1
|
Scherrer KH, Eans SO, Medina JM, Senadheera SN, Khaliq T, Murray TF, McLaughlin JP, Aldrich JV. Tryptophan Substitution in CJ-15,208 ( cyclo[Phe-D-Pro-Phe-Trp]) Introduces δ-Opioid Receptor Antagonism, Preventing Antinociceptive Tolerance and Stress-Induced Reinstatement of Extinguished Cocaine-Conditioned Place Preference. Pharmaceuticals (Basel) 2023; 16:1218. [PMID: 37765026 PMCID: PMC10535824 DOI: 10.3390/ph16091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The macrocyclic tetrapeptide CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]) and its D-Trp isomer exhibit kappa opioid receptor (KOR) antagonism which prevents stress-induced reinstatement of extinguished cocaine-conditioned place preference. Here, we evaluated the effects of substitution of Trp and D-Trp on the peptides' opioid activity, antinociceptive tolerance, and the ability to prevent relapse to extinguished drug-CPP. Six analogs were synthesized using a combination of solid-phase peptide synthesis and cyclization in solution. The analogs were evaluated in vitro for opioid receptor affinity in radioligand competition binding assays, efficacy in the [35S]GTPγS assay, metabolic stability in mouse liver microsomes, and for opioid activity and selectivity in vivo in the mouse 55 °C warm-water tail-withdrawal assay. Potential liabilities of locomotor impairment, respiratory depression, acute tolerance, and conditioned place preference (CPP) were also assessed in vivo, and the ameliorating effect of analogs on the reinstatement of extinguished cocaine-place preference was assessed. Substitutions of other D-amino acids for D-Trp did not affect (or in one case increased) KOR affinity, while two of the three substitutions of an L-amino acid for Trp decreased KOR affinity. In contrast, all but one substitution increased mu opioid receptor (MOR) affinity in vitro. The metabolic stabilities of the analogs were similar to those of their respective parent peptides, with analogs containing a D-amino acid being much more rapidly metabolized than those containing an L-amino acid in this position. In vivo, CJ-15,208 analogs demonstrated antinociception, although potencies varied over an 80-fold range and the mediating opioid receptors differed by substitution. KOR antagonism was lost for all but the D-benzothienylalanine analog, and the 2'-naphthylalanine analog instead demonstrated significant delta opioid receptor (DOR) antagonism. Introduction of DOR antagonism coincided with reduced acute opioid antinociceptive tolerance and prevented stress-induced reinstatement of extinguished cocaine-CPP.
Collapse
Affiliation(s)
- Kristen H. Scherrer
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (K.H.S.); (S.O.E.); (J.M.M.)
| | - Shainnel O. Eans
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (K.H.S.); (S.O.E.); (J.M.M.)
| | - Jessica M. Medina
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (K.H.S.); (S.O.E.); (J.M.M.)
| | - Sanjeewa N. Senadheera
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (S.N.S.); (T.K.)
| | - Tanvir Khaliq
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (S.N.S.); (T.K.)
- Department of Medicinal Chemistry, The University of Florida, Gainesville, FL 32610, USA
| | - Thomas F. Murray
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA;
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (K.H.S.); (S.O.E.); (J.M.M.)
| | - Jane V. Aldrich
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (S.N.S.); (T.K.)
- Department of Medicinal Chemistry, The University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Rysztak LG, Jutkiewicz EM. The role of enkephalinergic systems in substance use disorders. Front Syst Neurosci 2022; 16:932546. [PMID: 35993087 PMCID: PMC9391026 DOI: 10.3389/fnsys.2022.932546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Enkephalin, an endogenous opioid peptide, is highly expressed in the reward pathway and may modulate neurotransmission to regulate reward-related behaviors, such as drug-taking and drug-seeking behaviors. Drugs of abuse also directly increase enkephalin in this pathway, yet it is unknown whether or not changes in the enkephalinergic system after drug administration mediate any specific behaviors. The use of animal models of substance use disorders (SUDs) concurrently with pharmacological, genetic, and molecular tools has allowed researchers to directly investigate the role of enkephalin in promoting these behaviors. In this review, we explore neurochemical mechanisms by which enkephalin levels and enkephalin-mediated signaling are altered by drug administration and interrogate the contribution of enkephalin systems to SUDs. Studies manipulating the receptors that enkephalin targets (e.g., mu and delta opioid receptors mainly) implicate the endogenous opioid peptide in drug-induced neuroadaptations and reward-related behaviors; however, further studies will need to confirm the role of enkephalin directly. Overall, these findings suggest that the enkephalinergic system is involved in multiple aspects of SUDs, such as the primary reinforcing properties of drugs, conditioned reinforcing effects, and sensitization. The idea of dopaminergic-opioidergic interactions in these behaviors remains relatively novel and warrants further research. Continuing work to elucidate the role of enkephalin in mediating neurotransmission in reward circuitry driving behaviors related to SUDs remains crucial.
Collapse
Affiliation(s)
- Lauren G. Rysztak
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Emily M. Jutkiewicz
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Emily M. Jutkiewicz,
| |
Collapse
|
3
|
Karin O, Raz M, Alon U. An opponent process for alcohol addiction based on changes in endocrine gland mass. iScience 2021; 24:102127. [PMID: 33665551 PMCID: PMC7903339 DOI: 10.1016/j.isci.2021.102127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/17/2020] [Accepted: 01/27/2021] [Indexed: 12/03/2022] Open
Abstract
Consuming addictive drugs is often initially pleasurable, but escalating drug intake eventually recruits physiological anti-reward systems called opponent processes that cause tolerance and withdrawal symptoms. Opponent processes are fundamental for the addiction process, but their physiological basis is not fully characterized. Here, we propose an opponent processes mechanism centered on the endocrine stress response, the hypothalamic-pituitary-adrenal (HPA) axis. We focus on alcohol addiction, where the HPA axis is activated and secretes β-endorphin, causing euphoria and analgesia. Using a mathematical model, we show that slow changes in the functional mass of HPA glands act as an opponent process for β-endorphin secretion. The model explains hormone dynamics in alcohol addiction and experiments on alcohol preference in rodents. The opponent process is based on fold-change detection (FCD) where β-endorphin responses are relative rather than absolute; FCD confers vulnerability to addiction but has adaptive roles for learning. Our model suggests gland mass changes as potential targets for intervention in addiction. Addiction involves tolerance and withdrawal over weeks Model of the HPA-axis and β-endorphins explains tolerance and withdrawal Effects due to changes in the functional mass of endocrine glands Fold-change detection makes circuit prone to addiction but boosts learning
Collapse
Affiliation(s)
- Omer Karin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moriya Raz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Vena AA, Zandy SL, Cofresí RU, Gonzales RA. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol Ther 2020; 212:107573. [PMID: 32437827 PMCID: PMC7580704 DOI: 10.1016/j.pharmthera.2020.107573] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder has multiple characteristics including excessive ethanol consumption, impaired control over drinking behaviors, craving and withdrawal symptoms, compulsive seeking behaviors, and is considered a chronic condition. Relapse is common. Determining the neurobiological targets of ethanol and the adaptations induced by chronic ethanol exposure is critical to understanding the clinical manifestation of alcohol use disorders, the mechanisms underlying the various features of the disorder, and for informing medication development. In the present review, we discuss ethanol's interactions with a variety of neurotransmitter systems, summarizing findings from preclinical and translational studies to highlight recent progress in the field. We then describe animal models of ethanol self-administration, emphasizing the value, limitations, and validity of commonly used models. Lastly, we summarize the behavioral changes induced by chronic ethanol self-administration, with an emphasis on cue-elicited behavior, the role of ethanol-related memories, and the emergence of habitual ethanol seeking behavior.
Collapse
Affiliation(s)
- Ashley A Vena
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | | | - Roberto U Cofresí
- Psychological Sciences, University of Missouri, United States of America
| | - Rueben A Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy and Institute for Neuroscience, The University of Texas at Austin, United States of America.
| |
Collapse
|
5
|
Bell RL, Hauser SR, Liang T, Sari Y, Maldonado-Devincci A, Rodd ZA. Rat animal models for screening medications to treat alcohol use disorders. Neuropharmacology 2017; 122:201-243. [PMID: 28215999 PMCID: PMC5659204 DOI: 10.1016/j.neuropharm.2017.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 01/21/2023]
Abstract
The purpose of this review is to present animal research models that can be used to screen and/or repurpose medications for the treatment of alcohol abuse and dependence. The focus will be on rats and in particular selectively bred rats. Brief introductions discuss various aspects of the clinical picture, which provide characteristics of individuals with alcohol use disorders (AUDs) to model in animals. Following this, multiple selectively bred rat lines will be described and evaluated in the context of animal models used to screen medications to treat AUDs. Next, common behavioral tests for drug efficacy will be discussed particularly as they relate to stages in the addiction cycle. Tables highlighting studies that have tested the effects of compounds using the respective techniques are included. Wherever possible the Tables are organized chronologically in ascending order to describe changes in the focus of research on AUDs over time. In general, high ethanol-consuming selectively bred rats have been used to test a wide range of compounds. Older studies usually followed neurobiological findings in the selected lines that supported an association with a propensity for high ethanol intake. Most of these tests evaluated the compound's effects on the maintenance of ethanol drinking. Very few compounds have been tested during ethanol-seeking and/or relapse and fewer still have assessed their effects during the acquisition of AUDs. Overall, while a substantial number of neurotransmitter and neuromodulatory system targets have been assessed; the roles of sex- and age-of-animal, as well as the acquisition of AUDs, ethanol-seeking and relapse continue to be factors and behaviors needing further study. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Richard L Bell
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA.
| | - Sheketha R Hauser
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Gastroenterology, Indianapolis, IN 46202, USA
| | - Youssef Sari
- University of Toledo, Department of Pharmacology, Toledo, OH 43614, USA
| | | | - Zachary A Rodd
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Abate P, Reyes-Guzmán AC, Hernández-Fonseca K, Méndez M. Prenatal ethanol exposure modifies locomotor activity and induces selective changes in Met-enk expression in adolescent rats. Neuropeptides 2017; 62:45-56. [PMID: 27889070 DOI: 10.1016/j.npep.2016.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
Several studies suggest that prenatal ethanol exposure (PEE) facilitates ethanol intake. Opioid peptides play a main role in ethanol reinforcement during infancy and adulthood. However, PEE effects upon motor responsiveness elicited by an ethanol challenge and the participation of opioids in these actions remain to be understood. This work assessed the susceptibility of adolescent rats to prenatal and/or postnatal ethanol exposure in terms of behavioral responses, as well as alcohol effects on Met-enk expression in brain areas related to drug reinforcement. Motor parameters (horizontal locomotion, rearings and stereotyped behaviors) in pre- and postnatally ethanol-challenged adolescents were evaluated. Pregnant rats received ethanol (2g/kg) or water during gestational days 17-20. Adolescents at postnatal day 30 (PD30) were tested in a three-trial activity paradigm (habituation, vehicle and drug sessions). Met-enk content was quantitated by radioimmunoassay in several regions: ventral tegmental area [VTA], nucleus accumbens [NAcc], prefrontal cortex [PFC], substantia nigra [SN], caudate-putamen [CP], amygdala, hypothalamus and hippocampus. PEE significantly reduced rearing responses. Ethanol challenge at PD30 decreased horizontal locomotion and showed a tendency to reduce rearings and stereotyped behaviors. PEE increased Met-enk content in the PFC, CP, hypothalamus and hippocampus, but did not alter peptide levels in the amygdala, VTA and NAcc. These findings suggest that PEE selectively modifies behavioral parameters at PD30 and induces specific changes in Met-enk content in regions of the mesocortical and nigrostriatal pathways, the hypothalamus and hippocampus. Prenatal and postnatal ethanol actions on motor activity in adolescents could involve activation of specific neural enkephalinergic pathways.
Collapse
Affiliation(s)
- P Abate
- Laboratorio de Psicología Experimental miembro del Centro de Investigación en Psicología (CIPSi), Facultad de Psicología, Universidad Nacional de Córdoba, CP 5000 Córdoba, Argentina; Enfermera Gordillo esq. Enrique Barros, Ciudad Universitaria, CP 5000 Córdoba, Argentina.
| | - A C Reyes-Guzmán
- Departamento de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, CP 14370 Ciudad de México, Mexico
| | - K Hernández-Fonseca
- Departamento de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, CP 14370 Ciudad de México, Mexico
| | - M Méndez
- Departamento de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, CP 14370 Ciudad de México, Mexico.
| |
Collapse
|
7
|
Volkow ND, Wiers CE, Shokri-Kojori E, Tomasi D, Wang GJ, Baler R. Neurochemical and metabolic effects of acute and chronic alcohol in the human brain: Studies with positron emission tomography. Neuropharmacology 2017; 122:175-188. [PMID: 28108358 DOI: 10.1016/j.neuropharm.2017.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/20/2016] [Accepted: 01/14/2017] [Indexed: 02/07/2023]
Abstract
The use of Positron emission tomography (PET) to study the effects of acute and chronic alcohol on the human brain has enhanced our understanding of the mechanisms underlying alcohol's rewarding effects, the neuroadaptations from chronic exposure that contribute to tolerance and withdrawal, and the changes in fronto-striatal circuits that lead to loss of control and enhanced motivation to drink that characterize alcohol use disorders (AUD). These include studies showing that alcohol's reinforcing effects may result not only from its enhancement of dopaminergic, GABAergic and opioid signaling but also from its caloric properties. Studies in those suffering from an AUD have revealed significant alterations in dopamine (DA), GABA, cannabinoids, opioid and serotonin neurotransmission and in brain energy utilization (glucose and acetate metabolism) that are likely to contribute to compulsive alcohol taking, dysphoria/depression, and to alcohol-associated neurotoxicity. Studies have also evaluated the effects of abstinence on recovery of brain metabolism and neurotransmitter function and the potential value of some of these measures to predict clinical outcomes. Finally, PET studies have started to provide insights about the neuronal mechanisms by which certain genes contribute to the vulnerability to AUD. These findings have helped identify new strategies for prevention and treatment of AUD. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States; National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Corinde E Wiers
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ehsan Shokri-Kojori
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States
| | - Dardo Tomasi
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States
| | - Gene-Jack Wang
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ruben Baler
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
8
|
Froehlich JC, Fischer SM, Dilley JE, Nicholson E, Smith T, Filosa N, Rademacher L. Combining Varenicline (Chantix) with Naltrexone Decreases Alcohol Drinking More Effectively Than Does Either Drug Alone in a Rodent Model of Alcoholism. Alcohol Clin Exp Res 2016; 40:1961-70. [PMID: 27469281 PMCID: PMC5297249 DOI: 10.1111/acer.13157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/08/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND This study examined whether varenicline (VAR), or naltrexone (NTX), alone or in combination, reduces alcohol drinking in alcohol-preferring (P) rats with a genetic predisposition toward high voluntary alcohol intake. METHODS Alcohol-experienced P rats that had been drinking alcohol (15% v/v) for 2 h/d for 4 weeks were fed either vehicle (VEH), VAR alone (0.5, 1.0, or 2.0 mg/kg body weight [BW]), NTX alone (10.0, 15.0, or 20.0 mg/kg BW), or VAR + NTX in 1 of 4 dose combinations (0.5 VAR + 10.0 NTX, 0.5 VAR + 15.0 NTX, 1.0 VAR + 10.0 NTX, or 1.0 VAR + 15.0 NTX) at 1 hour prior to alcohol access for 10 consecutive days, and the effects on alcohol intake were assessed. RESULTS When administered alone, VAR in doses of 0.5 or 1.0 mg/kg BW did not alter alcohol intake but a dose of 2.0 mg/kg BW decreased alcohol intake. This effect disappeared when drug treatment was terminated. NTX in doses of 10.0 and 15.0 mg/kg BW did not alter alcohol intake but a dose of 20.0 mg/kg BW decreased alcohol intake. Combining low doses of VAR and NTX into a single medication reduced alcohol intake as well as did high doses of each drug alone. Reduced alcohol intake occurred immediately after onset of treatment with the combined medication and continued throughout prolonged treatment. CONCLUSIONS Low doses of VAR and NTX, when combined in a single medication, reduce alcohol intake in a rodent model of alcoholism. This approach has the advantage of reducing potential side effects associated with each drug. Lowering the dose of NTX and VAR in a combined treatment approach that maintains efficacy while reducing the incidence of negative side effects may increase patient compliance and improve clinical outcomes for alcoholics and heavy drinkers who want to reduce their alcohol intake.
Collapse
Affiliation(s)
| | | | - Julian E. Dilley
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emily Nicholson
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teal Smith
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nick Filosa
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Logan Rademacher
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Fritz BM, Boehm SL. Rodent models and mechanisms of voluntary binge-like ethanol consumption: Examples, opportunities, and strategies for preclinical research. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:297-308. [PMID: 26021391 PMCID: PMC4668238 DOI: 10.1016/j.pnpbp.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/02/2015] [Accepted: 05/21/2015] [Indexed: 02/03/2023]
Abstract
Binge ethanol consumption has widespread negative consequences for global public health. Rodent models offer exceptional power to explore the neurobiology underlying and affected by binge-like drinking as well as target potential prevention, intervention, and treatment strategies. An important characteristic of these models is their ability to consistently produce pharmacologically-relevant blood ethanol concentration. This review examines the current available rodent models of voluntary, pre-dependent binge-like ethanol consumption and their utility in various research strategies. Studies have demonstrated that a diverse array of neurotransmitters regulate binge-like drinking, resembling some findings from other drinking models. Furthermore, repeated binge-like drinking recruits neuroadaptive mechanisms in mesolimbocortical reward circuitry. New opportunities that these models offer in the current context of mechanistic research are also discussed.
Collapse
Affiliation(s)
| | - Stephen L Boehm
- Indiana Alcohol Research Center, Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States.
| |
Collapse
|
10
|
Alongkronrusmee D, Chiang T, van Rijn RM. Delta Opioid Pharmacology in Relation to Alcohol Behaviors. Handb Exp Pharmacol 2016; 247:199-225. [PMID: 27316912 DOI: 10.1007/164_2016_30] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Delta opioid receptors (DORs) are heavily involved in alcohol-mediated processes in the brain. In this chapter we provide an overview of studies investigating how alcohol directly impacts DOR pharmacology and of early studies indicating DOR modulation of alcohol behavior. We will offer a brief summary of the different animal species used in alcohol studies investigating DORs followed by a broader overview of the types of alcohol behaviors modulated by DORs. We will highlight a small set of studies investigating the relationship between alcohol and DORs in analgesia. We will then provide an anatomical overview linking DOR expression in specific brain regions to different alcohol behaviors. In this section, we will provide two models that try to explain how endogenous opioids acting at DORs may influence alcohol behaviors. Next, we will provide an overview of studies investigating certain new aspects of DOR pharmacology, including the formation of heteromers and biased signaling. Finally, we provide a short overview of the genetics of the DORs in relation to alcohol use disorders (AUDs) and a short statement on the potential of using DOR-based therapeutics for treatment of AUDs.
Collapse
Affiliation(s)
- Doungkamol Alongkronrusmee
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Terrance Chiang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
11
|
Banerjee TS, Hazra A, Mondal NB, Das S. The quinoline compound, S4 effectively antagonizes alcohol intake in mice: Possible association with the histone H3 modifications. Neurochem Int 2015; 87:117-27. [DOI: 10.1016/j.neuint.2015.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 06/07/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
|
12
|
Henderson-Redmond A, Czachowski C. Effects of systemic opioid receptor ligands on ethanol- and sucrose seeking and drinking in alcohol-preferring (P) and Long Evans rats. Psychopharmacology (Berl) 2014; 231:4309-21. [PMID: 24770627 PMCID: PMC4209193 DOI: 10.1007/s00213-014-3571-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 04/05/2014] [Indexed: 10/25/2022]
Abstract
The endogenous opioid system has been implicated in mediating the reinforcing effects of ethanol (EtOH). Naltrexone (NTX), an opioid antagonist with concentration-dependent selectivity for the mu receptor, naltrindole (NTI), a selective delta receptor antagonist, and U50,488H, a selective kappa receptor agonist were examined in both alcohol-preferring (P) and nonselected (Long Evans (LE)) rats to determine whether they differentially affected the seeking and consumption of EtOH and sucrose. Using the sipper-tube model, rats reinforced with either 2% sucrose or 10% EtOH were injected with vehicle and either NTI (2.5, 5.0, or 10.0 mg/kg), U50 (2.5, 5.0, or 10.0 mg/kg), low-dose NTX (0.1, 0.3, or 1.0 mg/kg), or high-dose NTX (1.0, 3.0, or 10.0 mg/kg). Subsequent intakes (consummatory) or lever responses (seeking) were assessed. Overall, NTI, U50, and NTX attenuated intake and responding for sucrose and EtOH, with EtOH-reinforced P rats being the most sensitive to the effects of NTI on intake and seeking. U50 treatment decreased intake and seeking in both P and LE rats but did not selectively reduce EtOH intake or seeking in either line. P rats were more sensitive than LE rats to lower doses of NTX, and these doses more selectively attenuated responding for EtOH than sucrose. Higher doses of NTX suppressed intake and responding across both lines and reinforcers. These results suggest that drugs selective for the opioid receptors may be good pharmacotherapeutic targets, particularly in those with an underlying genetic predisposition for greater EtOH preference/intake.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/administration & dosage
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/administration & dosage
- Analgesics, Non-Narcotic/pharmacology
- Animals
- Behavior, Addictive/metabolism
- Behavior, Animal/drug effects
- Ethanol/administration & dosage
- Ethanol/pharmacology
- Ligands
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/administration & dosage
- Narcotic Antagonists/pharmacology
- Rats
- Rats, Long-Evans
- Receptors, Opioid/metabolism
- Sucrose/pharmacology
Collapse
Affiliation(s)
| | - Cristine Czachowski
- Department of Psychology, Indiana University Purdue University, Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
13
|
Klenowski P, Morgan M, Bartlett SE. The role of δ-opioid receptors in learning and memory underlying the development of addiction. Br J Pharmacol 2014; 172:297-310. [PMID: 24641428 DOI: 10.1111/bph.12618] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/10/2014] [Accepted: 01/19/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Opioids are important endogenous ligands that exist in both invertebrates and vertebrates and signal by activation of opioid receptors to produce analgesia and reward or pleasure. The μ-opioid receptor is the best known of the opioid receptors and mediates the acute analgesic effects of opiates, while the δ-opioid receptor (DOR) has been less well studied and has been linked to effects that follow from chronic use of opiates such as stress, inflammation and anxiety. Recently, DORs have been shown to play an essential role in emotions and increasing evidence points to a role in learning actions and outcomes. The process of learning and memory in addiction has been proposed to involve strengthening of specific brain circuits when a drug is paired with a context or environment. The DOR is highly expressed in the hippocampus, amygdala, striatum and other basal ganglia structures known to participate in learning and memory. In this review, we will focus on the role of the DOR and its potential role in learning and memory underlying the development of addiction. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Paul Klenowski
- Translational Research Institute, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | |
Collapse
|
14
|
Nam HW, Bruner RC, Choi DS. Adenosine signaling in striatal circuits and alcohol use disorders. Mol Cells 2013; 36:195-202. [PMID: 23912595 PMCID: PMC3887972 DOI: 10.1007/s10059-013-0192-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 01/19/2023] Open
Abstract
Adenosine signaling has been implicated in the pathophysiology of alcohol use disorders and other psychiatric disorders such as anxiety and depression. Numerous studies have indicated a role for A1 receptors (A1R) in acute ethanol-induced motor incoordination, while A2A receptors (A2AR) mainly regulate the rewarding effect of ethanol in mice. Recent findings have demonstrated that dampened A2AR-mediated signaling in the dorsomedial striatum (DMS) promotes ethanol-seeking behaviors. Moreover, decreased A2AR function is associated with decreased CREB activity in the DMS, which enhances goal-oriented behaviors and contributes to excessive ethanol drinking in mice. Interestingly, caffeine, the most commonly used psychoactive substance, is known to inhibit both the A1R and A2AR. This dampened adenosine receptor function may mask some of the acute intoxicating effects of ethanol. Furthermore, based on the fact that A2AR activity plays a role in goal-directed behavior, caffeine may also promote ethanol-seeking behavior. The A2AR is enriched in the striatum and exclusively expressed in striatopallidal neurons, which may be responsible for the regulation of inhibitory behavioral control over drug rewarding processes through the indirect pathway of the basal ganglia circuit. Furthermore, the antagonistic interactions between adenosine and dopamine receptors in the striatum also play an integral role in alcoholism and addiction-related disorders. This review focuses on regulation of adenosine signaling in striatal circuits and the possible implication of caffeine in goal-directed behaviors and addiction.
Collapse
Affiliation(s)
- Hyung Wook Nam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Robert C. Bruner
- Molecular Neuroscience Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Molecular Neuroscience Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| |
Collapse
|
15
|
Font L, Luján MÁ, Pastor R. Involvement of the endogenous opioid system in the psychopharmacological actions of ethanol: the role of acetaldehyde. Front Behav Neurosci 2013; 7:93. [PMID: 23914161 PMCID: PMC3728478 DOI: 10.3389/fnbeh.2013.00093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/10/2013] [Indexed: 12/13/2022] Open
Abstract
Significant evidence implicates the endogenous opioid system (EOS) (opioid peptides and receptors) in the mechanisms underlying the psychopharmacological effects of ethanol. Ethanol modulates opioidergic signaling and function at different levels, including biosynthesis, release, and degradation of opioid peptides, as well as binding of endogenous ligands to opioid receptors. The role of β-endorphin and µ-opioid receptors (OR) have been suggested to be of particular importance in mediating some of the behavioral effects of ethanol, including psychomotor stimulation and sensitization, consumption and conditioned place preference (CPP). Ethanol increases the release of β-endorphin from the hypothalamic arcuate nucleus (NArc), which can modulate activity of other neurotransmitter systems such as mesolimbic dopamine (DA). The precise mechanism by which ethanol induces a release of β-endorphin, thereby inducing behavioral responses, remains to be elucidated. The present review summarizes accumulative data suggesting that the first metabolite of ethanol, the psychoactive compound acetaldehyde, could participate in such mechanism. Two lines of research involving acetaldehyde are reviewed: (1) implications of the formation of acetaldehyde in brain areas such as the NArc, with high expression of ethanol metabolizing enzymes and presence of cell bodies of endorphinic neurons and (2) the formation of condensation products between DA and acetaldehyde such as salsolinol, which exerts its actions via OR.
Collapse
Affiliation(s)
- Laura Font
- Area de Psicobiología, Universitat Jaume I Castellón, Spain
| | | | | |
Collapse
|
16
|
Hay RA, Jennings JH, Zitzman DL, Hodge CW, Robinson DL. Specific and nonspecific effects of naltrexone on goal-directed and habitual models of alcohol seeking and drinking. Alcohol Clin Exp Res 2013; 37:1100-10. [PMID: 23398292 DOI: 10.1111/acer.12081] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND The opioid-receptor antagonist naltrexone (NTX) reduces goal-directed alcohol drinking in rats presumably by blunting alcohol reward. However, different operant conditioning behavior can be produced by different reinforcement schedules, with goal-directed operant behavior being more sensitive to changes in reward value than less flexible, habit-associated models. We tested the hypothesis that NTX more effectively reduces alcohol drinking and seeking in a goal-directed than in a habit-associated operant model, and more effectively reduces alcohol versus sucrose self-administration, consistent with diminished alcohol reward. METHODS Rats were trained to self-administer 10% alcohol or 1.5% sucrose in a lever-press task and then underwent a within-subject assessment of NTX (0.1 to 1 mg/kg) effects on operant behavior. A fixed-ratio (FR5) reinforcement schedule was used to model goal-directed behavior, and a variable-interval (VI30) schedule was used to model habitual behavior. RESULTS As predicted, NTX reduced fluid deliveries earned by the FR5-alcohol group significantly more than all other groups. However, NTX reduced lever presses during self-administration sessions in VI30-trained rats without reducing earned deliveries, due to the low contingency between rate of pressing and fluid deliveries under that schedule. Interestingly, when fluid delivery was withheld (extinction), NTX reduced reward-seeking in all rats. Finally, NTX blocked reinstatement of reward-seeking upon presentation of 0.2 ml alcohol or sucrose and associated cues in the FR5-trained but not VI30-trained rats. CONCLUSIONS NTX reduced goal-directed alcohol drinking compared with other operant conditions. In addition, NTX blocked reinstatement of reward-seeking in rats trained on the goal-directed FR5 reinforcement schedule but not in rats trained on the habit-like VI30 reinforcement schedule. However, NTX also exerted nonspecific effects on reward-seeking that were revealed under low-effort contingency conditions or absence of reward. Together, these data support the hypothesis that NTX is less effective in conditioning models that are more habit-associated.
Collapse
Affiliation(s)
- Rachel A Hay
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599-7178, USA
| | | | | | | | | |
Collapse
|
17
|
Wand GS, Weerts EM, Kuwabara H, Wong DF, Xu X, McCaul ME. The relationship between naloxone-induced cortisol and delta opioid receptor availability in mesolimbic structures is disrupted in alcohol-dependent subjects. Addict Biol 2013; 18:181-92. [PMID: 22264217 PMCID: PMC3337889 DOI: 10.1111/j.1369-1600.2011.00430.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis responses following naloxone administration have been assumed to provide a measure of opioid receptor activity. Employing positron emission tomography (PET) using the mu opioid receptor (MOR) selective ligand [(11)C] carfentanil (CFN), we demonstrated that cortisol responses to naloxone administration were negatively correlated with MOR availability. In this study, we examined whether naloxone-induced cortisol and adrenocorticotropin (ACTH) responses in 15 healthy control and 20 recently detoxified alcohol-dependent subjects correlated with delta opioid receptor (DOR) availability in 15 brain regions using the DOR-selective ligand [(11)C] methyl-naltrindole (MeNTL) and PET imaging. The day after the scan, cortisol responses to cumulative doses of naloxone were determined. Peak cortisol and ACTH levels and area under the cortisol and ACTH curve did not differ by group. There were negative relationships between cortisol area under curve to naloxone and [(11)C] MeNTL-binding potential (BP(ND)) in the ventral striatum, anterior cingulate, fusiform cortices, temporal cortex, putamen and a trend in the hypothalamus of healthy control subjects. However, in alcohol-dependent subjects, cortisol responses did not correlate with [(11)C]MeNTL BP(ND) in any brain region. Plasma ACTH levels did not correlate with [(11)C]MeNTL BP(ND) in either group. The study demonstrates that naloxone provides information about individual differences in DOR availability in several mesolimbic structures. The data also show that the HPA axis is intimately connected with mesolimbic stress pathways through opioidergic neurotransmission in healthy subjects but this relationship is disrupted during early abstinence in alcohol-dependent subjects.
Collapse
Affiliation(s)
- Gary S Wand
- Departments of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Bell RL, Sable HJ, Colombo G, Hyytia P, Rodd ZA, Lumeng L. Animal models for medications development targeting alcohol abuse using selectively bred rat lines: neurobiological and pharmacological validity. Pharmacol Biochem Behav 2012; 103:119-55. [PMID: 22841890 PMCID: PMC3595005 DOI: 10.1016/j.pbb.2012.07.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 07/07/2012] [Accepted: 07/18/2012] [Indexed: 02/04/2023]
Abstract
The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence.
Collapse
Affiliation(s)
- Richard L. Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Helen J.K. Sable
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Giancarlo Colombo
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Monserrato, Italy
| | - Petri Hyytia
- Institute of Biomedicine, University of Helsinki, Finland
| | - Zachary A. Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lawrence Lumeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
19
|
Abstract
Naltrexone is an opioid receptor antagonist that has been shown to be effective for maintaining abstinence in alcohol-dependent persons. It is particularly effective in a subset of persons who suffer from high craving, as it reduces craving for alcohol. Family history has been shown to be a predictor of treatment response and, indeed, allelic variation in the mu opioid receptor gene predicts treatment response to naltrexone. The therapeutic effects of naltrexone are mediated by blockade of central mu opioid receptors. The site of action is under investigation but evidence supports a role of mu opioid receptors in the central nucleus of the amygdala, nucleus accumbens, and ventral tegmental area in the therapeutic actions of naltrexone for alcohol dependence. This article reviews the role of the endogenous opioid system in addictive diseases, especially alcoholism and discusses the pharmacological basis for the use of naltrexone in the treatment of alcohol dependence.
Collapse
|
20
|
Palm S, Roman E, Nylander I. Differences in basal and ethanol-induced levels of opioid peptides in Wistar rats from five different suppliers. Peptides 2012; 36:1-8. [PMID: 22564490 DOI: 10.1016/j.peptides.2012.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 11/23/2022]
Abstract
One major cause for discrepancies in results from animal experimental studies is the use of different animal strains and suppliers. We have previously reported that Wistar rats from five different suppliers display profound differences in ethanol intake and behavior. One of the neurobiological processes that could be underlying these differences is the endogenous opioid system, which has been implicated in the rewarding and reinforcing effects of alcohol. We therefore hypothesized that the differences between the supplier groups would also be evident in the endogenous opioid system. Radioimmunoassay was used to determine the levels of the opioid peptides Met-enkephalin-Arg(6)Phe(7) and dynorphin B in several brain areas of ethanol-drinking and ethanol naïve Wistar rats from five different suppliers. In the ethanol naïve animals, differences between the supplier groups were found in the pituitary gland, hypothalamus, frontal cortex, dorsal striatum and hippocampus. In the ethanol-drinking rats, differences were found in the same structures, with the addition of medial prefrontal cortex and substantia nigra. Correlations between ethanol intake and peptide levels were also found in several of the areas examined. The structures in which differences were found have all been implicated in the transition from drug use to addiction and these differences may lead to different propensities and vulnerability to this transition. Because the endogenous opioids have been suggested to be involved in a number of neurobiological disorders the results do not only have implications for research on alcohol or drug addiction, but many other fields as well.
Collapse
Affiliation(s)
- Sara Palm
- Department of Pharmaceutical Biosciences, Division of Neuropharmacology, Addiction & Behavior, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
21
|
Acute ethanol administration differentially alters enkephalinase and aminopeptidase N activity and mRNA levels in regions of the nigrostriatal pathway. J Mol Neurosci 2012; 49:289-300. [PMID: 22688357 DOI: 10.1007/s12031-012-9823-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
Abstract
Opioid peptides play a key role in ethanol reinforcement and may also represent important determinants in brain sensitivity to ethanol through modulation of nigrostriatal dopaminergic activity. Regulation of opioid levels by peptidase-degrading enzymes could be relevant in ethanol's actions. The aim of this work was to study the acute ethanol (2.5 g/kg) effects on the activity and mRNA expression of enkephalinase (NEP) and aminopeptidase N (APN) in the rat substantia nigra (SN) and the anterior-medial (amCP) and medial-posterior (mpCP) regions of the caudate-putamen (CP). Enzymatic activities were measured by fluorometric assays and mRNA expression by reverse transcriptase polymerase chain reaction. Acute ethanol administration differentially altered peptidase activities and mRNA expression with different kinetics. Ethanol increased and decreased NEP mRNA levels in the SN and amCP, respectively, but produced biphasic effects in the mpCP. APN mRNA levels were increased by ethanol in all brain regions. Ethanol induced a transient and long-lasting increase in NEP (mpCP) and APN (amCP) activities, respectively. Peptidase activities were not changed by ethanol in the SN. Our results indicate that striatal NEP and APN are important ethanol targets. Ethanol-induced changes in these neuropeptidases in the CP could contribute to the mechanisms involved in brain sensitivity to ethanol.
Collapse
|
22
|
Nielsen CK, Simms JA, Li R, Mill D, Yi H, Feduccia AA, Santos N, Bartlett SE. δ-opioid receptor function in the dorsal striatum plays a role in high levels of ethanol consumption in rats. J Neurosci 2012; 32:4540-52. [PMID: 22457501 PMCID: PMC6622068 DOI: 10.1523/jneurosci.5345-11.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 11/21/2022] Open
Abstract
Binge-like patterns of excessive drinking during young adulthood increase the propensity for alcohol use disorders (AUDs) later in adult life; however, the mechanisms that drive this are not completely understood. Previous studies showed that the δ-opioid peptide receptor (DOP-R) is dynamically regulated by exposure to ethanol and that the DOP-R plays a role in ethanol-mediated behaviors. The aim of this study was to determine the role of the DOP-R in high ethanol consumption from young adulthood through to late adulthood by measuring DOP-R-mediated [(35)S]GTPγS binding in brain membranes and DOP-R-mediated analgesia using a rat model of high ethanol consumption in Long Evans rats. We show that DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia changes during development, being highest during early adulthood and reduced in late adulthood. Intermittent access to ethanol but not continuous ethanol or water from young adulthood leads to an increase in DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia into late adulthood. Multiple microinfusions of naltrindole into the dorsal striatum or multiple systemic administration of naltrindole reduces ethanol consumption, and following termination of treatment, DOP-R activity in the dorsal striatum is attenuated. These findings suggest that DOP-R activity in the dorsal striatum plays a role in high levels of ethanol consumption and suggest that targeting the DOP-R is an alternative strategy for the treatment of AUDs.
Collapse
Affiliation(s)
- Carsten K. Nielsen
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Jeffrey A. Simms
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Rui Li
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Douglas Mill
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Henry Yi
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Allison A. Feduccia
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Nathan Santos
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Selena E. Bartlett
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia
| |
Collapse
|
23
|
Nielsen CK, Simms JA, Bito-Onon JJ, Li R, Ananthan S, Bartlett SE. The delta opioid receptor antagonist, SoRI-9409, decreases yohimbine stress-induced reinstatement of ethanol-seeking. Addict Biol 2012; 17:224-34. [PMID: 21309957 DOI: 10.1111/j.1369-1600.2010.00295.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A major problem in treating alcohol use disorders (AUDs) is the high rate of relapse due to stress and re-exposure to cues or an environment previously associated with alcohol use. Stressors can induce relapse to alcohol-seeking in humans or reinstatement in rodents. Delta opioid peptide receptors (DOP-Rs) play a role in cue-induced reinstatement of ethanol-seeking; however, their role in stress-induced reinstatement of ethanol-seeking is not known. The objective of this study was to determine the role of DOP-Rs in yohimbine-stress-induced reinstatement of ethanol-seeking. Male, Long-Evans rats were trained to self-administer 10% ethanol in daily 30-minute operant self-administration sessions using a FR3 schedule of reinforcement, followed by extinction training. Once extinction criteria were met, we examined the effects of the DOP-R antagonist, SoRI-9409 (0-5 mg/kg, i.p.) on yohimbine (2 mg/kg, i.p.) stress-induced reinstatement. Additionally, DOP-R-stimulated [(35) S]GTPγS binding was measured in brain membranes and plasma levels of corticosterone (CORT) were determined. Pre-treatment with SoRI-9409 decreased yohimbine stress-induced reinstatement of ethanol-seeking but did not affect yohimbine-induced increases in plasma CORT levels. Additionally, yohimbine increased DOP-R-stimulated (35) [S]GTPγS binding in brain membranes of ethanol-trained rats, an effect that was inhibited by SoRI-9409. This suggests that the DOP-R plays an important role in yohimbine-stress-induced reinstatement of ethanol-seeking behavior, and DOP-R antagonists may be promising candidates for further development as a treatment for AUDs.
Collapse
Affiliation(s)
- Carsten K Nielsen
- Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Emeryville, CA, USA
| | | | | | | | | | | |
Collapse
|
24
|
Naloxone attenuation of ethanol-reinforced operant responding in infant rats in a re-exposure paradigm. Psychopharmacology (Berl) 2012; 219:235-46. [PMID: 21750896 DOI: 10.1007/s00213-011-2402-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 06/17/2011] [Indexed: 12/23/2022]
Abstract
RATIONALE Early ethanol exposure promotes ethanol reinforcement, mediated perhaps by ethanol's motivational effects. The opioid system mediates ethanol reinforcement, at least in part. OBJECTIVES Modulation of consummatory and seeking behaviors by the opioid system was tested in terms of ethanol or sucrose operant self-administration. METHODS Wistar-derived infant rats were tested in an operant conditioning task. (1) Infants were trained on postnatal days (PDs) 14-17 to obtain 5% sucrose and 3.75% ethanol or water, and evaluated in an extinction session at PD 18. (2) Ethanol (3.75%) was used as reinforcer. At PDs 16-17, 6 h before operant task, pups were re-exposed to ethanol after naloxone injection (0 or 1 mg/kg). (3) Sucrose (5%) acted as reinforcer. Pups were re-exposed to sucrose after naloxone injection. (4) A PD 18 re-exposure trial in which pups were injected with naloxone and re-exposed to ethanol was added. RESULTS Sucrose and ethanol promoted higher levels of operant responding than water during training and extinction. Re-exposure to ethanol preceded by naloxone decreased nose-poking. A similar profile was observed towards sucrose. No seeking behavior was observed in pups re-exposed to ethanol following naloxone injection during PDs 16-18. CONCLUSIONS Self-administration of ethanol was established in terms of operant responding in preweanling rats with no previous exposure to the drug. Pairing of naloxone with ethanol, at a point separate in time from operant responding, reduced ethanol reinforcement. This indicated participation of the opioid system in ethanol reinforcement. This effect seems not to be unique to ethanol but also is observable when sucrose acts as reinforcer.
Collapse
|
25
|
Weerts EM, Wand GS, Kuwabara H, Munro CA, Dannals RF, Hilton J, Frost JJ, McCaul ME. Positron emission tomography imaging of mu- and delta-opioid receptor binding in alcohol-dependent and healthy control subjects. Alcohol Clin Exp Res 2011; 35:2162-73. [PMID: 21689118 DOI: 10.1111/j.1530-0277.2011.01565.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The endogenous opioid system plays a significant role in alcohol dependence. The goal of the current study was to investigate regional brain mu-opioid receptor (MOR) and delta-opioid receptor (DOR) availability in recently abstinent alcohol-dependent and age-matched healthy control men and women with positron emission tomography (PET) imaging. METHODS Alcohol-dependent subjects completed an inpatient protocol, which included medically supervised withdrawal and PET imaging on day 5 of abstinence. Control subjects completed PET imaging following an overnight stay. PET scans with the MOR-selective ligand [(11)C]carfentanil (CFN) were completed in 25 alcohol-dependent and 30 control subjects. Most of these same subjects (20 alcohol-dependent subjects and 18 controls) also completed PET scans with the DOR-selective ligand [(11)C]methylnaltrindole (MeNTL). RESULTS Volumes of interest and statistical parametric mapping analyses indicated that alcohol-dependent subjects had significantly higher [(11)C]CFN binding potential (BP(ND) ) than healthy controls in multiple brain regions including the ventral striatum when adjusting for age, gender, and smoking status. There was an inverse relationship between [(11)C]CFN BP(ND) and craving in several brain regions in alcohol-dependent subjects. Groups did not differ in [(11)C]MeNTL BP(ND) ; however, [(11)C]MeNTL BP(ND) in caudate was positively correlated with recent alcohol drinking in alcohol-dependent subjects. CONCLUSIONS Our observation of higher [(11)C]CFN BP(ND) in alcohol-dependent subjects can result from up-regulation of MOR and/or reduction in endogenous opioid peptides following long-term alcohol consumption, dependence, and/or withdrawal. Alternatively, the higher [(11)C]CFN BP(ND) in alcohol-dependent subjects may be an etiological difference that predisposed these individuals to alcohol dependence or may have developed as a result of increased exposure to childhood adversity, stress, and other environmental factors known to increase MOR. Although the direction of group differences in [(11)C]MeNTL BP(ND) was similar in many brain regions, differences did not achieve statistical significance, perhaps as a result of our limited sample size. Additional research is needed to further clarify these relationships. The finding that alcohol-dependent subjects had higher [(11)C]CFN BP(ND) is consistent with a prominent role of the MOR in alcohol dependence.
Collapse
Affiliation(s)
- Elise M Weerts
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pautassi RM, Nizhnikov ME, Fabio MC, Spear NE. An acetaldehyde-sequestering agent inhibits appetitive reinforcement and behavioral stimulation induced by ethanol in preweanling rats. Pharmacol Biochem Behav 2010; 97:462-9. [PMID: 20951160 DOI: 10.1016/j.pbb.2010.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 02/02/2023]
Abstract
Ethanol's motivational consequences have been related to the actions of acetaldehyde, a metabolic product of ethanol oxidation. The present study assessed the role of acetaldehyde in the motivational effects of ethanol on preweanling rats. In Experiment 1 pups (postnatal days 13-14, PD 13-14) were given systemic administration of D-penicillamine (DP, a drug that sequesters acetaldehyde: 0, 25, 50 or 75 mg/kg) before pairings of 1.0 g/kg ethanol and a rough surface (sandpaper, conditioned stimulus, CS). At test, pups given sandpaper-ethanol pairings exhibited greater preference for the CS than unpaired controls, but this preference was not expressed by pups given DP. Pre-training administration of 25 or 50 mg/kg DP completely blocked the expression of ethanol-mediated appetitive conditioning. D-penicillamine did not alter blood ethanol levels. Subsequent experiments revealed that ethanol-induced activation was blocked by central (intra-cisterna magna injections, volume: 1 μl, dose: 0 or 75 μg) but not systemic treatment with DP (0, 25, 50 or 75 mg/kg; ip). These results indicate that: (a) preweanling rats are sensitive to the reinforcing effect of ethanol, and (b) that this effect is associated with the motor activating effect of the drug. These effects seem to be mediated by the first metabolite of ethanol, acetaldehyde.
Collapse
Affiliation(s)
- Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET), Córdoba, C.P 5000, Argentina.
| | | | | | | |
Collapse
|
27
|
Méndez M, Barbosa-Luna IG, Pérez-Luna JM, Cupo A, Oikawa J. Effects of acute ethanol administration on methionine-enkephalin expression and release in regions of the rat brain. Neuropeptides 2010; 44:413-20. [PMID: 20605629 DOI: 10.1016/j.npep.2010.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/15/2010] [Accepted: 05/08/2010] [Indexed: 10/19/2022]
Abstract
The dopaminergic mesolimbic system plays a key role in mediating the reinforcing properties of ethanol and other drugs of abuse. Ethanol reinforcement and high alcohol drinking behaviour have been suggested to involve the ethanol-induced activation of endogenous opioid systems. Ethanol may alter opioidergic transmission at different levels, including opioid peptide biosynthesis and release, as well as binding to opioid receptors. The aim of this work was to investigate the effects of different ethanol doses on methionine-enkephalin (Met-enk) release from the rat nucleus accumbens (NAcc). Ethanol effects were also studied on Met-enk content in the NAcc, prefrontal cortex (PFC) and caudate-putamen (CP). Met-enk release was studied by microdialysis in Wistar anesthetized rats and peptide concentrations were quantitated by radioimmunoassay. Ethanol was administered by intraperitoneal injection after a 2-h basal release period. Ethanol doses of 0.5, 1 and 2.5 g/kg induced a 2.7-, 4.9- and 3.4-fold increase in Met-enk release from the NAcc. However, ethanol responses followed different kinetics, with earliest effects observed with the highest ethanol dose. In comparison, a 2.5-fold increase in peptide release was produced by 100 mM KCl. Ethanol, at a dose of 2.5 g/kg, induced a significant 66.7% decrease in Met-enk content in the NAcc, as well as a 76.4% reduction in peptide levels in the CP. Lower ethanol doses did not alter Met-enk content in these regions. On the other hand, an ethanol dose of 0.5 g/kg produced a non-significant decrease in Met-enk levels in the PFC. Our results suggest that ethanol-induced changes in enkephalin expression and release in regions of the mesocorticolimbic and nigrostriatal pathways could be involved in ethanol central effects. Released enkephalins by ethanol may modulate the dopaminergic activity of mesolimbic neurons and play a critical role in ethanol reinforcement mechanisms.
Collapse
Affiliation(s)
- M Méndez
- Departamento de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México D.F., Mexico.
| | | | | | | | | |
Collapse
|
28
|
Froehlich JC. What aspects of human alcohol use disorders can be modeled using selectively bred rat lines? Subst Use Misuse 2010; 45:1727-41. [PMID: 20590397 DOI: 10.3109/10826084.2010.482424] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The use of selective breeding to produce animal models for the study of alcohol abuse and alcoholism represents one of the major advances in the field of alcohol research. Rats selectively bred for alcohol preference and alcohol nonpreference have been useful to both preclinical and clinical investigators in the alcohol research community for studying the behavioral, neurobiological, and molecular basis of alcohol drinking, for identifying the genes that may contribute to the development of alcohol abuse and alcoholism, and for evaluating the utility of drugs aimed at reducing alcohol intake and preventing alcohol relapse. Rats selectively bred for alcohol preference (alcohol preferring or "P" line) have enhanced responsiveness to the low dose reinforcing effects of alcohol, less aversion to moderate/high doses of alcohol, and are able to develop tolerance to the aversive effects of alcohol more rapidly and to maintain tolerance longer than rats selectively bred for alcohol nonpreference (alcohol nonpreferring or "NP" line). The increased potency of low-dose alcohol as a reinforcer for P rats might be expected to foster and maintain alcohol drinking. Weaker aversion to the pharmacological effects of moderate/high doses of alcohol in the P line would allow P rats to drink more alcohol than NP rats before the postingestional effects become aversive. Rapid induction of tolerance to the aversive effects of alcohol with repeated bouts of voluntary alcohol drinking, as well as persistence of alcohol tolerance in rats of the P line might serve to maintain alcohol drinking. These are powerful mechanisms that may serve to promote and maintain a high alcohol drinking behavior. Although these rat lines have been used to address several characteristics of excessive alcohol consumption in humans, they have not yet been used to model several aspects of human alcohol use disorders. New applications of these selectively bred rat lines are discussed which may further our understanding of the factors contributing to alcohol abuse and alcoholism.
Collapse
Affiliation(s)
- J C Froehlich
- Chancellor's Professor and Professor of Medicine, Cellular and Integrative Physiology and Medical Neurobiology, Indiana University School of Medicine, Indiana University-Purdue University Indianapolis, IN 46202, USA.
| |
Collapse
|
29
|
Pautassi RM, Nizhnikov ME, Acevedo MB, Spear NE. Naloxone blocks ethanol-mediated appetitive conditioning and locomotor activation in adolescent rats. Behav Brain Res 2010; 216:262-9. [PMID: 20708642 DOI: 10.1016/j.bbr.2010.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 07/30/2010] [Accepted: 08/04/2010] [Indexed: 12/20/2022]
Abstract
Age-related differences in ethanol sensitivity could put adolescents at risk for developing alcohol-related problems. Little information exists, however, about adolescent sensitivity to ethanol's appetitive effects and the neurobiological mechanisms underlying ethanol reinforcement during this developmental stage. The present study assessed the role of the opioid system in adolescent rats in an appetitive second-order schedule of ethanol reinforcement and ethanol-induced locomotor stimulation. On postnatal day 32 (PD32), animals were pretreated with the general opioid antagonist naloxone (0.0, 0.75, 1.50, or 2.5 mg/kg) and then given pairings of ethanol (0.0 or 2.0 g/kg, intragastrically) with intraoral pulses of water (conditioned stimulus 1 [CS₁], first-order conditioning phase). CS₁ delivery occurred 30-45 min after ethanol administration when the effect of ethanol was assumed to be appetitive. On PD33, adolescents were exposed to CS₁ (second-order conditioning phase) while in a chamber featuring distinctive exteroceptive cues (CS₂). Preference for CS₂ was then tested. Adolescents given CS₁-ethanol pairings exhibited greater preference for CS₂ than controls, indicating ethanol-mediated reinforcement, but only when not pretreated with naloxone. Blood alcohol levels during conditioning were not altered by naloxone. Experiment 2 revealed that ethanol-induced locomotor activation soon after administration, and naloxone dose-dependently suppressed this stimulating effect. The present study indicates that adolescent rats are sensitive to ethanol's reinforcing and locomotor-stimulating effects. Both effects of ethanol appear to be mediated by endogenous opioid system activation.
Collapse
Affiliation(s)
- Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET), Córdoba, C.P. 5000, Argentina.
| | | | | | | |
Collapse
|
30
|
Oberlin BG, Bristow RE, Heighton ME, Grahame NJ. Pharmacologic dissociation between impulsivity and alcohol drinking in high alcohol preferring mice. Alcohol Clin Exp Res 2010; 34:1363-75. [PMID: 20491739 PMCID: PMC3967789 DOI: 10.1111/j.1530-0277.2010.01220.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Impulsivity is genetically correlated with, and precedes, addictive behaviors and alcoholism. If impulsivity or attention is causally related to addiction, certain pharmacological manipulations of impulsivity and/or attention may affect alcohol drinking, and vice versa. The current studies were designed to explore the relationship among impulsivity, drinking, and vigilance in selectively bred High Alcohol Preferring (HAP) mice, a line that has previously demonstrated both high impulsivity and high alcohol consumption. Amphetamine, naltrexone, and memantine were tested in a delay discounting (DD) task for their effects on impulsivity and vigilance. The same drugs and doses were also assessed for effects on alcohol drinking in a 2-bottle choice test. METHODS HAP mice were subjected to a modified version of adjusting amount DD using 0.5-second and 10-second delays to detect decreases and increases, respectively, in impulsive responding. In 2 experiments, mice were given amphetamine (0.4, 0.8, or 1.2 mg/kg), naltrexone (3 and 10 mg/kg), and memantine (1 and 5 mg/kg) before DD testing. Another pair of studies used scheduled access, 2-bottle choice drinking to assess effects of amphetamine (0.4, 1.2, or 3.0 mg/kg), naltrexone (3 and 10 mg/kg), and memantine (1 and 5 mg/kg) on alcohol consumption. RESULTS Amphetamine dose-dependently reduced impulsivity and vigilance decrement in DD, but similar doses left alcohol drinking unaffected. Naltrexone and memantine decreased alcohol intake at doses that did not affect water drinking but had no effects on impulsivity or vigilance decrement in the DD task. CONCLUSIONS Contrary to our hypothesis, none of the drugs tested here, while effective on either alcohol drinking or impulsivity, decreased both behaviors. These findings suggest that the genetic association between drinking and impulsivity observed in this population is mediated by mechanisms other than those targeted by the drugs tested in these studies.
Collapse
Affiliation(s)
- Brandon G. Oberlin
- Stark Neuroscience Institute, Program in Medical Neuroscience, Indiana University School of Medicine, 402 N Blackford St., Indianapolis, IN 46202, USA, Voice: (317) 278-8456, FAX: (317) 274-6756
| | - R. Evan Bristow
- Dept. of Psychology, Miami University, 90 N. Patterson Avenue, Oxford, OH 45056, USA, Voice: (513) 529-2400, FAX: (513) 529-2420
| | - Meredith E. Heighton
- Dept. of Psychology, Indiana University Purdue University at Indianapolis (IUPUI), 402 N Blackford St., Indianapolis, IN 46202, USA, Voice: (317) 278-8456, FAX: (317) 274-6756
| | - Nicholas J. Grahame
- Associate Professor, Dept. Psychology, Indiana University Purdue University at Indianapolis (IUPUI), 402 N Blackford St., Indianapolis, IN 46202, USA, Voice: (317) 274-0194, FAX: (317) 274-6756
| |
Collapse
|
31
|
Chatterjee S, Bartlett SE. Neuronal nicotinic acetylcholine receptors as pharmacotherapeutic targets for the treatment of alcohol use disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2010; 9:60-76. [PMID: 20201817 DOI: 10.2174/187152710790966597] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 12/13/2009] [Indexed: 12/20/2022]
Abstract
Alcohol use disorders (AUDs) are complex, and developing effective treatments will require the combination of novel medications and cognitive behavioral therapy approaches. Epidemiological studies have shown there is a high correlation between alcohol consumption and tobacco use, and the prevalence of smoking in alcoholics is as high as 80% compared to about 30% for the general population. Both preclinical and clinical data provide evidence that nicotine administration increases alcohol intake and non-specific nicotinic receptor antagonists reduce alcohol-mediated behaviors. As nicotine interacts specifically with the neuronal nicotinic acetylcholine receptor (nAChR) system, this suggests that nAChRs play an important role in the behavioral effects of alcohol. In this review, we discuss the importance of nAChRs for the treatment of AUDs and argue that the use of FDA approved nAChR ligands, such as varenicline and mecamylamine, approved as smoking cessation aids may prove to be valuable treatments for AUDs. We also address the importance of combining effective medications with behavioral therapy for the treatment of alcohol dependent individuals.
Collapse
Affiliation(s)
- S Chatterjee
- Ernest Gallo Clinic and Research Center at the University of California San Francisco, 5858 Horton Street, Suite 200 Emeryville, CA 94608, USA
| | | |
Collapse
|
32
|
Hill KG, Sable HJK, Ferraro III FM, Kiefer SW. Chronic Naltrexone Treatment and Ethanol Responsivity in Outbred Rats. Alcohol Clin Exp Res 2010; 34:272-9. [DOI: 10.1111/j.1530-0277.2009.01090.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Forebrain PENK and PDYN gene expression levels in three inbred strains of mice and their relationship to genotype-dependent morphine reward sensitivity. Psychopharmacology (Berl) 2010; 208:291-300. [PMID: 19997907 DOI: 10.1007/s00213-009-1730-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/10/2009] [Indexed: 12/18/2022]
Abstract
RATIONALE Vulnerability to drug abuse disorders is determined not only by environmental but also by genetic factors. A body of evidence suggests that endogenous opioid peptide systems may influence rewarding effects of addictive substances, and thus, their individual expression levels may contribute to drug abuse liability. OBJECTIVES The aim of our study was to assess whether basal genotype-dependent brain expression of opioid propeptides genes can influence sensitivity to morphine reward. METHODS Experiments were performed on inbred mouse strains C57BL/6J, DBA/2J, and SWR/J, which differ markedly in responses to morphine administration: DBA/2J and SWR/J show low and C57BL/6J high sensitivity to opioid reward. Proenkephalin (PENK) and prodynorphin (PDYN) gene expression was measured by in situ hybridization in brain regions implicated in addiction. The influence of the kappa opioid receptor antagonist nor-binaltorphimine (nor-BNI), which attenuates effects of endogenous PDYN-derived peptides, on rewarding actions of morphine was studied using the conditioned place preference (CPP) paradigm. RESULTS DBA/2J and SWR/J mice showed higher levels of PDYN and lower levels of PENK messenger RNA in the nucleus accumbens than the C57BL/6J strain. Pretreatment with nor-BNI enhanced morphine-induced CPP in the opioid-insensitive DBA/2J and SWR/J strains. CONCLUSIONS Our results demonstrate that inter-strain differences in PENK and PDYN genes expression in the nucleus accumbens parallel sensitivity of the selected mouse strains to rewarding effects of morphine. They suggest that high expression of PDYN may protect against drug abuse by limiting drug-produced reward, which may be due to dynorphin-mediated modulation of dopamine release in the nucleus accumbens.
Collapse
|
34
|
Kranzler HR, Edenberg HJ. Pharmacogenetics of alcohol and alcohol dependence treatment. Curr Pharm Des 2010; 16:2141-8. [PMID: 20482509 PMCID: PMC4142701 DOI: 10.2174/138161210791516387] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 04/29/2010] [Indexed: 11/22/2022]
Abstract
In this article, we review studies of genetic moderators of the response to medications to treat alcohol dependence, the acute response to alcohol, and the response to the psychotherapeutic treatment of heavy drinking. We consider four neurotransmitter systems: opioidergic, dopaminergic, GABAergic, and glutamatergic and focus on one receptor protein in each: OPRM1 (the micro;-opioid receptor gene), DRD4 (the D(4) dopamine receptor gene), GABRA2 (GABA(A) receptor alpha-2 subunit gene), and GRIK1 (the kainite receptor GluR5 subunit gene). We conclude that because parallel developments in alcoholism treatment and the genetics of alcohol dependence are beginning to converge, using genotypic information, it may be possible to match patients with specific treatments. Of greatest clinical relevance is the finding that the presence of an Asp40 allele in OPRM1 modestly predicts a better response to naltrexone treatment. Promising findings include the observations that a polymorphism in GABRA2 predicts the response to specific psychotherapies; a polymorphism in DRD4 predicts the effects of the antipsychotic olanzapine on craving for alcohol and drinking behavior; and a polymorphism in GRIKI predicts adverse events resulting from treatment with the anticonvulsant topiramate. Although variants in other genes have been associated with the risk for alcohol dependence, they have not been studied as moderators of the response either to treatment or acute alcohol administration. We recommend that, whenever possible, treatment trials include the collection of DNA samples to permit pharmacogenetic analyses, and that such analyses look broadly for relevant genetic variation.
Collapse
Affiliation(s)
- Henry R. Kranzler
- Departments of Psychiatry and Genetics and Developmental Biology University of Connecticut Health Center 263 Farmington Ave. Farmington, CT 06030-2103
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular Biology Indiana University School of Medicine Medical Science Building, Room 4063 635 Barnhill Drive Indianapolis, Indiana 46202-5122 Telephone: 317-274-2353 Facsimile: 317-274-4686
| |
Collapse
|
35
|
Lam MP, Nurmi H, Rouvinen N, Kiianmaa K, Gianoulakis C. Effects of acute ethanol on beta-endorphin release in the nucleus accumbens of selectively bred lines of alcohol-preferring AA and alcohol-avoiding ANA rats. Psychopharmacology (Berl) 2010; 208:121-30. [PMID: 19940981 DOI: 10.1007/s00213-009-1733-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 10/23/2009] [Indexed: 11/25/2022]
Abstract
RATIONALE The selectively bred lines of alcohol-preferring alko alcohol (AA) and alcohol-avoiding alko nonalcohol (ANA) rats have been used to demonstrate differences in relevant neurotransmitters which could account for their difference in alcohol consumption. Studies have demonstrated differences in distinct components of the endogenous opioid system in various brain regions associated with the process of reinforcement between the AA and ANA lines of rats. OBJECTIVES The goal of this current study was to investigate the hypotheses that the AA and ANA rats will show differences in the release of beta-endorphin at the level of nucleus accumbens (NAC) and in locomotor activity in response to acute systemic administration of ethanol. MATERIALS AND METHODS AA and ANA rats were unilaterally implanted with a guide cannula to aim microdialysis probes at the level of NAC. Intraperitoneal injections of 0.0, 1.5, 2.0, and 2.5 g ethanol/kg body weight were administered. Dialysate samples were collected at 30-min intervals prior to and following the injection. Radioimmunoassay specific for beta-endorphin was used to determine the dialysate beta-endorphin content. RESULTS The 2.5-g/kg ethanol dose induced a transient increase in extracellular beta-endorphin at the level of NAC of AA but not of ANA rats. The 2.5-g/kg ethanol dose also attenuated locomotor activity in the AA but not in the ANA rats. CONCLUSIONS The lack of an increase in the beta-endorphin concentration in the NAC of ANA rats in response to ethanol may partially account for their lower alcohol consumption and lower alcohol-induced attenuation of locomotor activity compared to AA rats.
Collapse
Affiliation(s)
- Minh P Lam
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
36
|
|
37
|
The delta(1) opioid receptor is a heterodimer that opposes the actions of the delta(2) receptor on alcohol intake. Biol Psychiatry 2009; 66:777-84. [PMID: 19576572 PMCID: PMC2757485 DOI: 10.1016/j.biopsych.2009.05.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 12/22/2022]
Abstract
BACKGROUND Opioid receptors are clinically important targets for both pain and alcohol abuse. Three opioid receptors have been cloned: mu, delta, and kappa, all of which effect alcohol consumption in animal models. Naltrexone is a nonselective opioid antagonist used for alcoholism, the clinical utility of which is limited by poor efficacy and adverse side effects. Here, we demonstrate that the therapeutic limitations of naltrexone may reflect its poor selectivity. Despite decades of research, several mysteries surround the pharmacology of these receptors. For example, two pharmacologically defined subtypes of delta receptors exist in vivo. METHODS Effects of delta subtype-selective ligands (naltrindole, naltriben, tan-67, 7-benzylidene naltrexone) were measured on ethanol consumption in C57BL/6 wildtype and opioid receptor knockout mice using a limited access two-bottle choice paradigm. Affinity and efficacy of naltriben, 7-benzylidenenaltrexone and tan-67 was measured in vitro using radioligand binding and Ca(2+)-mobilizationa assays. RESULTS We show that the subtypes of the delta receptor, delta(1) and delta(2), have opposing effects on ethanol consumption. We find that these effects are synergistic; thereby suggesting that delta(1) and delta(2) receptors are distinct molecular targets. Indeed, we provide both in vitro as well as in vivo evidence that the delta(1) subtype is a micro-delta heterodimer and that the delta(2) subtype is most likely a delta homomer. CONCLUSIONS Together these data provide insight into the limited actions of the clinically important drug naltrexone and identify a novel target with improved specificity and efficacy for the development of new therapeutics for the treatment of alcoholism.
Collapse
|
38
|
Marinelli PW, Funk D, Harding S, Li Z, Juzytsch W, Lê AD. Roles of opioid receptor subtypes in mediating alcohol-seeking induced by discrete cues and context. Eur J Neurosci 2009; 30:671-8. [PMID: 19686472 DOI: 10.1111/j.1460-9568.2009.06851.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to assess the effects of selective blockade of the delta (DOP) or mu (MOP) opioid receptors on alcohol-seeking induced by discrete cues and context. In Experiment 1, rats were trained to self-administer alcohol in an environment with distinct sensory properties. After extinction in a different context with separate sensory properties, rats were tested for context-induced renewal in the original context following treatment with the DOP receptor antagonist naltrindole (0-15 mg/kg, i.p.) or the MOP receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP) (0-3 microg/4 microL, i.c.v.). In Experiment 2, reinstatement was tested with the presentation of a discrete light + tone cue previously associated with alcohol delivery, following extinction without the cue. The effects of naltrindole (0-5 mg/kg, i.p.) or CTOP (0-3 microg/4 microL, i.c.v.) were assessed. For context-induced renewal, 7.5 mg/kg naltrindole reduced responding without affecting locomotor activity. Both doses of CTOP attenuated responding in the first 15 min of the renewal test session; however, total responses did not differ at the end of the session. For discrete-cue-induced reinstatement, 1 and 5 mg/kg naltrindole attenuated responding but CTOP had no effect. We conclude that whereas DOP receptors mediate alcohol-seeking induced by discrete cues and context, MOP receptors may play a modest role only in context-induced renewal. These findings point to a differential involvement of opioid receptor subtypes in the effects of different kinds of conditioned stimuli on alcohol-seeking and support a more prominent role for DOP receptors.
Collapse
Affiliation(s)
- Peter W Marinelli
- Department of Neuroscience, Neurobiology of Alcohol Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Nizhnikov ME, Pautassi RM, Truxell E, Spear NE. Opioid antagonists block the acquisition of ethanol-mediated conditioned tactile preference in infant rats. Alcohol 2009; 43:347-58. [PMID: 19671461 DOI: 10.1016/j.alcohol.2009.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 06/11/2009] [Accepted: 06/20/2009] [Indexed: 11/24/2022]
Abstract
It has been difficult to find conditioned preference for tactile cues paired with ethanol intoxication in rats. Toward understanding the ontogeny of ethanol reinforcement, we aimed at establishing a simple and reliable procedure for (1) assessing primary appetitive conditioning to ethanol in infant rats and (2) discerning the role the opioid system plays in ethanol-mediated conditioning at this age. Experiment 1 determined the parameters (i.e., dose, interval of conditioning) for assessing ethanol-mediated conditioning. Pups were then trained with differential Pavlovian conditioning (Experiments 2 and 3) in which ethanol intoxication (1.0-2.0 g/kg, intragastrically or intraperitoneally delivered) was paired with a tactile stimulus (sandpaper) while an alternative texture signaled the absence of ethanol's effects. Unpaired control conditions were also used. Tactile preferences were assessed after two conditioning sessions. Paired rats spent significantly more time on sandpaper than unpaired controls, an effect that was greater after intragastric administration of 1.0 than 2.0 g/kg ethanol. This effect was replicated in Experiments 4a and 4c and found to be inhibited by pretreatment with general (naloxone [NAL]) or specific (d-Pen-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH2 [CTOP] and naltrindole) opioid antagonists. Blood ethanol levels at conditioning were not altered by NAL (Experiment 4b). The study outlines a procedure that reveals appetitive conditioning to ethanol by infant rats. The results are discussed in terms of a potential ethanol-induced activation of the endogenous opioid system during the onset of the intoxication process.
Collapse
|
40
|
Pautassi RM, Nizhnikov ME, Spear NE. Assessing appetitive, aversive, and negative ethanol-mediated reinforcement through an immature rat model. Neurosci Biobehav Rev 2009; 33:953-74. [PMID: 19428502 PMCID: PMC2693872 DOI: 10.1016/j.neubiorev.2009.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 11/25/2022]
Abstract
The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects.
Collapse
Affiliation(s)
- Ricardo M Pautassi
- Center for Development and Behavioral Neuroscience, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA.
| | | | | |
Collapse
|
41
|
Jarjour S, Bai L, Gianoulakis C. Effect of Acute Ethanol Administration on the Release of Opioid Peptides From the Midbrain Including the Ventral Tegmental Area. Alcohol Clin Exp Res 2009; 33:1033-43. [DOI: 10.1111/j.1530-0277.2009.00924.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Williams KL, Broadbridge CL. Potency of naltrexone to reduce ethanol self-administration in rats is greater for subcutaneous versus intraperitoneal injection. Alcohol 2009; 43:119-26. [PMID: 19251113 DOI: 10.1016/j.alcohol.2008.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 11/13/2008] [Accepted: 11/19/2008] [Indexed: 12/01/2022]
Abstract
The opioid antagonist naltrexone (NTX) is used to treat alcohol dependence and may reduce alcohol consumption by selectively blocking opioid receptors. In rat experiments, discrepancy exists across studies regarding the potency of NTX to reduce ethanol consumption. One cause of this discrepancy may be the use of different routes of NTX administration (e.g., intraperitoneal vs. subcutaneous). The purpose of this study was to directly compare the effects of intraperitoneal and subcutaneous injections of NTX on ethanol self-administration. Rats pressed a lever for a sweetened ethanol solution (10% wt/vol in 0.1% saccharin) during 20 min daily sessions. One group received intraperitoneal injections of 1, 3, 10, and 30 mg/kg NTX before the sessions. Another group received subcutaneous injections of 0.03, 0.1, 0.3, and 1 mg/kg NTX before the sessions. The group that received subcutaneous NTX was also tested with a single intraperitoneal injection of 0.3 mg/kg NTX. Naltrexone significantly reduced ethanol self-administration, and NTX was more potent when administered via subcutaneous injection versus intraperitoneal injection. Ethanol intake (g/kg) was significantly reduced after subcutaneous injection of NTX 0.1 mg/kg and higher. In contrast, ethanol intake was significantly reduced after intraperitoneal injection of NTX 3 mg/kg and higher. A comparison of the NTX ED(50) values showed that subcutaneous NTX was approximately 30-fold more potent than intraperitoneal NTX. For the subcutaneous 0.3 mg/kg NTX dose, a detailed bin analysis showed that responding during the first 2 min after injection was similar to that during the first 2 min after a saline injection while responding after NTX decreased in subsequent bins. These findings suggest that researchers should carefully consider the route of NTX administration when discussing potency and selectivity of NTX's effects on ethanol-related behaviors in rats. These findings further support the notion that NTX acts by terminating responding early rather than reducing the initial responding.
Collapse
Affiliation(s)
- Keith L Williams
- Department of Psychology, Oakland University, 224 Pryale Hall, Rochester, MI 48309, USA.
| | | |
Collapse
|
43
|
Nielsen CK, Simms JA, Pierson HB, Li R, Saini SK, Ananthan S, Bartlett SE. A novel delta opioid receptor antagonist, SoRI-9409, produces a selective and long-lasting decrease in ethanol consumption in heavy-drinking rats. Biol Psychiatry 2008; 64:974-81. [PMID: 18774553 PMCID: PMC3888668 DOI: 10.1016/j.biopsych.2008.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 07/12/2008] [Accepted: 07/18/2008] [Indexed: 11/28/2022]
Abstract
BACKGROUND Naltrexone, a compound with high affinity for the mu opioid receptor (MOP-R) reduces alcohol consumption. SoRI-9409 is a derivative of naltrexone that has highest affinity at delta opioid receptors (DOP-Rs). We have investigated the effects of SoRI-9409 on ethanol consumption to determine the consequences of altering the naltrexone compound to a form with increased efficacy at DOP-Rs. METHODS Effects of the opioid receptor antagonists, SoRI-9409 (0-30 mg/kg, IP), naltrexone (0-30 mg/kg, IP), or naltrindole (0-10 mg/kg, IP) on ethanol consumption was measured in high- and low-ethanol-consuming rats with two different drinking paradigms. SoRI-9409-, naltrexone-, and naltrindole-mediated inhibition of DOP-R-stimulated [(35)S]GTP gamma S binding was measured in brain membranes prepared from high-ethanol-consuming rats. The effects of SoRI-9409 on morphine-mediated analgesia, conditioned place preference, and anxiety were also examined. RESULTS In high- but not low-ethanol-consuming animals, SoRI-9409 is threefold more effective and selective at reducing ethanol consumption when compared with naltrexone or naltrindole for up to 24 hours. SoRI-9409 administered daily for 28 days continuously reduced ethanol consumption, and when the administration of SoRI-9409 was terminated, the amount of ethanol consumed remained lower compared with vehicle-treated animals. Furthermore, SoRI-9409 inhibits DOP-R-stimulated [(35)S]GTP gamma S binding in brain membranes of high-ethanol-consuming rats. CONCLUSIONS SoRI-9409 causes selective and long-lasting reductions of ethanol consumption. This suggests that compounds that have high affinity for DOP-Rs such as SoRI-9409 might be promising candidates for development as a novel therapeutic for the treatment of alcoholism.
Collapse
Affiliation(s)
- Carsten K Nielsen
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California 94608, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Effects of acute ethanol on opioid peptide release in the central amygdala: an in vivo microdialysis study. Psychopharmacology (Berl) 2008; 201:261-71. [PMID: 18688603 DOI: 10.1007/s00213-008-1267-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 07/19/2008] [Indexed: 12/12/2022]
Abstract
RATIONALE There is experimental evidence that indicates that the endogenous opioid system of the central nucleus of the amygdala (CeA) may mediate some of the reinforcing effects of ethanol. However, the precise interactions of ethanol with the endogenous opioid system at the level of the CeA have not been investigated. OBJECTIVES The aim of the current study was to investigate the hypothesis that acute systemic ethanol administration will increase the release of endogenous opioid peptides at the level of the CeA in a time- and dose-dependent manner. MATERIALS AND METHODS Rats were implanted with a unilateral guide cannula to aim microdialysis probes at the CeA. Intraperitoneal injections of saline and various doses of ethanol (0.8, 1.6, 2.0, 2.4, and 2.8 g ethanol/kg body weight) were administered to the rats. Dialysate samples were collected at 30-min intervals at distinct time points prior to and following treatment. Radioimmunoassays specific for beta-endorphin, met-enkephalin, and dynorphin A1-8 were used to determine the effect of ethanol on the content of the opioid peptides in the dialysate. RESULTS We report that the 2.8-g/kg dose of ethanol induced a long-lasting increase in beta-endorphin release from 60 min onwards following administration and, later, an ongoing increase in dynorphin A1-8 release. None of the ethanol doses tested elicited significant changes in dialysate met-enkephalin content compared to the saline treatment. CONCLUSIONS Acute systemic ethanol administration induced a dose- and time-dependent increase in beta-endorphin and dynorphin A1-8 release at the level of the CeA, which may be involved in ethanol consumption.
Collapse
|
45
|
Roth-Deri I, Green-Sadan T, Yadid G. Beta-endorphin and drug-induced reward and reinforcement. Prog Neurobiol 2008; 86:1-21. [PMID: 18602444 DOI: 10.1016/j.pneurobio.2008.06.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 06/11/2008] [Indexed: 01/13/2023]
Abstract
Although drugs of abuse have different acute mechanisms of action, their brain pathways of reward exhibit common functional effects upon both acute and chronic administration. Long known for its analgesic effect, the opioid beta-endorphin is now shown to induce euphoria, and to have rewarding and reinforcing properties. In this review, we will summarize the present neurobiological and behavioral evidences that support involvement of beta-endorphin in drug-induced reward and reinforcement. Currently, evidence supports a prominent role for beta-endorphin in the reward pathways of cocaine and alcohol. The existing information indicating the importance of beta-endorphin neurotransmission in mediating the reward pathways of nicotine and THC, is thus far circumstantial. The studies described herein employed diverse techniques, such as biochemical measurements of beta-endorphin in various brain sites and plasma, and behavioral measurements, conducted following elimination (via administration of anti-beta-endorphin antibodies or using mutant mice) or augmentation (by intracerebral administration) of beta-endorphin. We suggest that the reward pathways for different addictive drugs converge to a common pathway in which beta-endorphin is a modulating element. Beta-endorphin is involved also with distress. However, reviewing the data collected so far implies a discrete role, beyond that of a stress response, for beta-endorphin in mediating the substance of abuse reward pathway. This may occur via interacting with the mesolimbic dopaminergic system and also by its interesting effects on learning and memory. The functional meaning of beta-endorphin in the process of drug-seeking behavior is discussed.
Collapse
Affiliation(s)
- Ilana Roth-Deri
- Neuropharmacology Section, The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
46
|
Zhang H, Kranzler HR, Yang BZ, Luo X, Gelernter J. The OPRD1 and OPRK1 loci in alcohol or drug dependence: OPRD1 variation modulates substance dependence risk. Mol Psychiatry 2008; 13:531-43. [PMID: 17622222 PMCID: PMC3163084 DOI: 10.1038/sj.mp.4002035] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Eleven single-nucleotide polymorphisms (SNPs) spanning OPRD1 were examined in 1063 European Americans (EAs) (620 cases with substance dependence (SD), including 557 with alcohol dependence (AD), 225 with cocaine dependence (CD) and 111 with opioid dependence (OD), and 443 controls). Nominally significant associations (P<0.05) of five SNPs with SD were observed; only the association of the non-synonymous variant G80T with OD remained significant after correction for multiple testing using SNPSpD. Haplotype analyses with six tag SNPs indicated that a specific haplotype GCAACT, which harbors G80T G-allele and C921T C-allele, was significantly associated with AD (chi(2)=14.82, degrees of freedom (d.f.)=1, P<0.001), CD (chi(2)=9.19, d.f.=1, P=0.002) and OD (chi(2)=20.68, d.f.=1, P<0.001). Logistic regression analyses, with sex and age being considered, demonstrated that this haplotype had a risk effect on AD (P=0.03, beta=1.86, odds ratio (OR)=6.43) and especially on OD (P<0.001, beta=3.92, OR=50.57). Moreover, seven SNPs covering OPRK1 were examined in the majority of the above subjects (390 cases, including 327 AD, 177 CD and 97 OD subjects, and 358 controls). Although no significant differences in allele, genotype or haplotype frequency distributions were seen between cases and controls, a specific OPRK1 haplotype, GGCTTCT, was significantly associated with AD (chi(2)=8.12, d.f.=1, P=0.004). Logistic regression analyses also revealed its risk effect on AD (P=0.009, beta=1.06, OR=2.90). Population stratification artifact was not observed in the sample. Taken together, our findings supported a positive association between OPRD1 variants and SD, and a positive haplotypic association between OPRK1 and AD in EAs.
Collapse
Affiliation(s)
- H Zhang
- VA Connecticut Healthcare System, West Haven Campus, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - HR Kranzler
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - B-Z Yang
- VA Connecticut Healthcare System, West Haven Campus, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - X Luo
- VA Connecticut Healthcare System, West Haven Campus, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - J Gelernter
- VA Connecticut Healthcare System, West Haven Campus, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
47
|
Weerts EM, Kim YK, Wand GS, Dannals RF, Lee JS, Frost JJ, McCaul ME. Differences in delta- and mu-opioid receptor blockade measured by positron emission tomography in naltrexone-treated recently abstinent alcohol-dependent subjects. Neuropsychopharmacology 2008; 33:653-65. [PMID: 17487229 DOI: 10.1038/sj.npp.1301440] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Blockade of brain mu-opioid receptor (mu-OR) and delta-opioid receptor (delta-OR) was investigated in recently abstinent alcohol-dependent subjects (N=21) maintained on naltrexone. Subjects completed a 19-day inpatient protocol, which included alcohol abstinence followed by naltrexone treatment (50 mg) on days 15-19. Blood samples were collected after the first administration of naltrexone to evaluate serum levels of naltrexone and 6-beta-naltrexol. Regional brain mu-OR binding potential (BP) and delta-OR Ki was measured using [11C]carfentanil (CAR) positron emission tomography (PET) and [11C]methyl naltrindole ([11C]MeNTI) PET, respectively, before (day 5) and during naltrexone treatment (day 18). Naltrexone inhibition of [11C]CAR BP was near maximal across all brain regions of interest with little variability across subjects (mean+SD% inhibition=94.9+4.9%). Naltrexone only partially inhibited the [11C]MeNTI Ki and there was more variability across subjects (mean+SD% inhibition=21.1+14.49%). Peak serum levels of naltrexone were positively correlated with % inhibition of delta-OR Ki in neocortex and basal ganglia. Peak serum levels of naltrexone were not correlated with % inhibition of mu-OR BP. Peak levels of 6-beta-naltrexol were not significantly correlated with % inhibition of mu-OR BP or delta-OR Ki. Thus, the FDA recommended therapeutic dose of naltrexone was sufficient to produce near complete inhibition of the mu-OR in recently abstinent alcohol dependent subjects. The lower percent inhibition of delta-OR and greater variability in delta-OR blockade by naltrexone across subjects may contribute to individual differences in treatment outcomes to naltrexone. Further investigations on the relationship between individual differences in delta-OR blockade by naltrexone and clinical outcomes should be explored.
Collapse
Affiliation(s)
- Elise M Weerts
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Méndez M, Morales-Mulia M, Pérez-Luna JM. Ethanol-induced changes in proenkephalin mRNA expression in the rat nigrostriatal pathway. J Mol Neurosci 2008; 34:225-34. [PMID: 18227978 DOI: 10.1007/s12031-008-9039-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
Endogenous opioid systems have been suggested to play a key role in ethanol reinforcement mechanisms and alcohol-drinking behavior. Ethanol induces differential alterations in opioid peptide expression in brain areas of the reward circuits, which may be linked to the reinforcing effects of ethanol. In addition, ethanol-induced alterations in opioidergic nigrostriatal transmission could be involved in brain sensitivity to ethanol and play a role in addictive processes. The aim of this work was to study the effects of acute ethanol administration on proenkephalin (proenk) mRNA expression in the rat substantia nigra and caudate-putamen (CP) for up to 24 h post treatment. Male Wistar rats received ethanol (2.5 g/kg) or distilled water by intragastric administration, and proenk mRNA expression was studied by in situ hybridization and densitometry. Ethanol transiently increased proenk mRNA expression in the CP 1 h after drug administration. Proenk mRNA levels remained elevated 2 h post treatment in the anterior-medial and medial-posterior regions of the CP. In contrast, ethanol decreased proenk mRNA expression in the substantia nigra pars compacta and pars reticulata 2 h after drug exposure. Alterations in enkephalin expression in the substantia nigra and CP in response to ethanol exposure could be involved in the mechanisms underlying brain sensitivity to the drug.
Collapse
Affiliation(s)
- Milagros Méndez
- Departamento de Neuroquímica, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370, México D.F., México.
| | | | | |
Collapse
|
49
|
Johnson BA. Update on neuropharmacological treatments for alcoholism: scientific basis and clinical findings. Biochem Pharmacol 2007; 75:34-56. [PMID: 17880925 PMCID: PMC2359153 DOI: 10.1016/j.bcp.2007.08.005] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/02/2007] [Accepted: 08/06/2007] [Indexed: 12/16/2022]
Abstract
The past decade has seen an expansion of research and knowledge on pharmacotherapy for the treatment of alcohol dependence. The Food and Drug Administration (FDA)-approved medications naltrexone and acamprosate have shown mixed results in clinical trials. Oral naltrexone and naltrexone depot formulations have generally demonstrated efficacy at treating alcohol dependence, but their treatment effect size is small, and more research is needed to compare the effects of different doses on drinking outcome. Acamprosate has demonstrated efficacy for treating alcohol dependence in European trials, but with a small effect size. In U.S. trials, acamprosate has not proved to be efficacious. Research continues to explore which types of alcohol-dependent individual would benefit the most from treatment with naltrexone or acamprosate. The combination of the two medications demonstrated efficacy for treating alcohol dependence in one European study but not in a multi-site U.S. study. Another FDA-approved medication, disulfiram, is an aversive agent that does not diminish craving for alcohol. Disulfiram is most effective when given to those who are highly compliant or who are receiving their medication under supervision. Of the non-approved medications, topiramate is among the most promising, with a medium effect size in clinical trials. Another promising medication, baclofen, has shown efficacy in small trials. Serotonergic agents such as selective serotonin reuptake inhibitors and the serotonin-3 receptor antagonist, ondansetron, appear to be efficacious only among certain genetic subtypes of alcoholic. As neuroscientific research progresses, other promising medications, as well as medication combinations, for treating alcohol dependence continue to be explored.
Collapse
Affiliation(s)
- Bankole A Johnson
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, P.O. Box 800623, Charlottesville, VA 22908-0623, USA.
| |
Collapse
|
50
|
Méndez M, Morales-Mulia M. Ethanol exposure differentially alters pro-enkephalin mRNA expression in regions of the mesocorticolimbic system. Psychopharmacology (Berl) 2006; 189:117-24. [PMID: 17047937 DOI: 10.1007/s00213-006-0503-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 06/28/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE Opioid peptides have been suggested to play a major role in ethanol reinforcement mechanisms and alcohol drinking behaviour. However, in non-selected strains of rodents, it is not known whether opioid biosynthesis is a critical event in these processes. OBJECTIVE The aim of this work was to study the effects of a high dose of ethanol (2.5 g/kg body weight) on pro-enkephalin (pro-enk) mRNA expression in brain regions of the mesocorticolimbic system for up to 24 h after drug administration. MATERIALS AND METHODS Male Wistar rats were administered with ethanol (2.5 g/kg body weight) or distilled water and were killed 30 min, 1, 2, 4, 8 or 24 h after treatment. Coronal brain sections (20 mu) were obtained and pro-enk mRNA expression was studied by in situ hybridization and densitometry. RESULTS Acute ethanol administration induced a transient decrease and increase in pro-enk mRNA expression in the ventral tegmental area (33.2%) and prefrontal cortex (26.5%) 2 and 4 h after treatment, respectively. In contrast, ethanol induced prolonged increases in pro-enk mRNA expression in the core and shell regions of the nucleus accumbens, with different kinetics. Maximal effects were observed 2 h after ethanol exposure (core, 70.0%; shell, 60.0%). CONCLUSIONS Our results indicate that enkephalin expression in regions of the rat mesocorticolimbic system is differentially altered by acute ethanol treatment and suggest that enkephalins may play a key role in ethanol reinforcement mechanisms.
Collapse
Affiliation(s)
- Milagros Méndez
- Departamento de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370, México DF, México.
| | | |
Collapse
|