1
|
Offeddu GS, Hajal C, Foley CR, Wan Z, Ibrahim L, Coughlin MF, Kamm RD. The cancer glycocalyx mediates intravascular adhesion and extravasation during metastatic dissemination. Commun Biol 2021; 4:255. [PMID: 33637851 PMCID: PMC7910477 DOI: 10.1038/s42003-021-01774-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
The glycocalyx on tumor cells has been recently identified as an important driver for cancer progression, possibly providing critical opportunities for treatment. Metastasis, in particular, is often the limiting step in the survival to cancer, yet our understanding of how tumor cells escape the vascular system to initiate metastatic sites remains limited. Using an in vitro model of the human microvasculature, we assess here the importance of the tumor and vascular glycocalyces during tumor cell extravasation. Through selective manipulation of individual components of the glycocalyx, we reveal a mechanism whereby tumor cells prepare an adhesive vascular niche by depositing components of the glycocalyx along the endothelium. Accumulated hyaluronic acid shed by tumor cells subsequently mediates adhesion to the endothelium via the glycoprotein CD44. Trans-endothelial migration and invasion into the stroma occurs through binding of the isoform CD44v to components of the sub-endothelial extra-cellular matrix. Targeting of the hyaluronic acid-CD44 glycocalyx complex results in significant reduction in the extravasation of tumor cells. These studies provide evidence of tumor cells repurposing the glycocalyx to promote adhesive interactions leading to cancer progression. Such glycocalyx-mediated mechanisms may be therapeutically targeted to hinder metastasis and improve patient survival.
Collapse
Affiliation(s)
- Giovanni S. Offeddu
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Cynthia Hajal
- grid.116068.80000 0001 2341 2786Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Colleen R. Foley
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Zhengpeng Wan
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Lina Ibrahim
- grid.116068.80000 0001 2341 2786Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Mark F. Coughlin
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Roger D. Kamm
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
2
|
Modeling Spontaneous Bone Metastasis Formation of Solid Human Tumor Xenografts in Mice. Cancers (Basel) 2020; 12:cancers12020385. [PMID: 32046143 PMCID: PMC7072706 DOI: 10.3390/cancers12020385] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022] Open
Abstract
The majority of cancer-related deaths are due to hematogenous metastases, and the bone marrow (BM) represents one of the most frequent metastatic sites. To study BM metastasis formation in vivo, the most efficient approach is based on intracardiac injection of human tumor cells into immunodeficient mice. However, such a procedure circumvents the early steps of the metastatic cascade. Here we describe the development of xenograft mouse models (balb/c rag2-/- and severe combined immunodeficient (SCID)), in which BM metastases are spontaneously derived from subcutaneous (s.c.) primary tumors (PTs). As verified by histology, the described methodology including ex vivo bioluminescence imaging (BLI) even enabled the detection of micrometastases in the BM. Furthermore, we established sublines from xenograft primary tumors (PTs) and corresponding BM (BM) metastases using LAN-1 neuroblastoma xenografts as a first example. In vitro "metastasis" assays (viability, proliferation, transmigration, invasion, colony formation) partially indicated pro-metastatic features of the LAN-1-BM compared to the LAN-1-PT subline. Unexpectedly, after s.c. re-injection into mice, LAN-1-BM xenografts developed spontaneous BM metastases less frequently than LAN-1-PT xenografts. This study provides a novel methodologic approach for modelling the spontaneous metastatic cascade of human BM metastasis formation in mice. Moreover, our data indicate that putative bone-metastatic features get rapidly lost upon routine cell culture.
Collapse
|
3
|
Abstract
Immunotherapy is one of the most exciting recent breakthroughs in the field of cancer treatment. Many different approaches are being developed and a number have already gained regulatory approval or are under investigation in clinical trials. However, learning from the past, preclinical animal models often insufficiently reflect the physiological situation in humans, which subsequently causes treatment failures in clinical trials. Due to species-specific differences in most parts of the immune system, the transfer of knowledge from preclinical studies to clinical trials is eminently challenging. Human tumor cell line-based or patient-derived xenografts in immunocompromised mice have been successfully applied in the preclinical testing of cytotoxic or molecularly targeted agents, but naturally these systems lack the human immune system counterpart. The co-transplantation of human peripheral blood mononuclear cells or hematopoietic stem cells is employed to overcome this limitation. This review summarizes some important aspects of the different available tumor xenograft mouse models, their history, and their implementation in drug development and personalized therapy. Moreover, recent progress, opportunities and limitations of different humanized mouse models will be discussed.
Collapse
|
4
|
Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, Qian Y, Sharrow AC, Ye Z, Wu L, Xu H. Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells. Stem Cell Reports 2018; 9:464-477. [PMID: 28793246 PMCID: PMC5550272 DOI: 10.1016/j.stemcr.2017.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022] Open
Abstract
Renal cell carcinoma (RCC) is a deadly malignancy due to its tendency to metastasize and resistance to chemotherapy. Stem-like tumor cells often confer these aggressive behaviors. We discovered an endoglin (CD105)-expressing subpopulation in human RCC xenografts and patient samples with a greater capability to form spheres in vitro and tumors in mice at low dilutions than parental cells. Knockdown of CD105 by short hairpin RNA and CRISPR/cas9 reduced stemness markers and sphere-formation ability while accelerating senescence in vitro. Importantly, downregulation of CD105 significantly decreased the tumorigenicity and gemcitabine resistance. This loss of stem-like properties can be rescued by CDA, MYC, or NANOG, and CDA might act as a demethylase maintaining MYC and NANOG. In this study, we showed that Endoglin (CD105) expression not only demarcates a cancer stem cell subpopulation but also confers self-renewal ability and contributes to chemoresistance in RCC.
Collapse
Affiliation(s)
- Junhui Hu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China; Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Wei Guan
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Peijun Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Jin Dai
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
| | - Kun Tang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Haibing Xiao
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Yuan Qian
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Allison C Sharrow
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Zhangqun Ye
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Hua Xu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China.
| |
Collapse
|
5
|
Jedeszko C, Paez-Ribes M, Di Desidero T, Man S, Lee CR, Xu P, Bjarnason GA, Bocci G, Kerbel RS. Postsurgical adjuvant or metastatic renal cell carcinoma therapy models reveal potent antitumor activity of metronomic oral topotecan with pazopanib. Sci Transl Med 2015; 7:282ra50. [DOI: 10.1126/scitranslmed.3010722] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Tracz A, Mastri M, Lee CR, Pili R, Ebos JML. Modeling spontaneous metastatic renal cell carcinoma (mRCC) in mice following nephrectomy. J Vis Exp 2014. [PMID: 24836396 DOI: 10.3791/51485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
One of the key challenges to improved testing of new experimental therapeutics in renal cell carcinoma (RCC) is the development of models that faithfully recapitulate early- and late-stage metastatic disease progression. Typical tumor implantation models utilize ectopic or orthotopic primary tumor implantation, but few include systemic spontaneous metastatic disease that mimics the clinical setting. This protocol describes the key steps to develop RCC disease progression stages similar to patients. First, it uses a highly metastatic mouse tumor cell line in a syngeneic model to show orthotopic tumor cell implantation. Methods include superficial and internal implantation into the sub-capsular space with cells combined with matrigel to prevent leakage and early spread. Next it describes the procedures for excision of tumor-bearing kidney (nephrectomy), with critical pre- and post- surgical mouse care. Finally, it outlines the steps necessary to monitor and assess micro-and macro-metastatic disease progression, including bioluminescent imaging as well provides a detailed visual necropsy guide to score systemic disease distribution. The goal of this protocol description is to facilitate the widespread use of clinically relevant metastatic RCC models to improve the predictive value of future therapeutic testing.
Collapse
Affiliation(s)
- Amanda Tracz
- Genitourinary Section, Department of Medicine, Roswell Park Cancer Institute
| | - Michalis Mastri
- Genitourinary Section, Department of Medicine, Roswell Park Cancer Institute
| | | | - Roberto Pili
- Genitourinary Section, Department of Medicine, Roswell Park Cancer Institute
| | - John M L Ebos
- Genitourinary Section, Department of Medicine, Roswell Park Cancer Institute;
| |
Collapse
|
7
|
Coughlin MF, Fredberg JJ. Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines. Phys Biol 2013; 10:065001. [PMID: 24304722 DOI: 10.1088/1478-3975/10/6/065001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion.
Collapse
|
8
|
Tanaka T, Kuramitsu Y, Wang Y, Baron B, Kitagawa T, Tokuda K, Hirakawa K, Yashiro M, Naito S, Nakamura K. Glyoxalase 1 as a candidate for indicating the metastatic potential of SN12C human renal cell carcinoma cell clones. Oncol Rep 2013; 30:2365-70. [PMID: 23982595 DOI: 10.3892/or.2013.2699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/16/2013] [Indexed: 11/06/2022] Open
Abstract
Three clones with differential metastatic potential were established from the parental SN12C human renal cell carcinoma (HRCC). We previously reported that in the two high metastatic SN12C clones, two isoforms of ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH‑L1) showed decreased expression by using two-dimensional electrophoresis (2‑DE) covering a pH range (pH 3.0‑10.0) followed by liquid chromatography‑tandem mass spectrometry. However, in the case of the low metastatic clone, the spot volume for UCH‑L1 was almost the same as for the parental SN12C. In the present study, we found one protein spot which was correlated with the metastatic potential of SN12C clones by using 2‑DE over a narrow pH range (pH 4.0‑7.0). The protein glyoxalase 1 (GLO1) appeared to be directly proportional to the metastatic potential of the SN12C clones. GLO1 was the only protein which consistently varied according to the metastatic potentials of SN12C clones. GLO1 was increased in high metastatic cell lines by western blot analysis. These findings suggest that GLO1 is associated with the metastatic potential of SN12C HRCC clones. We expanded our experimental range to include clones of scirrhous gastric cancer cell lines (OCUM‑2M, OCUM‑2D and OCUM‑2MLN) and similar results were obtained, thereby further strengthening our original findings.
Collapse
Affiliation(s)
- Toshiyuki Tanaka
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Coughlin MF, Bielenberg DR, Lenormand G, Marinkovic M, Waghorne CG, Zetter BR, Fredberg JJ. Cytoskeletal stiffness, friction, and fluidity of cancer cell lines with different metastatic potential. Clin Exp Metastasis 2012; 30:237-50. [PMID: 22961212 DOI: 10.1007/s10585-012-9531-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 08/27/2012] [Indexed: 12/26/2022]
Abstract
We quantified mechanical properties of cancer cells differing in metastatic potential. These cells included normal and H-ras-transformed NIH3T3 fibroblast cells, normal and oncoprotein-overexpressing MCF10A breast cancer cells, and weakly and strongly metastatic cancer cell line pairs originating from human cancers of the skin (A375P and A375SM cells), kidney (SN12C and SN12PM6 cells), prostate (PC3M and PC3MLN4 cells), and bladder (253J and 253JB5 cells). Using magnetic twisting cytometry, cytoskeletal stiffness (g') and internal friction (g″) were measured over a wide frequency range. The dependencies of g' and g″ upon frequency were used to determine the power law exponent x which is a direct measure of cytoskeletal fluidity and quantifies where the cytoskeleton resides along the spectrum of solid-like (x = 1) to fluid-like (x = 2) states. Cytoskeletal fluidity x increased following transformation by H-ras oncogene expression in NIH3T3 cells, overexpression of ErbB2 and 14-3-3-ζ in MCF10A cells, and implantation and growth of PC3M and 253J cells in the prostate and bladder, respectively. Each of these perturbations that had previously been shown to enhance cancer cell motility and invasion are shown here to shift the cytoskeleton towards a more fluid-like state. In contrast, strongly metastatic A375SM and SN12PM6 cells that disseminate by lodging in the microcirculation of peripheral organs had smaller x than did their weakly metastatic cell line pairs A375P and SN12C, respectively. Thus, enhanced hematological dissemination was associated with decreased x and a shift towards a more solid-like cytoskeleton. Taken together, these results are consistent with the notion that adaptations known to enhance metastatic ability in cancer cell lines define a spectrum of fluid-like versus solid-like states, and the position of the cancer cell within this spectrum may be a determinant of cancer progression.
Collapse
Affiliation(s)
- Mark F Coughlin
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Neutrophil chemokines secreted by tumor cells mount a lung antimetastatic response during renal cell carcinoma progression. Oncogene 2012; 32:1752-60. [PMID: 22665059 PMCID: PMC3435490 DOI: 10.1038/onc.2012.201] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mechanism by which renal cell carcinoma (RCC) colonizes the lung microenvironment during metastasis remains largely unknown. To investigate this process, we grafted human RCC cells with varying lung metastatic potential in mice. Gene expression profiling of the mouse lung stromal compartment revealed a signature enriched for neutrophil-specific functions that was induced preferentially by poorly metastatic cells. Analysis of the gene expression signatures of tumor cell lines showed an inverse correlation between metastatic activity and the levels of a number of chemokines, including CXCL5 and IL8. Enforced depletion of CXCL5 and IL8 in these cell lines enabled us to establish a functional link between lung neutrophil infiltration, secretion of chemokines by cancer cells and metastatic activity. We further show that human neutrophils display a higher cytotoxic activity against poorly metastatic cells compared with highly metastatic cells. Together, these results support a model in which neutrophils recruited to the lung by tumor-secreted chemokines build an antimetastatic barrier with loss of neutrophil chemokines in tumor cells acting as a critical rate-limiting step during lung metastatic seeding.
Collapse
|
11
|
López-Lago MA, Thodima VJ, Guttapalli A, Chan T, Heguy A, Molina AM, Reuter VE, Motzer RJ, Chaganti RSK. Genomic deregulation during metastasis of renal cell carcinoma implements a myofibroblast-like program of gene expression. Cancer Res 2010; 70:9682-92. [PMID: 20952505 PMCID: PMC3281492 DOI: 10.1158/0008-5472.can-10-2279] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clear cell renal cell carcinoma (RCC) is the most common and invasive adult kidney cancer. The genetic and biological mechanisms that drive metastatic spread of RCC remain largely unknown. We have investigated the molecular signatures and underlying genomic aberrations associated with RCC metastasis, using an approach that combines a human xenograft model; expression profiling of RNA, DNA, and microRNA (miRNA); functional verification; and clinical validation. We show that increased metastatic activity is associated with acquisition of a myofibroblast-like signature in both tumor cell lines and in metastatic tumor biopsies. Our results also show that the mesenchymal trait did not provide an invasive advantage to the metastatic tumor cells. We further show that some of the constituents of the mesenchymal signature, including the expression of the well-characterized myofibroblastic marker S100A4, are functionally relevant. Epigenetic silencing and miRNA-induced expression changes accounted for the change in expression of a significant number of genes, including S100A4, in the myofibroblastic signature; however, DNA copy number variation did not affect the same set of genes. These findings provide evidence that widespread genetic and epigenetic alterations can lead directly to global deregulation of gene expression and contribute to the development or progression of RCC metastasis culminating in a highly malignant myofibroblast-like cell.
Collapse
MESH Headings
- Adult
- Animals
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- DNA Methylation
- Epithelial-Mesenchymal Transition/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Male
- Mesoderm/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- MicroRNAs/genetics
- Myofibroblasts/metabolism
- Neoplasm Metastasis
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic/genetics
- Transplantation, Heterologous
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Miguel A. López-Lago
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York NY, 01121
| | - Venkata J. Thodima
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York NY, 01121
| | - Asha Guttapalli
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York NY, 01121
| | - Timothy Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| | - Adriana Heguy
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| | - Ana M. Molina
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| | - Victor E. Reuter
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| | - Robert J. Motzer
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| | - R. S. K. Chaganti
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York NY, 01121
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| |
Collapse
|
12
|
Conn EM, Botkjaer KA, Kupriyanova TA, Andreasen PA, Deryugina EI, Quigley JP. Comparative analysis of metastasis variants derived from human prostate carcinoma cells: roles in intravasation of VEGF-mediated angiogenesis and uPA-mediated invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1638-52. [PMID: 19729488 DOI: 10.2353/ajpath.2009.090384] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To analyze the process of tumor cell intravasation, we used the human tumor-chick embryo spontaneous metastasis model to select in vivo high (PC-hi/diss) and low (PC-lo/diss) disseminating variants from the human PC-3 prostate carcinoma cell line. These variants dramatically differed in their intravasation and dissemination capacities in both chick embryo and mouse spontaneous metastasis models. Concomitant with enhanced intravasation, PC-hi/diss exhibited increased angiogenic potential in avian and murine models. PC-hi/diss angiogenesis and intravasation were dependent on increased secretion of vascular endothelial growth factor (VEGF), since treating developing tumors with a function-blocking anti-VEGF antibody simultaneously inhibited both processes without affecting primary tumor growth. PC-hi/diss cells were also more migratory and invasive, suggestive of heightened ability to escape from primary tumors due to matrix-degrading activity. Consistent with this suggestion, PC-hi/diss cells produced more of the serine protease urokinase-type plasminogen activator (uPA) as compared with PC-lo/diss. The functional role of uPA in PC-hi/diss dissemination was confirmed by inhibition of invasion, angiogenesis, and intravasation with specific function-blocking antibodies that prevented uPA activation and blocked uPA activity. These processes were similarly sensitive to aprotinin, a potent inhibitor of serine proteases, including uPA-generated plasmin. Thus, our comparison of the PC-3 intravasation variants points to key roles for the uPA-plasmin system in PC-hi/diss intravasation, possibly via (1) promoting tumor cell matrix invasion and (2) facilitating development of VEGF-dependent angiogenic blood vessels.
Collapse
Affiliation(s)
- Erin M Conn
- The Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
13
|
Tanaka T, Kuramitsu Y, Fujimoto M, Naito S, Oka M, Nakamura K. Downregulation of two isoforms of ubiquitin carboxyl-terminal hydrolase isozyme L1 correlates with high metastatic potentials of human SN12C renal cell carcinoma cell clones. Electrophoresis 2008; 29:2651-9. [PMID: 18494032 DOI: 10.1002/elps.200700847] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proteomic differential display analysis was performed on human renal cell carcinoma cell SN12C clones having different metastatic potentials by using 2-DE and LC-MS/MS. The SN12C cell clones were SN12C parent cell line, SN12C-clone 2, SN12C-clone 4, and SN12C-PM6. The SN12C parent cell line was established from an HRCC surgical specimen. SN12C-clone 4 has lower, and SN12C-clone 2 and SN12C-PM6 have higher metastatic potential than SN12C parent cells. We found eight protein spots whose expression level was different between low metastatic clones and high metastatic clones. The protein expression of three appeared to be higher in high metastatic clones than low metastatic clones, and that of other five protein spots appeared to be lower in high metastatic clones than low metastatic clones. These spots were selected, digested and analyzed by LC-MS/MS analysis, and they were identified by peptide sequencing tag. In high metastatic potential clones, two isoforms of ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1) were downregulated. These results suggest that UCH-L1 expression seems to be associated with the metastatic potential of HRCC SN12C cell clones.
Collapse
Affiliation(s)
- Toshiyuki Tanaka
- Department of Digestive Surgery and Surgical Oncology Department of Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Targeting the Tumor Microenvironment (Stroma) for Treatment of Metastasis. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Zhang L, Zhang X, Barrisford GW, Olumi AF. Lexatumumab (TRAIL-receptor 2 mAb) induces expression of DR5 and promotes apoptosis in primary and metastatic renal cell carcinoma in a mouse orthotopic model. Cancer Lett 2007; 251:146-57. [PMID: 17184908 DOI: 10.1016/j.canlet.2006.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in a variety of tumorigenic and transformed cell lines but not in many normal cells. Hence, TRAIL-agonist compounds have the potential of being excellent cancer therapeutic agents with minimal cytotoxicity. Here, we examine the efficacy of the TRAIL-receptor 2 agonist, lexatumumab (Human Genome Sciences, Inc., Rockville, MD), and identify molecular pathways that differentiate between lexatumumab-sensitive and lexatumumab-resistance renal cancer cells. In an orthotopic metastatic mouse model, we first demonstrate that lexatumumab was effective in reducing the tumor burden of primary and metastatic lexatumumab-sensitive xenografts. We demonstrate that lexatumumab-sensitive cells were capable of triggering both the extrinsic and the intrinsic apoptotic pathways as demonstrated by caspase 8 and caspase 9 activations, respectively, after treatment with lexatumumab. In addition, expression of c-FLIP(L) protein, an important regulator of TRAIL-induced apoptosis, decreased, while expression of the TRAIL-receptor 2, DR5, increased. This study serves as a pre-clinical model for using TRAIL-like therapies for patients with advanced RCC.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/prevention & control
- Carcinoma, Renal Cell/secondary
- Cell Line, Tumor
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Humans
- Immunohistochemistry
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Kidney Neoplasms/prevention & control
- Mice
- Mice, Nude
- Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Liang Zhang
- Division of Urologic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
16
|
Li L, Zhang L, Zhang X, Yan Q, Minamishima YA, Olumi AF, Mao M, Bartz S, Kaelin WG. Hypoxia-inducible factor linked to differential kidney cancer risk seen with type 2A and type 2B VHL mutations. Mol Cell Biol 2007; 27:5381-92. [PMID: 17526729 PMCID: PMC1952077 DOI: 10.1128/mcb.00282-07] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clear cell carcinoma of the kidney is a major cause of mortality in patients with von Hippel-Lindau (VHL) disease, which is caused by germ line mutations that inactivate the VHL tumor suppressor gene. Biallelic VHL inactivation, due to mutations or hypermethylation, is also common in sporadic clear cell renal carcinomas. The VHL gene product, pVHL, is part of a ubiquitin ligase complex that targets the alpha subunits of the heterodimeric transcription factor hypoxia-inducible factor (HIF) for destruction under well-oxygenated conditions. All VHL mutations linked to classical VHL disease compromise this pVHL function although some missense mutations result in a low risk of kidney cancer (type 2A VHL disease) while others result in a high risk (type 2B VHL disease). We found that type 2A mutants were less defective than type 2B mutants when reintroduced into VHL-/- renal carcinoma cells with respect to HIF regulation. A stabilized version of HIF2alpha promoted tumor growth by VHL-/- cells engineered to produce type 2A mutants, while knock-down of HIF2alpha in cells producing type 2B mutants had the opposite effect. Therefore, quantitative differences with respect to HIF deregulation are sufficient to account for the differential risks of kidney cancer linked to VHL mutations.
Collapse
Affiliation(s)
- Lianjie Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, 44 Binney Street, Mayer 457, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nomura T, Huang WC, Zhau HE, Wu D, Xie Z, Mimata H, Zayzafoon M, Young AN, Marshall FF, Weitzmann MN, Chung LWK. Beta2-microglobulin promotes the growth of human renal cell carcinoma through the activation of the protein kinase A, cyclic AMP-responsive element-binding protein, and vascular endothelial growth factor axis. Clin Cancer Res 2006; 12:7294-305. [PMID: 17189401 DOI: 10.1158/1078-0432.ccr-06-2060] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Beta(2)-microglobulin (beta2M), a soluble protein secreted by cancer and host inflammatory cells, has various biological functions, including antigen presentation. Because aberrant expression of beta2M has been reported in human renal cell carcinoma, we investigated the effects of beta2M overexpression on cancer cell growth and analyzed its molecular signaling pathway. EXPERIMENTAL DESIGN We established clonal cell lines that overexpressed beta2M in human renal cell carcinoma (SN12C) cells and then examined cell growth in vitro and in vivo and studied the beta2M-mediated downstream cell signaling pathway. RESULTS Our results showed that beta2M expression positively correlates with (a) in vitro growth on plastic dishes and as Matrigel colonies, (b) cell invasion and migration in Boyden chambers, and (c) vascular endothelial growth factor (VEGF) expression and secretion by cells. We found, in addition, that beta2M mediates its action through increased phosphorylation of cyclic AMP-responsive element-binding protein (CREB) via the protein kinase A-CREB axis, resulting in increased VEGF expression and secretion. In convergence with this signal axis, beta2M overexpression also activated both phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Beta2M overexpression induced accelerated growth of SN12C in mouse subcutis and bone. Interrupting the beta2M signaling pathway using small interfering RNA led to apoptosis with increased activation of caspase-3 and caspase-9 and cleaved poly(ADP-ribose) polymerase. CONCLUSIONS Our results showed for the first time that the beta2M-protein kinase A-CREB-VEGF signaling axis plays a crucial role in support of renal cell carcinoma growth and progression and reveals a novel therapeutic target.
Collapse
Affiliation(s)
- Takeo Nomura
- Molecular Urology and Therapeutics Program, Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pan J, Mestas J, Burdick MD, Phillips RJ, Thomas GV, Reckamp K, Belperio JA, Strieter RM. Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol Cancer 2006; 5:56. [PMID: 17083723 PMCID: PMC1636662 DOI: 10.1186/1476-4598-5-56] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 11/03/2006] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma (RCC) is characterized by organ-specific metastases. The chemokine stromal derived factor-1 (SDF-1/CXCL12) and its receptor CXCR4 have been suggested to regulate organ-specific metastasis in various other cancers. On this basis, we hypothesized that the biological axis of CXCL12 via interaction with its receptor, CXCR4, is a major mechanism for RCC metastasis. We demonstrated that CXCR4 was significantly expressed on circulating cytokeratin+ RCC cells from patients with known metastatic RCC. We detected up-regulation of CXCR4 mRNA and protein levels on a human RCC cell line by either knockdown of the von Hippel-Lindau (VHL) tumor suppressor protein, or incubating the cells under hypoxic conditions. The enhanced CXCR4 expression was mediated through the interaction of the Hypoxia Inducible Factor-1α (HIF-1α) with the promoter region of the CXCR4 gene. Furthermore, the expression of CXCR4 on human RCC directly correlated with their metastatic ability in vivo in both heterotopic and orthotopic SCID mouse models of human RCC. Neutralization of CXCL12 in SCID mice abrogated metastasis of RCC to target organs expressing high levels of CXCL12; without altering tumor cell proliferation, apoptosis, or tumor-associated angiogenesis. Therefore, our data suggest that the CXCL12/CXCR4 biological axis plays an important role in regulating the organ-specific metastasis of RCC.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/secondary
- Cell Hypoxia
- Cell Line, Tumor
- Chemokine CXCL12
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/pharmacology
- Chemokines, CXC/physiology
- Chemotaxis/drug effects
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Keratins/analysis
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mice
- Mice, SCID
- Promoter Regions, Genetic
- RNA Interference
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Transcriptional Activation
- Von Hippel-Lindau Tumor Suppressor Protein/antagonists & inhibitors
- Von Hippel-Lindau Tumor Suppressor Protein/genetics
Collapse
Affiliation(s)
- Judong Pan
- Department of Medicine, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| | - Javier Mestas
- Department of Medicine, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| | - Marie D Burdick
- Department of Medicine, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| | - Roderick J Phillips
- Department of Medicine, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| | - George V Thomas
- Department of Pathology, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| | - Karen Reckamp
- Department of Medicine, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| | - John A Belperio
- Department of Medicine, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| | - Robert M Strieter
- Department of Medicine, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
- Department of Pathology, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| |
Collapse
|
19
|
|
20
|
Baker CH, Pino MS, Fidler IJ. Phosphorylated epidermal growth factor receptor on tumor-associated endothelial cells in human renal cell carcinoma is a primary target for therapy by tyrosine kinase inhibitors. Neoplasia 2006; 8:470-6. [PMID: 16820093 PMCID: PMC1601465 DOI: 10.1593/neo.06172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We determined whether therapy for human renal cell carcinoma (HRCC) that grows in the kidney of nude mice by the specific epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, PKI166, is directed against phosphorylated EGFR on tumor cells or on tumor-associated endothelial cells. EGFR+/transforming growth factor alpha (TGF-alpha)- SN12-PM6 HRCC cells were transfected with full-length sense TGF-alpha cDNA or vector control. SN12-PM6 cells expressing low or high levels of TGF-alpha were implanted into the kidney of nude mice. Only tumors produced by TGF-alpha+ HRCC cells contained tumor-associated endothelial cells expressing activated EGFR. Oral administration of PKI166 produced significant therapy only in TGF-alpha+ tumors, which correlated with apoptosis of tumor-associated endothelial cells. These data suggest that the production of TGF-alpha by HRCC cells leads to the activation of EGFR on tumor-associated endothelial cells that serve as an essential target for therapy with tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Cheryl H Baker
- Cancer Research Institute, M. D. Anderson Cancer Center Orlando, Orlando, FL 32806, USA.
| | | | | |
Collapse
|
21
|
Liu J, Johnston MR. Animal models for studying lung cancer and evaluating novel intervention strategies. Surg Oncol 2002; 11:217-27. [PMID: 12450558 DOI: 10.1016/s0960-7404(02)00053-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The pathogenesis of lung cancer progression, invasion and metastasis remains undefined. Clinically relevant laboratory models of the disease could greatly facilitate its clarification. Model systems of lung cancer that accurately reflect different biologic properties and disease stages are necessary to ensure proper experimental design of studies aimed at increasing our understanding of the disease. Such models are also essential tools to accelerate development of new therapies for lung cancer. In this review we summarize the available lung cancer model systems in use today and define both their utility and limitations.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Thoracic Surgery, Toronto General Hospital, Division of Surgical Oncology, Princess Margaret Hospital, University of Toronto, Ont., Canada
| | | |
Collapse
|
22
|
Baker CH, Kedar D, McCarty MF, Tsan R, Weber KL, Bucana CD, Fidler IJ. Blockade of epidermal growth factor receptor signaling on tumor cells and tumor-associated endothelial cells for therapy of human carcinomas. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:929-38. [PMID: 12213721 PMCID: PMC1867249 DOI: 10.1016/s0002-9440(10)64253-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/04/2002] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to determine whether the expression of epidermal growth factor receptor (EGF-R) and activated EGF-R by tumor-associated endothelial cells is influenced by interaction with specific growth factors in the microenvironment. Different human carcinoma cell lines expressing EGF-R with low or high levels of EGF/transforming growth factor (TGF)-alpha were implanted into orthotopic organs of nude mice. In the EGF/TGF-alpha-positive bladder cancer (253J-BV), pancreatic cancer (L3.6pl), and renal cancer (RBM1-IT) but not in the EGF/TGF-alpha-negative renal cancer SN12-PM6, tumor-associated endothelial cells expressed EGF-R and activated EGF-R. Mice were implanted with human 253J-BV bladder tumors (EGF+) or human SN12-PM6 renal tumors (EGF-). Treatment with oral PKI 166 (a specific inhibitor of EGF-R phosphorylation) alone, intraperitoneal paclitaxel alone (253J-BV), gemcitabine alone (SN12-PM6), or combination of PKI 166 and chemotherapy produced a 60%, 32%, or 81% reduction in the volume of 253J-BV bladder tumors, respectively, and 26%, 23%, or 51% reduction in the volume of SN12-PM6 kidney tumors, respectively. Immunohistochemical analyses demonstrated down-regulation of activated EGF-R in EGF/TGF-alpha-positive and EGF/TGF-alpha-negative lesions from mice treated with PKI 166, although apoptosis of tumor-associated endothelial cells was found only in EGF/TGF-alpha-positive tumors. Collectively, these data suggest that expression of activated EGF-R by tumor-associated endothelial cells provides an important target for therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Deoxycytidine/administration & dosage
- Deoxycytidine/analogs & derivatives
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- ErbB Receptors/antagonists & inhibitors
- Humans
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neovascularization, Pathologic/drug therapy
- Paclitaxel/administration & dosage
- Pyrimidines/administration & dosage
- Pyrroles/administration & dosage
- Signal Transduction/drug effects
- Tumor Cells, Cultured
- Gemcitabine
Collapse
Affiliation(s)
- Cheryl H Baker
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Weber KL, Pathak S, Multani AS, Price JE. Characterization of a Renal Cell Carcinoma Cell Line Derived From a Human Bone Metastasis and Establishment of an Experimental Nude Mouse Model. J Urol 2002. [DOI: 10.1016/s0022-5347(05)64743-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kristy L. Weber
- From the Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Sen Pathak
- From the Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Asha S. Multani
- From the Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Janet E. Price
- From the Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
Characterization of a Renal Cell Carcinoma Cell Line Derived From a Human Bone Metastasis and Establishment of an Experimental Nude Mouse Model. J Urol 2002. [DOI: 10.1097/00005392-200208000-00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Khanna C, Prehn J, Yeung C, Caylor J, Tsokos M, Helman L. An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin Exp Metastasis 2001; 18:261-71. [PMID: 11315100 DOI: 10.1023/a:1006767007547] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To provide an investigative tool for the study of osteosarcoma (OSA) biology we have developed a syngeneic (balb/c) murine model of OSA, using cell lines derived from a spontaneously occurring murine OSA (Schmidt et al. Differentiation 1988; 39: 151-60). This model is characterized by orthotopic primary tumor growth, a period of minimal residual disease, spontaneous pulmonary metastasis, and clonally related variants (K7M2 and K12) that differ in pulmonary metastatic potential. Primary tumor and pulmonary metastasis histology was consistent with OSA in human patients. Expression of bone sialoprotein, biglyan, decorrin, and osteopontin was suggestive of bone lineage cells. The development and use of a more aggressive OSA cell line (K7M2) resulted in spontaneous metastasis to the lungs in over 90% of mice, whereas metastases were seen in only 33% of mice when a less aggressive OSA cell line (K12; Schmidt et al. Differentiation 1988; 39: 151-60) was used. Death from metastasis occurred at a median of 76 days using K7M2 whereas no median was achieved after 140 days using K12. Angiogenic potential, characterized by CD31 and factor VIII staining of primary tumors and pulmonary metastases, was greater in the K7M2 model compared to the K12 model. No significant differences in the in vitro or in vivo expression of angiogenesis associated genes (flt1, flt4, TIE1, TIE2, and VEGF) was found between K7M2 and K12. This well characterized and relevant model of OSA will be a valuable resource to improve our understanding of the biology and treatment of metastasis in OSA.
Collapse
Affiliation(s)
- C Khanna
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Orthotopic model of renal cell carcinoma. METHODS IN MOLECULAR MEDICINE 2001. [PMID: 21318799 DOI: 10.1385/1-59259-144-2:245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
A human renal cancer was first established in continuous culture in 1962. Currently, there are well over 100 different characterized renal cancer cell lines derived from both primary and metastatic renal cell carcinomas (RCCs) (1-3). The biological phenotype of cultured renal cancer cells typically includes a sustained and essentially unlimited growth capacity, a lack of contact inhibition and anchorage dependence, a capacity to form tumors in athymic mice, and an aneuploid karyotype including nonrandom chromosomal abnormalities (1,2). The antigenic phenotype of RCCs as determined by monoclonal antibodies (mAbs) generated against cell-surface glycoproteins, glycolipids, and blood-group antigens of renal cancers provide a series of phenotypic markers which characterize these tumors (4-6). Many of these mAbs also react with the proximal tubule portion of the human nephron, confirming earlier studies indicating that >90% of renal cancers derive from epithelial cells of the proximal tubule (7,8). While established RCC cell lines have frequently been analyzed for molecular defects, their greatest utility has been to screen combinations of chemotherapeutic and biologic agents for antiproliferative activity (9-12). Short-term cultures of renal cancer cells derived from fresh tumor specimens have similarly been used to screen drugs (13), but inhibitory effects in vitro have not been shown to predict a response in vivo (i.e., in human patients).
Collapse
|
27
|
Juang SH, Xie K, Xu L, Shi Q, Wang Y, Yoneda J, Fidler IJ. Suppression of tumorigenicity and metastasis of human renal carcinoma cells by infection with retroviral vectors harboring the murine inducible nitric oxide synthase gene. Hum Gene Ther 1998; 9:845-54. [PMID: 9581907 DOI: 10.1089/hum.1998.9.6-845] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The purpose of this study was to determine whether retrovirus-mediated transfer of the murine macrophage inducible nitric oxide synthase (iNOS) gene can inhibit tumorigenicity and metastasis of human renal cancer cells. Retroviral vectors encoding murine macrophage iNOS were constructed in the pLXSN retroviral vector with the iNOS gene under the control of a long terminal repeat promoter and a neomycin resistance gene under the control of an internal simian virus 40 promoter. Highly metastatic human renal carcinoma SN12PM6 cells were infected with control or iNOS retrovirus. Expression of iNOS was confirmed by Northern and Western blot analyses, and expression of the functional iNOS protein, i.e., production of nitric oxide (NO), was determined by measuring nitrite accumulation in culture supernatants. Noninfected or control cells produced large orthotopic tumors in the kidney of nude mice and a larger number of experimental lung metastases, whereas iNOS-infected cells produced small tumors in the kidneys and few to no lung metastases. The data indicate that the infection of human renal cancer cells by retroviruses harboring the murine iNOS gene can induce the production of high levels of NO, which is associated with autocytotoxicity, suppression of tumorigenicity, and abrogation of metastasis.
Collapse
Affiliation(s)
- S H Juang
- Department of Cell Biology, The University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Marutsuka K, Hasui Y, Asada Y, Naito S, Osada Y, Sumiyoshi A. Effects of suramin on metastatic ability, proliferation, and production of urokinase-type plasminogen activator and plasminogen activator inhibitor type 2 in human renal cell carcinoma cell line SN12C-PM6. Clin Exp Metastasis 1995; 13:116-22. [PMID: 7882614 DOI: 10.1007/bf00133616] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Effects of suramin, a polysulfonated naphthylurea compound, on metastatic ability, proliferation, and production of plasminogen activators and plasminogen activator inhibitors were studied using the highly metastatic human renal cell carcinoma cell line, SN12C-PM6. After renal subscapular implantation of tumor cells in nude mice, suramin significantly inhibited metastasis of tumor cells to the lungs and liver. In vitro growth of tumour cells was inhibited by suramin in a dose-dependent manner, at relatively low doses (ID50 = 105 micrograms/ml). Plasminogen activator inhibitor type 2 (PAI-2) production by tumor cells was enhanced by suramin (100 micrograms/ml), whereas urokinase-type plasminogen activator (uPA) production was suppressed. Thus, the increase in PAI-2 and the decrease in uPA production correlated with the inhibitory effects on tumour growth and metastasis by suramin. Therefore suramin may be beneficial for the treatment of patients with an early stage of renal cancer with potential risk of metastasis.
Collapse
Affiliation(s)
- K Marutsuka
- First Department of Pathology, Miyazaki Medical College, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Experimental Orthotopic Models of Organ-Specific Metastasis by Human Neoplasms. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s1569-2558(08)60385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Saiki I, Fujii H, Yoneda J, Abe F, Nakajima M, Tsuruo T, Azuma I. Role of aminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation. Int J Cancer 1993; 54:137-43. [PMID: 8097496 PMCID: PMC7165932 DOI: 10.1002/ijc.2910540122] [Citation(s) in RCA: 248] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have investigated the effect of monoclonal antibodies (MAbs) specific for aminopeptidase N/CD13 on the invasion of human metastatic tumor cells into reconstituted basement membrane (Matrigel). The invasion of human metastatic tumor cells (SN12M renal-cell carcinoma, HT1080 fibrosarcoma and A375M melanoma) into Matrigel-coated filters was inhibited by an anti-CD13 MAb, WM15, in a concentration-dependent manner. However, this MAb did not have any effect on tumor-cell adhesion and migration to the extracellular matrices, which may be involved in tumor-cell invasion. MAb WM15 inhibited the degradation of type-IV collagen by tumor cells in a concentration-dependent manner. We also found that WM15 inhibited hydrolysing activities towards substrates of aminopeptidases in 3 different tumor cells. Since our previous study indicated that bestatin, an aminopeptidase inhibitor, was able to inhibit tumor-cell invasion, as well as aminopeptidase activities of murine and human metastatic tumor cells, cell-surface amino-peptidase N/CD13 may be partly involved in the activation mechanism for type-IV collagenolysis to achieve tumor-cell invasion, and anti-CD13 MAb WM15 may inhibit tumor-cell invasion through a mechanism involving its inhibitory action on the aminopeptidase N in tumor cells.
Collapse
Affiliation(s)
- I Saiki
- Institute of Immunological Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Skubitz KM, Ducker TP, Skubitz AP, Goueli SA. Antiserum to carcinoembryonic antigen recognizes a phosphotyrosine-containing protein in human colon cancer cell lines. FEBS Lett 1993; 318:200-4. [PMID: 7680008 DOI: 10.1016/0014-5793(93)80021-l] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Members of the carcinoembryonic antigen (CEA) family include CEA, non-specific cross reacting antigen (NCA), and biliary glycoprotein (BGP), and appear to function as cell adhesion molecules. Immunoprecipitation and subsequent gel electrophoresis of proteins from several colon cancer cell lines labeled with [gamma-32P]ATP, under conditions designed to detect ecto-kinase-catalyzed phosphorylation of cellular proteins, revealed that polyclonal anti-CEA antiserum recognized a 175-190 kDa phosphoprotein on the surface of colon cancer cells. The ability to detect this phosphoprotein did not correlate with CEA production, and immunoprecipitation studies suggested that the phosphoprotein is BGP. Phosphoamino acid analysis of the 175-190 kDa protein showed that it contained predominantly phosphotyrosine.
Collapse
Affiliation(s)
- K M Skubitz
- Department of Medicine, University of Minnesota Medical School, Minneapolis
| | | | | | | |
Collapse
|
32
|
Yoneda J, Saiki I, Fujii H, Abe F, Kojima Y, Azuma I. Inhibition of tumor invasion and extracellular matrix degradation by ubenimex (bestatin). Clin Exp Metastasis 1992; 10:49-59. [PMID: 1733647 DOI: 10.1007/bf00163576] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have investigated the effect of the immunomodulator ubenimex (hereafter referred to as bestatin) on the enzymatic degradation of the extracellular matrix by human renal cell carcinoma SN12M cells during the invasive process. The invasion of SN12M cells into reconstituted basement membrane (Matrigel) was inhibited by the presence of bestatin in a concentration-dependent manner. However, bestatin did not have any effect on tumor cell adhesion and migration to the extracellular matrices which may be involved in tumor cell invasion. Bestatin inhibited the degradation of type IV collagen by tumor cells, but not by tumor-conditioned medium (TCM), in a concentration-dependent manner. We also found that bestatin inhibited hydrolysing activities towards substrates of aminopeptidases in SN12M cells. Since bestatin was found to inhibit aminopeptidase activity, the inhibition of tumor invasion by bestatin is likely to be associated with its action as an enzyme inhibitor. Bestatin only slightly inhibited tumor cell plasmin activity, which can lead to the conversion of the latent collagenase to the active form, but this slight effect was not significant. The zymography of TCM from SN12M cells showed that the treatment of tumor cells with bestatin resulted in the disappearance of the 68 kDa type IV collagenase-enzyme level (active form) and slight reduction of the 72 kDa type IV collagenase-enzyme level (latent form). These results indicated that bestatin may inhibit tumor cell invasion through a mechanism involving its inhibitory action on aminopeptidases in tumor cells, suggesting that the aminopeptidase may partly be associated with the conversion of a latent form of type IV procollagenase to an active form or the secretion of the collagenases from tumor cells.
Collapse
Affiliation(s)
- J Yoneda
- Institute of Immunological Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Saiki I, Naito S, Yoneda J, Azuma I, Price JE, Fidler IJ. Characterization of the invasive and metastatic phenotype in human renal cell carcinoma. Clin Exp Metastasis 1991; 9:551-66. [PMID: 1752085 DOI: 10.1007/bf01768583] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The purpose of these studies was to identify some characteristics of metastatic cells and deficiencies of non-metastatic cells in the heterogeneous SN12 human renal cell carcinoma. The SN12 parental line and several isolated variants with different metastatic potential were studied both in vivo and in vitro. We compared the ability of metastatic and non-metastatic cells to adhere to components of the extracellular matrix or to endothelial cells, to migrate and invade, to form multicell aggregates, to survive in the circulation, and to produce experimental and spontaneous lung metastases. In general, highly metastatic SN12 cells capable of producing spontaneous lung metastases demonstrated invasion through reconstituted basement membrane-coated filters; the cells also released diffusible collagenolytic activity into the culture medium that could enhance invasion by otherwise non-invasive and non-metastatic SN12 cells. In addition to enhanced invasion, metastatic cells produced more homotypic aggregation then non-metastatic cells and survived to produce experimental metastasis. Collectively, these data confirm that metastatic cells must complete all steps of the process; in this process, failure to produce metastasis is probably due to one or more deficiencies.
Collapse
Affiliation(s)
- I Saiki
- Institute of Immunological Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Inufusa H, Kojima N, Yasutomi M, Hakomori S. Human lung adenocarcinoma cell lines with different lung colonization potential (LCP), and a correlation between expression of sialosyl dimeric Le(x) (defined by MAb FH6) and LCP. Clin Exp Metastasis 1991; 9:245-57. [PMID: 1676353 DOI: 10.1007/bf01753728] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human lung adenocarcinoma sub-cell lines HAL-8, HAL-24 and HAL-33, showing different lung colonization potential (LCP), were established from human lung adenocarcinoma cell line KUM-LK-2 using repeated cloning with limiting dilution technique. Cell lines HAL-8 and -33 were characterized by high and low LCP, respectively, while HAL-24 did not give rise to lung colonies. The cell surface protein and carbohydrate profiles were determined by cell surface labeling (with lactoperoxidase-dependent 125I-iodination and galactose oxidase-NaB3H4, respectively) followed by SDS-gel electrophoresis. Various carbohydrate epitopes expressed at the cell surface were analysed by cytofluorometry using various monoclonal antibodies (MAbs) directed to Le(x), sialosyl-Le(x), sialosyl dimeric Le(x), T, Tn and sialosyl-Tn structures, which are often reported as being highly expressed in a variety of human cancers, particularly adenocarcinoma. Expression of sialosyl dimeric Le(x) (defined by MAb FH6) was high on HAL-8, moderate on HAL-33, and relatively low on HAL-24. In contrast, each of the three lines showed essentially equal expression (as determined by MAb reactivity) of sialosyl-Tn (defined by MAb TKH2), Le(x) (defined by MAb SH1), and Tn (defined by MAb 1E3). The cell lines showed extremely weak expression of T (defined by MAb HH8). LCP of HAL-8 and -33 was completely inhibited by sialidase treatment of cells. It is suggested that higher expression of sialosyl dimeric Le(x) (defined by MAb FH6) in HAL-8 cells may play an important role in higher potential of blood-borne lung colonization.
Collapse
Affiliation(s)
- H Inufusa
- Biomembrane Institute, Seattle, WA 98119
| | | | | | | |
Collapse
|
35
|
Fidler IJ, Naito S, Pathak S. Orthotopic implantation is essential for the selection, growth and metastasis of human renal cell cancer in nude mice [corrected]. Cancer Metastasis Rev 1990; 9:149-65. [PMID: 2253314 DOI: 10.1007/bf00046341] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human neoplasms are heterogeneous for a variety of biological properties that include invasion and metastasis. The presence of a small subpopulation of cells with a highly metastatic phenotype has important clinical implications for diagnosis and therapy of cancer. For this reason, it is important to develop an animal model for the selection and isolation of metastatic variants from human neoplasms and for testing the metastatic potential of human tumor cells. We have implanted human renal cell carcinoma (HRCC) cells (obtained from a surgical specimen) into different organs of nude mice and then recovered the tumors and established each in culture. The 5 established lines differed in their biological-metastatic properties and had a unique karyotype, indicating that growth at different organs selects for different subpopulations of HRCC. Moreover, the HRCC did not metastasize unless they were implanted orthotopically. These findings indicate that the appropriate nude mouse model for studying the biology and therapy of HRCC must be based on the orthotopic implantation of tumor cells.
Collapse
Affiliation(s)
- I J Fidler
- Department of Cell Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | |
Collapse
|
36
|
Weiss L. Comments on 'In vivo selection of human renal carcinoma cells with high metastatic potenital in nude mice'. Clin Exp Metastasis 1990; 8:103-9. [PMID: 2293910 DOI: 10.1007/bf00155596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|