1
|
BRCA2 Promotes Spontaneous Homologous Recombination In Vivo. Cancers (Basel) 2021; 13:cancers13153663. [PMID: 34359565 PMCID: PMC8345144 DOI: 10.3390/cancers13153663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND BRCA2 is known to be a tumor suppressor involved in homologous recombination repair and presumed to prevent genome instability in normal tissues prior to the development of tumors. Typical assessment of BRCA2 deficiency on the genome involves cell-based models using cancer cells with mixed genetic contexts, but the role in normal tissue in vivo has not been clearly demonstrated. METHODS Using conditional deletion of Brca2 exon 11, the region containing all eight BRC repeats, in the retinal pigment epithelium and the pink-eyed unstable mouse model, we evaluate the frequency of DNA deletion events. RESULTS In the current study, we show that conditional loss of Brca2 exon 11 results in a decreased frequency of spontaneous homologous recombination compared to wild-type mice. Of note, we observe no apparent concomitant increase in events that indicate single-strand annealing by the pink-eyed unstable mouse model. CONCLUSIONS Therefore, our results demonstrate that BRCA2, as expected, is required for high-fidelity homologous recombination DNA repair in normal tissues, here in a tissue undergoing normal proliferation through normal development.
Collapse
|
2
|
Lodovichi S, Bellè F, Cervelli T, Lorenzoni A, Maresca L, Cozzani C, Caligo MA, Galli A. Effect of BRCA1 missense variants on gene reversion in DNA double-strand break repair mutants and cell cycle-arrested cells of Saccharomyces cerevisiae. Mutagenesis 2019; 35:189-195. [DOI: 10.1093/mutage/gez043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
AbstractEvaluation of the functional impact of germline BRCA1 variants that are likely to be associated to breast and ovarian cancer could help to investigate the mechanism of BRCA1 tumorigenesis. Expression of pathogenic BRCA1 missense variants increased homologous recombination (HR) and gene reversion (GR) in yeast. We thought to exploit yeast genetics to shed light on BRCA1-induced genome instability and tumorigenesis. We determined the effect on GR of several neutral and pathogenic BRCA1 variants in the yeast strain RSY6wt and its isogenic DSB repair mutants, such as mre11∆, rad50∆ and rad51∆. In the RSY6wt, four out of five pathogenic and two out of six neutral variants significantly increased GR; rad51∆ strain, the pathogenic variants C61G and A1708E induced a weak but significant increase in GR. On the other hand, in rad50∆ mutant expressing the pathogenic variants localised at the BRCT domain, a further GR increase was seen. The neutral variant N132K and the VUS A1789T induced a weak GR increase in mre11∆ mutant. Thus, BRCA1 missense variants require specific genetic functions and presumably induced GR by different mechanisms. As DNA repair is regulated by cell cycle, we determined the effect on GR of BRCA1 variants in cell cycle-arrested RSYwt cells. GR is highly BRCA1-inducible in S-phase-arrested cells as compared to G1 or G2. Sequence analysis of genomic DNA from ILV1 revertant clones showed that BRCA1-induced ilv1-92 reversion by base substitution when GR is at least 6-fold over the control. Our study demonstrated that BRCA1 may interfere with yeast DNA repair functions that are active in S-phase causing high level of GR. In addition, we confirmed here that yeast could be a reliable model to investigate the mechanism and genetic requirements of BRCA1-induced genome instability. Finally, developing yeast-based assays to characterise BRCA1 missense variants could be useful to design more precise therapies.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Francesca Bellè
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Tiziana Cervelli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Alessandra Lorenzoni
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Luisa Maresca
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, Pisa, Italy
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Cristina Cozzani
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Maria Adelaide Caligo
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, Pisa, Italy
| |
Collapse
|
3
|
Fasullo MT, Sun M. Both RAD5-dependent and independent pathways are involved in DNA damage-associated sister chromatid exchange in budding yeast. AIMS GENETICS 2017; 4:84-102. [PMID: 28596989 PMCID: PMC5460634 DOI: 10.3934/genet.2017.2.84] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sister chromatids are preferred substrates for recombinational repair after cells are exposed to DNA damage. While some agents directly cause double-strand breaks (DSBs), others form DNA base adducts which stall or impede the DNA replication fork. We asked which types of DNA damage can stimulate SCE in budding yeast mutants defective in template switch mechanisms and whether PCNA polyubiquitination functions are required for DNA damage-associated SCE after exposure to potent recombinagens. We measured spontaneous and DNA damage-associated unequal sister chromatid exchange (uSCE) in yeast strains containing two fragments of his3 after exposure to MMS, 4-NQO, UV, X rays, and HO endonuclease-induced DSBs. We determined whether other genes in the pathway for template switching, including UBC13, MMS2, SGS1, and SRS2 were required for DNA damage-associated SCE. RAD5 was required for DNA damage-associated SCE after exposure to UV, MMS, and 4-NQO, but not for spontaneous, X-ray-associated, or HO endonuclease-induced SCE. While UBC13, MMS2, and SGS1 were required for MMS and 4NQO-associated SCE, they were not required for UV-associated SCE. DNA damage-associated recombination between his3 recombination substrates on non-homologous recombination was enhanced in rad5 mutants. These results demonstrate that DNA damaging agents that cause DSBs stimulate SCE by RAD5-independent mechanisms, while several potent agents that generate bulky DNA adducts stimulate SCE by multiple RAD5-dependent mechanisms. We suggest that DSB-associated recombination that occurs in G2 is RAD5-independent.
Collapse
Affiliation(s)
- Michael T Fasullo
- College of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Mingzeng Sun
- College of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| |
Collapse
|
4
|
La Ferla M, Mercatanti A, Rocchi G, Lodovichi S, Cervelli T, Pignata L, Caligo MA, Galli A. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization. Mutat Res 2015; 774:14-24. [PMID: 25779917 DOI: 10.1016/j.mrfmmm.2015.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/03/2015] [Accepted: 02/26/2015] [Indexed: 01/31/2023]
Abstract
The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus.
Collapse
Affiliation(s)
- Marco La Ferla
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Alberto Mercatanti
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Giulia Rocchi
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Samuele Lodovichi
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Tiziana Cervelli
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Luca Pignata
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Maria Adelaide Caligo
- Section of Genetic Oncology, University Hospital and University of Pisa, via Roma 57, 56125 Pisa, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy.
| |
Collapse
|
5
|
Brown AD, Sager BW, Gorthi A, Tonapi SS, Brown EJ, Bishop AJR. ATR suppresses endogenous DNA damage and allows completion of homologous recombination repair. PLoS One 2014; 9:e91222. [PMID: 24675793 PMCID: PMC3968013 DOI: 10.1371/journal.pone.0091222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/10/2014] [Indexed: 11/28/2022] Open
Abstract
DNA replication fork stalling or collapse that arises from endogenous damage poses a serious threat to genome stability, but cells invoke an intricate signaling cascade referred to as the DNA damage response (DDR) to prevent such damage. The gene product ataxia telangiectasia and Rad3-related (ATR) responds primarily to replication stress by regulating cell cycle checkpoint control, yet it’s role in DNA repair, particularly homologous recombination (HR), remains unclear. This is of particular interest since HR is one way in which replication restart can occur in the presence of a stalled or collapsed fork. Hypomorphic mutations in human ATR cause the rare autosomal-recessive disease Seckel syndrome, and complete loss of Atr in mice leads to embryonic lethality. We recently adapted the in vivo murine pink-eyed unstable (pun) assay for measuring HR frequency to be able to investigate the role of essential genes on HR using a conditional Cre/loxP system. Our system allows for the unique opportunity to test the effect of ATR loss on HR in somatic cells under physiological conditions. Using this system, we provide evidence that retinal pigment epithelium (RPE) cells lacking ATR have decreased density with abnormal morphology, a decreased frequency of HR and an increased level of chromosomal damage.
Collapse
Affiliation(s)
- Adam D. Brown
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Brian W. Sager
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Aparna Gorthi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Sonal S. Tonapi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Eric J. Brown
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Alexander J. R. Bishop
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae. PLoS Genet 2013; 9:e1003894. [PMID: 24204306 PMCID: PMC3814309 DOI: 10.1371/journal.pgen.1003894] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/05/2013] [Indexed: 11/24/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae and most other eukaryotes, mitotic recombination is important for the repair of double-stranded DNA breaks (DSBs). Mitotic recombination between homologous chromosomes can result in loss of heterozygosity (LOH). In this study, LOH events induced by ultraviolet (UV) light are mapped throughout the genome to a resolution of about 1 kb using single-nucleotide polymorphism (SNP) microarrays. UV doses that have little effect on the viability of diploid cells stimulate crossovers more than 1000-fold in wild-type cells. In addition, UV stimulates recombination in G1-synchronized cells about 10-fold more efficiently than in G2-synchronized cells. Importantly, at high doses of UV, most conversion events reflect the repair of two sister chromatids that are broken at approximately the same position whereas at low doses, most conversion events reflect the repair of a single broken chromatid. Genome-wide mapping of about 380 unselected crossovers, break-induced replication (BIR) events, and gene conversions shows that UV-induced recombination events occur throughout the genome without pronounced hotspots, although the ribosomal RNA gene cluster has a significantly lower frequency of crossovers. Nearly every living organism has to cope with DNA damage caused by ultraviolet (UV) exposure from the sun. UV causes various types of DNA damage. Defects in the repair of these DNA lesions are associated with the human disease xeroderma pigmentosum, one symptom of which is predisposition to skin cancer. The DNA damage introduced by UV stimulates recombination and, in this study, we characterize the resulting recombination events at high resolution throughout the yeast genome. At high UV doses, we show that most recombination events reflect the repair of two sister chromatids broken at the same position, indicating that UV can cause double-stranded DNA breaks. At lower doses of UV, most events involve the repair of a single broken chromatid. Our mapping of events also demonstrates that certain regions of the yeast genome are relatively resistant to UV-induced recombination. Finally, we show that most UV-induced DNA lesions are repaired during the first cell cycle, and do not lead to recombination in subsequent cycles.
Collapse
|
7
|
Allegrini S, Filoni DN, Galli A, Collavoli A, Pesi R, Camici M, Tozzi MG. Expression of bovine cytosolic 5'-nucleotidase (cN-II) in yeast: nucleotide pools disturbance and its consequences on growth and homologous recombination. PLoS One 2013; 8:e63914. [PMID: 23691116 PMCID: PMC3656857 DOI: 10.1371/journal.pone.0063914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/09/2013] [Indexed: 01/30/2023] Open
Abstract
Cytosolic 5'-nucleotidase II is a widespread IMP hydrolyzing enzyme, essential for cell vitality, whose role in nucleotide metabolism and cell function is still to be exactly determined. Cytosolic 5'-nucleotidase overexpression and silencing have both been demonstrated to be toxic for mammalian cultured cells. In order to ascertain the effect of enzyme expression on a well-known eukaryote simple model, we expressed cytosolic 5'-nucleotidase II in Saccharomyces cerevisiae, which normally hydrolyzes IMP through the action of a nucleotidase with distinct functional and structural features. Heterologous expression was successful. The yeast cells harbouring cytosolic 5'-nucleotidase II displayed a shorter duplication time and a significant modification of purine and pyrimidine derivatives concentration as compared with the control strain. Furthermore the capacity of homologous recombination in the presence of mutagenic compounds of yeast expressing cytosolic 5'-nucleotidase II was markedly impaired.
Collapse
Affiliation(s)
- Simone Allegrini
- Dipartimento di Chimica e Farmacia, Università di Sassari, Sassari, Italy.
| | | | | | | | | | | | | |
Collapse
|
8
|
Spugnesi L, Balia C, Collavoli A, Falaschi E, Quercioli V, Caligo MA, Galli A. Effect of the expression of BRCA2 on spontaneous homologous recombination and DNA damage-induced nuclear foci in Saccharomyces cerevisiae. Mutagenesis 2013; 28:187-95. [DOI: 10.1093/mutage/ges069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Covo S, Ma W, Westmoreland JW, Gordenin DA, Resnick MA. Understanding the origins of UV-induced recombination through manipulation of sister chromatid cohesion. Cell Cycle 2012; 11:3937-44. [PMID: 22987150 PMCID: PMC3507489 DOI: 10.4161/cc.21945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ultraviolet light (UV) can provoke genome instability, partly through its ability to induce homologous recombination (HR). However, the mechanism(s) of UV-induced recombination is poorly understood. Although double-strand breaks (DSBs) have been invoked, there is little evidence for their generation by UV. Alternatively, single-strand DNA lesions that stall replication forks could provoke recombination. Recent findings suggest efficient initiation of UV-induced recombination in G1 through processing of closely spaced single-strand lesions to DSBs. However, other scenarios are possible, since the recombination initiated in G1 can be completed in the following stages of the cell cycle. We developed a system that could address UV-induced recombination events that start and finish in G2 by manipulating the activity of the sister chromatid cohesion complex. Here we show that sister-chromatid cohesion suppresses UV-induced recombination events that are initiated and resolved in G2. By comparing recombination frequencies and survival between UV and ionizing radiation, we conclude that a substantial portion of UV-induced recombination occurs through DSBs. This notion is supported by a direct physical observation of UV-induced DSBs that are dependent on nucleotide excision repair. However, a significant role of nonDSB intermediates in UV-induced recombination cannot be excluded.
Collapse
Affiliation(s)
- Shay Covo
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA.
| | | | | | | | | |
Collapse
|
10
|
Pal J, Bertheau R, Buon L, Qazi A, Batchu RB, Bandyopadhyay S, Ali-Fehmi R, Beer DG, Weaver DW, Reis RJS, Goyal RK, Huang Q, Munshi NC, Shammas MA. Genomic evolution in Barrett's adenocarcinoma cells: critical roles of elevated hsRAD51, homologous recombination and Alu sequences in the genome. Oncogene 2011; 30:3585-98. [PMID: 21423218 PMCID: PMC3406293 DOI: 10.1038/onc.2011.83] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/11/2011] [Accepted: 02/16/2011] [Indexed: 12/15/2022]
Abstract
A prominent feature of most cancers including Barrett's adenocarcinoma (BAC) is genetic instability, which is associated with development and progression of disease. In this study, we investigated the role of recombinase (hsRAD51), a key component of homologous recombination (HR)/repair, in evolving genomic changes and growth of BAC cells. We show that the expression of RAD51 is elevated in BAC cell lines and tissue specimens, relative to normal cells. HR activity is also elevated and significantly correlates with RAD51 expression in BAC cells. The suppression of RAD51 expression, by short hairpin RNA (shRNA) specifically targeting this gene, significantly prevented BAC cells from acquiring genomic changes to either copy number or heterozygosity (P<0.02) in several independent experiments employing single-nucleotide polymorphism arrays. The reduction in copy-number changes, following shRNA treatment, was confirmed by Comparative Genome Hybridization analyses of the same DNA samples. Moreover, the chromosomal distributions of mutations correlated strongly with frequencies and locations of Alu interspersed repetitive elements on individual chromosomes. We conclude that the hsRAD51 protein level is systematically elevated in BAC, contributes significantly to genomic evolution during serial propagation of these cells and correlates with disease progression. Alu sequences may serve as substrates for elevated HR during cell proliferation in vitro, as they have been reported to do during the evolution of species, and thus may provide additional targets for prevention or treatment of this disease.
Collapse
Affiliation(s)
- J Pal
- Department of Adult Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Medicine or Pathology, VA Health Care System, Boston, MA, USA
| | - R Bertheau
- Department of Adult Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Medicine or Pathology, VA Health Care System, Boston, MA, USA
| | - L Buon
- Department of Adult Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - A Qazi
- Department of Surgery or Pathology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - RB Batchu
- Department of Surgery or Pathology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - S Bandyopadhyay
- Department of Surgery or Pathology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - R Ali-Fehmi
- Department of Surgery or Pathology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - DG Beer
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - DW Weaver
- Department of Surgery or Pathology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - RJ Shmookler Reis
- Department of Geriatrics, and Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - RK Goyal
- Department of Medicine or Pathology, VA Health Care System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Q Huang
- Department of Medicine or Pathology, VA Health Care System, Boston, MA, USA
| | - NC Munshi
- Department of Adult Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Medicine or Pathology, VA Health Care System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - MA Shammas
- Department of Adult Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Medicine or Pathology, VA Health Care System, Boston, MA, USA
| |
Collapse
|
11
|
A conditional mouse model for measuring the frequency of homologous recombination events in vivo in the absence of essential genes. Mol Cell Biol 2011; 31:3593-602. [PMID: 21709021 DOI: 10.1128/mcb.00848-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ability to detect and repair DNA damage is crucial to the prevention of various diseases. Loss of function of genes involved in these processes is known to result in significant developmental defects and/or predisposition to cancer. One such DNA repair mechanism, homologous recombination, has the capacity to repair a wide variety of lesions. Knockout mouse models of genes thought to be involved in DNA repair processes are frequently lethal, making in vivo studies very difficult, if not impossible. Therefore, we set out to develop an in vivo conditional mouse model system to facilitate investigations into the involvement of essential genes in homologous recombination. To test our model, we measured the frequency of spontaneous homologous recombination using the pink-eyed unstable mouse model, in which we conditionally excised either Blm or full-length Brca1 (breast cancer 1, early onset). These two genes are hypothesized to have opposing roles in homologous recombination. In summary, our in vivo data supports in vitro studies suggesting that BLM suppresses homologous recombination, while full-length BRCA1 promotes this process.
Collapse
|
12
|
Effect of the overexpression of BRCA2 unclassified missense variants on spontaneous homologous recombination in human cells. Breast Cancer Res Treat 2011; 129:1001-9. [PMID: 21671020 DOI: 10.1007/s10549-011-1607-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022]
Abstract
Breast Cancer 2 gene (BRCA2) mutation carriers have a 45% chance of developing breast cancer and a 11% risk of developing ovarian cancer by the age of 70. While hundreds of BRCA2-truncating mutations have been associated with an increased cancer risk in carriers, the contribution of unclassified variants (UCVs) to cancer risk remains largely undefined. BRCA2-defective cells show a high degree of chromosome instability. Although a functional assay based on the BRCA2 capability to stimulate DSB-induced homologous recombination (HR) as a way to classify UCVs has been proposed, so far no data are available concerning the effect of BRCA2 UCVs on spontaneous HR. In this study, we proposed a novel functional HR-based assay that determines the effect of the transient overexpression of the BRCA2 variant on spontaneous HR. This assay will help one in the difficult task of classifying UCVs, and it will give more information on how BRCA2 may induce genome instability and on the basic mechanism of BRCA2-induced tumourigenesis. We chose 11 BRCA2 UCVs not previously described or classified in other articles, and distributed along the entire BRCA2-coding region. They are as follows: G173V, D191V, S286P, M927V, T1011R, L1019V, N1878K, S2006R, R2108C, G2353R and V3091I. Basically, because the expression of BRCA2wt and the neutral variants did not increase spontaneous HR, we classified the variants G173V, S286P, M927V, T1011R and L1019V as HR-negative and presumed that they were not pathogenic. The HR-positive variants, D191V, N1878K, S2006R, R2108C, G2353R, and V3091I, which increased HR as much as the cancer-associated variant G2748D, could probably be classified as pathogenic. We observed that all our variants in the C-terminus of the protein behaved differently from the wt, suggesting a role for this protein region in spontaneous HR.
Collapse
|
13
|
The over-expression of the β2 catalytic subunit of the proteasome decreases homologous recombination and impairs DNA double-strand break repair in human cells. J Biomed Biotechnol 2011; 2011:757960. [PMID: 21660142 PMCID: PMC3110333 DOI: 10.1155/2011/757960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/16/2011] [Indexed: 02/02/2023] Open
Abstract
By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.
Collapse
|
14
|
Hafer K, Rivina Y, Schiestl RH. Yeast DEL assay detects protection against radiation-induced cytotoxicity and genotoxicity: adaptation of a microtiter plate version. Radiat Res 2010; 174:719-26. [PMID: 21128795 PMCID: PMC3080456 DOI: 10.1667/rr2059.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The DEL assay in yeast detects DNA deletions that are inducible by many carcinogens. Here we use the colorimetric agent MTS to adapt the yeast DEL assay for microwell plate measurement of ionizing radiation-induced cell killing and DNA deletions. Using the microwell-based DEL assay, cell killing and genotoxic DNA deletions both increased with radiation dose between 0 and 2000 Gy. We used the microwell-based DEL assay to assess the effectiveness of varying concentrations of five different radioprotectors, N-acetyl-l-cysteine, l-ascorbic acid, DMSO, Tempol and Amifostine, and one radiosensitizer, 5-bromo-2-deoxyuridine. The microwell format of the DEL assay was able to successfully detect protection against and sensitization to both radiation-induced cytotoxicity and genotoxicity. Such radioprotection and sensitization detected by the microwell-based DEL assay was validated and compared with similar measurements made using the traditional agar-based assay format. The yeast DEL assay in microwell format is an effective tool for rapidly detecting chemical protectors and sensitizers to ionizing radiation and is automatable for chemical high-throughput screening purposes.
Collapse
Affiliation(s)
- Kurt Hafer
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
15
|
Brown AD, Claybon AB, Bishop AJR. Mouse WRN Helicase Domain Is Not Required for Spontaneous Homologous Recombination-Mediated DNA Deletion. J Nucleic Acids 2010; 2010. [PMID: 20847942 PMCID: PMC2933912 DOI: 10.4061/2010/356917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 07/07/2010] [Indexed: 12/22/2022] Open
Abstract
Werner syndrome is a rare disorder that manifests as premature aging and age-related diseases. WRN is the gene mutated in WS, and is one of five human RecQ helicase family members. WS cells exhibit genomic instability and altered proliferation, and in vitro studies suggest that WRN has a role in suppressing homologous recombination. However, more recent studies propose that other RecQ helicases (including WRN) promote early events of homologous recombination. To study the role of WRN helicase on spontaneous homologous recombination, we obtained a mouse with a deleted WRN helicase domain and combined it with the in vivo pink-eyed unstable homologous recombination system. In this paper, we demonstrate that WRN helicase is not necessary for suppressing homologous recombination in vivo contrary to previous reports using a similar mouse model.
Collapse
Affiliation(s)
- Adam D Brown
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
16
|
Covo S, Westmoreland JW, Gordenin DA, Resnick MA. Cohesin Is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes. PLoS Genet 2010; 6:e1001006. [PMID: 20617204 PMCID: PMC2895640 DOI: 10.1371/journal.pgen.1001006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/27/2010] [Indexed: 01/09/2023] Open
Abstract
Double-strand break (DSB) repair through homologous recombination (HR) is an evolutionarily conserved process that is generally error-free. The risk to genome stability posed by nonallelic recombination or loss-of-heterozygosity could be reduced by confining HR to sister chromatids, thereby preventing recombination between homologous chromosomes. Here we show that the sister chromatid cohesion complex (cohesin) is a limiting factor in the control of DSB repair and genome stability and that it suppresses DNA damage-induced interactions between homologues. We developed a gene dosage system in tetraploid yeast to address limitations on various essential components in DSB repair and HR. Unlike RAD50 and RAD51, which play a direct role in HR, a 4-fold reduction in the number of essential MCD1 sister chromatid cohesion subunit genes affected survival of gamma-irradiated G(2)/M cells. The decreased survival reflected a reduction in DSB repair. Importantly, HR between homologous chromosomes was strongly increased by ionizing radiation in G(2)/M cells with a single copy of MCD1 or SMC3 even at radiation doses where survival was high and DSB repair was efficient. The increased recombination also extended to nonlethal doses of UV, which did not induce DSBs. The DNA damage-induced recombinants in G(2)/M cells included crossovers. Thus, the cohesin complex has a dual role in protecting chromosome integrity: it promotes DSB repair and recombination between sister chromatids, and it suppresses damage-induced recombination between homologues. The effects of limited amounts of Mcd1and Smc3 indicate that small changes in cohesin levels may increase the risk of genome instability, which may lead to genetic diseases and cancer.
Collapse
Affiliation(s)
- Shay Covo
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - James W. Westmoreland
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - Dmitry A. Gordenin
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - Michael A. Resnick
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
17
|
Hafer K, Rivina L, Schiestl RH. Cell cycle dependence of ionizing radiation-induced DNA deletions and antioxidant radioprotection in Saccharomyces cerevisiae. Radiat Res 2010; 173:802-8. [PMID: 20518659 PMCID: PMC3873222 DOI: 10.1667/rr1661.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The yeast DEL assay is an effective method for measuring intrachromosomal recombination events resulting in DNA deletions that when occurring in mammalian cells are often associated with genomic instability and carcinogenesis. Here we used the DEL assay to measure gamma-ray-induced DNA deletions throughout different phases of yeast culture growth. Whereas yeast survival differed by only up to twofold throughout the yeast growth phase, proliferating cells in lag and early exponential growth phases were tenfold more sensitive to ionizing radiation-induced DNA deletions than cells in stationary phase. Radiation-induced DNA deletion potential was found to correlate directly with the fraction of cells in S/G(2) phase. The ability of the antioxidants l-ascorbic acid and DMSO to protect against radiation-induced DNA deletions was also measured within the different phases of yeast culture growth. Yeast cells in lag and early exponential growth phases were uniquely protected by antioxidant treatment, whereas nondividing cells in stationary phase could not be protected against the induction of DNA deletions. These results are compared with those from mammalian cell studies, and the implications for radiation-induced carcinogenesis and radioprotection are discussed.
Collapse
Affiliation(s)
- Kurt Hafer
- Departments of Radiation Oncology, Pathology, and Environmental Health, David Geffen School of Medicine at UCLA and UCLA School of Public Health, Los Angeles, California
| | - Leena Rivina
- Departments of Radiation Oncology, Pathology, and Environmental Health, David Geffen School of Medicine at UCLA and UCLA School of Public Health, Los Angeles, California
| | - Robert H. Schiestl
- Departments of Radiation Oncology, Pathology, and Environmental Health, David Geffen School of Medicine at UCLA and UCLA School of Public Health, Los Angeles, California
| |
Collapse
|
18
|
Haegeman A, Kyndt T, Gheysen G. The role of pseudo-endoglucanases in the evolution of nematode cell wall-modifying proteins. J Mol Evol 2010; 70:441-52. [PMID: 20414771 DOI: 10.1007/s00239-010-9343-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
Abstract
In this article, the characterization and evolution of pseudo-endoglucanases and a putative expansin-like gene in the migratory nematode Ditylenchus africanus are described. Four genes were cloned with a very high similarity to the endoglucanase Da-eng1, which, however, lack a part of the catalytic domain most probably due to homologous recombination. Owing to this deletion, at least one of the catalytic residues of the corresponding protein is missing, and hence these genes are possibly pseudogenes. In two of the pseudo-endoglucanase genes, the deletions cause a frameshift (Da-engdel2, Da-engdel4), while two others (Da-engdel1, Da-engdel3) code for protein sequences with an intact carbohydrate-binding module (CBM). Recombinant proteins for Da-ENG1, Da-ENGDEL1, and Da-ENGDEL3 were demonstrated to bind to cellulose, while only Da-ENG1 showed cellulose-degrading activity. This indicates that Da-ENGDEL1 and Da-ENGDEL3 which lack cellulase activity, could still exert a function similar to cellulose-binding proteins (CBPs). Next to the pseudo-endoglucanases, a putative expansin-like gene (Da-exp1) was identified, consisting of a signal peptide, an expansin-like domain, and a CBM. This domain structure was never found before in nematode expansin-like proteins. Interestingly, the CBM of the expansin-like gene is very similar to the endoglucanase CBMs, and a conserved intron position in the CBM of nematode endoglucanases, expansin-like genes, and CBPs indicates a common origin for these domains. This suggests that domain shuffling is an important mechanism in the evolution of cell wall-modifying enzymes in nematodes.
Collapse
Affiliation(s)
- Annelies Haegeman
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.
| | | | | |
Collapse
|
19
|
Toussaint M, Wellinger RJ, Conconi A. Differential participation of homologous recombination and nucleotide excision repair in yeast survival to ultraviolet light radiation. Mutat Res 2010; 698:52-9. [PMID: 20348017 DOI: 10.1016/j.mrgentox.2010.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 02/16/2010] [Accepted: 03/20/2010] [Indexed: 01/17/2023]
Abstract
AIMS The purpose of this research was to assess the ultraviolet light (UV) phenotype of yeast sirDelta cells vs. WT cells, and to determine whether de-silenced chromatin or the intrinsic pseudoploidy of sirDelta mutants contributes to their response to UV. Additional aims were to study the participation of HR and NER in promoting UV survival during the cell cycle, and to define the extent of the co-participation for both repair pathways. MAIN METHODS The sensitivity of yeast Saccharomyces cerevisiae to UV light was determined using a method based on automatic measurements of optical densities of very small (100mul) liquid cell cultures. KEY FINDINGS We show that pseudo-diploidy of sirDelta strains promotes resistance to UV irradiation and that HR is the main mechanism that is responsible for this phenotype. In addition, HR together with GG-NER renders cells in the G2-phase of the cell cycle more resistant to UV irradiation than cells in the G1-phase, which underscore the importance of HR when two copies of the chromosomes are present. Nevertheless, in asynchronously growing cells NER is the main repair pathway that responds to UV induced DNA damage. SIGNIFICANCE This study provides detailed and quantitative information on the co-participation of HR and NER in UV survival of yeast cells.
Collapse
Affiliation(s)
- Martin Toussaint
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | | |
Collapse
|
20
|
The pol3-t hyperrecombination phenotype and DNA damage-induced recombination in Saccharomyces cerevisiae is RAD50 dependent. J Biomed Biotechnol 2009; 2009:312710. [PMID: 19834566 PMCID: PMC2761004 DOI: 10.1155/2009/312710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 07/21/2009] [Indexed: 11/18/2022] Open
Abstract
The DNA polymerase delta (POL3/CDC2) allele pol3-t of Saccharomyces cerevisiae has previously been shown to be sensitive to methylmethanesulfonate (MMS) and has been proposed to be involved in base excision repair. Our results, however, show that the pol3-t mutation is synergistic for MMS sensitivity with MAG1, a known base excision repair gene, but it is epistatic with rad50Delta, suggesting that POL3 may be involved not only in base excision repair but also in a RAD50 dependent function. We further studied the interaction of pol3-t with rad50Delta by examining their effect on spontaneous, MMS-, UV-, and ionizing radiation-induced intrachromosomal recombination. We found that rad50Delta completely abolishes the elevated spontaneous frequency of intrachromosomal recombination in the pol3-t mutant and significantly decreases UV- and MMS-induced recombination in both POL3 and pol3-t strains. Interestingly, rad50Delta had no effect on gamma-ray-induced recombination in both backgrounds between 0 and 50 Gy. Finally, the deletion of RAD50 had no effect on the elevated frequency of homologous integration conferred by the pol3-t mutation. RAD50 is possibly involved in resolution of replication forks that are stalled by mutagen-induced external DNA damage, or internal DNA damage produced by growing the pol3-t mutant at the restrictive temperature.
Collapse
|
21
|
Shammas MA, Shmookler Reis RJ, Koley H, Batchu RB, Li C, Munshi NC. Dysfunctional homologous recombination mediates genomic instability and progression in myeloma. Blood 2009; 113:2290-7. [PMID: 19050310 PMCID: PMC2652372 DOI: 10.1182/blood-2007-05-089193] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 04/20/2008] [Indexed: 11/20/2022] Open
Abstract
A prominent feature of most if not all cancers is a striking genetic instability, leading to ongoing accrual of mutational changes, some of which underlie tumor progression, including acquisition of invasiveness, drug resistance, and metastasis. Thus, the molecular basis for the generation of this genetic diversity in cancer cells has important implications in understanding cancer progression. Here we report that homologous recombination (HR) activity is elevated in multiple myeloma (MM) cells and leads to an increased rate of mutation and progressive accumulation of genetic variation over time. We demonstrate that the inhibition of HR activity in MM cells by small inhibitory RNA (siRNAs) targeting recombinase leads to significant reduction in the acquisition of new genetic changes in the genome and, conversely, the induction of HR activity leads to significant elevation in the number of new mutations over time and development of drug resistance in MM cells. These data identify dysregulated HR activity as a key mediator of DNA instability and progression of MM, with potential as a therapeutic target.
Collapse
Affiliation(s)
- Masood A Shammas
- Department of Medicine, VA Health Care System and Harvard Medical School Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Caligo MA, Bonatti F, Guidugli L, Aretini P, Galli A. A yeast recombination assay to characterize humanBRCA1missense variants of unknown pathological significance. Hum Mutat 2009; 30:123-33. [DOI: 10.1002/humu.20817] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Coïc E, Feldman T, Landman AS, Haber JE. Mechanisms of Rad52-independent spontaneous and UV-induced mitotic recombination in Saccharomyces cerevisiae. Genetics 2008; 179:199-211. [PMID: 18458103 PMCID: PMC2390599 DOI: 10.1534/genetics.108.087189] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 02/09/2008] [Indexed: 11/18/2022] Open
Abstract
In wild-type diploid cells, heteroallelic recombination between his4A and his4C alleles leads mostly to His+ gene conversions that have a parental configuration of flanking markers, but approximately 22% of recombinants have associated reciprocal crossovers. In rad52 strains, gene conversion is reduced 75-fold and the majority of His+ recombinants are crossover associated, with the largest class being half-crossovers in which the other participating chromatid is lost. We report that UV irradiating rad52 cells results in an increase in overall recombination frequency, comparable to increases induced in wild-type (WT) cells, and surprisingly results in a pattern of recombination products quite similar to RAD52 cells: gene conversion without exchange is favored, and the number of 2n - 1 events is markedly reduced. Both spontaneous and UV-induced RAD52-independent recombination depends strongly on Rad50, whereas rad50 has no effect in cells restored to RAD52. The high level of noncrossover gene conversion outcomes in UV-induced rad52 cells depends on Rad51, but not on Rad59. Those outcomes also rely on the UV-inducible kinase Dun1 and Dun1's target, the repressor Crt1, whereas gene conversion events arising spontaneously depend on Rad59 and Crt1. Thus, there are at least two Rad52-independent recombination pathways in budding yeast.
Collapse
Affiliation(s)
- Eric Coïc
- Department of Biology and Rosenstiel Center, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | | | |
Collapse
|
24
|
Ku WW, Aubrecht J, Mauthe RJ, Schiestl RH, Fornace AJ. Genetic toxicity assessment: employing the best science for human safety evaluation Part VII: Why not start with a single test: a transformational alternative to genotoxicity hazard and risk assessment. Toxicol Sci 2007; 99:20-5. [PMID: 17548889 DOI: 10.1093/toxsci/kfm147] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A transformational alternative for genotoxicity hazard and risk assessment is proposed to the current standard regulatory test battery. In principle, the proposed approach consists of a single in vitro test system with high genomic sequence homology to humans that addresses the relevant principal genetic lesions assessed in the current test battery. The single test system also possesses higher throughput attributes to permit the screening of large numbers of compounds and allow for an initial differentiation of genotoxic mechanisms (i.e., direct vs. indirect mechanisms) by how the hazard end point is measured. To differentiate compounds showing positive results, toxicogenomic analysis can be conducted to evaluate genotoxic mechanisms and further support risk assessment. Lastly, the results from the single test system can be followed up with a complementary in vivo assessment to establish mechanistic relevance at potential target tissues. Here, we propose the in vitro (yeast) DNA deletion (DEL) recombination assay as a single test alternative to the current genotoxicity test battery with a mechanistic follow up toxicogenomic analysis of genotoxic stress response as one approach that requires broader evaluation and validation. In this assay, intrachromosomal recombination events between a repeated DNA sequence lead to DNA deletions, which have been shown to be inducible by a variety of carcinogens including those both negative and positive in the standard Salmonella Ames assay. It is hoped that the general framework outlined along with this specific example will provoke broader interest to propose other potential test systems.
Collapse
Affiliation(s)
- Warren W Ku
- Exploratory Medicinal Sciences, Pfizer Global Research and Development, Groton, CT 06340, USA.
| | | | | | | | | |
Collapse
|
25
|
Sarikaya AT, Akman G, Temizkan G. Nickel resistance in fission yeast associated with the magnesium transport system. Mol Biotechnol 2006; 32:139-46. [PMID: 16444015 DOI: 10.1385/mb:32:2:139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We isolated and characterized a nickel (Ni2+)-resistant mutant (GA1) of Schizosaccharomyces pombe. This mutant strain displayed resistance to both Ni2+ and Zn2+, but not to Cd2+, Co2+, and Cu2+. The growth rate of GA1 increased proportionally with increasing Mg2+ concentrations until 50 mM Mg2+. The GA1 mutation phenotype suggests a defect in Mg2+ uptake. Sequence analysis of the GA1 open reading frame (ORF) O13779, which is homologous to the prokaryotic and eukaryotic CorA Mg2+ transport systems, revealed a point mutation at codon 153 (ccc to acc) resulting in a Pro153Thr substitution in the N-terminus of the CorA domain. Our results provide novel genetic information about Ni2+ resistance in fission yeast. Specifically, that reducing Mg2+ influx through the CorA Mg2+ transport membrane protein confers Ni2+ resistance in S. pombe. We also report that Ni2+ ion detoxification of the fission yeast is related to histidine metabolism and pH.
Collapse
Affiliation(s)
- Aysegul Topal Sarikaya
- Istanbul University, Faculty of Science, Department of Moleuclar Biology and Genetics, and Instanbul University Research and Application Center for Biotechnology and Genetic Engineering, 34118 Vezneciler, Istanbul, Turkey.
| | | | | |
Collapse
|
26
|
Daigaku Y, Mashiko S, Mishiba K, Yamamura S, Ui A, Enomoto T, Yamamoto K. Loss of heterozygosity in yeast can occur by ultraviolet irradiation during the S phase of the cell cycle. Mutat Res 2006; 600:177-83. [PMID: 16737721 DOI: 10.1016/j.mrfmmm.2006.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 04/14/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
A CAN1/can1Delta heterozygous allele that determines loss of heterozygosity (LOH) was used to study recombination in Saccharomyces cerevisiae cells exposed to ultraviolet (UV) light at different points in the cell cycle. With this allele, recombination events can be detected as canavanine-resistant mutations after exposure of cells to UV radiation, since a significant fraction of LOH events appear to arise from recombination between homologous chromosomes. The radiation caused a higher level of LOH in cells that were in the S phase of the cell cycle relative to either cells at other points in the cell cycle or unsynchronized cells. In contrast, the inactivation of nucleotide excision repair abolished the cell cycle-specific induction by UV of LOH. We hypothesize that DNA lesions, if not repaired, were converted into double-strand breaks during stalled replication and these breaks could be repaired through recombination using a non-sister chromatid and probably also the sister chromatid. We argue that LOH may be an outcome used by yeast cells to recover from stalled replication at a lesion.
Collapse
Affiliation(s)
- Yasukazu Daigaku
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Kirpnick Z, Homiski M, Rubitski E, Repnevskaya M, Howlett N, Aubrecht J, Schiestl RH. Yeast DEL assay detects clastogens. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 582:116-34. [PMID: 15781217 DOI: 10.1016/j.mrgentox.2005.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 01/12/2005] [Accepted: 01/14/2005] [Indexed: 12/29/2022]
Abstract
Chromosomal rearrangements, including DNA deletions are involved in carcinogenesis. The deletion (DEL) assay scoring for DNA deletions in the yeast Saccharomyces cerevisiae is able to detect a wide range of carcinogens. Among approximately 60 compounds of known carcinogenic activity, the DEL assay detected 86% correctly whereas the Ames Salmonella assay detected only 30% correctly [R.J. Brennan, R.H. Schiestl, Detecting carcinogens with the yeast DEL assay, Methods Mol. Biol. 262 (2004) 111-124]. Since the DEL assay is highly inducible by DNA double strand breaks, this study examined the utility of the DEL assay for detecting clastogens. Ten model compounds, with varied mechanisms of genotoxicity, were examined for their effect on the frequency of DNA deletions with the DEL assay. The compounds tested were: actinomycin D, camptothecin, methotrexate and 5-fluorodeoxyuridine, which are anticancer agents, noscapine and furosemide are therapeutics, acridine, methyl acrylate and resorcinol are industrial chemicals and diazinon is an insecticide. The in vitro micronucleus assay (IVMN) in CHO cells, a commonly used tool for detection of clastogens, was performed on the same compounds and the results of the two assays were compared. The results of our study show that there is 70% concordance in the presence of metabolic activation (rat liver S9) and 80% concordance in the absence of metabolic activation between the DEL assay and the standard in vitro micronucleus assay. The lack of cytotoxicity observed for four of the ten compounds examined indicates limited diffusion of lipophilic compounds across the yeast cell wall. Thus, the development of a more permeable yeast tester strain is expected to greatly improve concordance of the DEL assay with the IVMN assay. The yeast DEL assay is inexpensive, amenable to automation and requires less expertise to perform than the IVMN. Thus, it has a strong potential as a robust, fast and economical screen for detecting clastogens in vitro.
Collapse
Affiliation(s)
- Zhanna Kirpnick
- Department of Pathology, Geffen School of Medicine and School of Public Health, UCLA, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Exposure to environmental factors and genetic predisposition of an individual may lead individually or in combination to various genetic diseases including cancer. These diseases may be a consequence of genetic instability resulting in large-scale genomic rearrangements, such as DNA deletions, duplications, and translocations. This review focuses on mouse assays detecting genetic instability at endogenous loci. The frequency of DNA deletions by homologous recombination at the pink-eyed unstable (p(un)) locus is elevated in mice with mutations in ATM, Trp53, Gadd45, and WRN genes and after exposure to carcinogens. Other quantitative in vivo assays detecting loss of heterozygosity events, such as the mammalian spot assay, Dlb-1 mouse and Aprt mouse assays, are also reviewed. These in vivo test systems may predict hazardous effects of an environmental agent and/or genetic predisposition to cancer.
Collapse
Affiliation(s)
- Ramune Reliene
- Department of Pathology, David Geffen School of Medicine and School of Public Health, UCLA, 650 Charles E Young Drive South, Los Angeles, CA 90024, USA
| | | |
Collapse
|
29
|
Galli A, Cervelli T, Schiestl RH. Characterization of the hyperrecombination phenotype of the pol3-t mutation of Saccharomyces cerevisiae. Genetics 2003; 164:65-79. [PMID: 12750321 PMCID: PMC1462548 DOI: 10.1093/genetics/164.1.65] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The DNA polymerase delta (Pol3p/Cdc2p) allele pol3-t of Saccharomyces cerevisiae has previously been shown to increase the frequency of deletions between short repeats (several base pairs), between homologous DNA sequences separated by long inverted repeats, and between distant short repeats, increasing the frequency of genomic deletions. We found that the pol3-t mutation increased intrachromosomal recombination events between direct DNA repeats up to 36-fold and interchromosomal recombination 14-fold. The hyperrecombination phenotype of pol3-t was partially dependent on the Rad52p function but much more so on Rad1p. However, in the double-mutant rad1 Delta rad52 Delta, the pol3-t mutation still increased spontaneous intrachromosomal recombination frequencies, suggesting that a Rad1p Rad52p-independent single-strand annealing pathway is involved. UV and gamma-rays were less potent inducers of recombination in the pol3-t mutant, indicating that Pol3p is partly involved in DNA-damage-induced recombination. In contrast, while UV- and gamma-ray-induced intrachromosomal recombination was almost completely abolished in the rad52 or the rad1 rad52 mutant, there was still good induction in those mutants in the pol3-t background, indicating channeling of lesions into the above-mentioned Rad1p Rad52p-independent pathway. Finally, a heterozygous pol3-t/POL3 mutant also showed an increased frequency of deletions and MMS sensitivity at the restrictive temperature, indicating that even a heterozygous polymerase delta mutation might increase the frequency of genetic instability.
Collapse
Affiliation(s)
- Alvaro Galli
- Laboratory of Gene and Molecular Therapy, Institute of Clinical Physiology, CNR, 56124 Pisa, Italy
| | | | | |
Collapse
|
30
|
Masumura KI, Kuniya K, Kurobe T, Fukuoka M, Yatagai F, Nohmi T. Heavy-ion-induced mutations in the gpt delta transgenic mouse: comparison of mutation spectra induced by heavy-ion, X-ray, and gamma-ray radiation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2002; 40:207-215. [PMID: 12355555 DOI: 10.1002/em.10108] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Heavy-ion radiation accounts for the major component of absorbed cosmic radiation and is thus regarded as a significant risk during long-term manned space missions. To evaluate the genetic damage induced by heavy particle radiation, gpt delta transgenic mice were exposed to carbon particle irradiation and the induced mutations were compared with those induced by reference radiations, i.e., X-rays and gamma-rays. In the transgenic mouse model, deletions and point mutations were individually identified as Spi(-) and gpt mutations, respectively. Two days after 10 Gy of whole-body irradiation, the mutant frequencies (MFs) of Spi(-) and gpt were determined. Carbon particle irradiation significantly increased Spi(-) MF in the liver, spleen, and kidney but not in the testis, suggesting an organ-specific induction of mutations by heavy-ion irradiation. In the liver, the potency of inducing Spi(-) mutation was highest for carbon particles (3.3-fold increase) followed by X-rays (2.1-fold increase) and gamma-rays (1.3-fold increase), while the potency of inducing gpt mutations was highest for gamma-rays (3.3-fold increase) followed by X-rays (2.1-fold increase) and carbon particles (1.6-fold increase). DNA sequence analysis revealed that carbon particles induced deletions that were mainly more than 1,000 base pairs in size, whereas gamma-rays induced deletions of less than 100 base pairs and base substitutions. X-rays induced various-sized deletions and base substitutions. These results suggest that heavy-ion beam irradiation is effective at inducing deletions via DNA double-strand breaks but less effective than X-ray and gamma-ray irradiation at producing oxidative DNA damage by free radicals.
Collapse
Affiliation(s)
- Ken-ichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Bishop AJ, Louis EJ, Borts RH. Minisatellite variants generated in yeast meiosis involve DNA removal during gene conversion. Genetics 2000; 156:7-20. [PMID: 10978271 PMCID: PMC1461224 DOI: 10.1093/genetics/156.1.7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two yeast minisatellite alleles were cloned and inserted into a genetically defined interval in Saccharomyces cerevisiae. Analysis of flanking markers in combination with sequencing allowed the determination of the meiotic events that produced minisatellites with altered lengths. Tetrad analysis revealed that gene conversions, deletions, or complex combinations of both were involved in producing minisatellite variants. Similar changes were obtained following selection for nearby gene conversions or crossovers among random spores. The largest class of events involving the minisatellite was a 3:1 segregation of parental-size alleles, a class that would have been missed in all previous studies of minisatellites. Comparison of the sequences of the parental and novel alleles revealed that DNA must have been removed from the recipient array while a newly synthesized copy of donor array sequences was inserted. The length of inserted sequences did not appear to be constrained by the length of DNA that was removed. In cases where one or both sides of the insertion could be determined, the insertion endpoints were consistent with the suggestion that the event was mediated by alignment of homologous stretches of donor/recipient DNA.
Collapse
Affiliation(s)
- A J Bishop
- Department of Cancer Cell Biology, Division of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
32
|
Abstract
Prokaryotic and eukaryotic cells have developed a network of DNA repair systems that restore genomic integrity following DNA damage from endogenous and exogenous genotoxic sources. One of the mechanisms used to repair damaged chromosomes is genetic recombination, in which information present as a second chromosomal copy is used to repair a damaged region of the genome. In this review, I summarized what is known about the molecular and cellular mechanisms by which various DNA-damaging agents induce recombination in yeast. The yeast Saccharomyces cerevisiae has served as an excellent model organism to study the induction of recombination. It has helped to define the basic phenomenology and to isolate the genes involved in the process. Given the evolutionary conservation of the various DNA repair systems in eukaryotes, it is likely that the knowledge gathered about induced recombination in yeast is applicable to mammalian cells and thus to humans. Many carcinogens are known to induce recombination and to cause chromosomal rearrangements. An understanding of the mechanisms, by which genotoxic agents cause increased levels of recombination will have important consequences for the treatment of cancer, and for the assessment of risks arising from exposure to genotoxic agents in humans.
Collapse
Affiliation(s)
- M Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
33
|
Doe CL, Dixon J, Osman F, Whitby MC. Partial suppression of the fission yeast rqh1(-) phenotype by expression of a bacterial Holliday junction resolvase. EMBO J 2000; 19:2751-62. [PMID: 10835372 PMCID: PMC212752 DOI: 10.1093/emboj/19.11.2751] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A key stage during homologous recombination is the processing of the Holliday junction, which determines the outcome of the recombination reaction. To dissect the pathways of Holliday junction processing in a eukaryote, we have targeted an Escherichia coli Holliday junction resolvase to the nuclei of fission yeast recombination-deficient mutants and analysed their phenotypes. The resolvase partially complements the UV and hydroxyurea hypersensitivity and associated aberrant mitoses of an rqh1(-) mutant. Rqh1 is a member of the RecQ subfamily of DNA helicases that control recombination particularly during S-phase. Significantly, overexpression of the resolvase in wild-type cells partly mimics the loss of viability, hyper-recombination and 'cut' phenotype of an rqh1(-) mutant. These results indicate that Holliday junctions form in wild-type cells that are normally removed in a non-recombinogenic way, possibly by Rqh1 catalysing their reverse branch migration. We propose that in the absence of Rqh1, replication fork arrest results in the accumulation of Holliday junctions, which can either impede sister chromatid segregation or lead to the formation of recombinants through Holliday junction resolution.
Collapse
Affiliation(s)
- C L Doe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
34
|
Aubrecht J, Secretan MB, Bishop AJ, Schiestl RH. Involvement of p53 in X-ray induced intrachromosomal recombination in mice. Carcinogenesis 1999; 20:2229-36. [PMID: 10590213 DOI: 10.1093/carcin/20.12.2229] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The tumor suppressor gene Trp53 (also known as p53) is the most frequently mutated gene in human cancers. p53 is induced in response to DNA damage and effects a G(1) cell cycle arrest. It is believed that p53 plays a key role in maintaining genomic integrity following exposure to DNA-damaging agents. We determined the frequency of spontaneous and DNA damage-induced homologous intrachromosomal recombination in p53-deficient mouse embryos. Homologous intrachromosomal recombination events resulting in deletions at the pink eyed unstable (p(un)) locus result in reversion to the p gene. Reversions occurring in embryonic premelanocytes give rise to black spots on the gray fur of the offspring. Pregnant C57BL/6J p(un)/p(un) p53(+/-) mice were exposed to X-rays (1 Gy) or administered benzo¿apyrene (B¿aP; 30 or 150 mg/kg i.p.) 10 days after conception. Frequencies of spontaneous p(un) reversions in p53(-/-) and p53(+/-) animals were not significantly different compared with their wild-type littermates. X-ray treatment increased the recombination frequency in wild-type and p53(+/-), but surprisingly not in p53(-/-) offspring. In contrast, B¿aP treatment caused a dose-dependent increase in p(un) reversion frequencies in all three genotypes. Western blot analysis of embryos indicated that p53 protein levels increased approximately 3-fold following X-ray treatment, while B¿aP had no effect on p53 expression. These results are in agreement with the proposal that p53 is involved in the DNA damage response following X-ray exposure and suggest that X-ray-induced double-strand breaks are processed differently in p53(-/-) animals.
Collapse
Affiliation(s)
- J Aubrecht
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 2115, USA
| | | | | | | |
Collapse
|
35
|
Carls N, Schiestl RH. Effect of ionizing radiation on transgenerational appearance of p(un) reversions in mice. Carcinogenesis 1999; 20:2351-4. [PMID: 10590232 DOI: 10.1093/carcin/20.12.2351] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple genetic changes are required for the development of a malignant tumor cell and many environmentally induced cancers show a delayed onset of > 20 years following exposure. In fact, the frequency of genetic changes in cancer cells is higher than can be explained by random mutation. A high level of genetic instability in a subpopulation of cells may be caused by a mutator phenotype transmitted through many cell divisions. We have determined the effects of irradiation of parental male mice on the frequency and characteristics of mitotically occurring DNA deletion events at the p(un) locus in the offspring. Reversion of the p(un) marker in mouse embryos is due to deletion of 70 kb of DNA resulting in fur spots in the offspring. We found that irradiation of male mice caused a significantly higher frequency of large spots in the offspring, indicative of the induction of DNA deletions early in embryo development. These deletion events occurred, however, many cell divisions after irradiation. The present data indicate that exposure of the germline to ionizing radiation results in induction of delayed DNA deletions in offspring mice.
Collapse
Affiliation(s)
- N Carls
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
36
|
Galli A, Schiestl RH. Cell division transforms mutagenic lesions into deletion-recombinagenic lesions in yeast cells. Mutat Res 1999; 429:13-26. [PMID: 10434021 DOI: 10.1016/s0027-5107(99)00097-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell proliferation has been recognized as an important factor in human and experimental carcinogenesis. Point mutations as well as larger chromosomal rearrangements are involved in the initiation of cancer. In this paper we compared the relative potencies of radiation and chemical carcinogens for inducing point mutations vs. deletions in cell cycle arrested with dividing cells of Saccharomyces cerevisiae. Point mutation substrates and deletion (DEL) recombination substrates were constructed with the genes CDC28 and TUB2 that are required for cell cycle progression through G1 and G2, respectively. The carcinogens ionizing radiation, UV, MMS, EMS and 4-NQO induced point mutations in G1 and in G2 arrested as well as in dividing cells. UV, MMS, EMS and 4-NQO caused very weak if any increases in DEL recombination in G1 or G2 arrested cells, but large increases in dividing cells. When cells treated with carcinogen either in G1 or G2 were allowed to progress through the cell cycle, a time-dependent increase in DEL recombination was seen. Ionizing radiation and the site-specific endonuclease I-SceI, which both directly create double-strand breaks, induced DEL recombination in G1 as well as in G2 arrested cells. In conclusion, UV-, MMS-, EMS- and 4-NQO-induced DNA damage was converted during DNA replication to a lesion capable of inducing DEL recombination which is probably a DNA strand break. Thus, cell proliferation is not necessary to turn DNA alkylation or UV damage into a mutagenic lesion but to convert the damage into a lesion that induces DNA deletions. These results are discussed with respect to mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- A Galli
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA
| | | |
Collapse
|
37
|
Fasullo M, Koudelik J, AhChing P, Giallanza P, Cera C. Radiosensitive and mitotic recombination phenotypes of the Saccharomyces cerevisiae dun1 mutant defective in DNA damage-inducible gene expression. Genetics 1999; 152:909-19. [PMID: 10388811 PMCID: PMC1460661 DOI: 10.1093/genetics/152.3.909] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The biological significance of DNA damage-induced gene expression in conferring resistance to DNA-damaging agents is unclear. We investigated the role of DUN1-mediated, DNA damage-inducible gene expression in conferring radiation resistance in Saccharomyces cerevisiae. The DUN1 gene was assigned to the RAD3 epistasis group by quantitating the radiation sensitivities of dun1, rad52, rad1, rad9, rad18 single and double mutants, and of the dun1 rad9 rad52 triple mutant. The dun1 and rad52 single mutants were similar in terms of UV sensitivities; however, the dun1 rad52 double mutant exhibited a synergistic decrease in UV resistance. Both spontaneous intrachromosomal and heteroallelic gene conversion events between two ade2 alleles were enhanced in dun1 mutants, compared to DUN1 strains, and elevated recombination was dependent on RAD52 but not RAD1 gene function. Spontaneous sister chromatid exchange (SCE), as monitored between truncated his3 fragments, was not enhanced in dun1 mutants, but UV-induced SCE and heteroallelic recombination were enhanced. Ionizing radiation and methyl methanesulfonate (MMS)-induced DNA damage did not exhibit greater recombinogenicity in the dun1 mutant compared to the DUN1 strain. We suggest that one function of DUN1-mediated DNA damage-induced gene expression is to channel the repair of UV damage into a nonrecombinogenic repair pathway.
Collapse
Affiliation(s)
- M Fasullo
- Department of Biochemistry and Molecular Biology, The Albany Medical College, Albany, New York 12208, USA.
| | | | | | | | | |
Collapse
|
38
|
Shammas MA, Shmookler Reis RJ. Recombination and its roles in DNA repair, cellular immortalization and cancer. AGE 1999; 22:71-88. [PMID: 23604399 PMCID: PMC3455241 DOI: 10.1007/s11357-999-0009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Genetic recombination is the creation of new gene combinations in a cell or gamete, which differ from those of progenitor cells or parental gametes. In eukaryotes, recombination may occur at mitosis or meiosis. Mitotic recombination plays an indispensable role in DNA repair, which presumably directed its early evolution; the multiplicity of recombination genes and pathways may be best understood in this context, although they have acquired important additional functions in generating diversity, both somatically (increasing the immune repertoire) and in germ line (facilitating evolution). Chromosomal homologous recombination and HsRad51 recombinase expression are increased in both immortal and preimmortal transformed cells, and may favor the occurrence of multiple oncogenic mutations. Tumorigenesis in vivo is frequently associated with karyotypic instability, locus-specific gene rearrangements, and loss of heterozygosity at tumor suppressor loci - all of which can be recombinationally mediated. Genetic defects which increase the rate of somatic mutation (several of which feature elevated recombination) are associated with early incidence and high risk for a variety of cancers. Moreover, carcinogenic agents appear to quite consistently stimulate homologous recombination. If cells with high recombination arise, either spontaneously or in response to "recombinogens," and predispose to the development of cancer, what selective advantage could favor these cells prior to the occurrence of growth-promoting mutations? We propose that the augmentation of telomere-telomere recombination may provide just such an advantage, to hyper-recombinant cells within a population of telomerase-negative cells nearing their replicative (Hayflick) limit, by extending telomeres in some progeny cells and thus allowing their continued proliferation.
Collapse
Affiliation(s)
- Masood A. Shammas
- />Dept. of Geriatrics, University of Arkansas for Medical Sciences, USA
- />J.L. McClellan Veterans Medical Center — Research 151, 4300 West 7th Street, Little Rock, AR 72205
| | - Robert J. Shmookler Reis
- />Dept. of Geriatrics, University of Arkansas for Medical Sciences, USA
- />Dept. of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, USA
- />Dept. of Medicine, University of Arkansas for Medical Sciences, USA
- />J.L. McClellan Veterans Medical Center — Research 151, 4300 West 7th Street, Little Rock, AR 72205
| |
Collapse
|
39
|
Aubrecht J, Narla RK, Ghosh P, Stanek J, Uckun FM. Molecular genotoxicity profiles of apoptosis-inducing vanadocene complexes. Toxicol Appl Pharmacol 1999; 154:228-35. [PMID: 9931282 DOI: 10.1006/taap.1998.8592] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metallocene complexes containing vanadium induce apoptosis in human cancer cells by an as yet unknown mechanism and may therefore be useful as a new class of cytotoxic anticancer drugs. Ultrastructural studies showing the formation of metallocene-DNA complexes prompted the hypothesis that their mechanism of action may resemble the DNA damage induced by cisplatin. Molecular genotoxicity testing provides insights into the mechanisms of action of new chemotherapeutic agents. Therefore, we determined the effects of three cytotoxic vanadocene complexes, vanadocene dichloride, vanadocene dithiocyanate, and vanadocene dioxycyanate, on genomic stability using the yeast DEL recombination assay and transcriptional activation of genotoxic stress-specific promoters in human HepG2 cells using the CAT-Tox(L) assay. Cisplatin caused an 11-fold increase of recombination frequency in yeast and induced transcriptional activation of the DNA damage-associated promoters such as the minimum promoter containing p53 response elements and the GADD45 promoter in addition to activating the promoters for c-fos, heat shock protein 70, metallothionine IIa, and the minimum promoter containing nuclear factor kappa(kappa)B response elements. In contrast to cisplatin, vanadocene complexes did not increase the DEL recombination frequency in yeast nor did they activate any of the DNA damage-associated promoters in HepG2 cells. Vanadocene complexes triggered activation of the c-fos promoter without affecting the minimum promoter containing p53 response elements or the GADD45 promoter. These results indicate that the apoptotic signal of vanadocene complexes is not triggered by primary DNA damage and it does not require p53 induction, thereby disproving the hypothesis that it mechanistically resembles the cytotoxic action of cisplatin.
Collapse
Affiliation(s)
- J Aubrecht
- Hughes Institute, 2665 Long Lake Rd., St. Paul, Minnesota, 55113, USA
| | | | | | | | | |
Collapse
|
40
|
Galli A, Schiestl RH. Effect of Salmonella assay negative and positive carcinogens on intrachromosomal recombination in S-phase arrested yeast cells. Mutat Res 1998; 419:53-68. [PMID: 9804892 DOI: 10.1016/s1383-5718(98)00124-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A wide variety of carcinogens including Ames assay (Salmonella) positive as well as Salmonella negative carcinogens induce intrachromosomal recombination (DEL recombination) in Saccharomyces cerevisiae. We have shown previously that the Salmonella positive carcinogens, ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS) and 4-Nitroquinoline-N-oxide (4-NQO, and the Salmonella negative carcinogens, safrole, benzene, thiourea, carbon tetrachloride, and urethane, induced DEL recombination in growing, in G1 and in G2 arrested yeast cells. Since we found interesting differences in response between dividing and arrested cells, we wanted to find out whether these differences were due to the difference between cell division versus cell cycle arrest or to any particular cell cycle phase. In the present paper we incubated cells in the presence of hydroxyurea (HU) for cell cycle arrest in S-phase and exposed them to the above carcinogens, and plated them onto selective medium to determine DEL and interchromosomal recombination (ICR) frequencies. It was surprising that carbon tetrachloride had no effect on DEL recombination or ICR in HU treated cells even though it induced DEL recombination in G1 and G2 arrested as well as dividing cells. Further experiments are in agreement with the interpretation that carbon tetrachloride was responsible for prematurely pushing G1 cells into S-phase. The consequence of this may be replication on a damaged template which may be responsible for the action of carbon tetrachloride. EMS, MMS, 4-NQO and urethane were more recombinagenic in HU treated cells than in previous experiments with G2 arrested cells. None of the carcinogens appeared to be activated by S9 for either DEL recombination or ICR induction. Furthermore, we only detect cytochrome P-450 in dividing but not in arrested cells, arguing that possible differences in the ability to metabolize the compounds does not explain the observed differences for DEL recombination induction in the different cell cycle phases. We discuss these data in terms of the mechanism of induced DEL recombination and the possible biological activities of these carcinogens.
Collapse
Affiliation(s)
- A Galli
- Istituto di Mutagenesi e Differenziamento, CNR, via Svezia, 10, 56124, Pisa, Italy
| | | |
Collapse
|
41
|
Galli A, Schiestl RH. Effects of DNA double-strand and single-strand breaks on intrachromosomal recombination events in cell-cycle-arrested yeast cells. Genetics 1998; 149:1235-50. [PMID: 9649517 PMCID: PMC1460227 DOI: 10.1093/genetics/149.3.1235] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intrachromosomal recombination between repeated elements can result in deletion (DEL recombination) events. We investigated the inducibility of such intrachromosomal recombination events at different stages of the cell cycle and the nature of the primary DNA lesions capable of initiating these events. Two genetic systems were constructed in Saccharomyces cerevisiae that select for DEL recombination events between duplicated alleles of CDC28 and TUB2. We determined effects of double-strand breaks (DSBs) and single-strand breaks (SSBs) between the duplicated alleles on DEL recombination when induced in dividing cells or cells arrested in G1 or G2. Site-specific DSBs and SSBs were produced by overexpression of the I-Sce I endonuclease and the gene II protein (gIIp), respectively. I-Sce I-induced DSBs caused an increase in DEL recombination frequencies in both dividing and cell-cycle-arrested cells, indicating that G1- and G2-arrested cells are capable of completing DSB repair. In contrast, gIIp-induced SSBs caused an increase in DEL recombination frequency only in dividing cells. To further examine these phenomena we used both gamma-irradiation, inducing DSBs as its most relevant lesion, and UV, inducing other forms of DNA damage. UV irradiation did not increase DEL recombination frequencies in G1 or G2, whereas gamma-rays increased DEL recombination frequencies in both phases. Both forms of radiation, however, induced DEL recombination in dividing cells. The results suggest that DSBs but not SSBs induce DEL recombination, probably via the single-strand annealing pathway. Further, DSBs in dividing cells may result from the replication of a UV or SSB-damaged template. Alternatively, UV induced events may occur by replication slippage after DNA polymerase pausing in front of the damage.
Collapse
Affiliation(s)
- A Galli
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
42
|
Fasullo M, Bennett T, AhChing P, Koudelik J. The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocations. Mol Cell Biol 1998; 18:1190-200. [PMID: 9488434 PMCID: PMC108832 DOI: 10.1128/mcb.18.3.1190] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/1997] [Accepted: 11/26/1997] [Indexed: 02/06/2023] Open
Abstract
Genetic instability in the Saccharomyces cerevisiae rad9 mutant correlates with failure to arrest the cell cycle in response to DNA damage. We quantitated the DNA damage-associated stimulation of directed translocations in RAD9+ and rad9 mutants. Directed translocations were generated by selecting for His+ prototrophs that result from homologous, mitotic recombination between two truncated his3 genes, GAL1::his3-delta5' and trp1::his3-delta3'::HOcs. Compared to RAD9+ strains, the rad9 mutant exhibits a 5-fold higher rate of spontaneous, mitotic recombination and a greater than 10-fold increase in the number of UV- and X-ray-stimulated His+ recombinants that contain translocations. The higher level of recombination in rad9 mutants correlated with the appearance of nonreciprocal translocations and additional karyotypic changes, indicating that genomic instability also occurred among non-his3 sequences. Both enhanced spontaneous recombination and DNA damage-associated recombination are dependent on RAD1, a gene involved in DNA excision repair. The hyperrecombinational phenotype of the rad9 mutant was correlated with a deficiency in cell cycle arrest at the G2-M checkpoint by demonstrating that if rad9 mutants were arrested in G2 before irradiation, the numbers both of UV- and gamma-ray-stimulated recombinants were reduced. The importance of G2 arrest in DNA damage-induced sister chromatid exchange (SCE) was evident by a 10-fold reduction in HO endonuclease-induced SCE and no detectable X-ray stimulation of SCE in a rad9 mutant. We suggest that one mechanism by which the RAD9-mediated G2-M checkpoint may reduce the frequency of DNA damage-induced translocations is by channeling the repair of double-strand breaks into SCE.
Collapse
Affiliation(s)
- M Fasullo
- Department of Biochemistry and Molecular Biology, The Albany Medical College, New York 12208-3479, USA.
| | | | | | | |
Collapse
|
43
|
Schiestl RH, Aubrecht J, Khogali F, Carls N. Carcinogens induce reversion of the mouse pink-eyed unstable mutation. Proc Natl Acad Sci U S A 1997; 94:4576-81. [PMID: 9114032 PMCID: PMC20765 DOI: 10.1073/pnas.94.9.4576] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/1996] [Accepted: 02/24/1997] [Indexed: 02/04/2023] Open
Abstract
Deletions and other genome rearrangements are associated with carcinogenesis and inheritable diseases. The pink-eyed unstable (pun) mutation in the mouse is caused by duplication of a 70-kb internal fragment of the p gene. Spontaneous reversion events in homozygous pun/pun mice occur through deletion of a duplicated sequence. Reversion events in premelanocytes in the mouse embryo detected as black spots on the gray fur of the offspring were inducible by the carcinogen x-rays, ethyl methanesulfonate, methyl methanesulfonate, ethyl nitrosourea, benzo[a]pyrene, trichloroethylene, benzene, and sodium arsenate. The latter three carcinogens are not detectable with several in vitro or in vivo mutagenesis assays. We studied the molecular mechanism of the carcinogen-induced reversion events by cDNA analysis using reverse transcriptase-PCR method and identified the induced reversion events as deletions. DNA deletion assays may be sensitive indicators for carcinogen exposure.
Collapse
Affiliation(s)
- R H Schiestl
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
44
|
Cao J, DePrimo SE, Stringer JR. Cell cycle dependence of radiation-induced homologous recombination in cultured monkey cells. Mutat Res 1997; 374:233-43. [PMID: 9100846 DOI: 10.1016/s0027-5107(96)00237-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A lacZ transgene recombination system that reports homologous recombination events involving duplicated lacZ segments was used to study recombination in monkey cells exposed to ionizing radiation at different points in the cell cycle. With this system, recombination events can be detected in single cells by histochemical staining soon after exposure of cells to DNA-damaging treatment. Ionizing radiation rapidly induced recombination 5-10-fold in cells that were at the mitosis stage of the cell cycle. Irradiation either of cells at other points in the cell cycle or of nonsynchronized cells had less of an effect on recombination between lacZ segments.
Collapse
Affiliation(s)
- J Cao
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati Medical Center, OH 45267-0524, USA
| | | | | |
Collapse
|
45
|
Galli A, Schiestl RH. Effects of Salmonella assay negative and positive carcinogens on intrachromosomal recombination in G1-arrested yeast cells. Mutat Res 1996; 370:209-21. [PMID: 8917668 DOI: 10.1016/s0165-1218(96)00078-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A wide variety of carcinogens including Ames assay (Salmonella) positive as well as Salmonella-negative carcinogens induce intrachromosomal recombination (DEL recombination) in strain RS112 of Saccharomyces cerevisiae. It has been previously shown that the Salmonella-positive carcinogens ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS) and 4-nitroquinoline-N-oxide (4-NQO) and the Salmonella-negative carcinogens safrole, benzene, thiourea, carbon tetrachloride and urethane induce DEL recombination in G2-arrested yeast cells. DEL recombination is preferentially induced by safrole, benzene and carbon tetrachloride in G2-arrested cells which might be explained by preferential induction of unequal sister chromatid recombination leading to deletions. To test this, cells of strain RS112 were arrested in the G1 phase of the cell cycle, exposed to these carcinogens and the frequencies of DEL and interchromosomal recombination (ICR) were determined. EMS, MMS and 4-NQO induced DEL recombination and ICR in G1-arrested cells with a linear dose-response curve. In contrast, the Salmonella-negative carcinogens safrole, benzene, carbon tetrachloride, thiourea and urethane induced DEL recombination and ICR with a threshold below which no significant increase was seen and only at already cytotoxic doses. EMS, MMS and 4-NQO were more recombinagenic in previous experiments with growing cells than in G1-arrested cells. On the other hand, safrole, benzene and carbon tetrachloride were more recombinagenic in G1-arrested than in growing cells. Thus, inducibility of DEL recombination in G1-arrested cells parallels inducibility in G2-arrested cells making it less likely that sister chromatid recombination events might be involved. These data are discussed in terms of the mechanism of induced DEL recombination and the possible biological activities of these carcinogens.
Collapse
Affiliation(s)
- A Galli
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
46
|
Galli A, Schiestl RH. Hydroxyurea induces recombination in dividing but not in G1 or G2 cell cycle arrested yeast cells. Mutat Res 1996; 354:69-75. [PMID: 8692208 DOI: 10.1016/0027-5107(96)00037-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hydroxyurea, a chemotherapeutic and radiosensitizing agent, inhibits ribonucleotide reductase, arrests cells in the S-phase and is mutagenic and recombinagenic. In this paper we investigated whether the recombinagenic activity of hydroxyurea is due to the same activity that leads to arrest in the S-phase or to a more direct action on DNA. The effect of hydroxyurea on intrachromosomal and interchromosomal recombination was investigated in dividing and in G1 or G2 cell cycle-arrested cells of the yeast Saccharomyces cerevisiae. Treatment of dividing cells with hydroxyurea resulted in a large increase in recombination frequencies, even at low non-toxic doses. In contrast, in cells arrested in the G1 or G2 phase, hydroxyurea failed to induce recombination, even at 60-fold higher toxic doses. The presence of metabolic activation (S9 mix) did not change the effects of hydroxyurea on recombination. The data suggest that the recombinagenic activity of hydroxyurea may not be due to any direct effect of hydroxyurea on DNA, but may be linked to the inhibition of ribonucleotide reductase causing inhibition of DNA synthesis leading to S-phase arrest and possibly causing recombinagenic lesions.
Collapse
Affiliation(s)
- A Galli
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|