1
|
Subramaniam M, Loewen ME. Review: A species comparison of the kinetic homogeneous and heterogeneous organization of sodium-dependent glucose transport systems along the intestine. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111492. [PMID: 37536429 DOI: 10.1016/j.cbpa.2023.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The targeted use of carbohydrates by feed and food industries to create balanced and cost-effective diets has generated a tremendous amount of research in carbohydrate digestion and absorption in different species. Specifically, this research has led us to a larger observation that identified different organizations of intestinal sodium-dependent glucose absorption across species, which has not been previously collated and reviewed. Thus, this review will compare the kinetic segregation of sodium-dependent glucose transport across the intestine of different species, which we have termed either homogeneous or heterogeneous systems. For instance, the pig follows a heterogeneous system of sodium-dependent glucose transport with a high-affinity, super-low-capacity (Ha/sLc) in the jejunum, and a high-affinity, super-high-capacity (Ha/sHc) in the ileum. This is achieved by multiple sodium-dependent glucose transporters contributing to each segment. In contrast, tilapia have a homogenous system characterized by high-affinity, high-capacity (Ha/Hc) throughout the intestine. Additionally, we are the first to report glucose transporter patterns across species presented from vertebrates to invertebrates. Finally, other kinetic transport systems are briefly covered to illustrate possible contributions/modulations to sodium-dependent glucose transporter organization. Overall, we present a new perspective on the organization of glucose absorption along the intestinal tract.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
2
|
Subramaniam M, Enns CB, Loewen ME. Sigmoidal kinetics define porcine intestinal segregation of electrogenic monosaccharide transport systems as having multiple transporter population involvement. Physiol Rep 2019; 7:e14090. [PMID: 31062524 PMCID: PMC6503033 DOI: 10.14814/phy2.14090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/22/2023] Open
Abstract
Kinetic characterization of electrogenic sodium-dependent transport in Ussing chambers of d-glucose and d-galactose demonstrated sigmoidal/Hill kinetics in the porcine jejunum and ileum, with the absence of transport in the distal colon. In the jejunum, a high-affinity, super-low-capacity (Ha/sLc) kinetic system accounted for glucose transport, and a low-affinity, low-capacity (La/Lc) kinetic system accounted for galactose transport. In contrast, the ileum demonstrated a high-affinity, super-high-capacity (Ha/sHc) glucose transport and a low-affinity, high-capacity (La/Hc) galactose transport systems. Jejunal glucose transport was not inhibited by dapagliflozin, but galactose transport was inhibited. Comparatively, ileal glucose and galactose transport were both sensitive to dapagliflozin. Genomic and gene expression analyses identified 10 of the 12 known SLC5A family members in the porcine jejunum, ileum, and distal colon. Dominant SGLT1 (SLC5A1) and SGLT3 (SLC5A4) expression was associated with the sigmoidal Ha/sLc glucose and La/Lc galactose transport systems in the jejunum. Comparatively, the dominant expression of SGLT1 (SLC5A1) in the ileum was only associated with Ha glucose and La galactose kinetic systems. However, the sigmoidal kinetics and overall high capacity (Hc) of transport is unlikely accounted for by SGLT1 (SLC5A1) alone. Finally, the absence of transport and lack of pharmacological inhibition in the colon was associated with the poor expression of SLC5A genes. Altogether, the results demonstrated intestinal segregation of monosaccharide transport fit different sigmoidal kinetic systems. This reveals multiple transporter populations in each system, supported by gene expression profiles and pharmacological inhibition. Overall, this work demonstrates a complexity to transporter involvement in intestinal electrogenic monosaccharide absorption systems not previously defined.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical SciencesWestern College of Veterinary MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Cole B. Enns
- Department of Veterinary Biomedical SciencesWestern College of Veterinary MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Matthew E. Loewen
- Department of Veterinary Biomedical SciencesWestern College of Veterinary MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
3
|
Subramaniam M, Weber LP, Loewen ME. Intestinal electrogenic sodium-dependent glucose absorption in tilapia and trout reveal species differences in SLC5A-associated kinetic segmental segregation. Am J Physiol Regul Integr Comp Physiol 2019; 316:R222-R234. [PMID: 30601703 PMCID: PMC6459381 DOI: 10.1152/ajpregu.00304.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022]
Abstract
Electrogenic sodium-dependent glucose transport along the length of the intestine was compared between the omnivorous Nile tilapia ( Oreochromis niloticus) and the carnivorous rainbow trout ( Oncorhynchus mykiss) in Ussing chambers. In tilapia, a high-affinity, high-capacity kinetic system accounted for the transport throughout the proximal intestine, midintestine, and hindgut segments. Similar dapagliflozin and phloridzin dihydrate inhibition across all segments support this homogenous high-affinity, high-capacity system throughout the tilapia intestine. Genomic and gene expression analysis supported findings by identifying 10 of the known 12 SLC5A family members, with homogeneous expression throughout the segments with dominant expression of sodium-glucose cotransporter 1 (SGLT1; SLC5A1) and sodium-myoinositol cotransporter 2 (SMIT2; SLC5A11). In contrast, trout's electrogenic sodium-dependent glucose absorption was 20-35 times lower and segregated into three significantly different kinetic systems found in different anatomical segments: a high-affinity, low-capacity system in the pyloric ceca; a super-high-affinity, low-capacity system in the midgut; and a low-affinity, low-capacity system in the hindgut. Genomic and gene expression analysis found 5 of the known 12 SLC5A family members with dominant expression of SGLT1 ( SLC5A1), sodium-glucose cotransporter 2 (SGLT2; SLC5A2), and SMIT2 ( SLC5A11) in the pyloric ceca, and only SGLT1 ( SLC5A1) in the midgut, accounting for differences in kinetics between the two. The hindgut presented a low-affinity, low-capacity system partially attributed to a decrease in SGLT1 ( SLC5A1). Overall, the omnivorous tilapia had a higher electrogenic glucose absorption than the carnivorous trout, represented with different kinetic systems and a greater expression and number of SLC5A orthologs. Fish differ from mammals, having hindgut electrogenic glucose absorption and segment specific transport kinetics.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| |
Collapse
|
4
|
Affiliation(s)
- S P Shirazi-Beechey
- Epithelial Function and Development Group, Institute of Biological Sciences, University of Wales, Aberystwyth, Dyfed, SY23 3DD, UK
| |
Collapse
|
5
|
Commare CE, Tappenden KA. Development of the infant intestine: implications for nutrition support. Nutr Clin Pract 2007; 22:159-73. [PMID: 17374790 DOI: 10.1177/0115426507022002159] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The incidence of preterm births has continued to increase over the past 25 years, and therefore the optimal feeding of these infants is an important clinical concern. This review focuses on intestinal development and physiology, with a particular emphasis on developmentally immature functions of the preterm intestine and the resulting implications for nutrition therapies used to feed the preterm infant.
Collapse
Affiliation(s)
- Coryn E Commare
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
6
|
Sala-Rabanal M, Gallardo MA, Sánchez J, Planas JM. Na-dependent D-Glucose Transport by Intestinal Brush Border Membrane Vesicles from Gilthead Sea Bream (Sparus aurata). J Membr Biol 2004; 201:85-96. [PMID: 15630546 DOI: 10.1007/s00232-004-0710-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 07/29/2004] [Indexed: 11/29/2022]
Abstract
Brush border membrane vesicles (BBMV) enriched in sucrase, maltase and alkaline phosphatase, and impoverished in Na(+)-K(+)-ATPase, were isolated from proximal and distal intestine of the gilthead sea bream (Sparus aurata) by a MgCl(2) precipitation method. Vesicles were suitable for the study of the characteristics of D-glucose apical transport. Only one D-glucose carrier was found in vesicles from each intestinal segment. In both cases, the D-glucose transport system was sodium-dependent, phlorizin-sensitive, significantly inhibited by D-glucose, D-galactose, alpha-methyl-D-glucose, 3-O-methyl-D-glucose and 2-deoxy-D-glucose, and showed stereospecificity. Apparent affinity constants of D-glucose transport (K(t)) were 0.24 +/- 0.03 mM in proximal and 0.18 +/- 0.03 mM in distal intestine. Maximal rate of influx (Jmax) was 47.3 +/- 2.2 pmols. mg(-1) protein for proximal and 27.3 +/- 3.6 pmols. mg(-1) protein for distal intestine. Specific phlorizin binding and relative abundance of an anti-SGLT1 reactive protein were significantly higher in proximal than in distal BBMV. These results suggest the presence of the same D-glucose transporter along the intestine, with a higher density in the proximal portion. This transporter is compatible with the sodium-dependent D-glucose carrier described for other fish and with the SGLT1 of higher vertebrates.
Collapse
Affiliation(s)
- M Sala-Rabanal
- Departament de Fisiologia, Centre de Referència i Desenvolupament en Aqüicultura de la Generalitat de Catalunya, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, Barcelona E-08028, Spain
| | | | | | | |
Collapse
|
7
|
Gäbel G, Aschenbach JR. Influence of food deprivation on the transport of 3-O-methyl-α-D-glucose across the isolated ruminal epithelium of sheep. J Anim Sci 2002. [DOI: 10.1093/ansci/80.10.2740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
8
|
Halaihel N, Liévin V, Alvarado F, Vasseur M. Rotavirus infection impairs intestinal brush-border membrane Na(+)-solute cotransport activities in young rabbits. Am J Physiol Gastrointest Liver Physiol 2000; 279:G587-96. [PMID: 10960359 DOI: 10.1152/ajpgi.2000.279.3.g587] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanism of rotavirus diarrhea was investigated by infecting young, specific pathogen-free, New Zealand rabbits with a lapine rotavirus, strain La/RR510. With 4-wk-old animals, virus shedding into the intestinal lumen peaked at 72 h postinfection (hpi), and a mild, watery diarrhea appeared at 124 hpi. No intestinal lesions were seen up to 144 hpi, indicating that diarrhea does not follow mucosal damage but can precede it, as if cell dysfunction were the cause, not the consequence, of the histological lesions. Kinetic analyses with brush-border membrane vesicles isolated from infected rabbits revealed strong inhibition of both Na(+)-D-glucose (SGLT1) and Na(+)-L-leucine symport activities. For both symporters, only maximum velocity decreased with time. The density of phlorizin-binding sites and SGLT1 protein antigen in the membrane remained unaffected, indicating that the virus effect on this symporter is direct. Because SGLT1 supports water reabsorption under physiological conditions, the mechanism of rotavirus diarrhea may involve a generalized inhibition of Na(+)-solute symport systems, hence, of water reabsorption. Massive water loss through the intestine may eventually overwhelm the capacity of the organ for water reabsorption, thereby helping the diarrhea to get established.
Collapse
Affiliation(s)
- N Halaihel
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie, Université de Paris XI, 92296 Châtenay-Malabry, France
| | | | | | | |
Collapse
|
9
|
Koepsell H, Spangenberg J. Function and presumed molecular structure of Na(+)-D-glucose cotransport systems. J Membr Biol 1994; 138:1-11. [PMID: 8189427 DOI: 10.1007/bf00211064] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Functional characterization of Na(+)-D-glucose cotransport in intestine and kidney indicates the existence of heterogeneous Na(+)-D-glucose cotransport systems. Target size analysis of the transporting unit and model analysis of substrate binding have been performed and proteins have been cloned which mediate (SGLT1) and modulate (RS1) the expression of Na(+)-D-glucose cotransport. The experiments support the hypothesis that functional Na(+)-D-glucose cotransport systems in mammals are composed of two SGLT1-type subunits and may contain one or two RS1-type proteins. SGLT1 contains up to twelve membrane-spanning alpha-helices, whereas RS1 is a hydrophilic extracellular protein which is anchored in the brush-border membrane by a hydrophobic alpha-helix at the C-terminus. SGLT1 alone is able to translocate glucose together with sodium; however, RS1 increases the Vmax of transport expressed by SGLT1. In addition, the biphasic glucose dependence of transport, which is typical for kidney and has been often observed in intestine, was only obtained after coexpression of SGLT1 and RS1.
Collapse
Affiliation(s)
- H Koepsell
- Anatomisches Institut, Universität Würzburg, Germany
| | | |
Collapse
|
10
|
Minami H, Kim JR, Tada K, Takahashi F, Miyamoto K, Nakabou Y, Sakai K, Hagihira H. Inhibition of glucose absorption by phlorizin affects intestinal functions in rats. Gastroenterology 1993; 105:692-7. [PMID: 8359641 DOI: 10.1016/0016-5085(93)90884-f] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND To investigate the mechanism of regulation of intestinal disaccharidase activity and glucose absorption, the effect of dietary intake of phlorizin, a potent and specific inhibitor of intestinal glucose transport, on intestinal disaccharidase activity and Na(+)-dependent glucose transporter was examined in rats. METHODS Jejunal disaccharidase activity and the number of Na(+)-dependent glucose transporters were determined in rats maintained on a low-starch diet, a high-starch diet, or low-starch diets containing various amounts of phlorizin (0.1%-0.9% wt/wt). RESULTS Jejunal disaccharidase activity increased in a dose- and time-dependent manner. Stimulation of jejunal disaccharidase activity only occurred when phlorizin was added to starch-containing diets, not when it was added to a carbohydrate-free diet. Addition of the same amount of phloretin and glucose (constituents of phlorizin), to the diet failed to increase disaccharidase activity. The maximum binding of phlorizin to brush border membrane vesicles was increased in the rats fed phlorizin, whereas the dissociation constant remained unchanged, suggesting an increase of glucose transporter expression. CONCLUSIONS Dietary phlorizin increased the jejunal disaccharidase activity and Na(+)-dependent glucose transporter expression. The trigger for these changes may have been due to an increased luminal glucose content.
Collapse
Affiliation(s)
- H Minami
- Department of Nutrition, School of Medicine, University of Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Martial S, Neau P, Degeilh F, Lamotte H, Rousseau B, Ripoche P. Urea derivatives as tools for studying the urea-facilitated transport system. Pflugers Arch 1993; 423:51-8. [PMID: 8488092 DOI: 10.1007/bf00374960] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of urea structural analogues on the urea-facilitated diffusion system were examined in human red cell membranes (pink ghosts) and in antidiuretic hormone(ADH)-stimulated frog urinary bladder epithelia. In both tissues, urea permeability (P(urea)) was dramatically but reversibly inhibited by a number of urea analogues, such as 1-(3,4-dichlorophenyl)-2-thiourea (DCPTU). This urea derivative reduced the urea flux in a dose-dependent manner (90% inhibition of P(urea) at 0.5 mM concentration of DCPTU). With the aim of obtaining irreversible markers of red cell and urinary bladder urea transport systems, urea derivatives were modified by addition of an azido residue (N3) and preliminary experiments of photoaffinity labelling were carried out. Two synthetic urea derivatives: 1-(3-azido-4-chlorophenyl)-2-thiourea (ACPTU) and 1-(3-azido-4-chlorophenyl)-3-methyl-2-thiourea (Me-ACPTU) were shown to be very potent inhibitors of P(urea) when used in the absence of light, with IC50 values 60.3 microM and 31.6 microM respectively, as measured in frog urinary bladder. Both these molecules appeared to bind covalently to the urea carrier in both frog urinary bladder and human pink red cell ghosts, when illuminated in the presence of the tissue: the urea flux, which fell to 30-70% of the value obtained in the presence of ADH after inhibitor addition, remained low after the preparation had been illuminated for 30 min and the inhibitor removed. These results provide an interesting approach to the urea carrier analysis, particularly to the urea or urea analogue binding site on the transport protein.
Collapse
Affiliation(s)
- S Martial
- Département de Biologie Cellulaire et Moléculaire, Centre d'Etudes de Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
12
|
Wright SH, Pajor AM, Moon DA, Wunz TM. High-affinity phlorizin binding in Mytilus gill. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1103:212-8. [PMID: 1543705 DOI: 10.1016/0005-2736(92)90089-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gill of the marine mussel, Mytilus, contains a high affinity, Na-dependent D-glucose transporter capable of accumulating glucose directly from sea water. We examined the ability of the beta-glucoside, phlorizin, to act as a high-affinity ligand of this process in intact gills and isolated brush border membrane vesicles (BBMV). The time course of association of nanomolar [3H]phlorizin to gills and BBMV was slow, with t50 values between 10 and 30 min, and a half-time for dissociation of approx. 30 min. 1 mM D-glucose reduced equilibrium binding of 1 nM phlorizin by 90-95%, indicating that there was little non-specific binding of this ligand to the gill. In addition, there was little, if any, hydrolysis by the gill of phlorizin to its constituents, glucose and phloretin. Phlorizin binding to gills and BBMV was significantly inhibited by the addition of 50 microM concentrations of D-glucose and alpha-methyl-D-glucose, and unaffected by the addition of L-glucose and fructose. Binding to gills and BBMV was reduced by greater than 90% when Na+ was replaced by K+. Replacement of Na+ by Li+ effectively blocked binding to the intact gill, although Li+ did support a limited amount of glucose-specific phlorizin binding in BBMV. The Kd values for glucose-specific phlorizin binding in intact gills and BBMV were 0.5 nM and 6 nM, respectively. We conclude that phlorizin binds with extremely high affinity to the Na-dependent glucose transporter of Mytilus gill, which may be useful in future efforts to isolate and purify the protein(s) involved in integumental glucose transport.
Collapse
Affiliation(s)
- S H Wright
- Department of Physiology, College of Medicine, University of Arizona, Tucson 85724
| | | | | | | |
Collapse
|
13
|
Fedorak RN, Gershon MD, Field M. Induction of intestinal glucose carriers in streptozocin-treated chronically diabetic rats. Gastroenterology 1989; 96:37-44. [PMID: 2521211 DOI: 10.1016/0016-5085(89)90761-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The maximal transport capacity (Vmax) for intestinal glucose absorption is increased in experimentally induced chronic diabetes mellitus. Using [3H]phlorizin radioautography, we examined the relation between this increase in transport Vmax and the number and distribution of sodium-glucose co-transporters on the luminal surface of rat ileum. Male Lewis rats were made diabetic with streptozocin. Ninety days later we measured 3-O-methyl-D-glucopyranose absorption and specific [3H]phlorizin binding to the ileal mucosa of the same rats. Net 3-O-methyl-D-glucopyranose flux was 6.9-fold greater in diabetic rats compared with age-matched controls. Specific binding of [3H]phlorizin to the luminal surface was 7.2-fold greater in the diabetic rats. Radioautography revealed that, in chronic diabetes, specific phlorizin binding extends into the midvillus region of the ileum, whereas in age-matched controls, it is confined to villus tips. We believe that, in untreated diabetes, a larger fraction of intestinal villus epithelial cells participate in glucose absorption.
Collapse
Affiliation(s)
- R N Fedorak
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
14
|
Buddington RK. Does the natural diet influence the intestine's ability to regulate glucose absorption? J Comp Physiol B 1987; 157:677-88. [PMID: 3693623 DOI: 10.1007/bf00700989] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two fish species (rainbow trout and common carp) that differ in natural diet also exhibit differences in the adaptive flexibility of their intestinal nutrient transport mechanisms in response to changes in dietary nutrient composition. When carp ingested a feed that was 24% glucose by weight, there was an increase in both the intestinal length and rates of nutrient absorption, particularly for glucose, when compared to carp fed an isonitrogenous diet devoid of digestible carbohydrate. As a result, the intestine's uptake capacity (nmol of glucose and proline absorbed per min per g body weight) was higher in carp fed the 24% glucose feed. Due to the greater increase in glucose uptake, the ratio of glucose uptake relative to proline (G/P ratio) was higher in carp fed the 24% glucose. Thus, carp are able to adapt to the quantity, and apparently also to the type, of digestible carbohydrate in the diet. In contrast, glucose uptake by trout was unresponsive to the quantity of dietary carbohydrate. Instead, the elevated glucose paradoxically resulted in a greater uptake capacity for proline and a lower G/P ratio. Hence, the adaptive capabilities of the intestinal nutrient transport processes are matched to the potential variation in the carbohydrate content of the natural diet.
Collapse
|
15
|
Ferraris RP, Diamond JM. Use of phlorizin binding to demonstrate induction of intestinal glucose transporters. J Membr Biol 1986; 94:77-82. [PMID: 3806659 DOI: 10.1007/bf01901015] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We used specific binding of phlorizin to the intact intestinal mucosa in order to measure glucose transport site density in intestines of mice fed a high-carbohydrate or no-carbohydrate diet. Nonspecific binding varied with intestinal position but showed only modest dependence on diet. Specific binding to glucose transporters was 1.9 times greater in jejunum of high-carbohydrate mice than of no-carbohydrate mice; this ratio was the same as the ratio for Vmax values of active D-glucose uptake between the two diet groups. The gradient in specific binding of phlorizin along the intestine paralleled the gradient in Vmax of glucose transport. These results directly demonstrate that the increase in intestinal glucose transport caused by a high-carbohydrate diet is due to induction of glucose transporters. They also indicate that the normal positional gradient in glucose transport along the intestine arises from a gradient in transporters, induced by the normal gradient in luminal glucose concentration.
Collapse
|