front Bioeng Biotechnol 2020; 8:595139. [PMID: 33195165 PMCID: PMC7609921 DOI: 10.3389/fbioe.2020.595139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Bone is a mechanosensitive tissue for which mechanical stimuli are crucial in maintaining its structure and function. Bone cells react to their biomechanical environment by activating molecular signaling pathways, which regulate their proliferation, differentiation, and matrix production. Bone implants influence the mechanical conditions in the adjacent bone tissue. Optimizing their mechanical properties can support bone regeneration. Furthermore, external biomechanical stimulation can be applied to improve implant osseointegration and accelerate bone regeneration. One promising anabolic therapy is vertical whole-body low-magnitude high-frequency vibration (LMHFV). This form of vibration is currently extensively investigated to serve as an easy-to-apply, cost-effective, and efficient treatment for bone disorders and regeneration. This review aims to provide an overview of LMHFV effects on bone cells in vitro and on implant integration and bone fracture healing in vivo. In particular, we review the current knowledge on cellular signaling pathways which are influenced by LMHFV within bone tissue. Most of the in vitro experiments showed that LMHFV is able to enhance mesenchymal stem cell (MSC) and osteoblast proliferation. Furthermore, osteogenic differentiation of MSCs and osteoblasts was shown to be accelerated by LMHFV, whereas osteoclastogenic differentiation was inhibited. Furthermore, LMHFV increased bone regeneration during osteoporotic fracture healing and osseointegration of orthopedic implants. Important mechanosensitive pathways mediating the effects of LMHFV might be the Wnt/beta-catenin signaling pathway, the estrogen receptor (ER) signaling pathway, and cytoskeletal remodeling.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
20
|
Ganesh T, Laughrey LE, Niroobakhsh M, Lara-Castillo N. Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system. Bone 2020; 137:115328. [PMID: 32201360 PMCID: PMC7354216 DOI: 10.1016/j.bone.2020.115328] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
Osteocytes form over 90% of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in bone modeling and remodeling. Physical activity results in mechanical loading on the bones. Osteocytes are thought to be the main mechanosensory cells in bone. Upon load osteocytes secrete key factors initiating downstream signaling pathways that regulate skeletal metabolism including the Wnt/β-catenin signaling pathway. Osteocytes have dendritic structures and are housed in the lacunae and canaliculi within the bone matrix. Mechanical loading is known to have two primary effects, namely a mechanical strain (membrane disruption by stretching) on the lacunae/cells, and fluid flow, in the form of fluid flow shear stress (FFSS), in the space between the cell membranes and the lacuna-canalicular walls. In response, osteocytes get activated via a process called mechanotransduction in which mechanical signals are transduced to biological responses. The study of mechanotransduction is a complex subject involving principles of engineering mechanics as well as biological signaling pathway studies. Several length scales are involved as the mechanical loading on macro sized bones are converted to strain and FFSS responses at the micro-cellular level. Experimental measurements of strain and FFSS at the cellular level are very difficult and correlating them to specific biological activity makes this a very challenging task. One of the methods commonly adopted is a multi-scale approach that combines biological and mechanical experimentation with in silico numerical modeling of the engineering aspects of the problem. Finite element analysis along with fluid-structure interaction methodologies are used to compute the mechanical strain and FFSS. These types of analyses often involve a multi-length scale approach where models of both the macro bone structure and micro structure at the cellular length scale are used. Imaging modalities play a crucial role in the development of the models and present their own challenges. This paper reviews the efforts of various research groups in addressing this problem and presents the work in our research group. A clear understanding of how mechanical stimuli affect the lacunae and perilacunar tissue strains and shear stresses on the cellular membranes may ultimately lead to a better understanding of the process of osteocyte activation.
Collapse
Affiliation(s)
- Thiagarajan Ganesh
- Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110, United States of America.
| | - Loretta E Laughrey
- Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110, United States of America
| | - Mohammadmehdi Niroobakhsh
- Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110, United States of America
| | - Nuria Lara-Castillo
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 E 25th Street, Kansas City, MO 64108, United States of America
| |
Collapse
|
21
|
Osteocyte lacunar strain determination using multiscale finite element analysis. Bone Rep 2020; 12:100277. [PMID: 32478144 PMCID: PMC7251370 DOI: 10.1016/j.bonr.2020.100277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/13/2020] [Accepted: 05/01/2020] [Indexed: 01/09/2023] Open
Abstract
Osteocytes are thought to be the primary mechanosensory cells within bone, regulating both osteoclasts and osteoblasts to control load induced changes in bone resorption and formation. Osteocytes initiate intracellular responses including activating the Wnt/β-catenin signaling pathway after experiencing mechanical forces. In response to changing mechanical loads (strain) the osteocytes signal to cells on the bone surface. However, this process of osteocyte activation appears heterogeneous since it occurs in sub-populations of osteocytes, even within regions predicted to be experiencing similar global strain magnitudes determined based on traditional finite element modeling approaches. Several studies have investigated the strain responses of osteocyte lacunae using finite element (FE) models, but many were limited by the use of idealized geometries (e.g., ellipsoids) and analysis of a single osteocyte. Finite element models by other groups included more details, such as canaliculi, but all were done on models consisting of a single osteocyte. We hypothesized that variation in size and orientation of the osteocyte lacunae within bone would give rise to micro heterogeneity in the strain fields that could better explain the observed patterns of osteocyte activation following load. The osteocytes in our microscale and nanoscale models have an idealized oval shape and some are based on confocal scans. However, all the FE models in this preliminary study consist of multiple osteocytes. The number of osteocytes in the 3D confocal scan models ranged from five to seventeen. In this study, a multi-scale computational approach was used to first create an osteocyte FE model at the microscale level to examine both the theoretical lacunar and perilacunar strain responses based on two parameters: 1) lacunar orientation and 2) lacunar size. A parametric analysis was performed by steadily increasing the perilacunar modulus (5, 10, 15, and 20 GPa). Secondly, a nanoscale FE model was built using known osteocyte dimensions to determine the predicted strains in the perilacunar matrix, fluid space, and cell body regions. Finally, 3-D lacunar models were created using confocal image stacks from mouse femurs to determine the theoretical strain in the lacunae represented by realistic geometries. Overall, lacunar strains decreased by 14% in the cell body, 15% in the fluid space region and 25% in the perilacunar space as the perilacunar modulus increased, indicating a stress shielding effect. Lacunar strains were lower for the osteocytes aligned along the loading axis compared to those aligned perpendicular to axis. Increases in lacuna size also led to increased lacunar strains. These finite element model findings suggest that orientation and lacunar size may contribute to the heterogeneous initial pattern of osteocyte strain response observed in bone following in vivo applied mechanical loads. A better understanding of how mechanical stimuli directly affect the lacunae and perilacunar tissue strains may ultimately lead to a better understanding of the process of osteocyte activation in response to mechanical loading. A multi-scale computational approach used to first create multiple osteocyte FE model at the microscale level 3-D Lacuna model created using confocal image stacks from a mouse femur to determine the theoretical strain in the lacunae. Lacunar strains decreased as the perilacunar modulus increased. Lacunar strains were lower for the osteocytes aligned along the loading axis compared to those aligned perpendicular to axis. Increases in lacuna size also led to increased lacunar strains
Collapse
|
22
|
Simfia I, Schiavi J, McNamara LM. Alterations in osteocyte mediated osteoclastogenesis during estrogen deficiency and under ROCK-II inhibition: An in vitro study using a novel postmenopausal multicellular niche model. Exp Cell Res 2020; 392:112005. [PMID: 32330507 DOI: 10.1016/j.yexcr.2020.112005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 01/03/2023]
Abstract
This study sought to derive an enhanced understanding of the complex intracellular interactions that drive bone loss in postmenopausal osteoporosis. We applied an in-vitro multicellular niche to recapitulate cell-cell signalling between osteocytes, osteoblasts and osteoclasts to investigate (1) how estrogen-deficient and mechanically loaded osteocytes regulate osteoclastogenesis and (2) whether ROCK-II inhibition affects these mechanobiological responses. We report that mechanically stimulated and estrogen-deficient osteocytes upregulated RANKL/OPG and M-CSF gene expression, when compared to those treated with 10 nM estradiol. Osteoclast precursors (RAW 264.7) cultured within this niche underwent significant reduction in osteoclastogenic gene expression (CTSK), and there was an increasing trend in the area covered by TRAP+ osteoclasts (24% vs. 19.4%, p = 0.06). Most interestingly, upon treatment with the ROCK-II inhibitor, RANKL/OPG and M-CSF gene expression by estrogen-deficient osteocytes were downregulated. Yet, this inhibition of the pro-osteoclastogenic factors by osteocytes did not ultimately reduce the differentiation of osteoclast precursors. Indeed, TRAP and CTSK gene expressions in osteoclast precursors were upregulated, and there was an increased trend for osteoclast area (30.4% vs. 24%, p = 0.07), which may have been influenced by static osteoblasts (MC3T3-E1) that were included in the niche. We conclude that ROCK-II inhibition can attenuate bone loss driven by osteocytes during estrogen deficiency.
Collapse
Affiliation(s)
- Irene Simfia
- Mechanobiology and Medical Device Research Group, Biomechanics Research Centre, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - Jessica Schiavi
- Mechanobiology and Medical Device Research Group, Biomechanics Research Centre, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - Laoise M McNamara
- Mechanobiology and Medical Device Research Group, Biomechanics Research Centre, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
23
|
Clinical and radiographic findings without the use of bone substitute materials in extraction sockets and delayed implant placement- A case series. J Oral Biol Craniofac Res 2020; 10:141-145. [PMID: 32489812 DOI: 10.1016/j.jobcr.2020.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/31/2020] [Indexed: 11/23/2022] Open
Abstract
Aim To observe clinically and radiographically (CBCT), the extent of bone resorption in extraction socket without the use of bone graft substitutes and delayed implant placement. Material and methods 50 compliant patients were selected for study. All the patients who were advised extraction were followed up for entire duration of the treatment, at 5th week CBCT showed horizontal and vertical bone loss. To prevent further bone resorption, after 5 weeks implant was placed along with bone graft. Results Bone resorption after extraction is an unavoidable phenomenon. Clinical and radiographic (CBCT) analysis showed massive bone resorption by 5th week. At 5 month CBCT, all patients showed stable implant integration. There was no implant failure at the end of the study. Conclusion Alveolar preservation is proven to slow down socket wall collapse with the use of a bone substitute material without which larger procedures maybe needed to restore alveolar integrity and harmony. Immediate implant placement is effective when bone graft is placed in the jumping distance.
Collapse
|
24
|
Putative Receptors for Gravity Sensing in Mammalian Cells: The Effects of Microgravity. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gravity is a constitutive force that influences life on Earth. It is sensed and translated into biochemical stimuli through the so called “mechanosensors”, proteins able to change their molecular conformation in order to amplify external cues causing several intracellular responses. Mechanosensors are widely represented in the human body with important structures such as otholiths in hair cells of vestibular system and statoliths in plants. Moreover, they are also present in the bone, where mechanical cues can cause bone resorption or formation and in muscle in which mechanical stimuli can increase the sensibility for mechanical stretch. In this review, we discuss the role of mechanosensors in two different conditions: normogravity and microgravity, emphasizing their emerging role in microgravity. Microgravity is a singular condition in which many molecular changes occur, strictly connected with the modified gravity force and free fall of bodies. Here, we first summarize the most important mechanosensors involved in normogravity and microgravity. Subsequently, we propose muscle LIM protein (MLP) and sirtuins as new actors in mechanosensing and signaling transduction under microgravity.
Collapse
|
25
|
Iezzi G, Mangano C, Barone A, Tirone F, Baggi L, Tromba G, Piattelli A, Giuliani A. Jawbone remodeling: a conceptual study based on Synchrotron High-resolution Tomography. Sci Rep 2020; 10:3777. [PMID: 32123216 PMCID: PMC7052147 DOI: 10.1038/s41598-020-60718-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
One of the most important aspects of bone remodeling is the constant turnover mainly driven by the mechanical loading stimulus. The remodeling process produces changes not only in the bone microarchitecture but also in the density distribution of the mineralized matrix - i.e. in calcium concentrations- and in the osteocyte lacunar network. Synchrotron radiation-based X-ray microtomography (microCT) has proven to be an efficient technique, capable to achieve the analysis of 3D bone architecture and of local mineralization at different hierarchical length scales, including the imaging of the lacuno-canalicular network. In the present study, we used microCT within a conceptual study of jawbone remodeling, demonstratively focusing the investigation in two critical contexts, namely in the peri-dental and the peri-implant tissues. The microCT analysis showed that a relevant inhomogeneity was clearly present in both peri-dental and peri-implant biopsies, not only in terms of microarchitecture and mineralization degree, but also considering the lacunar network, i.e. size and numerical density of the osteocyte lacunae. The correlated histological results obtained on the same samples confirmed these observations, also adding information related to non-mineralized tissues. Despite its demonstrative nature, it was concluded that the proposed method was powerful in studying jawbone remodeling because it revealed a direct correlation of its rate with the lacunar density, as achieved by the analysis of the osteocyte lacunar network, and an inverse correlation with the local bone mineral density, as revealed with the Roschger approach.
Collapse
Affiliation(s)
- Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti Scalo, CH, Italy
| | | | - Antonio Barone
- Department of Medical, Surgical, Molecular and of the Critical Area Pathologies, University of Pisa, Pisa, Italy
| | | | - Luigi Baggi
- Department of Social Dentistry, National Institute for Health, Migration and Poverty, Rome, Italy.,School of Dentistry, University of Rome "Tor Vergata", Rome, Italy
| | | | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti Scalo, CH, Italy.,Chair of Biomaterials Engineering, Catholic University of Murcia (UCAM), Murcia, Spain.,Villa Serena Foundation for Research, Città Sant'Angelo (Pescara), Italy
| | - Alessandra Giuliani
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
26
|
Koizumi Y, Ishii T, Nishii Y, Nojima K, Sueishi K. Influence of experimental hemi-occlusion on mandibular morphology and internal structure in growing rabbit. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.odw.2010.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yoshiaki Koizumi
- Department of Orthodontics, Tokyo Dental College, 1-2-2 Masago Mihama-ku, Chiba 261-8502, Japan
| | | | | | | | | |
Collapse
|
27
|
Carmeli-Ligati S, Shipov A, Dumont M, Holtze S, Hildebrandt T, Shahar R. The structure, composition and mechanical properties of the skeleton of the naked mole-rat (Heterocephalus glaber). Bone 2019; 128:115035. [PMID: 31421251 DOI: 10.1016/j.bone.2019.115035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/29/2022]
Abstract
The naked mole-rat (NMR) is a small rodent with a remarkable array of properties, such as unique physiology, extremely long life-span and unusual social life. However, very little is known regarding its skeleton. The aim of this study was to describe the structure, composition and mechanical properties in an ontogenetic series of naked mole-rat bones. Since common small rodents like mice and rats have an unusual structure of cortical bone, which includes a central region of non-lamellar (disordered) bone, mineralized cartilaginous islands and total lack of remodeling, this study could also determine if these are features of all small rodents. Sixty-one NMRs were included in the study and were divided into the following four age groups: 0-0.5 years old (n = 17), 0.5-3 years old (n = 25), 3-10 years old (n = 13), and >10 years (n = 6). Femora, vertebrae and mandibulae were examined using micro-CT, light microscopy, polarized light microscopy and scanning electron microscopy, thermogravimetric analysis was used to determine their dry ash content and their derived elastic modulus and hardness were determined using micro-indentation. Our findings show that NMR bones are similar in composition and mechanical properties to those of other small rodents. However, in contrast to other small rodents, the cortical bone of NMRs is entirely circumferential-lamellar and lacks mineralized cartilage islands. Furthermore, despite their long life-span, their bones did not show evidence of remodeling at any of the age groups, thus proving that lack of cortical remodeling in small rodents is not caused by their short life-span, but characteristic of this order of mammals.
Collapse
Affiliation(s)
- Shira Carmeli-Ligati
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Anna Shipov
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Maïtena Dumont
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | - Thomas Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel.
| |
Collapse
|
28
|
Pesce Viglietti AI, Giambartolomei GH, Delpino MV. Endocrine modulation of Brucella abortus-infected osteocytes function and osteoclastogenesis via modulation of RANKL/OPG. Microbes Infect 2019; 21:287-295. [PMID: 30735720 DOI: 10.1016/j.micinf.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/18/2023]
Abstract
Osteoarticular brucellosis is the most frequent complication of active disease. A large amount of cells in bone are osteocytes. Since bone remodeling process is regulated by hormones we sought to study the effect of cortisol and DHEA in Brucella abortus-infected osteocytes. Cortisol treatment inhibited the expression of IL-6, TNF-α, MMP-2 and RANKL in B. abortus-infected osteocytes. DHEA could reverse the inhibitory effect of cortisol on MMP-2 production. B. abortus infection inhibited connexin 43 (Cx43) expression in osteocytes. This expression was increased when cortisol was incorporated during the infection and DHEA treatment partially reversed the effect of cortisol. Osteocytes-infected with B. abortus induced osteoclast's differentiation. Yet, the presence of cortisol, but not DHEA, during osteocyte infection inhibited osteoclastogenesis. Glucocorticoid receptor (GR) is implicated in the signaling of cortisol. Infection with B. abortus was able to increase GRα/β ratio. Levels of intracellular cortisol are not only dependent on GR expression but also a result of the activity of the isoenzymes 11β-hydroxysteroid dehydrogenase (11β-HSD)-1 (cortisone to cortisol conversion), 11β-HSD2 (cortisol to cortisone conversion). B. abortus infection increased 11β-HSD 1/2 ratio and cortisone mimicked the effect of cortisol. Our results indicated that cortisol and DHEA could modulate osteocyte responses during B. abortus infection.
Collapse
Affiliation(s)
- Ayelén Ivana Pesce Viglietti
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
29
|
Wittig NK, Laugesen M, Birkbak ME, Bach-Gansmo FL, Pacureanu A, Bruns S, Wendelboe MH, Brüel A, Sørensen HO, Thomsen JS, Birkedal H. Canalicular Junctions in the Osteocyte Lacuno-Canalicular Network of Cortical Bone. ACS NANO 2019; 13:6421-6430. [PMID: 31095362 DOI: 10.1021/acsnano.8b08478] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The osteocyte lacuno-canalicular network (LCN) is essential for bone remodeling because osteocytes regulate cell recruitment. This has been proposed to occur through liquid-flow-induced shear forces in the canaliculi. Models of the LCN have thus far assumed that it contains canaliculi connecting the osteocyte lacunae. However, here, we reveal that enlarged spaces occur at places where several canaliculi cross; we name these spaces canalicular junctions. We characterize them in detail within mice cortical bone using synchrotron nanotomography at two length scales, with 50 and 130 nm voxel size, and show that canalicular junctions occur at a density similar to that of osteocyte lacunae and that canalicular junctions tend to cluster. Through confocal laser scanning microscopy, we show that canalicular junctions are widespread as we have observed them in cortical bone from several species, even though the number density of the canalicular junctions was not universal. Fluid flow simulations of a simple model system with and without a canalicular junction clearly show that liquid mass transport and flow velocities are altered by the presence of canalicular junctions. We suggest that these canalicular junctions may play an important role in osteocyte communication and possibly also in canalicular fluid flow. Therefore, we believe that they constitute an important component in the bone osteocyte network.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefan Bruns
- Department of Chemistry, University of Copenhagen , 2100 Copenhagen Ø , Denmark
| | | | | | | | | | | |
Collapse
|
30
|
Estrogen deficiency impairs integrin α vβ 3-mediated mechanosensation by osteocytes and alters osteoclastogenic paracrine signalling. Sci Rep 2019; 9:4654. [PMID: 30874595 PMCID: PMC6420496 DOI: 10.1038/s41598-019-41095-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
The integrin αvβ3 has been shown to play an important role in osteocyte mechanotransduction. It has been reported that there are fewer β3 integrin-containing cells in osteoporotic bone cells. Osteocytes cultured in vitro under estrogen deficient conditions demonstrate altered mechanotransduction. However, it is unknown whether the altered mechanotransduction in estrogen deficient osteocytes is directly associated with defective αvβ3 expression or signalling. The objective of this study is to investigate the role of estrogen deficiency for regulating MLO-Y4 cell morphology, αvβ3 expression, focal adhesion formation and mechanotransduction by osteocytes. Here, we report that estrogen withdrawal leads to a smaller focal adhesion area and reduced αvβ3 localisation at focal adhesion sites, resulting in an increased Rankl/Opg ratio and defective Cox-2 responses to oscillatory fluid flow. Interestingly, αvβ3 antagonism had a similar effect on focal adhesion assembly, Rankl/Opg ratio, and Cox-2 responses to oscillatory fluid flow. Taken together, our results provide the first evidence for a relationship between estrogen withdrawal and defective αvβ3-mediated signalling. Specifically, this study implicates estrogen withdrawal as a putative mechanism responsible for altered αvβ3 expression and resultant changes in downstream signalling in osteocytes during post-menopausal osteoporosis, which might provide an important, but previously unidentified, contribution to the bone loss cascade.
Collapse
|
31
|
Vasquez-Sancho F, Abdollahi A, Damjanovic D, Catalan G. Flexoelectricity in Bones. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29345377 DOI: 10.1002/adma.201705316] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Bones generate electricity under pressure, and this electromechanical behavior is thought to be essential for bone's self-repair and remodeling properties. The origin of this response is attributed to the piezoelectricity of collagen, which is the main structural protein of bones. In theory, however, any material can also generate voltages in response to strain gradients, thanks to the property known as flexoelectricity. In this work, the flexoelectricity of bone and pure bone mineral (hydroxyapatite) are measured and found to be of the same order of magnitude; the quantitative similarity suggests that hydroxyapatite flexoelectricity is the main source of bending-induced polarization in cortical bone. In addition, the measured flexoelectric coefficients are used to calculate the (flexo)electric fields generated by cracks in bone mineral. The results indicate that crack-generated flexoelectricity is theoretically large enough to induce osteocyte apoptosis and thus initiate the crack-healing process, suggesting a central role of flexoelectricity in bone repair and remodeling.
Collapse
Affiliation(s)
- Fabian Vasquez-Sancho
- Institut Català de Nanociencia i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
- Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Amir Abdollahi
- Laboratori de Càlcul Numèric (LaCàN), Universitat Politècnica de Catalunya (UPC), Campus Nord UPC-C2, E-08034, Barcelona, Spain
| | - Dragan Damjanovic
- Ecole Politechnique Federale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Gustau Catalan
- Institut Català de Nanociencia i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, E-08010, Barcelona, Catalonia, Spain
| |
Collapse
|
32
|
Wang B, Sun X, Akkus O, Wang L. Elevated solute transport at sites of diffuse matrix damage in cortical bone: Implications on bone repair. J Orthop Res 2018; 36:692-698. [PMID: 28921632 PMCID: PMC5839948 DOI: 10.1002/jor.23742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/13/2017] [Indexed: 02/04/2023]
Abstract
UNLABELLED Diffuse matrix damage in rat cortical bone has been observed to self-repair efficiently in 2 weeks without activating bone remodeling, and unlike the case with linear cracks, the local osteocytes at the sites of diffuse damage remain healthy. However, the reason(s) for such high efficiency of matrix repair remains unclear. We hypothesized that transport of minerals and other compounds essential for damage repair is enhanced at the damaged sites and further increased by the application of tensile loading. To test our hypothesis, diffuse damage was introduced in notched bovine wafers under cyclic tensile loading and unloading. Using the Fluorescence Recovery After Photobleaching (FRAP) approach, we measured the transport of a small fluorescent tracer (sodium fluorescein, 376 Da) in damaged versus undamaged regions and under varying tensile load magnitudes (0.2 N, 10 N, 20 N, and 30 N), which corresponded to nominal strains of 12.5, 625, 1,250, and 1,875 microstrains, respectively. We found a 37% increase in transport of fluorescein in damaged regions relative to undamaged regions and a further ∼18% increase in transport under 20 N and 30 N tension compared to the non-loaded condition, possibly due to the opening of the cracking surfaces. The elevated transport of minerals and other adhesive proteins may, at least partially, account for the highly effective repair of diffuse damage observed in vivo. CLINICAL SIGNIFICANCE Diffuse damage adversely affects bone's fracture resistance and this study provided quantitative data on elevated transport, which may be involved in repairing diffuse damage in vivo. 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:692-698, 2018.
Collapse
Affiliation(s)
- Bin Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA,Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China,Corresponding Authors: Liyun Wang, Ph.D., 130 Academy Street, University of Delaware, Newark, DE 19716, Phone: (302)-831-2659, Fax: (302)-831-3619, ; Bin Wang, Ph.D., No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, Phone: 86-23-63662443, Fax: 86-23-68485111,
| | - Xuanhao Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA,Corresponding Authors: Liyun Wang, Ph.D., 130 Academy Street, University of Delaware, Newark, DE 19716, Phone: (302)-831-2659, Fax: (302)-831-3619, ; Bin Wang, Ph.D., No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, Phone: 86-23-63662443, Fax: 86-23-68485111,
| |
Collapse
|
33
|
Collignon AM, Lesieur J, Vacher C, Chaussain C, Rochefort GY. Strategies Developed to Induce, Direct, and Potentiate Bone Healing. Front Physiol 2017; 8:927. [PMID: 29184512 PMCID: PMC5694432 DOI: 10.3389/fphys.2017.00927] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
Bone exhibits a great ability for endogenous self-healing. Nevertheless, impaired bone regeneration and healing is on the rise due to population aging, increasing incidence of bone trauma and the clinical need for the development of alternative options to autologous bone grafts. Current strategies, including several biomolecules, cellular therapies, biomaterials, and different permutations of these, are now developed to facilitate the vascularization and the engraftment of the constructs, to recreate ultimately a bone tissue with the same properties and characteristics of the native bone. In this review, we browse the existing strategies that are currently developed, using biomolecules, cells and biomaterials, to induce, direct and potentiate bone healing after injury and further discuss the biological processes associated with this repair.
Collapse
Affiliation(s)
- Anne-Margaux Collignon
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Odontology, University Hospitals PNVS, Assistance Publique Hopitaux De Paris, Paris, France
| | - Julie Lesieur
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France
| | - Christian Vacher
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Maxillofacial Surgery, Beaujon Hospital, Assistance Publique Hopitaux De Paris, Paris, France
| | - Catherine Chaussain
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Odontology, University Hospitals PNVS, Assistance Publique Hopitaux De Paris, Paris, France
| | - Gael Y Rochefort
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France
| |
Collapse
|
34
|
Macaulay TR, Siamwala JH, Hargens AR, Macias BR. Thirty days of spaceflight does not alter murine calvariae structure despite increased Sost expression. Bone Rep 2017; 7:57-62. [PMID: 28875158 PMCID: PMC5574818 DOI: 10.1016/j.bonr.2017.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/17/2017] [Indexed: 12/03/2022] Open
Abstract
Previously our laboratory documented increases in calvaria bone volume and thickness in mice exposed to 15 days of spaceflight aboard the NASA Shuttle mission STS-131. However, the tissues were not processed for gene expression studies to determine what bone formation pathways might contribute to these structural adaptations. Therefore, this study was designed to investigate both the structural and molecular changes in mice calvariae after a longer duration of spaceflight. The primary purpose was to determine the calvaria bone volume and thickness of mice exposed to 30 days of spaceflight using micro-computed tomography for comparison with our previous findings. Because sclerostin, the secreted glycoprotein of the Sost gene, is a potent inhibitor of bone formation, our second aim was to quantify Sost mRNA expression using quantitative PCR. Calvariae were obtained from six mice aboard the Russian 30-day Bion-M1 biosatellite and seven ground controls. In mice exposed to 30 days of spaceflight, calvaria bone structure was not significantly different from that of their controls (bone volume was about 5% lower in spaceflight mice, p = 0.534). However, Sost mRNA expression was 16-fold (16.4 ± 0.4, p < 0.001) greater in the spaceflight group than that in the ground control group. Therefore, bone formation may have been suppressed in mice exposed to 30 days of spaceflight. Genetic responsiveness (e.g. sex or strain of animals) or in-flight environmental conditions other than microgravity (e.g. pCO2 levels) may have elicited different bone adaptations in STS-131 and Bion-M1 mice. Although structural results were not significant, this study provides biochemical evidence that calvaria mechanotransduction pathways may be altered during spaceflight, which could reflect vascular and interstitial fluid adaptations in non-weight bearing bones. Future studies are warranted to elucidate the processes that mediate these effects and the factors responsible for discordant calvaria bone adaptations between STS-131 and Bion-M1 mice. Previously, 15 days of spaceflight augmented bone volume in mice calvariae. In this study, calvaria bone structure was not altered after 30 days of spaceflight. Sost mRNA expression was higher in murine calvariae after 30 days of spaceflight. Longer duration, or other spaceflight factors, may negate short-term calvarial growth.
Collapse
Affiliation(s)
- Timothy R Macaulay
- University of California, San Diego, UCSD Medical Center, Orthopaedic Surgery Department, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA 92103-8894, USA
| | - Jamila H Siamwala
- University of California, San Diego, UCSD Medical Center, Orthopaedic Surgery Department, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA 92103-8894, USA
| | - Alan R Hargens
- University of California, San Diego, Altman Clinical and Translational Research Institute, Lower Level 2 West 417, 9452 Medical Center Drive, La Jolla, CA 92037, USA
| | | |
Collapse
|
35
|
Sherk VD, Carpenter RD, Giles ED, Higgins JA, Oljira RM, Johnson GC, Mills S, Maclean PS. Ibuprofen before Exercise Does Not Prevent Cortical Bone Adaptations to Training. Med Sci Sports Exerc 2017; 49:888-895. [PMID: 28079706 DOI: 10.1249/mss.0000000000001194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a nonsteroidal anti-inflammatory drug (NSAID) before a single bout of mechanical loading can reduce bone formation response. It is unknown whether this translates to an attenuation of bone strength and structural adaptations to exercise training. PURPOSE This study aimed to determine whether nonsteroidal anti-inflammatory drug use before exercise prevents increases in bone structure and strength in response to weight-bearing exercise. METHODS Adult female Wistar rats (n = 43) were randomized to ibuprofen (IBU) or vehicle (VEH) and exercise (EX) or sedentary (SED) groups in a 2 × 2 (drug and activity) ANCOVA design with body weight as the covariate, and data are reported as mean ± SE. IBU drops (30 mg·kg BW) or VEH (volume equivalent) were administered orally 1 h before the bout of exercise. Treadmill running occurred 5 d·wk for 60 min·d at 20 m·min with a 5° incline for 12 wk. Micro-CT, mechanical testing, and finite element modeling were used to quantify bone characteristics. RESULTS Drug-activity interactions were not significant. Exercise increased tibia cortical cross-sectional area (EX = 5.67 ± 0.10, SED = 5.37 ± 0.10 mm, P < 0.01) and structural estimates of bone strength (Imax: EX = 5.16 ± 0.18, SED = 4.70 ± 0.18 mm, P < 0.01; SecModPolar: EX = 4.01 ± 0.11, SED = 3.74 ± 0.10 mm, P < 0.01). EX had increased failure load (EX = 243 ± 9, SED = 202 ± 7 N, P < 0.05) and decreased distortion in response to a 200-N load (von Mises stress at tibia-fibula junction: EX = 48.2 ± 1.3, SED = 51.7 ± 1.2 MPa, P = 0.01). There was no effect of ibuprofen on any measurement tested. Femur results revealed similar patterns. CONCLUSION Ibuprofen before exercise did not prevent the skeletal benefits of exercise in female rats. However, exercise that engenders higher bone strains may be required to detect an effect of ibuprofen.
Collapse
Affiliation(s)
- Vanessa D Sherk
- 1Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; 2Department of Mechanical Engineering, University of Colorado Denver, Denver, CO; and 3Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The goal of this paper is to evaluate critically the literature published over the past 3 years regarding the Wnt signaling pathway. The Wnt pathway was found to be involved in bone biology in 2001-2002 with the discovery of a (G171V) mutation in the lipoprotein receptor-related protein 5 (LRP5) that resulted in high bone mass and another mutation that completely inactivated Lrp5 function and resulted in osteoporosis pseudoglioma syndrome (OPPG). The molecular biology has been complex, and very interesting. It has provided many opportunities for exploitation to develop new clinical treatments, particularly for osteoporosis. More clinical possibilities include: treatments for fracture healing, corticosteroid osteoporosis, osteogenesis imperfecta, and others. In addition, we wish to provide historical information coming from distant publications (~350 years ago) regarding bone biology that have been confirmed by study of Wnt signaling. RECENT FINDINGS A recent finding is the development of an antibody to sclerostin that is under study as a treatment for osteoporosis. Development of treatments for other forms of osteoporosis, such as corticosteroid osteoporosis, is also underway. The full range of the applications of the work is not yet been achieved.
Collapse
Affiliation(s)
- Mark L Johnson
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO, 64108, USA
| | - Robert R Recker
- Creighton University, 601 N 30th St., Ste 4841, Omaha, NE, 68131, USA.
| |
Collapse
|
37
|
Repp F, Kollmannsberger P, Roschger A, Kerschnitzki M, Berzlanovich A, Gruber GM, Roschger P, Wagermaier W, Weinkamer R. Spatial heterogeneity in the canalicular density of the osteocyte network in human osteons. Bone Rep 2017; 6:101-108. [PMID: 28377989 PMCID: PMC5369863 DOI: 10.1016/j.bonr.2017.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/30/2017] [Accepted: 03/08/2017] [Indexed: 02/04/2023] Open
Abstract
Osteocytes interconnect with each other forming an intricate cell network within the mineralized bone matrix. One important function of the osteocyte network is the mechano-regulation of bone remodeling, where a possible mechanism includes the fluid flow through the porosity housing the cell network - the osteocyte lacuno-canalicular network (OLCN). In our study the OLCN in human osteons was three-dimensionally imaged with the aim to obtain a quantitative description of the canalicular density and spatial variations of this quantity within osteons. The topology of the OLCN was determined by first staining the bone samples with rhodamine, then imaging the OLCN with confocal laser scanning microscopy and finally using image analysis to obtain a skeletonized version of the network for further analysis. In total 49 osteons were studied from the femoral cortical bone of four different middle-aged healthy women. The mean canalicular density given as length of the canaliculi in a unit volume was 0.074 ± 0.015 μm/μm3 (corresponding to 74 km/cm3). No correlation was found between the canalicular density and neither the size of the osteon nor the volume fraction occupied by osteocyte lacunae. Within osteons the canalicular density varied substantially with larger regions without any network. On average the canalicular density decreases when moving from the Haversian canal outwards towards the cement line. We hypothesize that a decrease in accessible canaliculi with tissue age as a result of micropetrosis can reduce the local mechanosensitivity of the bone. Systematic future studies on age- and disease-related changes on the topology of the OLCN have to demonstrate the diagnostic potential of the presented characterization method. accurate three-dimensional representation of the canalicular network topology using confocal microscopy and image analysis quantitative network description with an average canalicular density of 74 km per cubic centimeter in healthy human osteons substantial variability of the canalicular density within osteons with 10% of the bone having a density twice the average in osteons large regions lacking an accessible network were found radial decrease of the canalicular density from the Haversian canal towards the cement line
Collapse
Affiliation(s)
- Felix Repp
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, D-14424 Potsdam, Germany
| | - Philip Kollmannsberger
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, D-14424 Potsdam, Germany; ETH Zürich, Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, CH-8093 Zurich, Switzerland
| | - Andreas Roschger
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, D-14424 Potsdam, Germany; Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Michael Kerschnitzki
- Weizmann Institute of Science, Department of Structural Biology, 76100 Rehovot, Israel
| | - Andrea Berzlanovich
- Department of Forensic Medicine, Medical University of Vienna, Sensengasse 2, A-1090 Vienna, Austria
| | - Gerlinde M Gruber
- Department of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Straße 13, A-1090 Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Wolfgang Wagermaier
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, D-14424 Potsdam, Germany
| | - Richard Weinkamer
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, D-14424 Potsdam, Germany
| |
Collapse
|
38
|
Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev 2017; 117:4376-4421. [PMID: 28221776 DOI: 10.1021/acs.chemrev.6b00654] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the biological functions of cell and tissue can be regulated by biochemical factors (e.g., growth factors, hormones), the biophysical effects of materials on the regulation of biological activity are receiving more attention. In this Review, we systematically summarize the recent progress on how biomaterials with controllable properties (e.g., compositional/degradable dynamics, mechanical properties, 2D topography, and 3D geometry) can regulate cell behaviors (e.g., cell adhesion, spreading, proliferation, cell alignment, and the differentiation or self-maintenance of stem cells) and tissue/organ functions. How the biophysical features of materials influence tissue/organ regeneration have been elucidated. Current challenges and a perspective on the development of novel materials that can modulate specific biological functions are discussed. The interdependent relationship between biomaterials and biology leads us to propose the concept of "materiobiology", which is a scientific discipline that studies the biological effects of the properties of biomaterials on biological functions at cell, tissue, organ, and the whole organism levels. This Review highlights that it is more important to develop ECM-mimicking biomaterials having a self-regenerative capacity to stimulate tissue regeneration, instead of attempting to recreate the complexity of living tissues or tissue constructs ex vivo. The principles of materiobiology may benefit the development of novel biomaterials providing combinative bioactive cues to activate the migration of stem cells from endogenous reservoirs (i.e., cell niches), stimulate robust and scalable self-healing mechanisms, and unlock the body's innate powers of regeneration.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| |
Collapse
|
39
|
Atkins A, Milgram J, Weiner S, Shahar R. The response of anosteocytic bone to controlled loading. ACTA ACUST UNITED AC 2017; 218:3559-69. [PMID: 26582932 DOI: 10.1242/jeb.124073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bones of the skeleton of most advanced teleost fish do not contain osteocytes. Considering the pivotal role assigned to osteocytes in the process of modeling and remodeling (the adaptation of external and internal bone structure and morphology to external loads and the repair of areas with micro-damage accumulation, respectively) it is unclear how, and even whether, their skeleton can undergo modeling and remodeling. Here, we report on the results of a study of controlled loading of the anosteocytic opercula of tilapia (Oreochromis aureus). Using a variety of microscopy techniques we show that the bone of the anosteocytic tilapia actively adapts to applied loads, despite the complete absence of osteocytes. We show that in the directly loaded area, the response involves a combination of bone resorption and bone deposition; we interpret these results and the structure of the resultant bone tissue to mean that both modeling and remodeling are taking place in response to load. We further show that adjacent to the loaded area, new bone is deposited in an organized, layered manner, typical of a modeling process. The material stiffness of the newly deposited bone is higher than that of the bone which was present prior to loading. The absence of osteocytes requires another candidate cell for mechanosensing and coordinating the modeling process, with osteoblasts seeming the most likely candidates.
Collapse
Affiliation(s)
- Ayelet Atkins
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Joshua Milgram
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
40
|
Suswillo RFL, Javaheri B, Rawlinson SCF, Dowthwaite GP, Lanyon LE, Pitsillides AA. Strain uses gap junctions to reverse stimulation of osteoblast proliferation by osteocytes. Cell Biochem Funct 2017; 35:56-65. [PMID: 28083967 PMCID: PMC5299599 DOI: 10.1002/cbf.3245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/01/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
Identifying mechanisms by which cells of the osteoblastic lineage communicate in vivo is complicated by the mineralised matrix that encases osteocytes, and thus, vital mechanoadaptive processes used to achieve load-bearing integrity remain unresolved. We have used the coculture of immunomagnetically purified osteocytes and primary osteoblasts from both embryonic chick long bone and calvariae to examine these mechanisms. We exploited the fact that purified osteocytes are postmitotic to examine both their effect on proliferation of primary osteoblasts and the role of gap junctions in such communication. We found that chick long bone osteocytes significantly increased basal proliferation of primary osteoblasts derived from an identical source (tibiotarsi). Using a gap junction inhibitor, 18β-glycyrrhetinic acid, we also demonstrated that this osteocyte-related increase in osteoblast proliferation was not reliant on functional gap junctions. In contrast, osteocytes purified from calvarial bone failed to modify basal proliferation of primary osteoblast, but long bone osteocytes preserved their proproliferative action upon calvarial-derived primary osteoblasts. We also showed that coincubated purified osteocytes exerted a marked inhibitory action on mechanical strain-related increases in proliferation of primary osteoblasts and that this action was abrogated in the presence of a gap junction inhibitor. These data reveal regulatory differences between purified osteocytes derived from functionally distinct bones and provide evidence for 2 mechanisms by which purified osteocytes communicate with primary osteoblasts to coordinate their activity.
Collapse
Affiliation(s)
| | - Behzad Javaheri
- Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Simon C F Rawlinson
- Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gary P Dowthwaite
- Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Lance E Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
41
|
Fujii O, Tatsumi S, Ogata M, Arakaki T, Sakaguchi H, Nomura K, Miyagawa A, Ikuta K, Hanazaki A, Kaneko I, Segawa H, Miyamoto KI. Effect of Osteocyte-Ablation on Inorganic Phosphate Metabolism: Analysis of Bone-Kidney-Gut Axis. Front Endocrinol (Lausanne) 2017; 8:359. [PMID: 29312149 PMCID: PMC5742590 DOI: 10.3389/fendo.2017.00359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/11/2017] [Indexed: 01/24/2023] Open
Abstract
In response to kidney damage, osteocytes increase the production of several hormones critically involved in mineral metabolism. Recent studies suggest that osteocyte function is altered very early in the course of chronic kidney disease. In the present study, to clarify the role of osteocytes and the canalicular network in mineral homeostasis, we performed four experiments. In Experiment 1, we investigated renal and intestinal Pi handling in osteocyte-less (OCL) model mice [transgenic mice with the dentin matrix protein-1 promoter-driven diphtheria toxin (DT)-receptor that were injected with DT]. In Experiment 2, we administered granulocyte colony-stimulating factor to mice to disrupt the osteocyte canalicular network. In Experiment 3, we investigated the role of osteocytes in dietary Pi signaling. In Experiment 4, we analyzed gene expression level fluctuations in the intestine and liver by comparing mice fed a high Pi diet and OCL mice. Together, the findings of these experiments indicate that osteocyte ablation caused rapid renal Pi excretion (P < 0.01) before the plasma fibroblast growth factor 23 (FGF23) and parathyroid hormone (PTH) levels increased. At the same time, we observed a rapid suppression of renal Klotho (P < 0.01), type II sodium phosphate transporters Npt2a (P < 0.01) and Npt2c (P < 0.05), and an increase in intestinal Npt2b (P < 0.01) protein. In OCL mice, Pi excretion in feces was markedly reduced (P < 0.01). Together, these effects of osteocyte ablation are predicted to markedly increase intestinal Pi absorption (P < 0.01), thus suggesting that increased intestinal Pi absorption stimulates renal Pi excretion in OCL mice. In addition, the ablation of osteocytes and feeding of a high Pi diet affected FGF15/bile acid metabolism and controlled Npt2b expression. In conclusion, OCL mice exhibited increased renal Pi excretion due to enhanced intestinal Pi absorption. We discuss the role of FGF23-Klotho on renal and intestinal Pi metabolism in OCL mice.
Collapse
Affiliation(s)
- Osamu Fujii
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Sawako Tatsumi
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
- *Correspondence: Sawako Tatsumi, ; Ken-ichi Miyamoto,
| | - Mao Ogata
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Tomohiro Arakaki
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Haruna Sakaguchi
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kengo Nomura
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Atsumi Miyagawa
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kayo Ikuta
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ai Hanazaki
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ken-ichi Miyamoto
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
- *Correspondence: Sawako Tatsumi, ; Ken-ichi Miyamoto,
| |
Collapse
|
42
|
Najrana T, Sanchez-Esteban J. Mechanotransduction as an Adaptation to Gravity. Front Pediatr 2016; 4:140. [PMID: 28083527 PMCID: PMC5183626 DOI: 10.3389/fped.2016.00140] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Gravity has played a critical role in the development of terrestrial life. A key event in evolution has been the development of mechanisms to sense and transduce gravitational force into biological signals. The objective of this manuscript is to review how living organisms on Earth use mechanotransduction as an adaptation to gravity. Certain cells have evolved specialized structures, such as otoliths in hair cells of the inner ear and statoliths in plants, to respond directly to the force of gravity. By conducting studies in the reduced gravity of spaceflight (microgravity) or simulating microgravity in the laboratory, we have gained insights into how gravity might have changed life on Earth. We review how microgravity affects prokaryotic and eukaryotic cells at the cellular and molecular levels. Genomic studies in yeast have identified changes in genes involved in budding, cell polarity, and cell separation regulated by Ras, PI3K, and TOR signaling pathways. Moreover, transcriptomic analysis of late pregnant rats have revealed that microgravity affects genes that regulate circadian clocks, activate mechanotransduction pathways, and induce changes in immune response, metabolism, and cells proliferation. Importantly, these studies identified genes that modify chromatin structure and methylation, suggesting that long-term adaptation to gravity may be mediated by epigenetic modifications. Given that gravity represents a modification in mechanical stresses encounter by the cells, the tensegrity model of cytoskeletal architecture provides an excellent paradigm to explain how changes in the balance of forces, which are transmitted across transmembrane receptors and cytoskeleton, can influence intracellular signaling pathways and gene expression.
Collapse
Affiliation(s)
- Tanbir Najrana
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Juan Sanchez-Esteban
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
43
|
Rendina-Ruedy E, Graef J, Lightfoot S, Ritchey J, Clarke S, Lucas E, Smith B. Impaired glucose tolerance attenuates bone accrual by promoting the maturation of osteoblasts: Role of Beclin1-mediated autophagy. Bone Rep 2016; 5:199-207. [PMID: 28580387 PMCID: PMC5440954 DOI: 10.1016/j.bonr.2016.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/07/2016] [Indexed: 11/22/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) experience a 1.5-3.5 fold increase in fracture risk, but the mechanisms responsible for these alterations in bone biomechanical properties remain elusive. Macroautophagy, often referred to as autophagy, is regulated by signaling downstream of the insulin receptor. Metabolic changes associated with the progression of glucose intolerance have been shown to alter autophagy in various tissues, but limited information is available in relation to bone cells. The aim of this study was to (a) investigate whether autophagy is altered in bone tissue during impaired glucose tolerance, and (b) determine how autophagy impacts osteoblast differentiation, activity, and maturation. Four-week-old, male C57BL/6 mice were fed a control (Con) or high fat (HF) diet for 2, 8, or 16 wks. Mice on the HF diet demonstrated elevated fasting blood glucose and impaired glucose tolerance. Reduced trabecular bone in the femoral neck was evident in the mice on the HF diet by 8 wks compared to Con mice. Histological evaluation of the tibia suggested that the high fat diet promoted terminal differentiation of the osteoblast to an osteocyte. This shift of the osteoblasts towards a non-mineralizing, osteocyte phenotype appears to be coordinated by Beclin1-mediated autophagy. Consistent with these changes in the osteoblast in vivo, the induction of autophagy was able to direct MC3T3-E1 cells towards a more mature osteoblast phenotype. Although these data are somewhat observational, further investigation is warranted to determine if Beclin1-mediated autophagy is essential for the terminal differentiation of the osteoblasts and whether autophagy is having a protective or deleterious effect on bone in T2DM.
Collapse
Key Words
- AGEs, advanced glycation end products
- AIN, American Institute of Nutrition
- AMPK, adenosine monophosphate-activated protein kinase
- Ambra1, vacuole sorting protein (Vps34/15), activating molecule in Beclin-1 regulator autophagy
- Atg, autophagy-related proteins
- BafA1, bafilomycinA1
- Beclin1, Bcl-2-interacting myosin-like coiled-coil protein
- FIP200, focal adhesion
- Hyperglycemia
- IR, insulin receptor
- Insulin
- LC3, microtubule associated light chain
- Macroautophagy
- Osteocyte
- PE, phosphatidylethanolamine
- ROCK1, rho kinase 1
- Rap, rapamycin
- T2DM, type 2 diabetes mellitus
- ULK1/2, unc-like kinase
- UVRAG, ultraviolet radiation resistance-associated gene
- mTORC1, mammalian or mechanistic target of rapamycin complex
Collapse
Affiliation(s)
- E. Rendina-Ruedy
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - J.L. Graef
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - S.A. Lightfoot
- Center for Cancer Prevention and Drug Development, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - J.W. Ritchey
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, United States
| | - S.L. Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - E.A. Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - B.J. Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
44
|
Giorgi M, Verbruggen SW, Lacroix D. In silico bone mechanobiology: modeling a multifaceted biological system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:485-505. [PMID: 27600060 PMCID: PMC5082538 DOI: 10.1002/wsbm.1356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 12/04/2022]
Abstract
Mechanobiology, the study of the influence of mechanical loads on biological processes through signaling to cells, is fundamental to the inherent ability of bone tissue to adapt its structure in response to mechanical stimulation. The immense contribution of computational modeling to the nascent field of bone mechanobiology is indisputable, having aided in the interpretation of experimental findings and identified new avenues of inquiry. Indeed, advances in computational modeling have spurred the development of this field, shedding new light on problems ranging from the mechanical response to loading by individual cells to tissue differentiation during events such as fracture healing. To date, in silico bone mechanobiology has generally taken a reductive approach in attempting to answer discrete biological research questions, with research in the field broadly separated into two streams: (1) mechanoregulation algorithms for predicting mechanobiological changes to bone tissue and (2) models investigating cell mechanobiology. Future models will likely take advantage of advances in computational power and techniques, allowing multiscale and multiphysics modeling to tie the many separate but related biological responses to loading together as part of a larger systems biology approach to shed further light on bone mechanobiology. Finally, although the ever‐increasing complexity of computational mechanobiology models will inevitably move the field toward patient‐specific models in the clinic, the determination of the context in which they can be used safely for clinical purpose will still require an extensive combination of computational and experimental techniques applied to in vitro and in vivo applications. WIREs Syst Biol Med 2016, 8:485–505. doi: 10.1002/wsbm.1356 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Mario Giorgi
- Department of Oncology and Metabolism and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | | | - Damien Lacroix
- INSIGNEO Institute for In Silico Medicine, Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
| |
Collapse
|
45
|
Segev G, Meltzer H, Shipov A. Does Secondary Renal Osteopathy Exist in Companion Animals? Vet Clin North Am Small Anim Pract 2016; 46:1151-62. [PMID: 27436331 DOI: 10.1016/j.cvsm.2016.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Secondary renal hyperparathyroidism is an inevitable consequence of chronic kidney disease. In human patients, the disease is associated with decreased bone quality and increased fracture risk. Recent evidence suggests that bone quality is also decreased in companion animals, more pronouncedly in cats compared with dogs, likely because of a longer disease course. The clinical significance of these findings is yet to be determined. However, clinicians should keep in mind that animals with chronic kidney disease have decreased bone quality and increased fracture risk.
Collapse
Affiliation(s)
- Gilad Segev
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Hertzel Street, Rehovot 76100, Israel.
| | - Hagar Meltzer
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Hertzel Street, Rehovot 76100, Israel
| | - Anna Shipov
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Hertzel Street, Rehovot 76100, Israel
| |
Collapse
|
46
|
Verbruggen SW, Vaughan TJ, McNamara LM. Mechanisms of osteocyte stimulation in osteoporosis. J Mech Behav Biomed Mater 2016; 62:158-168. [PMID: 27203269 DOI: 10.1016/j.jmbbm.2016.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 01/08/2023]
Abstract
Experimental studies have shown that primary osteoporosis caused by oestrogen-deficiency results in localised alterations in bone tissue properties and mineral composition. Additionally, changes to the lacunar-canalicular architecture surrounding the mechanosensitive osteocyte have been observed in animal models of the disease. Recently, it has also been demonstrated that the mechanical stimulation sensed by osteocytes changes significantly during osteoporosis. Specifically, it was shown that osteoporotic bone cells experience higher maximum strains than healthy bone cells after short durations of oestrogen deficiency. However, in long-term oestrogen deficiency there was no significant difference between bone cells in healthy and normal bone. The mechanisms by which these changes arise are unknown. In this study, we test the hypothesis that complex changes in tissue composition and lacunar-canalicular architecture during osteoporosis alter the mechanical stimulation of the osteocyte. The objective of this research is to employ computational methods to investigate the relationship between changes in bone tissue composition and microstructure and the mechanical stimulation of osteocytes during osteoporosis. By simulating physiological loading, it was observed that an initial decrease in tissue stiffness (of 0.425GPa) and mineral content (of 0.66wt% Ca) relative to controls could explain the mechanical stimulation observed at the early stages of oestrogen deficiency (5 weeks post-OVX) during in situ bone cell loading in an oestrogen-deficient rat model of post-menopausal osteoporosis (Verbruggen et al., 2015). Moreover, it was found that a later increase in stiffness (of 1.175GPa) and mineral content (of 1.64wt% Ca) during long-term osteoporosis (34 weeks post-OVX), could explain the mechanical stimuli previously observed at a later time point due to the progression of osteoporosis. Furthermore, changes in canalicular tortuosity arising during osteoporosis were shown to result in increased osteogenic strain stimulation, though to a lesser extent than has been observed experimentally. The findings of this study indicate that changes in the extracellular environment during osteoporosis, arising from altered mineralisation and lacunar-canalicular architecture, lead to altered mechanical stimulation of osteocytes, and provide an enhanced understanding of changes in bone mechanobiology during osteoporosis.
Collapse
Affiliation(s)
- Stefaan W Verbruggen
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Laoise M McNamara
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| |
Collapse
|
47
|
Tozzi G, De Mori A, Oliveira A, Roldo M. Composite Hydrogels for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E267. [PMID: 28773392 PMCID: PMC5502931 DOI: 10.3390/ma9040267] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023]
Abstract
Over the past few decades, bone related disorders have constantly increased. Among all pathological conditions, osteoporosis is one of the most common and often leads to bone fractures. This is a massive burden and it affects an estimated 3 million people only in the UK. Furthermore, as the population ages, numbers are due to increase. In this context, novel biomaterials for bone fracture regeneration are constantly under development. Typically, these materials aim at favoring optimal bone integration in the scaffold, up to complete bone regeneration; this approach to regenerative medicine is also known as tissue engineering (TE). Hydrogels are among the most promising biomaterials in TE applications: they are very flexible materials that allow a number of different properties to be targeted for different applications, through appropriate chemical modifications. The present review will focus on the strategies that have been developed for formulating hydrogels with ideal properties for bone regeneration applications. In particular, aspects related to the improvement of hydrogels' mechanical competence, controlled delivery of drugs and growth factors are treated in detail. It is hoped that this review can provide an exhaustive compendium of the main aspects in hydrogel related research and, therefore, stimulate future biomaterial development and applications.
Collapse
Affiliation(s)
- Gianluca Tozzi
- School of Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ, UK.
| | - Arianna De Mori
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| | - Antero Oliveira
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| | - Marta Roldo
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| |
Collapse
|
48
|
Melke J, Midha S, Ghosh S, Ito K, Hofmann S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 2016; 31:1-16. [PMID: 26360593 DOI: 10.1016/j.actbio.2015.09.005] [Citation(s) in RCA: 483] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/24/2015] [Accepted: 09/06/2015] [Indexed: 01/08/2023]
Abstract
Silk fibroin (SF) is a fibrous protein which is produced mainly by silkworms and spiders. Its unique mechanical properties, tunable biodegradation rate and the ability to support the differentiation of mesenchymal stem cells along the osteogenic lineage, have made SF a favorable scaffold material for bone tissue engineering. SF can be processed into various scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified, which provides an impressive toolbox and allows SF scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. STATEMENT OF SIGNIFICANCE Silk fibroin is a natural biomaterial with remarkable biomedical and mechanical properties which make it favorable for a broad range of bone tissue engineering applications. It can be processed into different scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified which provides a unique toolbox and allows silk fibroin scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing silk fibroin, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted.
Collapse
|
49
|
Measurement of lacunar bone strains and crack formation during tensile loading by digital volume correlation of second harmonic generation images. J Mech Behav Biomed Mater 2016; 60:148-156. [PMID: 26807766 DOI: 10.1016/j.jmbbm.2015.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 11/20/2022]
Abstract
The maintenance of healthy bone tissue depends upon the ability of osteocytes to respond to mechanical cues on the cellular level. The combination of digital volume correlation and second harmonic generation microscopy offers the opportunity to investigate the mechanical microenvironment of intact bone on the scale of individual osteocytes. Adult human femurs were imaged under tensile loads of 5 and 15MPa and volumes of approximately 492×429×31μm(3) were analyzed, along with an image of a bone microcrack under the same loading conditions. Principal strains were significantly higher in three-dimensional digital volume correlation when compared to two-dimensional digital image correlation. The average maximum principal strain magnitude was 5.06-fold greater than the applied global strain, with peak strains of up to 23.14-fold over global strains measured at the borders of osteocyte lacunae. Finally, a microcrack that initiated at an osteocyte lacunae had its greatest tensile strain magnitudes at the crack expansion front in the direction of a second lacunae, but strain at the crack border was reduced to background strain magnitudes upon breaching the second lacunae. This serveed to demonstrate the role of lacunae in initiating, mediating and terminating microcrack growth.
Collapse
|
50
|
Pesce Viglietti AI, Arriola Benitez PC, Gentilini MV, Velásquez LN, Fossati CA, Giambartolomei GH, Delpino MV. Brucella abortus Invasion of Osteocytes Modulates Connexin 43 and Integrin Expression and Induces Osteoclastogenesis via Receptor Activator of NF-κB Ligand and Tumor Necrosis Factor Alpha Secretion. Infect Immun 2016; 84:11-20. [PMID: 26459511 PMCID: PMC4694014 DOI: 10.1128/iai.01049-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/03/2015] [Indexed: 01/18/2023] Open
Abstract
Osteoarticular brucellosis is the most common localization of human active disease. Osteocytes are the most abundant cells of bone. They secrete factors that regulate the differentiation of both osteoblasts and osteoclasts during bone remodeling. The aim of this study is to determine if Brucella abortus infection modifies osteocyte function. Our results indicate that B. abortus infection induced matrix metalloproteinase 2 (MMP-2), receptor activator for NF-κB ligand (RANKL), proinflammatory cytokines, and keratinocyte chemoattractant (KC) secretion by osteocytes. In addition, supernatants from B. abortus-infected osteocytes induced bone marrow-derived monocytes (BMM) to undergo osteoclastogenesis. Using neutralizing antibodies against tumor necrosis factor alpha (TNF-α) or osteoprotegerin (OPG), RANKL's decoy receptor, we determined that TNF-α and RANKL are involved in osteoclastogenesis induced by supernatants from B. abortus-infected osteocytes. Connexin 43 (Cx43) and the integrins E11/gp38, integrin-α, integrin-β, and CD44 are involved in cell-cell interactions necessary for osteocyte survival. B. abortus infection inhibited the expression of Cx43 but did not modify the expression of integrins. Yet the expression of both Cx43 and integrins was inhibited by supernatants from B. abortus-infected macrophages. B. abortus infection was not capable of inducing osteocyte apoptosis. However, supernatants from B. abortus-infected macrophages induced osteocyte apoptosis in a dose-dependent manner. Taken together, our results indicate that B. abortus infection could alter osteocyte function, contributing to bone damage.
Collapse
Affiliation(s)
- Ayelén Ivana Pesce Viglietti
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Facultad de Medicina, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Constanza Arriola Benitez
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Facultad de Medicina, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Virginia Gentilini
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Facultad de Medicina, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lis Noelia Velásquez
- Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carlos Alberto Fossati
- Instituto de Estudios Inmunológicos y Fisiopatológicos, CONICET-Universidad Nacional de La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, La Plata, Buenos Aires, Argentina
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Facultad de Medicina, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Facultad de Medicina, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|