1
|
Labat-de-Hoz L, Rubio-Ramos A, Correas I, Alonso MA. The MAL Family of Proteins: Normal Function, Expression in Cancer, and Potential Use as Cancer Biomarkers. Cancers (Basel) 2023; 15:2801. [PMID: 37345137 DOI: 10.3390/cancers15102801] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
The MAL family of integral membrane proteins consists of MAL, MAL2, MALL, PLLP, CMTM8, MYADM, and MYADML2. The best characterized members are elements of the machinery that controls specialized pathways of membrane traffic and cell signaling. This review aims to help answer the following questions about the MAL-family genes: (i) is their expression regulated in cancer and, if so, how? (ii) What role do they play in cancer? (iii) Might they have biomedical applications? Analysis of large-scale gene expression datasets indicated altered levels of MAL-family transcripts in specific cancer types. A comprehensive literature search provides evidence of MAL-family gene dysregulation and protein function repurposing in cancer. For MAL, and probably for other genes of the family, dysregulation is primarily a consequence of gene methylation, although copy number alterations also contribute to varying degrees. The scrutiny of the two sources of information, datasets and published studies, reveals potential prognostic applications of MAL-family members as cancer biomarkers-for instance, MAL2 in breast cancer, MAL2 and MALL in pancreatic cancer, and MAL and MYADM in lung cancer-and other biomedical uses. The availability of validated antibodies to some MAL-family proteins sanctions their use as cancer biomarkers in routine clinical practice.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Armando Rubio-Ramos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
2
|
Shulgin AA, Lebedev TD, Prassolov VS, Spirin PV. Plasmolipin and Its Role in Cell Processes. Mol Biol 2021; 55:773-785. [PMID: 34955555 PMCID: PMC8682038 DOI: 10.1134/s0026893321050113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 12/04/2022]
Abstract
The mechanisms involved in the origin and development of malignant and neurodegenerative diseases are an important area of modern biomedicine. A crucial task is to identify new molecular markers that are associated with rearrangements of intracellular signaling and can be used for prognosis and the development of effective treatment approaches. The proteolipid plasmolipin (PLLP) is a possible marker. PLLP is a main component of the myelin sheath and plays an important role in the development and normal function of the nervous system. PLLP is involved in intracellular transport, lipid raft formation, and Notch signaling. PLLP is presumably involved in various disorders, such as cancer, schizophrenia, Alzheimer's disease, and type 2 diabetes mellitus. PLLP and its homologs were identified as possible virus entry receptors. The review summarizes the data on the PLLP structure, normal functions, and role in diseases.
Collapse
Affiliation(s)
- A. A. Shulgin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Moscow oblast Russia
| | - T. D. Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - P. V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
You J, Corley SM, Wen L, Hodge C, Höllhumer R, Madigan MC, Wilkins MR, Sutton G. RNA-Seq analysis and comparison of corneal epithelium in keratoconus and myopia patients. Sci Rep 2018; 8:389. [PMID: 29321650 PMCID: PMC5762683 DOI: 10.1038/s41598-017-18480-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Keratoconus is a common degenerative corneal disease that can lead to significant visual morbidity, and both genetic and environmental factors have been implicated in its pathogenesis. We compared the transcriptome of keratoconus and control epithelium using RNA-Seq. Epithelial tissues were obtained prior to surgery from keratoconus and myopia control patients, undergoing collagen cross-linking and photorefractive keratectomy, respectively. We identified major differences in keratoconus linked to cell-cell communication, cell signalling and cellular metabolism. The genes associated with the Hedgehog, Wnt and Notch1 signaling pathways were down-regulated in keratoconus. We also identified plasmolipin and Notch1 as being significantly reduced in keratoconus for both gene and protein expression (p < 0.05). Plasmolipin is a novel protein identified in human corneal epithelium, and has been demonstrated to have a key role in epithelial cell differentiation in other tissues. This study shows altered gene and protein expression of these three proteins in keratoconus, and further studies are clearly warranted to confirm the functional role of these proteins in the pathogenesis of keratoconus.
Collapse
Affiliation(s)
- Jingjing You
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, Australia.
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Australia.
| | - Susan M Corley
- School of Biotechnology and Biomolecular Science, NSW System Biology Initiative, University of New South Wales, New South Wales, Australia
| | - Li Wen
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Chris Hodge
- Lions NSW Eye Bank, Sydney, Australia
- Vision Eye Institute, Chatswood, New South Wales, Australia
| | - Roland Höllhumer
- University of the Witwatersrand, Johannesburg, South Africa
- The Cornea Foundation, Johannesburg, South Africa
| | - Michele C Madigan
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Science, NSW System Biology Initiative, University of New South Wales, New South Wales, Australia
| | - Gerard Sutton
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, Australia
- Lions NSW Eye Bank, Sydney, Australia
- Vision Eye Institute, Chatswood, New South Wales, Australia
| |
Collapse
|
4
|
Lentiviral gene delivery to plasmolipin-expressing cells using Mus caroli endogenous retrovirus envelope protein. Biochimie 2017; 142:226-233. [DOI: 10.1016/j.biochi.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/06/2017] [Indexed: 01/23/2023]
|
5
|
Stys PK. The axo-myelinic synapse. Trends Neurosci 2011; 34:393-400. [PMID: 21741098 DOI: 10.1016/j.tins.2011.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/01/2011] [Accepted: 06/04/2011] [Indexed: 01/19/2023]
Abstract
Axons have evolved to acquire myelination, enabling denser packing and speedier transmission. Although myelin is considered a passive insulator, recent reports suggest a more dynamic role. Axons, in turn, are endowed with neurotransmitter release and uptake systems along their trunks. Based on these observations, I argue that there may exist a new type of chemical synapse between axon and myelin, one that supports activity-dependent communication between the two. This raises intriguing possibilities of dynamic fine-tuning of the myelin sheath even in adulthood, efficient recruitment of resources for myelin maintenance and bi-directional signaling, whereby the axon informs its myelinating cell of its metabolic needs proportionally to the electrical traffic it is transmitting. This would also have implications for de- and dysmyelinating diseases should this axo-myelinic synapse become dysfunctional.
Collapse
Affiliation(s)
- Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
6
|
Identification of the myelin protein plasmolipin as the cell entry receptor for Mus caroli endogenous retrovirus. J Virol 2008; 82:6862-8. [PMID: 18463156 DOI: 10.1128/jvi.00397-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Asian wild mouse species Mus caroli harbors an endogenous retrovirus (McERV) that is closely related to but distinct from the endogenous retrovirus family defined by the Mus dunni endogenous virus and the Mus musculus endogenous retrovirus. McERV could infect some cell types from humans, dogs, and rats, but not all, and did not infect any mouse cell line tested. Because of its interesting host range and proposed ancestral relationship to primate retroviruses and because none of the entry receptors for this family of retroviruses had been identified, we began a search for the McERV receptor. We determined the chromosomal location of the receptor gene in the human genome by phenotypic screening of the G3 human-hamster radiation hybrid cell line panel and confirmed the localization by assaying for receptor activity conferred by bacterial artificial chromosome (BAC) clones spanning the region. We next localized the gene more precisely in one positive BAC by assaying for receptor activity following BAC digestion with several restriction enzymes that cleaved different sets of genes, and we confirmed that the final candidate gene, plasmolipin (PLLP; TM4SF11), is the novel receptor by showing that the expression of the human PLLP cDNA renders hamster and mouse cells susceptible to McERV infection. PLLP functions as a voltage-dependent potassium ion channel and is expressed primarily in kidney and brain, helping to explain the limited range of cell types that McERV can infect. Interestingly, mouse PLLP also functioned well as a receptor for McERV but was simply not expressed in the mouse cell types that we originally tested.
Collapse
|
7
|
Lee SM, Shin H, Jang SW, Shim JJ, Song IS, Son KN, Hwang J, Shin YH, Kim HH, Lee CK, Ko J, Na DS, Kwon BS, Kim J. PLP2/A4 interacts with CCR1 and stimulates migration of CCR1-expressing HOS cells. Biochem Biophys Res Commun 2004; 324:768-72. [PMID: 15474493 DOI: 10.1016/j.bbrc.2004.09.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Indexed: 11/28/2022]
Abstract
Multiple CC chemokines bind to CCR1, which plays important roles in immune and inflammatory responses. To search for proteins involved in the CCR1 signaling pathway, we screened a yeast two-hybrid library using the cytoplasmic tail of CCR1 as the bait. One of the positive clones contained an open reading frame of 456bp, of which the nucleotide sequence was identical to that of proteolipid protein 2 (PLP2), also known as protein A4. Mammalian two-hybrid and coimmunoprecipitation analyses demonstrated the association of PLP2/A4 with CCR1. Indirect immunofluorescence analysis revealed that PLP2/A4 was predominantly located in plasma membrane and colocalized with CCR1 in transfected human HEK293 cells. In addition, focal staining of CCR1 appeared on the periphery of the membrane upon short exposure to Leukotactin-1(Lkn-1)/CCL15, a CCR1 agonist, and was costained with PLP2/A4 on the focal regions. PLP2/A4 mRNAs were detected in various cells such as U-937, HL-60, HEK293, and HOS cells. Overexpression of PLP2/A4 stimulated a twofold increase in the agonist-induced migration of HOS/CCR1 cells, implicating a functional role for PLP2/A4 in the chemotactic processes via CCR1.
Collapse
Affiliation(s)
- Sang Min Lee
- Graduate School of Biotechnology and Institute of Life Sciences and Resources, Kyung Hee University, Yongin, Kyunggi-Do 449-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bosse F, Hasse B, Pippirs U, Greiner-Petter R, Müller HW. Proteolipid plasmolipin: localization in polarized cells, regulated expression and lipid raft association in CNS and PNS myelin. J Neurochem 2003; 86:508-18. [PMID: 12871592 DOI: 10.1046/j.1471-4159.2003.01870.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The proteolipid plasmolipin is member of the expanding group of tetraspan (4TM) myelin proteins. Initially, plasmolipin was isolated from kidney plasma membranes, but subsequent northern blot analysis revealed highest expression in the nervous system. To gain more insight into the functional roles of plasmolipin, we have generated a plasmolipin-specific polyclonal antibody. Immunohistochemical staining confirms our previous observation of glial plasmolipin expression and proves plasmolipin localization in the compact myelin of rat peripheral nerve and myelinated tracts of the CNS. Western blot analysis indicates a strong temporal correlation of plasmolipin expression and (re-) myelination in the PNS and CNS. However, following axotomy plasmolipin expression is also recovered in non-regenerating distal nerve stumps. In addition, we detected plasmolipin expression in distinct neuronal subpopulations of the CNS. The observed asymmetric distribution of plasmolipin in compact myelin, as well as in epithelial cells of kidney and stomach, indicates a polarized cellular localization. Therefore, we purified myelin from the CNS and PNS and demonstrated an enrichement of phosphorylated plasmolipin protein in detergent-insoluble lipid raft fractions, suggesting selective targeting of plasmolipin to the myelin membranes. The present data indicate that the proteolipid plasmolipin is a structural component of apical membranes of polarized cells and provides the basis for further functional analysis.
Collapse
Affiliation(s)
- Frank Bosse
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
9
|
Magyar JP, Ebensperger C, Schaeren-Wiemers N, Suter U. Myelin and lymphocyte protein (MAL/MVP17/VIP17) and plasmolipin are members of an extended gene family. Gene 1997; 189:269-75. [PMID: 9168137 DOI: 10.1016/s0378-1119(96)00861-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An increasing number of four-transmembrane proteins has been found to be associated with CNS and PNS myelin. Some of these proteins play crucial roles in the development and maintenance of the nervous system. In the CNS, proteolipid protein (PLP) is mutated in the myelin disorder Pelizaeus-Merzbacher disease and in spastic paraplegia, while in the PNS, peripheral myelin protein 22 (PMP22) and connexin32 (C x 32) are culprit genes in the most frequent forms of hereditary peripheral neuropathies. Myelin and lymphocyte protein (MAL; also called MVP17 or VIP17) and plasmolipin are additional tetraspan proteins that are highly expressed by myelinating glial cells. However, little is known about the role of these proteins in the nervous system. As a prerequisite for functional genetic approaches in the mouse, we have isolated and characterized a mouse MAL cDNA and the corresponding structural MAL gene. Computer-aided analysis and database searches revealed that MAL belongs to a larger gene family which also includes plasmolipin, BENE and the expressed sequence tag (EST) H09290. While the overall amino acid sequence identities between mouse MAL and the related proteins are relatively low (29-37%), the conserved motif -[Q/Y-G-W-V-M-F/Y-V]- which is found at the junction of the first extracellular loop and the second membrane-associated domain serves as a fingerprint for the MAL protein family. Expression analysis of the members of the MAL gene family indicates widespread expression in various tissues, suggesting a common role of these proteins in cell biology.
Collapse
Affiliation(s)
- J P Magyar
- Department of Biology, Institute of Cell Biology, Swiss Federal Institute of Technology, Zurich
| | | | | | | |
Collapse
|
10
|
Breitwieser GE, McLenithan JC, Cortese JF, Shields JM, Oliva MM, Majewski JL, Machamer CE, Yang VW. Colonic epithelium-enriched protein A4 is a proteolipid that exhibits ion channel characteristics. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C957-65. [PMID: 9124532 DOI: 10.1152/ajpcell.1997.272.3.c957] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Expression of the human gene A4 is enriched in the colonic epithelium and is transcriptionally activated on differentiation of colonic epithelial cells in vitro (M. M. Oliva, T. C. Wu, and V. W. Yang. Arch. Biochem. Biophys. 302: 183-192, 1993). A4 cDNA contains an open reading frame that predicts a polypeptide of 17 kDa. To determine the function of the A4 protein, we characterized its biochemical and physiological properties. Hydropathy analysis of deduced A4 amino acid sequence revealed four putative membrane-spanning alpha-helices. The hydrophobic nature of A4 was confirmed by its being extractable with organic solvents. Immunocytochemical studies of cells expressing A4 localized it to the endoplasmic reticulum. Moreover, A4 multimerized in vivo as determined by coimmunoprecipitation experiments. The four-transmembrane topology and biophysical characteristics of A4 suggest that it belongs to a family of integral membrane proteins called proteolipids, some of which multimerize to form ion channels. Subsequent electrophysiological studies of nuclei isolated from microinjected Xenopus laevis oocytes transiently expressing A4 showed the appearance of a 28-pS channel. Thus our studies indicate that A4 is a colonic epithelium-enriched protein localized to the endoplasmic reticulum and that, similar to other proteolipids, A4 multimerizes and exhibits characteristics of an ion channel.
Collapse
Affiliation(s)
- G E Breitwieser
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Gillen C, Gleichmann M, Greiner-Petter R, Zoidl G, Kupfer S, Bosse F, Auer J, Müller HW. Full-lenth cloning, expression and cellular localization of rat plasmolipin mRNA, a proteolipid of PNS and CNS. Eur J Neurosci 1996; 8:405-14. [PMID: 8714710 DOI: 10.1111/j.1460-9568.1996.tb01223.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have isolated a 1.476 bp cDNA (NTII11) representing a transcript that is differntially expressed during sciatic nerve development and regeneration in the rat. Nucleotide sequence comparison indicates partial identity with a recently isolated plasmolipin cDNA. However, our clone extends the published sequence by 234 bp at the 5' end and predicts a protein that contains an additional 25 amino acids at th N-terminus. The open reading frame of th NTII11 transcript encodes a 19.4 kDa protein with four putative transmembrane domains. Northern blot analyses revealed a tissue-specific expression was confirmed by in situ hybridization, and cellular localization of plasmolipin mRNA was demonstrated in Schwann cells of the sciatic nerve and in glial cells of myelinated brain structures. The steady-state levels of plasmolipin mRNA were markedly altered (i) during development of sciatic nerve and brain. (ii) after sciatic nerve injury, and (ii) in cured Schwann cells maintained under different conditions of cell growth and arrest. Our data indicate a function of plasmolipin during myelination in the central as well as in the peripheral nervous system.
Collapse
Affiliation(s)
- C Gillen
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5,D-40558 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Molecular cloning of plasmolipin. Characterization of a novel proteolipid restricted to brain and kidney. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31477-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Fischer I, Durrie R, Sapirstein VS. Plasmolipin: the other myelin proteolipid. A review of studies on its structure, expression, and function. Neurochem Res 1994; 19:959-66. [PMID: 7800123 DOI: 10.1007/bf00968705] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- I Fischer
- Department of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia 19129
| | | | | |
Collapse
|
14
|
Cherksey B, Durrie R, Braun PE, Sapirstein VS. In vitro analysis of ion channels in periaxolemmal-myelin and white matter clathrin coated vesicles: modulation by calcium and GTP gamma S. Neurochem Res 1994; 19:1101-6. [PMID: 7800119 DOI: 10.1007/bf00968722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study reports the analysis of K+ channel activity in bovine periaxolemmal-myelin and white matter-derived clathrin-coated vesicles. Channel activity was evaluated by the fusion of membrane vesicles with phospholipid bilayers formed across a patch-clamp pipette. In periaxolemmal myelin spontaneous K+ channels were observed with amplitudes of 25-30, 45-55, and 80-100 pS, all of which exhibited mean open-times of 1-2 msec. The open state probability of the 50 pS channel in periaxolemmal-myelin was increased by 6-methyldihydro-pyran-2-one. Periaxolemmal-myelin K+ channel activity was regulated by Ca2+. Little or no change in activity was observed when Ca2+ was added to the cis side of the bilayer. Addition of 10 microM total Ca2+ also resulted in little change in K+ channel activity. However, at 80 microM total Ca2+ all K+ channel activity was suppressed along with the activation of a 100 pS Cl- channel. The K+ channel activity in periaxolemmal myelin was also regulated through a G-protein. Addition of GTP gamma S to the trans side of the bilayer resulted in a restriction of activity to the 45-50 pS channel which was present at all holding potentials. Endocytic coated vesicles, form in part through G-protein mediated events; white matter coated vesicles were analyzed for G proteins and for K+ channel activity. These vesicles, which previous studies had shown are derived from periaxolemmal domains, were found to be enriched in the alpha subunits of G0, Gs alpha, and Gi alpha and the low molecular weight G protein, ras.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Cherksey
- Department of Physiology & Biophysics, New York University School of Medicine, New York
| | | | | | | |
Collapse
|
15
|
Chalk JB, McCombe PA, Smith R, Pender MP. Clinical and histological findings in proteolipid protein-induced experimental autoimmune encephalomyelitis (EAE) in the Lewis rat. Distribution of demyelination differs from that in EAE induced by other antigens. J Neurol Sci 1994; 123:154-61. [PMID: 7520480 DOI: 10.1016/0022-510x(94)90218-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Proteolipid protein (PLP) is the major protein of central nervous system (CNS) myelin. In some species, intradermal inoculation with PLP and adjuvants causes experimental autoimmune encephalomyelitis (PLP-EAE) characterized by neurological signs of tail and limb weakness and by inflammation and demyelination in the CNS. A previous study found that inoculation of Lewis rats with 100 micrograms of PLP causes PLP-EAE with a low incidence of neurological signs and a highly variable clinical course. In the present study we assessed PLP-EAE produced by inoculation with 1000 micrograms of PLP per rat. Fifty-one of 59 (86%) Lewis rats developed neurological signs 8 to 20 days (mean = 12.0 +/- 2.0) after inoculation with 1000 micrograms of PLP. In such rats, mononuclear cell infiltrates were present in the brain and spinal cord while primary demyelination occurred mainly in the subpial regions of the spinal cord, especially in the dorsal root entry and ventral root exit zones. The histological findings were compared with those in acute EAE induced in the Lewis rat by inoculation with whole CNS tissue or with myelin basic protein: in PLP-EAE, in contrast to these other models, the disease was essentially restricted to the CNS. This form of EAE should be useful in future studies of the consequences of autoimmunity to PLP.
Collapse
Affiliation(s)
- J B Chalk
- Department of Medicine, University of Queensland, Royal Brisbane Hospital, Australia
| | | | | | | |
Collapse
|
16
|
Sapirstein VS, Durrie R, Nolan CE, Marks N. Identification of membrane-bound carbonic anhydrase in white matter coated vesicles: the fate of carbonic anhydrase and other white matter coated vesicle proteins in triethyl tin-induced leukoencephalopathy. J Neurosci Res 1993; 35:83-91. [PMID: 8510185 DOI: 10.1002/jnr.490350110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have extended our studies on the content of white matter derived coated vesicles (WMCVs) to show that they are enriched in membrane-bound carbonic anhydrase. Within the myelin complex membrane-bound carbonic anhydrase is concentrated in the periaxolemmal domain; however, this protein is enriched almost sevenfold in the bilayer of coated vesicles even relative to this myelin membrane region. These data suggest that some vesicles are derived from a site at which this enzyme is highly localized. The enrichment observed for membrane-bound carbonic anhydrase is unique since other periaxolemmal proteins such as CNPase and plasmolipin are only present in equal amounts in periaxolemmal-myelin fractions and WMCVs. Based on their known localization, the presence of CNPase coupled with the absence of MAG in WMCVs suggest that these vesicles are derived from the paranodal region. The identification in WMCVs of periaxolemmal-myelin proteins associated with ion and fluid movement, such as carbonic anhydrase, Na+,K+ ATPase, and the putative K+ channel protein plasmolipin, prompted us to examine the status of these vesicles in triethyl tin (TET)-induced myelin edema. Coated vesicles and other membrane fractions were isolated from whole brains of control and TET-treated rats. Whole brains were used so we could compare the effects of TET on WMCV proteins with the effect on proteins enriched in gray matter coated vesicles. The results indicated that TET had no detectable effect on compact or periaxolemmal-myelin, however, Western blot analysis showed that WMCV proteins, such as carbonic anhydrase, CNPase, and plasmolipin, were virtually absent or greatly diminished from the whole brain coated vesicle fraction.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- V S Sapirstein
- Division of Neurobiology, Nathan Kline Institute for Psychiatric Research, Orangeburg
| | | | | | | |
Collapse
|
17
|
Sapirstein VS, Durrie R, Cherksey B, Beard ME, Flynn CJ, Fischer I. Isolation and characterization of periaxolemmal and axolemmal enriched membrane fractions from the rat central nervous system. J Neurosci Res 1992; 32:593-604. [PMID: 1382138 DOI: 10.1002/jnr.490320415] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this report, we describe the fractionation of crude axolemmal fractions from rat lower brainstem into subfractions enriched in markers for either periaxolemmal myelin or axolemma. These subfractions were isolated on density gradients as bands layering on 0.8M and 1.0M sucrose. Both subfractions consisted of unilamellar vesicles. Relative to myelin purified from the same starting material, the 0.8M subfraction was enriched in MAG, CNPase, carbonic anhydrase and Na+, K+ ATPase but was extremely low in PLP and MBP. In addition, this fraction exhibited a protein profile distinct from myelin. The 1.0M fraction was also highly enriched in Na+, K+ ATPase and had an overall composition similar to the 0.8M subfraction. However, it differed from the 0.8M subfraction by being low in MAG, CNPase, and carbonic anhydrase, but enriched in voltage-dependent Na+ channel, axon-specific fodrin, and MAP-1B. Based on these characteristics we concluded that the 0.8M and 1.0M subfractions were highly enriched in periaxolemmal myelin and axolemmal membrane, respectively. Plasmolipin10 was unique with equally high levels in myelin and in the 0.8M and 1.0M subfractions. Both subfractions were enriched, relative to myelin, in the alpha subunit of the GTP binding protein, Go, and the alpha subunit common to all G proteins, GA/1. Electrophysiology with membrane subfractions fused to lipid bilayers showed that both membranes contained sets of K+ and Cl- channels, which based on channel sizes and open times, are largely distinct from one another.
Collapse
Affiliation(s)
- V S Sapirstein
- Division of Neurobiology, Nathan Kline Institute, Orangeburg, New York 10962
| | | | | | | | | | | |
Collapse
|
18
|
Sapirstein VS, Nolan CE, Stern R, Gray-Board G, Beard ME. Identification of plasmolipin as a major constituent of white matter clathrin-coated vesicles. J Neurochem 1992; 58:1372-8. [PMID: 1548472 DOI: 10.1111/j.1471-4159.1992.tb11352.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have isolated and characterized coated vesicles from bovine white matter and compared them to those isolated from gray matter. The virtual absence of synaptic vesicle antigens in the white matter coated vesicles indicates they are distinct from those found in gray matter and from vesicles derived from synaptic membranes. The white matter coated vesicles also lack compact myelin components, e.g., the myelin proteolipid, galactocerebroside, and sulfatides, as well as the periaxolemmal myelin marker myelin-associated glycoprotein. On the other hand, these vesicles contain 2',3'-cyclic nucleotide phosphohydrolase. The vesicles also contain high levels of plasmolipin, a protein present in myelin and oligodendrocytes. Plasmolipin was found to be four to five times higher in white matter coated vesicles than in gray matter coated vesicles. Based on western blot quantitation, the concentration of plasmolipin in white matter coated vesicles is 3-4% of the vesicle bilayer protein. These studies indicate that a significant proportion of coated vesicles from white matter may be derived from unique membrane domains of the myelin complex or oligodendroglial membrane, which are enriched in plasmolipin.
Collapse
Affiliation(s)
- V S Sapirstein
- Division of Neurobiology, Nathan Kline Institute, Orangeburg, New York 10962
| | | | | | | | | |
Collapse
|
19
|
Sapirstein VS, Nolan CE, Stadler II, Fischer I. Expression of plasmolipin in the developing rat brain. J Neurosci Res 1992; 31:96-102. [PMID: 1535379 DOI: 10.1002/jnr.490310114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Plasmolipin is an hydrophobic plasma membrane proteolipid present in both kidney and brain. The protein consists of two subunits of 17-18.5 kD, which together form K+ selective voltage-dependent channels. In this report, we define the embryonic and postnatal expression of plasmolipin in the developing rat brain. Plasmolipin was found to be essentially restricted to the postnatal period increasing eight-fold between the first to fourth week after birth. A fetal plasmolipin immunoreactive protein (FPIP) was identified in embryonic brain and also during the early postnatal development of the cerebellum. The expression of FPIP was biphasic with an initial transient increase between E15-E20 followed by a decrease in its levels. FPIP was not detected in the developed rat CNS. FPIP was found in a variety of dividing and immature cells including cultured astrocytes and embryonic neurons, neuroblastoma cells, and rat thymus. In contrast, plasmolipin was restricted to oligodendrocytes of the neural cells tested and to renal tubular epithelial cells.
Collapse
Affiliation(s)
- V S Sapirstein
- Division of Neurobiology, Nathan Kline Institute, Orangeburg, New York 10962
| | | | | | | |
Collapse
|
20
|
Desir GV. Reconstitution and partial purification of an amiloride-sensitive, cation channel from rabbit kidney. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1067:38-42. [PMID: 1868102 DOI: 10.1016/0005-2736(91)90023-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim of the present study was to reconstitute and purify an epithelial potassium channel from rabbit kidney. Renal brush border membrane vesicles (BBMV) were found to contain a potassium conductance which was inhibited by amiloride, 5-(N-methyl-N-isobutyl)amiloride (MIA) and by barium. Membrane vesicle proteins were solubilized and reconstituted in proteoliposomes. Channel activity was assayed using Acridine orange and the voltage sensitive dye, 3,3'-diethylthiadicarbocyanine iodide (DiSC2(5)). Both methods yielded similar results which indicated the presence of an amiloride-sensitive, cation channel in the proteoliposomes. This channel was more permeable to K than to Na and its activity was increased in reconstituted proteoliposomes as compared to native brush border membranes. We conclude that rabbit BBMV possess an amiloride sensitive cation channel. Channel activity was successfully reconstituted in proteoliposomes and the protein was partially purified during reconstitution.
Collapse
Affiliation(s)
- G V Desir
- Yale University School of Medicine, Department of Medicine, New Haven, CT 06510
| |
Collapse
|
21
|
Morel N, Synguelakis M, Le Gal la Salle G. Detection with monoclonal antibodies of a 15-kDa proteolipid in both presynaptic plasma membranes and synaptic vesicles in Torpedo electric organ. J Neurochem 1991; 56:1401-8. [PMID: 2002349 DOI: 10.1111/j.1471-4159.1991.tb11438.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A protein, the mediatophore, has been purified from Torpedo electric organ presynaptic plasma membranes. This protein mediates the release of acetylcholine through artificial membranes when activated by calcium and is made up of 15-kDa proteolipid subunits. After immunization with purified delipidated mediatophore, monoclonal antibodies binding to the 15-kDa proteolipid band on Western blots of purified mediatophore were selected. A 15-kDa proteolipid antigen was also detected in cholinergic synaptic vesicles. Using an immunological assay, it was estimated that presynaptic plasma membranes and synaptic vesicles contain similar proportions of 15-kDa proteolipid antigen. Detection by immunofluorescence in the electric organ showed that only nerve endings were labeled. In electric lobes, the staining was associated with intracellular membranes of the electroneuron cell bodies and in axons. Nerve endings at Torpedo neuromuscular junctions were also labeled with anti-15-kDa proteolipid monoclonal antibodies.
Collapse
Affiliation(s)
- N Morel
- Département de Neurochimie, Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, Gif sur Yvette, France
| | | | | |
Collapse
|
22
|
Sapirstein VS, Nolan CE, Fischer I, Cochary E, Blau S, Flynn CJ. The phylogenic expression of plasmolipin in the vertebrate nervous system. Neurochem Res 1991; 16:123-8. [PMID: 1881515 DOI: 10.1007/bf00965699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasmolipin is a plasma membrane proteolipid is a major myelin membrane component (Cochary et al., 1990). In this study we report the phylogenic expression of plasmolipin in the vertebrate nervous system. Using Western blot analysis with polyclonal antibodies, we have analyzed membrane fractions, including myelin, from elasmobranchs, teleosts, amphibians, reptiles, birds and mammals. On the basis of immune detection, plasmolipin appears to be restricted to the mammalian nervous system. Comparison of the central and peripheral nervous systems of mammals showed only minor differences in the level of plasmolipin in these two regions. Within mammals, little quantitative differences were observed when rat, human and bovine membrane fractions were compared. The late evolutionary expression of plasmolipin which results in its restriction to mammals makes it unique among the (major) myelin proteins. The potential physiologic significance of these data are discussed.
Collapse
Affiliation(s)
- V S Sapirstein
- Division of Neurobiology, Nathan Kline Institute, Orangeburg, NY
| | | | | | | | | | | |
Collapse
|
23
|
Fischer I, Cochary EF, Konola JT, Romano-Clark G. Expression of plasmolipin in oligodendrocytes. J Neurosci Res 1991; 28:81-9. [PMID: 1710283 DOI: 10.1002/jnr.490280108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plasmolipin is a plasma membrane proteolipid which has recently been described as a component of myelin (Cochary et al.: Journal of Neurochemistry 55:602-610, 1990). The present study reports the expression and localization of plasmolipin in primary glial cultures and secondary oligodendrocyte cultures. Double-label immunofluorescence showed that plasmolipin was expressed by galactocerebroside (GC)-positive oligodendrocytes, but was absent from astrocytes, characterized by their positive staining for glial fibrillary acidic protein (GFAP). At 1 week in culture plasmolipin staining was relatively weak in the cell body of some of the GC-positive cells. During the following 3 weeks in culture plasmolipin staining of oligodendrocytes gradually increased and was present in the cell body, its plasma membrane, and all the processes. However, the plasmolipin antibodies did not stain regions of the flat membrane sheets. Western blot analysis of homogenates from primary glial cultures showed that plasmolipin levels gradually increased during the first 5 weeks in culture. We conclude that the presence of plasmolipin in myelin is a result of its expression by oligodendrocytes.
Collapse
Affiliation(s)
- I Fischer
- Department of Biochemistry, Eunice Kennedy Shriver Center, Waltham, MA 02254
| | | | | | | |
Collapse
|
24
|
Grayson S, Sequeira SM. Dispersal of proteolipid macroaggregates with trifluoroacetic acid and analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Anal Biochem 1990; 189:192-6. [PMID: 2281862 DOI: 10.1016/0003-2697(90)90106-j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The propensity of highly purified proteolipids to form macroaggregates in aqueous solutions, especially when heated with sodium dodecyl sulfate (SDS), with or without thiol reagents, has made qualitative and quantitative analyses of individual species by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) difficult and unreliable. Comparisons of proteolipid profiles from liver, brain, and cultured human keratinocytes demonstrate that 40-72% of the total proteolipid in SDS-PAGE sample buffer is in the form of macroaggregates. Treatment of proteolipids with neat trifluoroacetic acid (TFA) followed by removal of the TFA and incubation in cold SDS-PAGE sample buffer causes complete dispersal of the macroaggregates and allows recovery of virtually all of the proteolipid applied to gels (increasing yields by as much as 3.6 times, depending on tissue type). Gels of TFA-treated samples display differences not only in the relative amounts of individual species but also in novel species not found in untreated samples. Eluted macroaggregates treated with TFA display the same SDS-PAGE banding profiles as TFA-treated whole proteolipids. Hence, routine TFA treatment of proteolipids prior to SDS-PAGE increases total proteolipid yields, allows reliable quantitation of individual apoprotein species, and reveals species previously obscured by the formation of macroaggregates.
Collapse
Affiliation(s)
- S Grayson
- Department of Dermatology, University of California, San Francisco School of Medicine
| | | |
Collapse
|
25
|
Cochary EF, Bizzozero OA, Sapirstein VS, Nolan CE, Fischer I. Presence of the plasma membrane proteolipid (plasmolipin) in myelin. J Neurochem 1990; 55:602-10. [PMID: 1695242 DOI: 10.1111/j.1471-4159.1990.tb04176.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plasma membrane proteolipid (plasmolipin), which was originally isolated from kidney membranes, has also been shown to be present in brain. In this study, we examined the distribution of plasmolipin in brain regions, myelin, and oligodendroglial membranes. Immunoblot analysis of different brain regions revealed that plasmolipin levels were higher in regions rich in white matter. Plasmolipin was also detected in myelin, myelin subfractions, and oligodendroglial membranes. Immunocytochemical analysis of the cerebellum revealed that plasmolipin was localized in the myelinated tracts. Plasmolipin levels in myelin were enriched during five successive cycles of myelin purification, similar to the enrichment of myelin proteolipid apoprotein (PLP) and myelin basic protein (MBP). In contrast, levels of Na+,K(+)-ATPase and a 70-kDa protein were decreased. When myelin or white matter was extracted with chloroform/methanol, it contained, in addition to PLP, a significant amount of plasmolipin. Quantitative immunoblot analysis suggested that plasmolipin constitutes in the range of 2.2-4.8% of total myelin protein. Plasmolipin, purified from kidney membranes, was detected by silver stain on gels at 18 kDa and did not show immunological cross-reactivity with either PLP or MBP. Thus, it is concluded that plasmolipin is present in myelin, possibly as a component of the oligodendroglial plasma membrane, but is structurally and immunologically different from the previously characterized myelin proteolipids.
Collapse
Affiliation(s)
- E F Cochary
- Department of Biochemistry, Eunice Kennedy Shriver Center, Waltham, MA 02254
| | | | | | | | | |
Collapse
|
26
|
Vassilev PM, Tien HT. Reconstitution of membrane molecular mechanisms in bilayer lipid membranes and patch-clamp bilayers. Subcell Biochem 1989; 14:97-143. [PMID: 2655201 DOI: 10.1007/978-1-4613-9362-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Sapirstein VS, Nolan C, Stern R, Ciocci M, Masur SK. Identification of the plasma membrane proteolipid protein as a constituent of brain coated vesicles and synaptic plasma membrane. J Neurochem 1988; 51:925-33. [PMID: 3411330 DOI: 10.1111/j.1471-4159.1988.tb01829.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have analyzed brain coated vesicles and synaptic plasma membrane for the presence of the plasma membrane proteolipid protein. Coated vesicles were isolated from calf brain gray matter with a final purification on Sephacryl S-1000 and reisolated twice by chromatography to ensure homogeneity. Fractions were analyzed by gel electrophoresis, immunoblotting for clathrin heavy chain, and by electron microscopy. Using an immunoblotting assay we were able to demonstrate the presence of the plasma membrane proteolipid protein in these coated vesicles at a significant level (i.e., approximately 1% of the bilayer protein of these vesicles). Reisolation of coated vesicles did not diminish the concentration of the protein in this fraction. Removal of the clathrin coat proteins or exposure of the coated vesicles to 0.1 M Na2CO3 showed that the plasma membrane proteolipid protein is not removed during uncoating and lysis but is intrinsic to the membrane bilayer of these vesicles. These studies demonstrate that plasma membrane proteolipid protein represents a significant amount of the bilayer protein of coated vesicles, suggesting that these vesicles may be a transport vehicle for the intracellular movement of the plasma membrane proteolipid protein. Isolation of synaptic plasma membranes proteolipid adult rat brain and estimation of the plasma membrane proteolipid protein content using the immunoblotting method confirmed earlier studies that show this protein is present in this membrane fraction at high levels as well (approximately 1-2%). The level of this protein in the synaptic plasma membrane suggests that the synaptic plasma membrane is one major site to which these vesicles may be targeted or from which the protein is being retrieved.
Collapse
Affiliation(s)
- V S Sapirstein
- Division of Molecular Biology, Nathan Kline Institute, Orangeburg, NY 10962
| | | | | | | | | |
Collapse
|
28
|
Walaas SI, Horn RS, Albert KA, Adler A, Walaas O. Phosphorylation of multiple sites in a 15,000 dalton proteolipid from rat skeletal muscle sarcolemma, catalyzed by adenosine 3',5'-monophosphate-dependent and calcium/phospholipid-dependent protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 968:127-37. [PMID: 3337842 DOI: 10.1016/0167-4889(88)90052-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study reports a partial characterization of a 15,000 dalton (15 kDa) proteolipid present in rat skeletal muscle sarcolemma. The proteolipid is phosphorylated by both cyclic AMP-dependent and calcium/phospholipid-dependent protein kinases, displays an isoelectric point (pI) of 5.9, and can be extracted from sarcolemma by acidified chloroform/methanol (2:1) or non-ionic detergents. Phosphoamino acid analysis and tryptic fingerprinting of the phosphorylated proteolipid indicate that both cyclic AMP- and calcium/phospholipid-dependent protein kinases predominantly phosphorylate serine residue(s) on a single tryptic peptide. Additivity experiments and thermolytic fingerprinting demonstrate a minimum of two distinct phosphorylation sites on the proteolipid, the phosphorylation of which is independently catalyzed by cyclic AMP-dependent and calcium/phospholipid-dependent protein kinases in vitro. This sarcolemma proteolipid, which appears to be identified to a sarcolemma protein previously reported to be phosphorylated upon addition of insulin in a GTP-dependent manner (Walaas, O., Walaas, E., Rye-Alertsen, A. and Horn, R.S. (1979) Mol. Cell. Endocrinol. 16, 45-55), therefore represents a possible membrane target for those neuronal and hormonal stimuli which can regulate cyclic AMP-dependent or calcium/phospholipid-dependent protein kinase activities in skeletal muscle.
Collapse
Affiliation(s)
- S I Walaas
- Institute of Medical Biochemistry, University of Oslo (Norway)
| | | | | | | | | |
Collapse
|
29
|
Shea TB, Fischer I, Sapirstein V. Expression of a plasma membrane proteolipid during differentiation of neuronal and glial cells in primary culture. J Neurochem 1986; 47:697-706. [PMID: 3016181 DOI: 10.1111/j.1471-4159.1986.tb00668.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plasma membrane proteolipid protein (PM-PLP) synthesis was examined in embryonic rat neurons and neonatal rat glial cells during differentiation in culture. Glial cultures were treated with 1 mM N6, O2, dibutyryl cyclic adenosine monophosphate (dbcAMP) following confluency to induce differentiation, which resulted in the elaboration of long cellular processes. However, no changes in the biosynthetic level of PM-PLP was observed during the differentiation of these cells. Neurons differentiated spontaneously in culture, forming cellular aggregates immediately following plating and elaborating a network of neurites over 7 days. The differentiation of neurons was accompanied by a seven-fold increase in PM-PLP synthesis with increases in biosynthetic increase in PM-PLP synthesis with increases in biosynthetic rate observed between days 1 and 3 and between days 3 and 7 in culture. Ultrastructural examination of neurons indicated that the Golgi apparatus was also developing during this period of time, with an increase in both the number of lamellae and generation of vesicles. The transport of PM-PLP to the plasma membrane was therefore examined in neurons at day 7 in culture by pulse labeling experiments with monensin and colchicine. Monensin (1 microM) was found to inhibit the appearance of radiolabeled PM-PLP in the plasma membrane by 63%, indicating that a functional Golgi apparatus is required for transport of PM-PLP to its target membrane. Colchicine (125 microM) also inhibited the appearance of newly synthesized PM-PLP in the plasma membrane by greater than 40%, suggesting that microtubules may also be required for PM-PLP transport to the plasma membrane.
Collapse
|
30
|
Fischer I, Sapirstein VS. Characterization and biosynthesis of the plasma membrane proteolipid protein in neural tissue. J Neurochem 1986; 47:232-8. [PMID: 3711901 DOI: 10.1111/j.1471-4159.1986.tb02854.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this study we have characterized, in brain, the expression of a plasma membrane proteolipid protein (PM-PLP) complex that can form cation-selective channels in lipid bilayers. We isolated PLP fractions from synaptic plasma membrane and glial microsomes and found a high degree of similarity in both size and amino acid composition to the complex we had previously isolated from kidney. Antibodies specific to the kidney PM-PLP were prepared, and, on the basis of immunoblot and immunoprecipitation studies, the PM-PLP complex isolated from neural membranes was shown to be immunologically related to the kidney PM-PLP. These proteolipid proteins exhibited a molecular weight of approximately 14K and contained a high percentage of hydrophobic amino acids with an apparent absence of cysteine. The biogenesis of PM-PLP in brain was studied by in vitro translation of free and bound polysomes and total RNA in a rabbit reticulocyte lysate followed by immunoprecipitation of the translation products. From these studies it is concluded that the PM-PLP complex is synthesized on the rough endoplasmic reticulum. On the basis of the identical electrophoretic mobility of material isolated from plasma membranes and material immunoprecipitated after translation of bound polysomes and isolated RNA, it appears that the PM-PLP does not undergo detectable posttranslational processing between its site of synthesis and its incorporation into the plasma membrane.
Collapse
|
31
|
Lepage P, Helynck G, Chu JY, Luu B, Sorokine O, Trifilieff E, Van Dorsselaer A. Purification and characterization of minor brain proteolipids: use of fast atom bombardment-mass spectrometry for peptide sequencing. Biochimie 1986; 68:669-86. [PMID: 3089328 DOI: 10.1016/s0300-9084(86)80161-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A combination of lipophilic gel permeation chromatography and ion-exchange chromatography in organic solvents was used to purify low molecular weight proteolipids from bovine brain. Cleavage peptides were purified by HPLC and studied mainly by the fast atom bombardment--mass spectrometry technique. A proteolipid of Mr 14 000 contains several peptides from the first 113 amino acids of the major myelin proteolipid (MMPL) plus an extra unknown blocked N-terminal peptide. A proteolipid of Mr 16 000 contains smaller peptides belonging to a C-terminal fragment of MMPL of about 160 residues. These two proteolipids do not seem to be artifacts from MMPL.
Collapse
|
32
|
Anner BM. Interaction of (Na+ + K+)-ATPase with artificial membranes. II. Expression of partial transport reactions. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 822:335-53. [PMID: 2415163 DOI: 10.1016/0304-4157(85)90014-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Lambers JW, Velthuis HW, Terpstra W. Molecular mass estimation of chlorophyllase in situ by radiation inactivation analysis. Studies on the composition of the isolated enzyme. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/0167-4838(85)90038-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Helynck G, Luu B, Nussbaum JL, Picken D, Skalidis G, Trifilieff E, Van Dorsselaer A, Seta P, Sandeaux R, Gavach C, Heitz F, Simon D, Spach G. Brain proteolipids. Isolation, purification and effect on ionic permeability of membranes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 133:689-95. [PMID: 6861750 DOI: 10.1111/j.1432-1033.1983.tb07518.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Proteolipid apoproteins have been isolated from a whole bovine brain homogenate by chloroform/methanol extraction, and fractionated by chromatography on modified (lipophilic) Sephadex, followed by ion-exchange chromatography on CM-Trisacryl. The various final, highly hydrophobic, fractions are homogeneous (sodium dodecyl sulfate/polyacrylamide gel electrophoresis). Transmembrane ion transfers were studied by 22Na + flux and electrical conductance measurements. Single channel events were observed at low protein concentrations, in particular with one of the final homogeneous apoproteolipids of molecular mass 24 kDa.
Collapse
|
35
|
Sapirstein VS, Strocchi P, Wesolowski M, Gilbert JM. Characterization and biosynthesis of soluble and membrane-bound carbonic anhydrase in brain. J Neurochem 1983; 40:1251-61. [PMID: 6403668 DOI: 10.1111/j.1471-4159.1983.tb13563.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Carbonic anhydrase from both the cytoplasmic and membrane fractions of the forebrains of rats was characterized with respect to enzymatic activity, immunoreactivity, and in vitro biosynthesis. A procedure for the rapid purification of both membrane-bound and soluble brain carbonic anhydrase is presented that permits retention of full enzymatic activity. Both forms of the enzyme were found to show specific activities of approximately 5500 Units/mg protein when CO2 hydrating activity was determined. In addition, they exhibited similar esterase activity when assayed with p-nitrophenyl acetate. The membrane-bound form, although requiring detergent for extraction from membranes, was freely soluble in aqueous buffers after purification. The molecular weights of both soluble and membrane-bound carbonic anhydrase are 30,000 daltons, and mixing experiments failed to show any significant differences with respect to size. The two forms also exhibit isoelectric points of 7.2. However, the two proteins were found to differ in two respects. Complement fixation indicated that antibodies to soluble carbonic anhydrase had a higher affinity for the soluble form than for the membrane-bound form. The failure to observe any precursor-product relationship between these two proteins with pulse chase studies and the establishment that carbonic anhydrase-like proteins are synthesized on both free polysomes and the rough endoplasmic reticulum indicated that these proteins are synthesized by two separate mechanisms. In vitro synthesis on both free and bound polysomes was determined by two independent methods using different antibodies and different analytical procedures. The basis for these findings and their physiologic importance are discussed.
Collapse
|
36
|
Murer H, Greger R. Membrane transport in the proximal tubule and thick ascending limb of Henle's loop: mechanisms and their alterations. KLINISCHE WOCHENSCHRIFT 1982; 60:1103-13. [PMID: 7144056 DOI: 10.1007/bf01715840] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Over the past few years, our knowledge on renal tubular transport mechanisms has increased considerably. Due to new technical developments, it is now possible to understand in part transepithelial transport and its pathological and pharmacological alterations at the level of the cell membranes. Different membrane transport mechanisms are discussed in this article, whereby sodium coupled solute transport in the proximal tubule and sodium chloride transport in the thick ascending limb of Henle's loop are taken as examples. It is indicated that an altered function of the kidney can often be equated with an alteration of the membrane transport.
Collapse
|