1
|
Fisher CL, Marks H, Cho LTY, Andrews R, Wormald S, Carroll T, Iyer V, Tate P, Rosen B, Stunnenberg HG, Fisher AG, Skarnes WC. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers. Nucleic Acids Res 2017; 45:e174. [PMID: 28981838 PMCID: PMC5716182 DOI: 10.1093/nar/gkx811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 11/18/2022] Open
Abstract
Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors.
Collapse
Affiliation(s)
- Cynthia L. Fisher
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- MRC London Institute of Medical Sciences and Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Lily Ting-yin Cho
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Robert Andrews
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Sam Wormald
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Thomas Carroll
- MRC London Institute of Medical Sciences and Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Vivek Iyer
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Peri Tate
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Barry Rosen
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Amanda G. Fisher
- MRC London Institute of Medical Sciences and Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - William C. Skarnes
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
2
|
Keller K, Maass M, Dizayee S, Leiss V, Annala S, Köth J, Seemann WK, Müller-Ehmsen J, Mohr K, Nürnberg B, Engelhardt S, Herzig S, Birnbaumer L, Matthes J. Lack of Gαi2 leads to dilative cardiomyopathy and increased mortality in β1-adrenoceptor overexpressing mice. Cardiovasc Res 2015; 108:348-56. [PMID: 26464333 DOI: 10.1093/cvr/cvv235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/28/2015] [Indexed: 01/05/2023] Open
Abstract
AIMS Inhibitory G (Gi) proteins have been proposed to be cardioprotective. We investigated effects of Gαi2 knockout on cardiac function and survival in a murine heart failure model of cardiac β1-adrenoceptor overexpression. METHODS AND RESULTS β1-transgenic mice lacking Gαi2 (β1-tg/Gαi2 (-/-)) were compared with wild-type mice and littermates either overexpressing cardiac β1-adrenoceptors (β1-tg) or lacking Gαi2 (Gαi2 (-/-)). At 300 days, mortality of mice only lacking Gαi2 was already higher compared with wild-type or β1-tg, but similar to β1-tg/Gαi2 (-/-), mice. Beyond 300 days, mortality of β1-tg/Gαi2 (-/-) mice was enhanced compared with all other genotypes (mean survival time: 363 ± 21 days). At 300 days of age, echocardiography revealed similar cardiac function of wild-type, β1-tg, and Gαi2 (-/-) mice, but significant impairment for β1-tg/Gαi2 (-/-) mice (e.g. ejection fraction 14 ± 2 vs. 40 ± 4% in wild-type mice). Significantly increased ventricle-to-body weight ratio (0.71 ± 0.06 vs. 0.48 ± 0.02% in wild-type mice), left ventricular size (length 0.82 ± 0.04 vs. 0.66 ± 0.03 cm in wild types), and atrial natriuretic peptide and brain natriuretic peptide expression (mRNA: 2819 and 495% of wild-type mice, respectively) indicated hypertrophy. Gαi3 was significantly up-regulated in Gαi2 knockout mice (protein compared with wild type: 340 ± 90% in Gαi2 (-/-) and 394 ± 80% in β1-tg/Gαi2 (-/-), respectively). CONCLUSIONS Gαi2 deficiency combined with cardiac β1-adrenoceptor overexpression strongly impaired survival and cardiac function. At 300 days of age, β1-adrenoceptor overexpression alone had not induced cardiac hypertrophy or dysfunction while there was overt cardiomyopathy in mice additionally lacking Gαi2. We propose an enhanced effect of increased β1-adrenergic drive by the lack of protection via Gαi2. Gαi3 up-regulation was not sufficient to compensate for Gαi2 deficiency, suggesting an isoform-specific or a concentration-dependent mechanism.
Collapse
Affiliation(s)
- Kirsten Keller
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Martina Maass
- Department of Internal Medicine III, University Hospital of Cologne, Cologne, Germany
| | - Sara Dizayee
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Veronika Leiss
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, Tuebingen, Germany
| | - Suvi Annala
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Jessica Köth
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Wiebke K Seemann
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | | | - Klaus Mohr
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, Tuebingen, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
| | - Stefan Herzig
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, NIEHS, NIH (Department of Health and Human Services), Durham, USA
| | - Jan Matthes
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| |
Collapse
|
3
|
Genetic disruption of G proteins, G(i2)alpha or G(o)alpha, does not abolish inotropic and chronotropic effects of stimulating muscarinic cholinoceptors in atrium. Br J Pharmacol 2010; 158:1557-64. [PMID: 19906118 DOI: 10.1111/j.1476-5381.2009.00441.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Classically, stimulation of muscarinic cholinoceptors exerts negative inotropic and chronotropic effects in the atrium of mammalian hearts. These effects are crucial to the vagal regulation of the heart beat. This effect is assumed to be mediated via GTP binding (G) proteins, because they can be abolished by Pertussis toxin. However, it is unknown which G proteins are involved. EXPERIMENTAL APPROACH We studied contractility in isolated left or right atrium from genetically manipulated mice with deletion of one of two G proteins, either of the alpha subunit of G(i2) protein (G(i2)alpha) or of the alpha subunit of G(o) protein (G(o)alpha). Preparations were stimulated with carbachol alone or after pretreatment with the beta-adrenoceptor agonist isoprenaline. For comparison, the effects of carbachol on L-type Ca(2+)-channels in isolated ventricular cardiomyocytes were studied. KEY RESULTS The negative inotropic and chronotropic effects of carbachol alone or in the presence of isoprenaline were identical in atria from knockout or wild-type mice. However, the effect of carbachol on isoprenaline-activated L-type Ca(2+)-channel in isolated ventricular cardiomyocytes was greatly attenuated in both types of knockout mice studied. CONCLUSIONS AND IMPLICATIONS These data imply that there is either redundancy of G proteins for signal transduction or that Pertussis toxin-sensitive proteins other than G(i2)alpha and G(o)alpha mediate the vagal stimulation in the atrium. Moreover, different G proteins mediate the effect of carbachol in ventricle compared with atrium.
Collapse
|
4
|
Klysik J, Singer JD. Mice with the enhanced green fluorescent protein gene knocked in to chromosome 11 exhibit normal transmission ratios. Biochem Genet 2005; 43:321-33. [PMID: 16144308 DOI: 10.1007/s10528-005-5223-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Meiotic recombination between homologous chromosomes can be suppressed within a chosen segment by a regional inversion. In mice, this feature can be engineered and conveniently used in genetic screens to maintain chemically induced mutations within the homologous chromosome. The efficiency of an inversion-based mutagenesis screen can be substantially enhanced provided that the inversion chromosome and its wild-type (WT) homologue are both visibly tagged by two different coat color markers. Dual tagging eliminates labor associated with molecular genotyping. Previously, we reported the generation of the In(11)10Brd strain of mice carrying K14-agouti tagging a 30-cM inversion between the Trp53 and Egfr loci on mouse chromosome 11. Since K14-agouti causes yellowing of ears and tails, the In(11)10Brd mice are easily distinguishable from their WT littermates. In this paper, we describe the construction of a second strain of mice that carry the enhanced green fluorescent protein (EGFP) transgene at the Egfr locus. The EGFP carriers are visually recognizable by emitting green fluorescent light upon UV illumination. We found that the EGFP function was transmitted from one generation to another with expected Mendelian frequencies, and no detrimental effects of EGFP expression were detected in hemizygous or homozygous animals. The EGFP mice together with the previously generated In(11)10Brd inversion carriers constitute a complete set of reagents required for initiation of a regional ENU mutagenesis screen to address functionally more than one-third of mouse chromosome 11.
Collapse
Affiliation(s)
- Jan Klysik
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
5
|
Yee BK, Keist R, von Boehmer L, Studer R, Benke D, Hagenbuch N, Dong Y, Malenka RC, Fritschy JM, Bluethmann H, Feldon J, Möhler H, Rudolph U. A schizophrenia-related sensorimotor deficit links alpha 3-containing GABAA receptors to a dopamine hyperfunction. Proc Natl Acad Sci U S A 2005; 102:17154-9. [PMID: 16284244 PMCID: PMC1288020 DOI: 10.1073/pnas.0508752102] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Overactivity of the dopaminergic system in the brain is considered to be a contributing factor to the development and symptomatology of schizophrenia. Therefore, the GABAergic control of dopamine functions was assessed by disrupting the gene encoding the alpha3 subunit of the GABA(A) receptor. alpha3 knockout (alpha3KO) mice exhibited neither an obvious developmental defect nor apparent morphological brain abnormalities, and there was no evidence for compensatory up-regulation of other major GABA(A)-receptor subunits. Anxiety-related behavior in the elevated-plus-maze test was undisturbed, and the anxiolytic-like effect of diazepam, which is mediated by alpha2-containing GABA(A) receptors, was preserved. As a result of the loss of alpha3 GABA(A) receptors, the GABA-induced whole-cell current recorded from midbrain dopamine neurons was significantly reduced. Spontaneous locomotor activity was slightly elevated in alpha3KO mice. Most notably, prepulse inhibition of the acoustic startle reflex was markedly attenuated in the alpha3KO mice, pointing to a deficit in sensorimotor information processing. This deficit was completely normalized by treatment with the antipsychotic D2-receptor antagonist haloperidol. The amphetamine-induced hyperlocomotion was not altered in alpha3KO mice compared with WT mice. These results suggest that the absence of alpha3-subunit-containing GABA(A) receptors induces a hyperdopaminergic phenotype, including a severe deficit in sensorimotor gating, a common feature among psychiatric conditions, including schizophrenia. Hence, agonists acting at alpha3-containing GABA(A) receptors may constitute an avenue for an effective treatment of sensorimotor-gating deficits in various psychiatric conditions.
Collapse
Affiliation(s)
- B K Yee
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Segmental inversions causing recombination suppression are an essential feature of balancer chromosomes. Meiotic crossing over between homologous chromosomes within an inversion interval will lead to nonviable gametes, while gametes generated from recombination events elsewhere on the chromosome will be unaffected. This apparent recombination suppression has been widely exploited in genetic studies in Drosophila to maintain and analyze stocks carrying recessive lethal mutations. Balancers are particularly useful in mutagenesis screens since they help to establish the approximate genomic location of alleles of genes causing phenotypes. Using the Cre-loxP recombination system, we have constructed two mouse balancer chromosomes carrying 8- and 30-cM inversions between Wnt3 and D11Mit69 and between Trp53 and EgfR loci, respectively. The Wnt3-D11Mit69 inversion mutates the Wnt3 locus and is therefore homozygous lethal. The Trp53-EgfR inversion is homozygous viable, since the EgfR locus is intact and mutations in p53 are homozygous viable. A dominantly acting K14-agouti minigene tags both rearrangements, which enables these balancer chromosomes to be visibly tracked in mouse stocks. With the addition of these balancers to the previously reported Trp53-Wnt3 balancer, most of mouse chromosome 11 is now available in balancer stocks.
Collapse
Affiliation(s)
- Jan Klysik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
7
|
Abstract
In the postgenomic era the mouse will be central to the challenge of ascribing a function to the 40,000 or so genes that constitute our genome. In this review, we summarize some of the classic and modern approaches that have fueled the recent dramatic explosion in mouse genetics. Together with the sequencing of the mouse genome, these tools will have a profound effect on our ability to generate new and more accurate mouse models and thus provide a powerful insight into the function of human genes during the processes of both normal development and disease.
Collapse
|
8
|
Abstract
Glutamate released onto retinal ON bipolar neurons binds to a metabotropic receptor to activate a heterotrimeric G-protein (G(o)) that ultimately closes a nonspecific cation channel. Signaling requires the alpha subunit (Galpha(o)), but its effector is unknown. Because Galpha(o) is transcribed into two splice variants (alpha(o1) and alpha(o2)) that differ in the key GTPase domain, the next step in elucidating this pathway was to determine which splice variant carries the signal. Here we show by reverse transcription-PCR and Western blots that retina expresses both splice variants. Furthermore, in situ hybridization and immunostaining on mouse retina deficient in one splice variant or the other show that both alpha(o1) and alpha(o2) are expressed by ON bipolar cells but that alpha(o1) is much more abundant. Finally, electroretinography performed on mice deficient for one splice variant or the other shows that the positive b-wave (response of ON bipolar cells to rod and cone input) requires alpha(o1) but not alpha(o2). Thus, the light response of the ON bipolar cell is probably carried by its strongly expressed splice variant, Galpha(o1).
Collapse
|
9
|
Jiang M, Spicher K, Boulay G, Martín-Requero A, Dye CA, Rudolph U, Birnbaumer L. Mouse gene knockout and knockin strategies in application to alpha subunits of Gi/Go family of G proteins. Methods Enzymol 2002; 344:277-98. [PMID: 11771389 DOI: 10.1016/s0076-6879(02)44721-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Meisheng Jiang
- Department of Anesthesiology, School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Chen F, Spicher K, Jiang M, Birnbaumer L, Wetzel GT. Lack of muscarinic regulation of Ca(2+) channels in G(i2)alpha gene knockout mouse hearts. Am J Physiol Heart Circ Physiol 2001; 280:H1989-95. [PMID: 11299198 DOI: 10.1152/ajpheart.2001.280.5.h1989] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to examine the role of G(i2)alpha in Ca(2+) channel regulation using G(i2)alpha gene knockout mouse ventricular myocytes. The whole cell voltage-clamp technique was used to study the effects of the muscarinic agonist carbachol (CCh) and the beta-adrenergic agonist isoproterenol (Iso) on cardiac L-type Ca(2+) currents in both 129Sv wild-type (WT) and G(i2)alpha gene knockout (G(i2)alpha-/-) mice. Perfusion with CCh significantly inhibited the Ca(2+) current in WT cells, and this effect was reversed by adding atropine to the CCh-containing solution. In contrast, CCh did not affect Ca(2+) currents in G(i2)alpha-/- ventricular myocytes. Addition of CCh to Iso-containing solutions attenuated the Iso-stimulated Ca(2+) current in WT cardiomyocytes but not in G(i2)alpha-/- cells. These findings demonstrate that, whereas the Iso-G(s)alpha signal pathway is intact in G(i2)alpha gene knockout mouse hearts, these cells lack the inhibitory regulation of Ca(2+) channels by CCh. Therefore, G(i2)alpha is necessary for the muscarinic regulation of Ca(2+) channels in the mouse heart. Further studies are needed to delineate the possible interaction of G(i) and other cell signaling proteins and to clarify the level of interaction of G protein-coupled regulation of L-type Ca(2+) current in the heart.
Collapse
Affiliation(s)
- F Chen
- Department of Pediatrics, University of California School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
11
|
Jiang M, Spicher K, Boulay G, Wang Y, Birnbaumer L. Most central nervous system D2 dopamine receptors are coupled to their effectors by Go. Proc Natl Acad Sci U S A 2001; 98:3577-82. [PMID: 11248120 PMCID: PMC30695 DOI: 10.1073/pnas.051632598] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2000] [Indexed: 11/18/2022] Open
Abstract
We reported previously that Go-deficient mice develop severe neurological defects that include hyperalgesia, a generalized tremor, lack of coordination, and a turning syndrome somewhat reminiscent of unilateral lesions of the dopaminergic nigro-striatal pathway. By using frozen coronal sections of serially sectioned brains of normal and Go-deficient mice, we studied the ability of several G protein coupled receptors to promote binding of GTPgammaS to G proteins and the ability of GTP to promote a shift in the affinity of D2 dopamine receptor for its physiologic agonist dopamine. We found a generalized, but not abolished reduction in agonist-stimulated binding of GTPgammaS to frozen brain sections, with no significant left-right differences. Unexpectedly, the ability of GTP to regulate the binding affinity of dopamine to D2 receptors (as seen in in situ [(35)S]sulpiride displacement curves) that was robust in control mice, was absent in Go-deficient mice. The data suggest that most of the effects of the Gi/Go-coupled D2 receptors in the central nervous system are mediated by Go instead of Gi1, Gi2, or Gi3. In agreement with this, the effect of GTP on dopamine binding to D2 receptors in double Gi1 plus Gi2- and Gi1 plus Gi3-deficient mice was essentially unaffected.
Collapse
Affiliation(s)
- M Jiang
- Department of Anesthesiology, University of California, Los Angeles, CA 90095-7115, USA
| | | | | | | | | |
Collapse
|
12
|
Zheng B, Mills AA, Bradley A. A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice. Nucleic Acids Res 1999; 27:2354-60. [PMID: 10325425 PMCID: PMC148802 DOI: 10.1093/nar/27.11.2354] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene targeting in mouse embryonic stem (ES) cells can be used to generate single gene mutations or defined multi-megabase chromosomal rearrangements when applied with the Cre- loxP recombination system. While single knockouts are essential for uncovering functions of cloned genes, chromosomal rearrangements are great genetic tools for mapping, mutagenesis screens and functional genomics. The conventional approach to generate mice with targeted alterations of the genome requires extensive molecular cloning to build targeting vectors and DNA-based genotyping for stock maintenance. Here we describe the design and construction of a two-library system to facilitate high throughput gene targeting and chromo-somal engineering. The unique feature of these libraries is that once a clone is isolated, it is essentially ready to be used for insertional targeting in ES cells. The two libraries each bear a complementary set of genetic markers tailored so that the vector can be used for Cre- loxP -based chromosome engineering as well as single knockouts. By incorporating mouse coat color markers into the vectors, we illustrate a widely applicable method for stock maintenance of ES cell-derived mice with single gene knockouts or more extensive chromosomal rearrangements.
Collapse
Affiliation(s)
- B Zheng
- Department of Molecular and Human Genetics and Howard Hughes Medical Institute, Baylor College of Medicine,1 Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
13
|
Mattera R, Hayek S, Summers BA, Grove DL. Agonist-specific alterations in receptor-phospholipase coupling following inactivation of Gi2alpha gene. Biochem J 1998; 332 ( Pt 1):263-71. [PMID: 9576877 PMCID: PMC1219477 DOI: 10.1042/bj3320263] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Different forms of phospholipase A2, together with pertussis toxin-sensitive G-proteins, [Ca2+]i (intracellular Ca2+ concentration), protein kinase C, calmodulin, protein tyrosine kinases, mitogen-activated protein kinases and Ca2+/calmodulin-dependent protein kinase appear to play a role in agonist-mediated release of arachidonic acid. Here we report that fibroblasts from 14-day-old mouse embryos with inactivated Gi2alpha (alpha-subunit of the heterotrimeric G-protein Gi2) gene display a marked decrease in the ability of lysophosphatidic acid, thrombin and Ca2+ ionophores to release arachidonic acid compared with their normal counterparts. The requirement for Gi2alpha in the release of arachidonic acid following increased [Ca2+]i may be explained by the incomplete translocation of cytosolic phospholipase A2 observed in Gi2alpha-deficient cells. Paradoxically, inactivation of the Gi2alpha gene resulted in up-regulation of bradykinin receptors and their coupling to increased arachidonic acid release, phospholipase C activity and [Ca2+]i. A concomitant increase in basal phospholipase C activity was also observed in the Gi2alpha-deficient cells. These observations establish a pleiotropic and essential role for Gi2alpha in receptor-phospholipase coupling that contrasts with its less obligatory participation in agonist-mediated inhibition of adenylate cyclase.
Collapse
Affiliation(s)
- R Mattera
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4970, USA.
| | | | | | | |
Collapse
|
14
|
Jiang M, Gold MS, Boulay G, Spicher K, Peyton M, Brabet P, Srinivasan Y, Rudolph U, Ellison G, Birnbaumer L. Multiple neurological abnormalities in mice deficient in the G protein Go. Proc Natl Acad Sci U S A 1998; 95:3269-74. [PMID: 9501252 PMCID: PMC19731 DOI: 10.1073/pnas.95.6.3269] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The G protein Go is highly expressed in neurons and mediates effects of a group of rhodopsin-like receptors that includes the opioid, alpha2-adrenergic, M2 muscarinic, and somatostatin receptors. In vitro, Go is also activated by growth cone-associated protein of Mr 43,000 (GAP43) and the Alzheimer amyloid precursor protein, but it is not known whether this occurs in intact cells. To learn about the roles that Go may play in intact cells and whole body homeostasis, we disrupted the gene encoding the alpha subunits of Go in embryonic stem cells and derived Go-deficient mice. Mice with a disrupted alphao gene (alphao-/- mice) lived but had an average half-life of only about 7 weeks. No Goalpha was detectable in homogenates of alphao-/- mice by ADP-ribosylation with pertussis toxin. At the cellular level, inhibition of cardiac adenylyl cyclase by carbachol (50-55% at saturation) was unaffected, but inhibition of Ca2+ channel currents by opioid receptor agonist in dorsal root ganglion cells was decreased by 30%, and in 25% of the alphao-/- cells examined, the Ca2+ channel was activated at voltages that were 13.3 +/- 1.7 mV lower than in their counterparts. Loss of alphao was not accompanied by appearance of significant amounts of active free betagamma dimers (prepulse test). At the level of the living animal, Go-deficient mice are hyperalgesic (hot-plate test) and display a severe motor control impairment (falling from rotarods and 1-inch wide beams). In spite of this deficiency, alphao-/- mice are hyperactive and exhibit a turning behavior that has them running in circles for hours on end, both in cages and in open-field tests. Except for one, all alphao-/- mice turned only counterclockwise. These findings indicate that Go plays a major role in motor control, in motor behavior, and in pain perception and also predict involvement of Go in Ca2+ channel regulation by an unknown mechanism.
Collapse
Affiliation(s)
- M Jiang
- Department of Anesthesiology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Farese RV, Véniant MM, Cham CM, Flynn LM, Pierotti V, Loring JF, Traber M, Ruland S, Stokowski RS, Huszar D, Young SG. Phenotypic analysis of mice expressing exclusively apolipoprotein B48 or apolipoprotein B100. Proc Natl Acad Sci U S A 1996; 93:6393-8. [PMID: 8692825 PMCID: PMC39033 DOI: 10.1073/pnas.93.13.6393] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Apolipoprotein (apo)-B is found in two forms in mammals: apo-B100, which is made in the liver and the yolk sac, and apo-B48, a truncated protein made in the intestine. To provide models for understanding the physiologic purpose for the two forms of apo-B, we used targeted mutagenesis of the apo-B gene to generate mice that synthesize exclusively apo-B48 (apo-B48-only mice) and mice that synthesize exclusively apo-B100 (apo-B100-only mice). Both the apo-B48-only mice and apo-B100-only mice developed normally, were healthy, and were fertile. Thus, apo-B48 synthesis was sufficient for normal embryonic development, and the synthesis of apo-B100 in the intestines of adult mice caused no readily apparent adverse effects on intestinal function or nutrition. Compared with wild-type mice fed a chow diet, the levels of low density lipoprotein (LDL)-cholesterol and very low density lipoprotein- and LDL-triacylglycerols were lower in apo-B48-only mice and higher in the apo-B100-only mice. In the setting of apo-E-deficiency, the apo-B100-only mutation lowered cholesterol levels, consistent with the fact that apo-B100-lipoproteins can be cleared from the plasma via the LDL receptor, whereas apo-B48-lipoproteins lacking apo-E cannot. The apo-B48-only and apo-B100-only mice should prove to be valuable models for experiments designed to understand the purpose for the two forms of apo-B in mammalian metabolism.
Collapse
Affiliation(s)
- R V Farese
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94141-9100, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 1996; 85:661-71. [PMID: 8646775 DOI: 10.1016/s0092-8674(00)81233-7] [Citation(s) in RCA: 541] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY Capacitative calcium entry (CCE) describes CA2+ influx into cells that replenishes CA2+ stores emptied through the action of IP3 and other agents. It is an essential component of cellular responses to many hormones and growth factors. The molecular basis of this form of Ca2+ entry is complex and may involve more than one type of channel. Studies on visual signal transduction in Drosophila led to the hypothesis that a protein encoded in trp may be a component of CCE channels. We reported the existence of six trp-related genes in the mouse genome. Expression in L cells of small portions of these genes in antisense orientation suppressed CCE. Expression in COS cells of two full-length cDNAs encoding human trp homologs, Htrp1 and Htrp3, increased CCE. This identifies mammalian gene products that participate in CCE. We propose that trp homologs are subunits of CCE channels, not unlike those of classical voltage-gated ion channels.
Collapse
Affiliation(s)
- X Zhu
- Department of Anesthesiology, Department of Biological Chemistry, School of Medicine, Molecular Biology Institute, University of California, Los Angeles 90095-1778, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Rudolph U, Spicher K, Birnbaumer L. Adenylyl cyclase inhibition and altered G protein subunit expression and ADP-ribosylation patterns in tissues and cells from Gi2 alpha-/-mice. Proc Natl Acad Sci U S A 1996; 93:3209-14. [PMID: 8622915 PMCID: PMC39584 DOI: 10.1073/pnas.93.8.3209] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The inhibition of alpha i2-/- mouse cardiac isoproterenol-stimulated adenylyl cyclase (AC; EC 4.6.1.1) activity by carbachol and that of alpha i2-/- adipocyte AC by phenylisopropyladenosine (PIA), prostaglandin E2, and nicotinic acid were partially, but not completely, inhibited. While the inhibition of cardiac AC was affected in all alpha i2-/- animals tested, only 50% of the alpha i2-/- animals showed an impaired inhibition of adipocyte AC, indicative of a partial penetrance of this phenotype. In agreement with previous results, the data show that Gi2 mediates hormonal inhibition of AC and that Gi3 and/or Gi1 is capable of doing the same but with a lower efficacy. Disruption of the alpha i2 gene affected about equally the actions of all the receptors studied, indicating that none of them exhibits a striking specificity for one type of Gi over another and that receptors are likely to he selective rather than specific in their interaction with functionally homologous G proteins (e.g., Gi1, Gi2, Gi3). Western analysis of G protein subunit levels in simian virus 40-transformed primary embryonic fibroblasts from alpha i2+/+ and alpha i2-/- animals showed that alpha i2 accounts for about 50% of the immunopositive G protein alpha subunits and that loss of the alpha i2 is accompanied by a parallel reduction in G beta 35 and G beta 36 subunits and by a 30-50% increase in alpha i3. This suggests that G beta-gamma levels may be regulated passively through differential rates of turnover in their free vs. trimeric states. The existence of compensatory increase(s) in alpha i subunit expression raises the possibility that the lack of effect of a missing alpha i2 on AC inhibition in adipocytes of some alpha i2-/- animals may be the reflection of a more pronounced compensatory expression of alpha i3 and/or alpha i1.
Collapse
Affiliation(s)
- U Rudolph
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
18
|
Rudolph U, Finegold MJ, Rich SS, Harriman GR, Srinivasan Y, Brabet P, Bradley A, Birnbaumer L. Gi2 alpha protein deficiency: a model of inflammatory bowel disease. J Clin Immunol 1995; 15:101S-105S. [PMID: 8613481 DOI: 10.1007/bf01540899] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mice deficient for the G protein subunit Gi2 alpha were obtained by gene targeting. They displayed a growth retardation that was apparent at 6 weeks of age. They subsequently developed diffuse colitis with clinical and histopathological features closely resembling those of ulcerative colitis in humans. Seven of 20 Gi2 alpha-deficient mice with colitis also developed adenocarcinomas of the colon. Gi2 alpha-deficient thymocytes displayed two- to fourfold increases in mature CD4+8- and CD4-8+ phenotypes, an approximately threefold increase in high-intensity CD3 staining and enhanced proliferative responses to T-cell receptor stimuli. Stimulation of Gi 2 alpha-deficient peripheral T cells induced a hyperresponsive profile of interleukin-2, tumour necrosis factor, and interferon-gamma production, which may reflect a heightened response of primed cells or a defective negative regulation. We suggest that Gi 2 alpha-deficient mice may represent a useful animal model for dissecting the pathomechanisms of inflammatory bowel disease and also for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- U Rudolph
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Rudolph U, Finegold MJ, Rich SS, Harriman GR, Srinivasan Y, Brabet P, Boulay G, Bradley A, Birnbaumer L. Ulcerative colitis and adenocarcinoma of the colon in G alpha i2-deficient mice. Nat Genet 1995; 10:143-50. [PMID: 7663509 DOI: 10.1038/ng0695-143] [Citation(s) in RCA: 323] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
G proteins are involved in cellular signalling and regulate a variety of biological processes including differentiation and development. We have generated mice deficient for the G protein subunit alpha i2 (G alpha i2) by homologous recombination in embryonic stem cells. G alpha i2-deficient mice display growth retardation and develop a lethal diffuse colitis with clinical and histopathological features closely resembling ulcerative colitis in humans, including the development of adenocarcinoma of the colon. Prior to clinical symptoms, the mice show profound alterations in thymocyte maturation and function. The study of these animals should provide important insights into the pathogenesis of ulcerative colitis as well as carcinogenesis.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/immunology
- Adenocarcinoma/pathology
- Amino Acid Sequence
- Animals
- Antigens, CD/analysis
- Base Sequence
- Chromosome Mapping
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Colonic Neoplasms/genetics
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Cytokines/analysis
- Female
- GTP-Binding Protein alpha Subunit, Gi2
- GTP-Binding Protein alpha Subunits, Gi-Go
- GTP-Binding Proteins/genetics
- Genes, Lethal
- Homozygote
- Immunoglobulins/analysis
- Lymphocytes/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Models, Genetic
- Molecular Sequence Data
- Proto-Oncogene Proteins/genetics
- Specific Pathogen-Free Organisms/genetics
- Specific Pathogen-Free Organisms/physiology
- Spleen/immunology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- U Rudolph
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Insights into the Pathogenesis of Inflammatory Bowel Diseases Provided by New Rodent Models of Spontaneous Colitis. Inflamm Bowel Dis 1995. [DOI: 10.1097/00054725-199503000-00007] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
|
21
|
Rudolph U, Bradley A, Birnbaumer L. Targeted inactivation of the Gi2 alpha gene with replacement and insertion vectors: analysis in a 96-well plate format. Methods Enzymol 1994; 237:366-86. [PMID: 7935011 DOI: 10.1016/s0076-6879(94)37076-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- U Rudolph
- Institute of Pharmacology, University of Zurich, Switzerland
| | | | | |
Collapse
|