1
|
Shah S, Green J, Graff SA, Li Q, Heiss JD. Gene Therapy for Glioblastoma Multiforme. Viruses 2025; 17:118. [PMID: 39861907 PMCID: PMC11768606 DOI: 10.3390/v17010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Glioblastoma multiforme (GBM) is a devastating, aggressive primary brain tumor with poor patient outcomes and a five-year survival of less than 10%. Significant limitations to effective GBM treatment include poor drug delivery across the blood-brain barrier, drug resistance, and complex genetic tumor alterations. Gene therapy uses a mechanism different from other GBM therapies to reduce tumor growth and enhance antitumor immunity. This review article will provide an update on various viral and nonviral vectors, their DNA and RNA cargoes, and how they genetically modify tumor cells and evoke therapeutic responses to GBM. The article explores the oncolytic and immunogenic effects of gene therapy agents. It reviews promising DNA transgenes, RNA inhibitors, and vectors for anti-GBM therapy. The possible benefits of combining gene therapy with standard GBM treatments will also be covered.
Collapse
Affiliation(s)
- Smit Shah
- Neurology Department, School of Medicine, University of South Carolina, 15 Medical Park Rd., Columbia, SC 29203, USA;
| | - Joshua Green
- Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA; (J.G.); (S.A.G.)
| | - Shantelle A. Graff
- Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA; (J.G.); (S.A.G.)
| | - Qi Li
- Neuro-Oncology Branch, CCR, NCI, NIH, 37 Convent Drive, Bethesda, MD 20892, USA;
| | - John D. Heiss
- Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA; (J.G.); (S.A.G.)
| |
Collapse
|
2
|
Song B, Wang X, Qin L, Hussain S, Liang W. Brain gliomas: Diagnostic and therapeutic issues and the prospects of drug-targeted nano-delivery technology. Pharmacol Res 2024; 206:107308. [PMID: 39019336 DOI: 10.1016/j.phrs.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Glioma is the most common intracranial malignant tumor, with severe difficulty in treatment and a low patient survival rate. Due to the heterogeneity and invasiveness of tumors, lack of personalized clinical treatment design, and physiological barriers, it is often difficult to accurately distinguish gliomas, which dramatically affects the subsequent diagnosis, imaging treatment, and prognosis. Fortunately, nano-delivery systems have demonstrated unprecedented capabilities in diagnosing and treating gliomas in recent years. They have been modified and surface modified to efficiently traverse BBB/BBTB, target lesion sites, and intelligently release therapeutic or contrast agents, thereby achieving precise imaging and treatment. In this review, we focus on nano-delivery systems. Firstly, we provide an overview of the standard and emerging diagnostic and treatment technologies for glioma in clinical practice. After induction and analysis, we focus on summarizing the delivery methods of drug delivery systems, the design of nanoparticles, and their new advances in glioma imaging and treatment in recent years. Finally, we discussed the prospects and potential challenges of drug-delivery systems in diagnosing and treating glioma.
Collapse
Affiliation(s)
- Baoqin Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Xiu Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| | - Lijing Qin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Shehbaz Hussain
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| |
Collapse
|
3
|
Manini A, Abati E, Nuredini A, Corti S, Comi GP. Adeno-Associated Virus (AAV)-Mediated Gene Therapy for Duchenne Muscular Dystrophy: The Issue of Transgene Persistence. Front Neurol 2022; 12:814174. [PMID: 35095747 PMCID: PMC8797140 DOI: 10.3389/fneur.2021.814174] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive, infancy-onset neuromuscular disorder characterized by progressive muscle weakness and atrophy, leading to delay of motor milestones, loss of autonomous ambulation, respiratory failure, cardiomyopathy, and premature death. DMD originates from mutations in the DMD gene that result in a complete absence of dystrophin. Dystrophin is a cytoskeletal protein which belongs to the dystrophin-associated protein complex, involved in cellular signaling and myofiber membrane stabilization. To date, the few available therapeutic options are aimed at lessening disease progression, but persistent loss of muscle tissue and function and premature death are unavoidable. In this scenario, one of the most promising therapeutic strategies for DMD is represented by adeno-associated virus (AAV)-mediated gene therapy. DMD gene therapy relies on the administration of exogenous micro-dystrophin, a miniature version of the dystrophin gene lacking unnecessary domains and encoding a truncated, but functional, dystrophin protein. Limited transgene persistence represents one of the most significant issues that jeopardize the translatability of DMD gene replacement strategies from the bench to the bedside. Here, we critically review preclinical and clinical studies of AAV-mediated gene therapy in DMD, focusing on long-term transgene persistence in transduced tissues, which can deeply affect effectiveness and sustainability of gene replacement in DMD. We also discuss the role played by the overactivation of the immune host system in limiting long-term expression of genetic material. In this perspective, further studies aimed at better elucidating the need for immune suppression in AAV-treated subjects are warranted in order to allow for life-long therapy in DMD patients.
Collapse
Affiliation(s)
- Arianna Manini
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Andi Nuredini
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, Neuroscience Section, Dino Ferrari Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, Neuroscience Section, Dino Ferrari Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
4
|
Srivastava V, Singh A, Jain GK, Ahmad FJ, Shukla R, Kesharwani P. Viral vectors as a promising nanotherapeutic approach against neurodegenerative disorders. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Liu Y, Zhang H, Chen R, Wu Y, Yang X, Liu X, Zeng S, Guo W. UnaG as a reporter in adeno-associated virus-mediated gene transfer for biomedical imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e202000182. [PMID: 32894647 DOI: 10.1002/jbio.202000182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Adeno-associated virus (AAV) is one of the most common gene transfer vectors, but it has a limited capacity. A smaller fluorescent protein is urgently needed since it is more suitable to act as a reporter in AAV. In this study, a bilirubin-dependent reporter smaller than EGFP, termed UnaG, was found to have the ability to label the neurons of a mouse brain as clearly as EGFP without the addition of exogenous bilirubin. We also found that UnaG's pH tolerance is better than that of EGFP; however, its fluorescence recovery after protonated quenching is not as good as that of EGFP. In addition, UnaG preserved its fluorescence better than EGFP in SeeDB clearing. Taken together, this study demonstrates that UnaG can act as a small intrinsically fluorescent reporter in the mouse brain without an additional ligand, thus providing an alternative over EGFP for AAV-mediated neuron labeling in mammals.
Collapse
Affiliation(s)
- Yurong Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Huimin Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixi Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuli Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyan Guo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Jagrosse ML, Dean DA, Rahman A, Nilsson BL. RNAi therapeutic strategies for acute respiratory distress syndrome. Transl Res 2019; 214:30-49. [PMID: 31401266 PMCID: PMC7316156 DOI: 10.1016/j.trsl.2019.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Acute respiratory distress syndrome (ARDS), replacing the clinical term acute lung injury, involves serious pathophysiological lung changes that arise from a variety of pulmonary and nonpulmonary injuries and currently has no pharmacological therapeutics. RNA interference (RNAi) has the potential to generate therapeutic effects that would increase patient survival rates from this condition. It is the purpose of this review to discuss potential targets in treating ARDS with RNAi strategies, as well as to outline the challenges of oligonucleotide delivery to the lung and tactics to circumvent these delivery barriers.
Collapse
Affiliation(s)
| | - David A Dean
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Arshad Rahman
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York.
| |
Collapse
|
7
|
Split intein-mediated selection of cells containing two plasmids using a single antibiotic. Nat Commun 2019; 10:4967. [PMID: 31672972 PMCID: PMC6823396 DOI: 10.1038/s41467-019-12911-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/07/2019] [Indexed: 11/08/2022] Open
Abstract
To build or dissect complex pathways in bacteria and mammalian cells, it is often necessary to recur to at least two plasmids, for instance harboring orthogonal inducible promoters. Here we present SiMPl, a method based on rationally designed split enzymes and intein-mediated protein trans-splicing, allowing the selection of cells carrying two plasmids with a single antibiotic. We show that, compared to the traditional method based on two antibiotics, SiMPl increases the production of the antimicrobial non-ribosomal peptide indigoidine and the non-proteinogenic aromatic amino acid para-amino-L-phenylalanine from bacteria. Using a human T cell line, we employ SiMPl to obtain a highly pure population of cells double positive for the two chains of the T cell receptor, TCRα and TCRβ, using a single antibiotic. SiMPl has profound implications for metabolic engineering and for constructing complex synthetic circuits in bacteria and mammalian cells.
Collapse
|
8
|
Ou H, Zhang Q, Zeng J. Improving lipoprotein profiles by liver-directed gene transfer of low density lipoprotein receptor gene in hypercholesterolaemia mice. J Genet 2017; 95:311-6. [PMID: 27350674 DOI: 10.1007/s12041-016-0636-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The defect of low density lipoprotein receptor disturbs cholesterol metabolism and causes familial hypercholesterolaemia (FH). In this study, we directly delivered exogenous Ldlr gene into the liver of FH model mice (Ldlr(-/-)) by lentiviral gene transfer system. The results showed that the Ldlr gene controlled by hepatocyte-specific human thyroxine-binding globulin (TBG) promoter successfully and exclusively expressed in livers.We found that, although, the content of high density lipoprotein in serum was not significantly affected by the Ldlr gene expression, the serum low density lipoprotein level was reduced by 46%, associated with a 30% and 28% decrease in triglyceride and total cholesterol, respectively, compared to uninjected Ldlr(-/-) mice. Moreover, the TBG directed expression of Ldlr significantly decreased the lipid accumulation in liver and reduced plaque burden in aorta (32%). Our results indicated that the hepatocyte-specific expression of Ldlr gene strikingly lowered serum lipid levels and resulted in amelioration of hypercholesterolaemia.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Disease Models, Animal
- Gene Expression
- Genetic Therapy/methods
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Hyperlipoproteinemia Type II/genetics
- Hyperlipoproteinemia Type II/metabolism
- Hyperlipoproteinemia Type II/pathology
- Hyperlipoproteinemia Type II/therapy
- Lentivirus/genetics
- Lentivirus/metabolism
- Liver/metabolism
- Liver/pathology
- Mice
- Mice, Transgenic
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/therapy
- Promoter Regions, Genetic
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Thyroxine-Binding Globulin/genetics
- Thyroxine-Binding Globulin/metabolism
- Transfection
- Transgenes
- Triglycerides/blood
Collapse
Affiliation(s)
- Hailong Ou
- 1Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of
| | | | | |
Collapse
|
9
|
Kasala D, Yoon AR, Hong J, Kim SW, Yun CO. Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine (Lond) 2016; 11:1689-713. [PMID: 27348247 DOI: 10.2217/nnm-2016-0060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Viral vectors are promising gene carriers for cancer therapy. However, virus-mediated gene therapies have demonstrated insufficient therapeutic efficacy in clinical trials due to rapid dissemination to nontarget tissues and to the immunogenicity of viral vectors, resulting in poor retention at the disease locus and induction of adverse inflammatory responses in patients. Further, the limited tropism of viral vectors prevents efficient gene delivery to target tissues. In this regard, modification of the viral surface with nanomaterials is a promising strategy to augment vector accumulation at the target tissue, circumvent the host immune response, and avoid nonspecific interactions with the reticuloendothelial system or serum complement. In the present review, we discuss various chemical modification strategies to enhance the therapeutic efficacy of viral vectors delivered either locally or systemically. We conclude by highlighting the salient features of various nanomaterial-coated viral vectors and their prospects and directions for future research.
Collapse
Affiliation(s)
- Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Jinwoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Sung Wan Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea.,Department of Pharmaceutics & Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| |
Collapse
|
10
|
Kim J, Kim H, Kim WJ. Single-Layered MoS2-PEI-PEG Nanocomposite-Mediated Gene Delivery Controlled by Photo and Redox Stimuli. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1184-1192. [PMID: 26389712 DOI: 10.1002/smll.201501655] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/07/2015] [Indexed: 05/28/2023]
Abstract
Stimuli-responsive gene delivery systems maximize therapeutic efficacy by controlling the cytosolic conveyance and rate of effective gene release. We present herein a hybrid nanocomposite composed of a 2D nanomaterial, MoS2, modified by attaching two polymers (polyethylenimine (PEI) and polyethylenglycol (PEG)) via disulfide bonds. This MoS2-PEI-PEG nanocomposite interacts with DNA by electrostatic interaction, and accordingly forms a nanosized complex with high stability. Photothermal conversion of MoS2 nanosheet is employed in order to induce photothermally triggered endosomal escape upon the near infrared light irradiation. After endosomal escape, polymers are detached from the MoS2 nanosheet by the intracellular reducing agent, glutathione (GSH), resulting in effective gene release from the nanocomposite. This sequential process initiated by external and internal stimuli remarkably enhances gene delivery efficiency by effective endosomal escape and gene release without severe cytotoxicity. Our rationally designed MoS2 nanocomposite provides a spatiotemporally controllable platform to deliver genetic material into cells.
Collapse
Affiliation(s)
- Jinhwan Kim
- Department of Chemistry and Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Hyunwoo Kim
- Department of Chemistry and Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Won Jong Kim
- Department of Chemistry and Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
11
|
Zhang C, Yao T, Zheng Y, Li Z, Zhang Q, Zhang L, Zhou D. Development of next generation adeno-associated viral vectors capable of selective tropism and efficient gene delivery. Biomaterials 2015; 80:134-145. [PMID: 26708090 DOI: 10.1016/j.biomaterials.2015.11.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/11/2015] [Accepted: 11/29/2015] [Indexed: 12/12/2022]
Abstract
Virus-based nanoparticles have shown promise as vehicles for delivering therapeutic genes. However, the rational design of viral vectors that enable selective tropism towards particular types of cells and tissues remains challenging. Here, we explored structural-functional relationships of the adeno-associated virus 2 (AAV2) vector by expanding its genetic code during production. As a proof-of-principle, an azide moiety was strategically displayed on the vector capsid as a bioorthogonal chemical reporter. Upon bioorthogonal conjugation of AAV2 with fluorophores and cyclic arginyl-glycyl-aspartic acid ligands at certain modifiable sites, we characterized in vitro and in vivo AAV2 movement and enhanced tropism selectivity towards integrin-expressing tumor cells. Targeting AAV2 vectors resulted in selective killing of U87 glioblastoma cells and derived xenografts via the herpes simplex virus suicide gene thymidine kinase, with the potency of ganciclovir being increased by 25-fold. Our results demonstrated successful rational modification of AAV2 as a targeting delivery vehicle, establishing a facile platform for precision engineering of virus-based nanoparticles in basic research and therapeutic applications.
Collapse
Affiliation(s)
- Chuanling Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tianzhuo Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yongxiang Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
12
|
Kantor S, Mochizuki T, Lops SN, Ko B, Clain E, Clark E, Yamamoto M, Scammell TE. Orexin gene therapy restores the timing and maintenance of wakefulness in narcoleptic mice. Sleep 2013; 36:1129-38. [PMID: 23904672 PMCID: PMC3700709 DOI: 10.5665/sleep.2870] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Narcolepsy is caused by selective loss of the orexin/hypocretin-producing neurons of the hypothalamus. For patients with narcolepsy, chronic sleepiness is often the most disabling symptom, but current therapies rarely normalize alertness and do not address the underlying orexin deficiency. We hypothesized that the sleepiness of narcolepsy would substantially improve if orexin signaling were restored in specific brain regions at appropriate times of day. DESIGN We used gene therapy to restore orexin signaling in a mouse model of narcolepsy. In these Atx mice, expression of a toxic protein (ataxin-3) selectively kills the orexin neurons. INTERVENTIONS To induce ectopic expression of the orexin neuropeptides, we microinjected an adeno-associated viral vector coding for prepro-orexin plus a red fluorescence protein (AAV-orexin) into the mediobasal hypothalamus of Atx and wild-type mice. Control mice received an AAV coding only for red fluorescence protein. Two weeks later, we recorded sleep/wake behavior, locomotor activity, and body temperature and examined the patterns of orexin expression. MEASUREMENTS AND RESULTS Atx mice rescued with AAV-orexin produced long bouts of wakefulness and had a normal diurnal pattern of arousal, with the longest bouts of wake and the highest amounts of locomotor activity in the first hours of the night. In addition, AAV-orexin improved the timing of rapid eye movement sleep and the consolidation of nonrapid eye movement sleep in Atx mice. CONCLUSIONS These substantial improvements in sleepiness and other symptoms of narcolepsy demonstrate the effectiveness of orexin gene therapy in a mouse model of narcolepsy. Additional work is needed to optimize this approach, but in time, AAV-orexin could become a useful therapeutic option for patients with narcolepsy.
Collapse
Affiliation(s)
- Sandor Kantor
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | - Stefan N. Lops
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Brian Ko
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Elizabeth Clain
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Erika Clark
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Mihoko Yamamoto
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Thomas E. Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
13
|
Thiersch M, Rimann M, Panagiotopoulou V, Öztürk E, Biedermann T, Textor M, Lühmann TC, Hall H. The angiogenic response to PLL-g-PEG-mediated HIF-1α plasmid DNA delivery in healthy and diabetic rats. Biomaterials 2013; 34:4173-4182. [PMID: 23465832 DOI: 10.1016/j.biomaterials.2013.02.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/11/2013] [Indexed: 12/25/2022]
Abstract
Impaired angiogenesis is a major clinical problem and affects wound healing especially in diabetic patients. Improving angiogenesis is a reasonable strategy to increase diabetes-impaired wound healing. Recently, our lab described a system of transient gene expression due to pegylated poly-l-lysine (PLL-g-PEG) polymer-mediated plasmid DNA delivery in vitro. Here we synthesized peptide-modified PLL-g-PEG polymers with two functionalities, characterized them in vitro and utilized them in vivo via a fibrin-based delivery matrix to induce dermal wound angiogenesis in diabetic rats. The two peptides were 1) a TG-peptide to covalently bind these nanocondensates to the fibrin matrix (TG-peptide) for a sustained release and 2) a polyR peptide to improve cellular uptake of these nanocondensates. In order to induce angiogenesis in vivo we condensed modified and non-modified polymers with plasmid DNA encoding a truncated form of the therapeutic candidate gene hypoxia-inducible transcription factor 1α (HIF-1α). HIF-1α is the primarily oxygen-dependent regulated subunit of the heterodimeric transcription factor HIF-1, which controls angiogenesis among other physiological pathways. The truncated form of HIF-1α lacks the oxygen-dependent degradation domain (ODD) and therefore escapes degradation under normoxic conditions. PLL-g-PEG polymer-mediated HIF-1α-ΔODD plasmid DNA delivery was found to lead to a transiently induced gene expression of angiogenesis-related genes Acta2 and Pecam1 as well as the HIF-1α target gene Vegf in vivo. Furthermore, HIF-1α gene delivery was shown to enhance the number endothelial cells and smooth muscle cells - precursors for mature blood vessels - during wound healing. We show that - depending on the selection of the therapeutic target gene - PLL-g-PEG nanocondensates are a promising alternative to viral DNA delivery approaches, which might pose a risk to health.
Collapse
Affiliation(s)
- Markus Thiersch
- Laboratory for Biologically Oriented Materials, Department of Materials, ETH Zurich, CH-8093, Switzerland; University of Zurich, Institute of Veterinary Physiology, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland.
| | - Markus Rimann
- Laboratory for Biologically Oriented Materials, Department of Materials, ETH Zurich, CH-8093, Switzerland
| | - Vasiliki Panagiotopoulou
- Laboratory for Biologically Oriented Materials, Department of Materials, ETH Zurich, CH-8093, Switzerland
| | - Ece Öztürk
- Laboratory for Biologically Oriented Materials, Department of Materials, ETH Zurich, CH-8093, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit University Children's Hospital Zurich, CH-8008, Switzerland
| | - Marcus Textor
- BioInterface Group, Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, CH-8093, Switzerland
| | - Tessa C Lühmann
- Laboratory for Biologically Oriented Materials, Department of Materials, ETH Zurich, CH-8093, Switzerland
| | - Heike Hall
- Laboratory for Biologically Oriented Materials, Department of Materials, ETH Zurich, CH-8093, Switzerland
| |
Collapse
|
14
|
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by acute respiratory failure and are associated with diverse disorders. Gene therapy is a potentially powerful approach to treat diseases related to ALI/ARDS, and numerous viral and nonviral methods for gene delivery to the lung have been developed. Discussed are recent advances in the development of more efficient viral and nonviral gene transfer systems, and the current status of gene therapy applied to ALI/ARDS-associated pulmonary diseases is reviewed. With the development of more efficient gene therapy vectors, gene therapy is a promising strategy for clinical application.
Collapse
Affiliation(s)
- Xin Lin
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - David A Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
15
|
Sliva K, Schnierle BS. Selective gene silencing by viral delivery of short hairpin RNA. Virol J 2010; 7:248. [PMID: 20858246 PMCID: PMC2949849 DOI: 10.1186/1743-422x-7-248] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/21/2010] [Indexed: 12/15/2022] Open
Abstract
RNA interference (RNAi) technology has not only become a powerful tool for functional genomics, but also allows rapid drug target discovery and in vitro validation of these targets in cell culture. Furthermore, RNAi represents a promising novel therapeutic option for treating human diseases, in particular cancer. Selective gene silencing by RNAi can be achieved essentially by two nucleic acid based methods: i) cytoplasmic delivery of short double-stranded (ds) interfering RNA oligonucleotides (siRNA), where the gene silencing effect is only transient in nature, and possibly not suitable for all applications; or ii) nuclear delivery of gene expression cassettes that express short hairpin RNA (shRNA), which are processed like endogenous interfering RNA and lead to stable gene down-regulation. Both processes involve the use of nucleic acid based drugs, which are highly charged and do not cross cell membranes by free diffusion. Therefore, in vivo delivery of RNAi therapeutics must use technology that enables the RNAi therapeutic to traverse biological membrane barriers in vivo. Viruses and the vectors derived from them carry out precisely this task and have become a major delivery system for shRNA. Here, we summarize and compare different currently used viral delivery systems, give examples of in vivo applications, and indicate trends for new developments, such as replicating viruses for shRNA delivery to cancer cells.
Collapse
Affiliation(s)
- Katja Sliva
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str, 51-59, 63225 Langen, Germany.
| | | |
Collapse
|
16
|
Zhong Q, Chinta DMD, Pamujula S, Wang H, Yao X, Mandal TK, Luftig RB. Optimization of DNA delivery by three classes of hybrid nanoparticle/DNA complexes. J Nanobiotechnology 2010; 8:6. [PMID: 20181278 PMCID: PMC2838804 DOI: 10.1186/1477-3155-8-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/24/2010] [Indexed: 01/16/2023] Open
Abstract
Plasmid DNA encoding a luciferase reporter gene was complexed with each of six different hybrid nanoparticles (NPs) synthesized from mixtures of poly (D, L-lactide-co-glycolide acid) (PLGA 50:50) and the cationic lipids DOTAP (1, 2-Dioleoyl-3-Trimethyammonium-Propane) or DC-Chol {3β-[N-(N', N'-Dimethylaminoethane)-carbamyl] Cholesterol}. Particles were 100-400 nm in diameter and the resulting complexes had DNA adsorbed on the surface (out), encapsulated (in), or DNA adsorbed and encapsulated (both). A luciferase reporter assay was used to quantify DNA expression in 293 cells for the uptake of six different NP/DNA complexes. Optimal DNA delivery occurred for 105 cells over a range of 500 ng - 10 μg of NPs containing 20-30 μg DNA per 1 mg of NPs. Uptake of DNA from NP/DNA complexes was found to be 500-600 times as efficient as unbound DNA. Regression analysis was performed and lines were drawn for DNA uptake over a four week interval. NP/DNA complexes with adsorbed NPs (out) showed a large initial uptake followed by a steep slope of DNA decline and large angle of declination; lines from uptake of adsorbed and encapsulated NPs (both) also exhibited a large initial uptake but was followed by a gradual slope of DNA decline and small angle of declination, indicating longer times of luciferase expression in 293 cells. NPs with encapsulated DNA only (in), gave an intermediate activity. The latter two effects were best seen with DOTAP-NPs while the former was best seen with DC-Chol-NPs. These results provide optimal conditions for using different hybrid NP/DNA complexes in vitro and in the future, will be tested in vivo.
Collapse
Affiliation(s)
- Qiu Zhong
- Department of Microbiology Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Vectors for pulmonary gene therapy. Int J Pharm 2009; 390:84-8. [PMID: 19825403 DOI: 10.1016/j.ijpharm.2009.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 09/08/2009] [Accepted: 10/03/2009] [Indexed: 11/22/2022]
Abstract
The success of gene transfer in preclinical animal models and proof of principle clinical studies has made gene therapy an attractive concept for disease treatment. A variety of diseases affecting the lung are candidates for gene therapy. Delivery of genes to the lungs seems to be straightforward, because of the easy accessibility of epithelial cells via the airways. However, efficient delivery and expression of the therapeutic transgene at levels sufficient to result in phenotypic correction of the diseased state have proven elusive. This review presents a brief summary about current status and future prospects in the development of viral and non-viral strategies for pulmonary gene therapy.
Collapse
|
18
|
Zuber C, Mitteregger G, Schuhmann N, Rey C, Knackmuss S, Rupprecht W, Reusch U, Pace C, Little M, Kretzschmar HA, Hallek M, Büning H, Weiss S. Delivery of single-chain antibodies (scFvs) directed against the 37/67 kDa laminin receptor into mice via recombinant adeno-associated viral vectors for prion disease gene therapy. J Gen Virol 2008; 89:2055-2061. [PMID: 18632978 DOI: 10.1099/vir.0.83670-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 37/67 kDa laminin receptor (LRP/LR) acts as a receptor for prions providing a promising target for the treatment of prion diseases. Recently, we selected anti-LRP/LR single-chain antibodies (scFvs) and proved a reduction of the peripheral PrP(Sc) propagation by passive immunotransfer into scrapie-infected mice. Here, we report the development of an in vivo gene delivery system based on adeno-associated virus (AAV) vectors expressing scFvs-S18 and -N3 directed against LRP/LR. Transduction of neuronal and non-neuronal cells with recombinant (r)AAV serotype 2 vectors encoding scFv-S18, -N3 and -C9 verified the efficient secretion of the antibodies. These vectors were administered via stereotactic intracerebral microinjection into the hippocampus of C57BL/6 mice, followed by intracerebral inoculation with 10 % RML at the same site 2 weeks post-injection of rAAV. After 90 days post-infection, scFv-S18 and -N3 expression resulted in the reduction of peripheral PrP(Sc) propagation by approximately 60 and 32 %, respectively, without a significant prolongation of incubation times and survival. Proof of rAAV vector DNA in spleen samples by real-time PCR strongly suggests a transport or trafficking of rAAV from the brain to the spleen, resulting in rAAV-mediated expression of scFv followed by reduced PrP(Sc) levels in the spleen most likely due to the blockage of the prion receptor LRP/LR by scFv.
Collapse
Affiliation(s)
- Chantal Zuber
- Laboratorium für Molekulare Biologie - Genzentrum - Institut für Biochemie der LMU München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| | - Gerda Mitteregger
- Zentrum für Neuropathologie und Prionforschung der LMU München, Feodor-Lynen-Str. 23, 81377 München, Germany
| | - Natascha Schuhmann
- Universität zu Köln, Klinik I für Innere Medizin, Kerpener Str. 62, 50937 Köln, Germany
| | - Clémence Rey
- Laboratorium für Molekulare Biologie - Genzentrum - Institut für Biochemie der LMU München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| | - Stefan Knackmuss
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Wolfgang Rupprecht
- Laboratorium für Molekulare Biologie - Genzentrum - Institut für Biochemie der LMU München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| | - Uwe Reusch
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Claudia Pace
- Zentrum für Neuropathologie und Prionforschung der LMU München, Feodor-Lynen-Str. 23, 81377 München, Germany
| | - Melvyn Little
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Hans A Kretzschmar
- Zentrum für Neuropathologie und Prionforschung der LMU München, Feodor-Lynen-Str. 23, 81377 München, Germany
| | - Michael Hallek
- Zentrum für Molekulare Medizin Köln, Universität zu Köln, Joseph-Stelzmann-Str. 52, 50931 Köln, Germany.,Universität zu Köln, Klinik I für Innere Medizin, Kerpener Str. 62, 50937 Köln, Germany
| | - Hildegard Büning
- Zentrum für Molekulare Medizin Köln, Universität zu Köln, Joseph-Stelzmann-Str. 52, 50931 Köln, Germany.,Universität zu Köln, Klinik I für Innere Medizin, Kerpener Str. 62, 50937 Köln, Germany
| | - Stefan Weiss
- Laboratorium für Molekulare Biologie - Genzentrum - Institut für Biochemie der LMU München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| |
Collapse
|
19
|
Kilian EG, Eifert S, Beiras-Fernandez A, Daebritz S, Reichenspurner H, Reichart B. Adeno-associated virus-mediated gene transfer in a rabbit vein graft model. Circ J 2008; 72:1700-4. [PMID: 18753702 DOI: 10.1253/circj.cj-07-0921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Stenoses of venous grafts represent a major limitation in coronary artery bypass surgery. The use of viral vectors to facilitate over-expression of factors within the graft to promote long-term patency is a promising new therapeutic concept. One of the viral vector systems is the adeno-associated virus (AAV); a non-pathogenic single stranded DNA virus, which elicits only low immunological responses. METHODS AND RESULTS Recombinant AAV vector coding for beta-galactosidase was produced and transferred ex vivo using intraluminal application to previously harvested rabbit internal jugular vein grafts (n = 8). The 30 min after application, an end-to-end anastomosis of each graft as a bypass to the carotid artery was performed in a previously established rabbit bypass model. X-Gal-staining of the grafts was performed after killing the animals to quantify gene expression. AAV transduction was successful in 100% of the grafts. After 30 days, beta-galactosidase gene expression could be assessed in the medial layer of the graft. Furthermore, no signs of inflammation could be detected. CONCLUSIONS These findings suggest that recombinant AAV vectors are an alternative to the widely used adenoviral based vectors. These data support the further use of AAV vectors to overcome intimal hyperplasia after vein graft coronary artery bypass surgery.
Collapse
Affiliation(s)
- Eckehard Gerd Kilian
- Department of Cardiac Surgery, University of Munich, Grosshadern Hospital, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Levicoff EA, Kim JS, Sobajima S, Wallach CJ, Larson JW, Robbins PD, Xiao X, Juan L, Vadala G, Gilbertson LG, Kang JD. Safety assessment of intradiscal gene therapy II: effect of dosing and vector choice. Spine (Phila Pa 1976) 2008; 33:1509-16; discussion 1517. [PMID: 18520636 PMCID: PMC3510668 DOI: 10.1097/brs.0b013e318178866c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Clinical, biochemical, and histologic analysis was performed after in vivo delivery of cDNA encoding various anabolic cytokines and marker genes to the lumbar epidural space of New Zealand white rabbits, using both adenoviral and adeno-associated viral vectors. OBJECTIVE To mimic errant or misplaced doses of gene therapy to better ascertain the potential risks associated with alternative vectors and transgene products with regard to their application to problems of the intervertebral disc. SUMMARY OF BACKGROUND DATA Work done with several anabolic cytokines including bone morphogenic proteins and transforming growth factors, has demonstrated the potential of gene therapy. Recently, data has been published demonstrating that improperly dosed or delivered adenoviral-mediated gene therapy within the subarachnoid space can result in significant morbidity in rabbits. There are currently no studies examining the effect of these errors within the epidural space or using an adeno-associated viral (AAV) vector. METHODS Using either adenoviral or AAV vectors, complementary DNA (cDNA) encoding anabolic cytokines bone morphogenic protein-2 (BMP-2) and transforming growth factor-beta 1 and marker proteins LacZ and green fluorescent protein were injected into the epidural space of 37 New Zealand white rabbits at the L5/6 level. Rabbits were then observed clinically for up to 6 weeks, after which the rabbits were sacrificed in order to perform a comprehensive biochemical and histologic analysis. RESULTS Following adenoviral-mediated delivery of anabolic cytokine cDNA, up to eighty percent of rabbits demonstrated significant clinical, biochemical, and histologic morbidity. Conversely, AAV-mediated delivery of any cDNA and adenoviral-mediated delivery of marker protein cDNA resulted in no clinical, histologic, or biochemical morbidity. CONCLUSION Properly dosed and directed gene therapy seems to be both safe and potentially efficacious. This study suggests that side effects of gene therapy may be due to a combination of dosing, transgene product, and vector choice, and that newer AAV vectors may reduce these side-effects and decrease the risk of this technology.
Collapse
Affiliation(s)
- Eric A Levicoff
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tiesjema B, Merkestein M, Garner KM, de Krom M, Adan RAH. Multimeric α-MSH has increased efficacy to activate the melanocortin MC4 receptor. Eur J Pharmacol 2008; 585:24-30. [PMID: 18378226 DOI: 10.1016/j.ejphar.2008.02.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 11/19/2022]
Affiliation(s)
- Birgitte Tiesjema
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Nam HJ, Lane MD, Padron E, Gurda B, McKenna R, Kohlbrenner E, Aslanidi G, Byrne B, Muzyczka N, Zolotukhin S, Agbandje-McKenna M. Structure of adeno-associated virus serotype 8, a gene therapy vector. J Virol 2007; 81:12260-71. [PMID: 17728238 PMCID: PMC2168965 DOI: 10.1128/jvi.01304-07] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated viruses (AAVs) are being developed as gene therapy vectors, and their efficacy could be improved by a detailed understanding of their viral capsid structures. AAV serotype 8 (AAV8) shows a significantly greater liver transduction efficiency than those of other serotypes, which has resulted in efforts to develop this virus as a gene therapy vector for hemophilia A and familial hypercholesterolemia. Pseudotyping studies show that the differential tissue tropism and transduction efficiencies exhibited by the AAVs result from differences in their capsid viral protein (VP) amino acids. Towards identifying the structural features underpinning these disparities, we report the crystal structure of the AAV8 viral capsid determined to 2.6-A resolution. The overall topology of its common overlapping VP is similar to that previously reported for the crystal structures of AAV2 and AAV4, with an eight-stranded beta-barrel and long loops between the beta-strands. The most significant structural differences between AAV8 and AAV2 (the best-characterized serotype) are located on the capsid surface at protrusions surrounding the two-, three-, and fivefold axes at residues reported to control transduction efficiency and antibody recognition for AAV2. In addition, a comparison of the AAV8 and AAV2 capsid surface amino acids showed a reduced distribution of basic charge for AAV8 at the mapped AAV2 heparin sulfate receptor binding region, consistent with an observed non-heparin-binding phenotype for AAV8. Thus, this AAV8 structure provides an additional platform for mutagenesis efforts to characterize AAV capsid regions responsible for differential cellular tropism, transduction, and antigenicity for these promising gene therapy vectors.
Collapse
Affiliation(s)
- Hyun-Joo Nam
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kim SJ, Lee WI, Heo H, Shin O, Kwon YK, Lee H. Stable gene expression by self-complementary adeno-associated viruses in human MSCs. Biochem Biophys Res Commun 2007; 360:573-9. [PMID: 17606219 DOI: 10.1016/j.bbrc.2007.06.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 06/10/2007] [Indexed: 10/23/2022]
Abstract
Genetically modified mesenchymal stem cells (MSCs) are potentially valuable tools for the novel treatment of human illnesses. Here, we investigated whether gene transfers by self-complementary adeno-associated viruses (scAAV) lead to promising genetic modification in human bone marrow and umbilical cord blood MSCs. Of the various scAAVs, scAAV2, and scAAV5 effectively and safely expressed transgenes in both hMSCs. Transduction efficiency with scAAV2 at 1000 multiplicity of infection was 66.3+/-9.4% and 67.6+/-6.7% in bone marrow and umbilical cord blood MSCs, respectively. A co-infection study showed that the distinct scAAV2 and scAAV5 can effectively express different transgenes in the same hMSC. hMSCs transduced by scAAVs showed long-term gene expression for three months in rat brains. Genetic modification by scAAVs did not affect osteogenic differentiation of hMSCs. Therefore, the present study strongly supports the promising potential of scAAVs as a technical platform for safe, long-term transgene expression in hMSCs.
Collapse
Affiliation(s)
- Sung Jin Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
25
|
Vadalà G, Sowa GA, Smith L, Hubert MG, Levicoff EA, Denaro V, Gilbertson LG, Kang JD. Regulation of transgene expression using an inducible system for improved safety of intervertebral disc gene therapy. Spine (Phila Pa 1976) 2007; 32:1381-7. [PMID: 17545904 DOI: 10.1097/brs.0b013e3180601215] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Human nucleus pulposus cells (NPCs) were transduced with an adenoviral vector that expresses Fas Ligand (FasL) and green fluorescent protein (GFP) under the control of a tetracycline-regulated gene expression system to test the transgene control. OBJECTIVES To describe the application of a Tet-off gene regulation system for intervertebral disc (IVD) gene therapy. SUMMARY OF BACKGROUND DATA Gene therapy has proven its ability to beneficially modulate the biologic processes of the IVD cells in vitro and in vivo. However, we have observed that expression of transgenic growth factors outside the IVD in the event of a misdirected injection has potentially detrimental consequences (e.g., toxicity). To date, a safety system that allows the control transgene expression has not been produced for intradiscal gene therapy. METHODS Human NPCs were transduced with Ad/FasL-GFPTET, at 0, 50, 100, and 200 MOI. After 1 day (time 0) cells were cultured in the presence of tetracycline (1, 10, 100 mg/L) for 3 days, and then tetracycline was withdrawn. The transgene expression was evaluated either daily by flow cytometry (from time 0 to day 6) or by imaging the GFP signal (time 0, day 3 and day 9). RESULTS NPC expression of GFP 1 day after transduction was proportional to the MOI used. GFP expression was decreased after 3 days of tetracycline administration at all concentrations used. The expression of GFP recovered after removal of tetracycline. CONCLUSIONS The transgene expressed by the transduced NPC was efficiently regulated by inclusion of tetracycline in culture media. The presence of tetracycline turns off the protein expression and the subsequent absence allows it to recover again, demonstrating the ability to control gene expression in NPCs. Therefore, we propose a Tet-off inducible system as an efficient tool for modulating the transgene expression to avoid the toxicity that could result from a missed injection.
Collapse
Affiliation(s)
- Gianluca Vadalà
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
BACKGROUND CONTEXT Recent advances in our understanding of the biologic makeup and environment of the intervertebral disc (IVD) have led to increased interest in the development of novel treatments for disc degeneration. Certain genes found to alter rates of matrix synthesis and catabolism within the disc have provided targets for scientists seeking to alter the balance between the two. To this end, gene therapy has emerged as a potential therapeutic option, and recent research efforts have yielded very promising results. PURPOSE To update and consolidate information regarding the recent advances in gene therapy and its application to IVD degeneration. STUDY DESIGN/SETTING Review of recent and ongoing research in the field of gene therapy, particularly regarding its application to the treatment of IVD degeneration. METHODS Literature review. RESULTS With its unique ability to provide sustained delivery of potentially therapeutic agents, gene therapy has shown much promise with regard to the treatment of IVD degeneration. There have been many exciting developments such as safer and more reliable vector constructs, favorable results using therapeutic transgenes in disc cells both in vitro and in vivo, and improvement in transgene regulation, and investigators continue to explore ways in which gene therapy can become a powerful tool in the future treatment of disc degeneration. CONCLUSIONS With continued perseverance and dedication, many advances have been made in the application of gene therapy to the IVD, and it continues to demonstrate great potential to become a powerful tool in the future treatment of disc degeneration.
Collapse
Affiliation(s)
- Eric A Levicoff
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Rm C-313, Presbyterian University Hospital, 200 Lothrop St., Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
27
|
Büning H, Ried MU, Perabo L, Gerner FM, Huttner NA, Enssle J, Hallek M. Receptor targeting of adeno-associated virus vectors. Gene Ther 2003; 10:1142-51. [PMID: 12833123 DOI: 10.1038/sj.gt.3301976] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Adeno-associated virus (AAV) is a promising vector for human somatic gene therapy. However, its broad host range is a disadvantage for in vivo gene therapy, because it does not allow the selective tissue- or organ-restricted transduction required to enhance the safety and efficiency of the gene transfer. Therefore, increasing efforts are being made to target AAV-2-based vectors to specific receptors. The studies summarized in this review show that it is possible to target AAV-2 to a specific cell. So far, the most promising approach is the genetic modification of the viral capsid. However, the currently available AAV-2 targeting vectors need to be improved with regard to the elimination of the wild-type AAV-2 tropism and the improvement of infectious titers. The creation of highly efficient AAV-2 targeting vectors will also require a better understanding of the transmembrane and intracellular processing of this virus.
Collapse
Affiliation(s)
- H Büning
- Genzentrum Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Münich, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Ponnazhagan S, Mahendra G, Kumar S, Thompson JA, Castillas M. Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands. J Virol 2002; 76:12900-7. [PMID: 12438615 PMCID: PMC136730 DOI: 10.1128/jvi.76.24.12900-12907.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of targeted vectors, capable of tissue-specific transduction, remains one of the important aspects of vector modification for gene therapy applications. Recombinant adeno-associated virus type 2 (rAAV-2)-based vectors are nonpathogenic, have relatively low immunogenicity, and are capable of long-term transgene expression. AAV-2 vectors bind primarily to heparan sulfate proteoglycan (HSPG), a receptor that is present in many tissues and cell types. Because of the widespread expression of HSPG on many tissues, targeted transduction in vivo appears to be limited with AAV-2 vectors. Thus, development of strategies to achieve transductional targeting will have a profound benefit in the future application of these vectors. We report here a novel conjugate-based targeting method to enhance tissue-specific transduction of AAV-2-based vectors. The present report utilized a high-affinity biotin-avidin interaction as a molecular bridge to cross-link purified targeting ligands, produced genetically as fusion proteins to core-streptavidin, in a prokaryotic expression system. Conjugation of the bispecific targeting protein to the vector was achieved by biotinylating purified rAAV-2 without abolishing the capsid structure, internalization, and subsequent transgene expression. The tropism-modified vectors, targeted via epidermal growth factor receptor (EGFR) or fibroblast growth factor 1alpha receptor (FGFR1alpha), resulted in a significant increase in transduction efficiency of EGFR-positive SKOV3.ip1 cells and FGFR1alpha-positive M07e cells, respectively. Further optimization of this method of targeting should enhance the potential of AAV-2 vectors in ex vivo and in vivo gene therapy and may form the basis for developing targeting methods for other AAV serotype capsids.
Collapse
Affiliation(s)
- Selvarangan Ponnazhagan
- Department of Pathology, LHRB 513, The University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
29
|
Tsai TH, Chen SL, Xiao X, Liu DW, Tsao YP. Gene therapy for treatment of cerebral ischemia using defective recombinant adeno-associated virus vectors. Methods 2002; 28:253-8. [PMID: 12413424 DOI: 10.1016/s1046-2023(02)00230-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this review we present our results and experiences in performing gene therapy of cerebral stroke using recombinant adeno-associated virus (rAAV) vectors in a rat model. The methodologies involving the production of AAV vectors, gene transfer to the brain, and a trivessel ligation model of focal ischemic cerebral stroke in rats are described. Furthermore, a brief description of other viral vectors and candidates of therapeutic transgenes used for gene therapy of cerebral stroke are presented. The potential advantages and limitations of stroke gene therapy are also discussed with the intention of outlining the design of more appropriate experiments.
Collapse
Affiliation(s)
- Tung-Han Tsai
- Department of Neurosurgery, Tri-Service General Hospital, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
30
|
Abstract
This article provides a review of the application of gene transfer technology to studies of salivary glands. Salivary glands provide an uncommon target site for gene transfer but offer many experimental situations likely of interest to the cell biologist. The reader is provided with a concise overview of salivary biology, along with a general discussion of the strategies available for gene transfer to any tissue. In particular, adenoviral vectors have been useful for proof of concept studies with salivary glands. Several examples are given, using adenoviral-mediated gene transfer, for addressing both biological and clinical questions. Additionally, benefits and shortcomings affecting the utility of this technology are discussed.
Collapse
Affiliation(s)
- Bruce J Baum
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
31
|
Düchler M, Pengg M, Schüller S, Pfneisl F, Bugingo C, Brem G, Wagner E, Schellander K, Müller M. Somatic gene transfer into the lactating ovine mammary gland. J Gene Med 2002; 4:282-91. [PMID: 12112645 DOI: 10.1002/jgm.272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Somatic gene therapy requires safe and efficient techniques for the gene transfer procedure. The ovine mammary gland is described as a model system for the evaluation of somatic gene transfer methods. METHODS Different gene delivery formulations were retrogradely injected into the mammary gland of lactating sheep. The efficiency of the gene transfer was subsequently measured by the detection of the secreted transgene products in the milk. To counteract the milk flow in the lactating gland caused by the permanent milk production, a newly developed pretreatment of the mammary gland with hyperosmotic solutions was applied. In addition, in vivo electroporation of DNA into the mammary gland is described. RESULTS Gene transfer using naked DNA or simple complexes of DNA with polycations did not result in traceable amounts of reporter gene products. However, utilizing the complex cationic lipid DOSPER, a peak expression of about 400 ng/ml was observed 6 days after transfection. Maximum expression rates of more than 1 microg/ml were obtained by combining hyperosmotic pretreatment and receptor-mediated gene transfer. For the in vivo electroporation, the proof of principle for this technique in the mammary gland is reported. CONCLUSIONS The ovine mammary gland turned out to be a very well suited as a model system for evaluation and optimization of various gene transfer protocols.
Collapse
Affiliation(s)
- Markus Düchler
- Institute of Biotechnology in Animal Production, University of Veterinary Medicine, IFA Tulln, Konrad Lorenzstrasse 20, A-3430 Tulln, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Genetic immunization has initiated a new era of vaccine research, which provides a stable and long-lived source of the protein antigen. Such a vaccine is a simple, robust, and effective means of eliciting both antibody- and cell-mediated immune responses compared with protein or peptide vaccines. Although naked DNA vaccines are relatively simple to produce and handle without significant toxicity or host immunity, those using viral vectors have shown greater efficacy in gene transfer and in inducing both protective and therapeutic immunity in preclinical models. However, clinical translation of results obtained in animal studies with viral vectors has not met with anticipated success so far because of inherent limitations of the vector-associated immunity and antigen specificity. Thus, understanding the requirements for the elicitation of target-specific immunity in host requires that a major cellular arm be unraveled, and modifications of the existing viral vectors and testing of newer ones encompass the technological arm of vaccine research. In this article, I give a comprehensive account of the potential of adenoassociated virus, a nonpathogenic human parvovirus in vaccine development.
Collapse
|
33
|
Düzgünes N, Simões S, Konopka K, Rossi JJ, Pedroso de Lima MC. Delivery of novel macromolecular drugs against HIV-1. Expert Opin Biol Ther 2001; 1:949-70. [PMID: 11728227 DOI: 10.1517/14712598.1.6.949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The development of new low molecular weight drugs against human immunodeficiency virus Type 1 (HIV-1) targets other than reverse transcriptase (RT) and protease, such as the integrase and the envelope glycoprotein, is likely to take many years. Macromolecular drugs, including antisense oligonucleotides, ribozymes, RNA decoys and transdominant mutant proteins, may be able to interfere with a relatively large number of viral targets, thereby decreasing the likelihood of the emergence of drug-resistant strains. It may also be relatively easy to alter the sequence of some of the macromolecular drugs to counter emerging drug-resistant viruses. The delivery of antisense oligonucleotides and ribozymes to HIV-1 infected or potentially infectable cells by antibody-targeted liposomes, certain cationic lipid formulations and pH-sensitive liposomes results in significant anti-HIV-1 activity. These carriers not only facilitate cytoplasmic delivery but also protect the drugs from nuclease digestion. Delivery of therapeutic genes (another form of macromolecular drug) to target cells is an important challenge of gene therapy. Following delivery by a viral vector, sufficient levels of gene expression must be maintained over an extended period of time to have therapeutic activity. Robust expression of therapeutically useful ribozymes, antisense, decoys and aptamers can be achieved by the use of Pol III expression systems. Moloney murine leukaemia virus- (MoMuLV), adeno-associated virus (AAV)-, or HIV-derived vectors expressing a variety of therapeutic genes have been used successfully to inhibit HIV-1 replication in cultured cells.
Collapse
Affiliation(s)
- N Düzgünes
- Department of Microbiology, School of Dentistry, University of the Pacific, 2155 Webster Street, San Francisco, CA 94115, USA.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Over the past few years there have been a number of interesting advances in our understanding of the functions encoded by the adenovirus early transcription unit 4 (Ad E4). A large body of recent data demonstrates that E4 proteins encompass an unexpectedly diverse collection of functions required for efficient viral replication. E4 gene products operate through a complex network of protein interactions with key viral and cellular regulatory components involved in transcription, apoptosis, cell cycle control and DNA repair, as well as host cell factors that regulate cell signaling, posttranslational modifications and the integrity of nuclear multiprotein complexes known as nuclear bodies (NBs) or PML oncogenic domains (PODs). As understood at present, some of the lytic functions overlap with roles in oncogenic transformation of primary mammalian cells. These observations, together with findings that E4 proteins substantially affect cell toxicity and the immune response of the host have profound implications for the development of Ad vectors for gene therapy. In this article we will summarize recent findings regarding the diverse functions of E4 gene products in the context of earlier work. We will emphasize the interaction of E4 proteins with cellular and viral interaction partners, the role of these interactions for lytic virus growth and how these interactions may contribute to viral oncogenesis. Finally, we will discuss their role in Ad vector and adeno-associated virus infections.
Collapse
Affiliation(s)
- B Täuber
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|
35
|
Prud'homme GJ, Lawson BR, Theofilopoulos AN. Anticytokine gene therapy of autoimmune diseases. Expert Opin Biol Ther 2001; 1:359-73. [PMID: 11727511 DOI: 10.1517/14712598.1.3.359] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Viral and nonviral gene therapy vectors have been successfully employed to deliver inflammatory cytokine inhibitors (anticytokines), or anti-inflammatory cytokines, such as transforming growth factor beta-1 (TGF-beta 1), which protect against experimental autoimmune diseases. These vectors carry the relevant genes into a variety of tissues, for either localised or systemic release of the encoded protein. Administration of cDNA encoding soluble IFN-gamma receptor (IFN-gamma R)/IgG-Fc fusion proteins, soluble TNF-alpha receptors, or IL-1 receptor antagonist (IL-1ra), protects against either lupus, various forms of arthritis, autoimmune diabetes, or other autoimmune diseases. These inhibitors, unlike many cytokines, have little or no toxic potential. Similarly, TGF-beta 1 gene therapy protects against numerous forms of autoimmunity, though its administration entails more risk than anticytokine therapy. We have relied on the injection of naked plasmid DNA into skeletal muscle, with or without enhancement of gene transfer by in vivo electroporation. Expression plasmids offer interesting advantages over viral vectors, since they are simple to produce, non-immunogenic and nonpathogenic. They can be repeatedly administered and after each treatment the encoded proteins are produced for relatively long periods, ranging from weeks to months. Moreover, soluble receptors which block cytokine action, encoded by gene therapy vectors, can be constructed from non-immunogenic self elements that are unlikely to be neutralised by the host immune response (unlike monoclonal antibodies [mAbs]), allowing long-term gene therapy of chronic inflammatory disorders.
Collapse
Affiliation(s)
- G J Prud'homme
- Department of Pathology, McGill University, Montreal, Qc, H3A2B4, Canada.
| | | | | |
Collapse
|
36
|
Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7:33-40. [PMID: 11135613 DOI: 10.1038/83324] [Citation(s) in RCA: 892] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Considered by some to be among the simpler forms of life, viruses represent highly evolved natural vectors for the transfer of foreign genetic information into cells. This attribute has led to extensive attempts to engineer recombinant viral vectors for the delivery of therapeutic genes into diseased tissues. While substantial progress has been made, and some clinical successes are over the horizon, further vector refinement and/or development is required before gene therapy will become standard care for any individual disorder.
Collapse
Affiliation(s)
- M A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA.
| | | | | |
Collapse
|