1
|
Dayal A, Gray M, Vallejo JA, Lara-Castillo N, Johnson ML, Wacker MJ. MLO-Y4 fluid flow shear stress conditioned media enhances cardiac contractility and intracellular Ca 2. Am J Physiol Regul Integr Comp Physiol 2025; 328:R591-R600. [PMID: 40135808 DOI: 10.1152/ajpregu.00287.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/05/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
The skeleton is in complex interplay with the other systems of the body and is highly responsive to input from the external environment. Bone mechanical loading results in interstitial fluid flow via the lacunar-canalicular system, generating fluid flow sheer stress (FFSS). FFSS variably stresses osteocytes, subsequently causing the release of metabolites and protein factors that function locally to increase bone formation and may play a role in cross talk between various organ systems, for instance between bone and skeletal muscle. Therefore, we hypothesized that this cross talk includes altering cardiac function. To test this hypothesis, media conditioned by MLO-Y4 osteocyte-like cell culture line under FFSS was used to model the endocrine effects of bone during mechanical loading on contraction of ex vivo Langendorf-perfused isolated hearts. When hearts were externally paced at a fixed rate, FFSS osteocyte conditioned media (CM) induced significant premature contractions compared with vehicle (control). FFSS osteocyte CM administration to self-paced hearts increased total contraction force by 31%. To determine whether the mechanism involved intracellular Ca2+, vehicle and FFSS bone CM were perfused over cultured H9C2 cardiomyocytes while undergoing Ca2+ imaging using Fluo-8. We observed an increase in intracellular Ca2+ with FFSS CM perfusion of cardiomyocytes compared with vehicle. These increases were only present with exogenous electrical pacing. Our findings demonstrate that FFSS bone CM enhances cardiac contractility by increasing intracellular cardiomyocyte Ca2+. The results obtained in this study suggest that the skeleton, responding to mechanical strain, has the potential to augment cardiac output and provide evidence for bone-heart cross talk.NEW & NOTEWORTHY The skeletal system operates as an endocrine organ, releasing factors that impact multi-tissue physiology. The results obtained in this study demonstrate that conditioned media collected from MLO-Y4 osteocytes exposed to fluid flow shear stress increases cardiomyocyte intracellular calcium and enhances cardiac contractility in vitro. These results support the concept of bone-heart cross talk that may have implications in exercise training, reduced-function settings such as bedrest, and the interplay between bone and heart health.
Collapse
Affiliation(s)
- Anuhya Dayal
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | - Mark Gray
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | - Julian A Vallejo
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States
- Department of Oral & Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | - Nuria Lara-Castillo
- Department of Oral & Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | - Mark L Johnson
- Department of Oral & Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | - Michael J Wacker
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States
| |
Collapse
|
2
|
Wan T, Liang Y, Wei T, Chen Z, Li Y. Targeting Lactic Acid Modification in Ischemic Heart Diseases: Novel Therapeutics and Mechanism. J Cardiovasc Transl Res 2025; 18:257-267. [PMID: 39920549 DOI: 10.1007/s12265-025-10593-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025]
Abstract
Ischemic heart disease (IHD), especially acute myocardial infarction (AMI), has a high mortality rate and poses a great threat to human health. When myocardial infarction occurs, the structure and function of the myocardium are significantly damaged, and its metabolisms switch from oxidative phosphorylation to glycolysis, producing lactate. Lactylation, as a newly discovered post-translational modification (PMT) in recent years, is involved in the regulation of gene expression, and cell proliferation. Emerging studies have revealed that lactate and lactylation modifications participate in inflammation and cardiac repair, and play an important role in cardiovascular diseases, such as myocardial infarction, myocardial fibrosis, and heart failure. Therefore, in this review, we discuss how glucose metabolism, glycolytic end-product lactate, and lactylation potentially interact with pathological processes, including inflammation, cardiac fibrosis, and heart failure. And targeting glycolysis and lactylation modification could provide a promising future for cardiovascular diseases.
Collapse
Affiliation(s)
- Tangjiang Wan
- Department of Cardiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu Province, China
| | - Yucheng Liang
- Department of Cardiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu Province, China
| | - Tianwen Wei
- Department of Cardiovascular Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zijie Chen
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Ischemic Heart Diseases, Fudan University, Shanghai, China
| | - Yafei Li
- Department of Cardiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
3
|
Zhang H, Ren X, Wu C, He X, Huang Z, Li Y, Liao L, Xiang J, Li M, Wu L. Intracellular calcium dysregulation in heart and brain diseases: Insights from induced pluripotent stem cell studies. J Neuropathol Exp Neurol 2024; 83:993-1002. [PMID: 39001792 DOI: 10.1093/jnen/nlae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024] Open
Abstract
The central nervous system (CNS) plays a role in regulating heart rate and myocardial contractility through sympathetic and parasympathetic nerves, and the heart can impact the functional equilibrium of the CNS through feedback signals. Although heart and brain diseases often coexist and mutually influence each other, the potential links between heart and brain diseases remain unclear due to a lack of reliable models of these relationships. Induced pluripotent stem cells (iPSCs), which can differentiate into multiple functional cell types, stem cell biology and regenerative medicine may offer tools to clarify the mechanisms of these relationships and facilitate screening of effective therapeutic agents. Because calcium ions play essential roles in regulating both the cardiovascular and nervous systems, this review addresses how recent iPSC disease models reveal how dysregulation of intracellular calcium might be a common pathological factor underlying the relationships between heart and brain diseases.
Collapse
Affiliation(s)
- Huayang Zhang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xueming Ren
- Department of Ophthalmology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chunyu Wu
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xinsen He
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Zhengxuan Huang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yangpeng Li
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Lei Liao
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jie Xiang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Cardiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
4
|
Schanche T, Han YS, Jensen CW, Arteaga GM, Tveita T, Sieck GC. β-adrenergic stimulation after rewarming does not mitigate hypothermia-induced contractile dysfunction in rat cardiomyocytes. Cryobiology 2024; 116:104927. [PMID: 38857777 DOI: 10.1016/j.cryobiol.2024.104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Victims of severe accidental hypothermia are frequently treated with catecholamines to counteract the hemodynamic instability associated with hypothermia-induced cardiac contractile dysfunction. However, we previously reported that the inotropic effects of epinephrine are diminished after hypothermia and rewarming (H/R) in an intact animal model. Thus, the goal of this study was to investigate the effects of Epi treatment on excitation-contraction coupling in isolated rat cardiomyocytes after H/R. In adult male rats, cardiomyocytes isolated from the left ventricle were electrically stimulated at 0.5 Hz and evoked cytosolic [Ca2+] and contractile responses (sarcomere length shortening) were measured. In initial experiments, the effects of varying concentrations of epinephrine on evoked cytosolic [Ca2+] and contractile responses at 37 °C were measured. In a second series of experiments, cardiomyocytes were cooled from 37 °C to 15 °C, maintained at 15 °C for 2 h, then rewarmed to 37 °C (H/R protocol). Immediately after rewarming, the effects of epinephrine treatment on evoked cytosolic [Ca2+] and contractile responses of cardiomyocytes were determined. At 37 °C, epinephrine treatment increased both cytosolic [Ca2+] and contractile responses of cardiomyocytes in a concentration-dependent manner peaking at 25-50 nM. The evoked contractile response of cardiomyocytes after H/R was reduced while the cytosolic [Ca2+] response was slightly elevated. The diminished contractile response of cardiomyocytes after H/R was not mitigated by epinephrine (25 nM) and epinephrine treatment reduced the exponential time decay constant (Tau), but did not increase the cytosolic [Ca2+] response. We conclude that epinephrine treatment does not mitigate H/R-induced contractile dysfunction in cardiomyocytes.
Collapse
Affiliation(s)
- Torstein Schanche
- Department of Physiology & Biomedical Engineering, Mayo Clinic Rochester, MN, USA; Anesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Young Soo Han
- Department of Physiology & Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - Cole W Jensen
- Department of Physiology & Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - Grace M Arteaga
- Department of Physiology & Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - Torkjel Tveita
- Department of Physiology & Biomedical Engineering, Mayo Clinic Rochester, MN, USA; Anesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT, The Arctic University of Norway, 9037, Tromsø, Norway; Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, 9038, Tromsø, Norway
| | - Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic Rochester, MN, USA.
| |
Collapse
|
5
|
Sun M, Zhang X, Tan B, Zhang Q, Zhao X, Dong D. Potential role of endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity-an update. Front Pharmacol 2024; 15:1415108. [PMID: 39188945 PMCID: PMC11345228 DOI: 10.3389/fphar.2024.1415108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
As a chemotherapy agent, doxorubicin is used to combat cancer. However, cardiotoxicity has limited its use. The existing strategies fail to eliminate doxorubicin-induced cardiotoxicity, and an in-depth exploration of its pathogenesis is in urgent need to address the issue. Endoplasmic reticulum stress (ERS) occurs when Endoplasmic Reticulum (ER) dysfunction results in the accumulation of unfolded or misfolded proteins. Adaptive ERS helps regulate protein synthesis to maintain cellular homeostasis, while prolonged ERS stimulation may induce cell apoptosis, leading to dysfunction and damage to tissue and organs. Numerous studies on doxorubicin-induced cardiotoxicity strongly link excessive activation of the ERS to mechanisms including oxidative stress, calcium imbalance, autophagy, ubiquitination, and apoptosis. The researchers also found several clinical drugs, chemical compounds, phytochemicals, and miRNAs inhibited doxorubicin-induced cardiotoxicity by targeting ERS. The present review aims to outline the interactions between ERS and other mechanisms in doxorubicin-induced cardiotoxicity and summarize ERS's role in this type of cardiotoxicity. Additionally, the review enumerates several clinical drugs, phytochemicals, chemical compounds, and miRNAs targeting ERS for considering therapeutic regimens that address doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xin Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Boxuan Tan
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Qingya Zhang
- Innovation Institute, China Medical University, Shenyang, Liaoning, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Gissibl T, Stengel L, Tarnowski D, Maier LS, Wagner S, Feder AL, Sag CM. The inotropic and arrhythmogenic effects of acutely increased late I Na are associated with elevated ROS but not oxidation of PKARIα. Front Cardiovasc Med 2024; 11:1379930. [PMID: 39077112 PMCID: PMC11284163 DOI: 10.3389/fcvm.2024.1379930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Background Acute stimulation of the late sodium current (INaL) as pharmacologically induced by Anemonia toxin II (ATX-II) results in Na+-dependent Ca2+ overload and enhanced formation of reactive oxygen species (ROS). This is accompanied by an acute increase in the amplitude of the systolic Ca2+ transient. Ca2+ transient amplitude is determined by L-type Ca2+-mediated transsarcolemmal Ca2+ influx (ICa) into the cytosol and by systolic Ca2+ release from the sarcoplasmic reticulum (SR). Type-1 protein kinase A (PKARIα) becomes activated upon increased ROS and is capable of stimulating ICa, thereby sustaining the amplitude of the systolic Ca2+ transient upon oxidative stress. Objectives We aimed to investigate whether the increase of the systolic Ca2+ transient as acutely induced by INaL (by ATX-II) may involve stimulation of ICa through oxidized PKARIα. Methods We used a transgenic mouse model in which PKARIα was made resistant to oxidative activation by homozygous knock-in replacement of redox-sensitive Cysteine 17 with Serine within the regulatory subunits of PKARIα (KI). ATX-II (at 1 nmol/L) was used to acutely enhance INaL in freshly isolated ventricular myocytes from KI and wild-type (WT) control mice. Epifluorescence and confocal imaging were used to assess intracellular Ca2+ handling and ROS formation. A ruptured-patch whole-cell voltage-clamp was used to measure INaL and ICa. The impact of acutely enhanced INaL on RIα dimer formation and PKA target structures was studied using Western blot analysis. Results ATX-II increased INaL to a similar extent in KI and WT cells, which was associated with significant cytosolic and mitochondrial ROS formation in both genotypes. Acutely activated Ca2+ handling in terms of increased Ca2+ transient amplitudes and elevated SR Ca2+ load was equally present in KI and WT cells. Likewise, cellular arrhythmias as approximated by non-triggered Ca2+ elevations during Ca2+ transient decay and by diastolic SR Ca2+-spark frequency occurred in a comparable manner in both genotypes. Most importantly and in contrast to our initial hypothesis, ATX-II did not alter the magnitude or inactivation kinetics of ICa in neither WT nor KI cells and did not result in PKARIα dimerization (i.e., oxidation) despite a clear prooxidant intracellular environment. Conclusions The inotropic and arrhythmogenic effects of acutely increased INaL are associated with elevated ROS, but do not involve oxidation of PKARIα.
Collapse
|
7
|
Neeman-Egozi S, Livneh I, Dolgopyat I, Nussinovitch U, Milman H, Cohen N, Eisen B, Ciechanover A, Binah O. Stress-Induced Proteasome Sub-Cellular Translocation in Cardiomyocytes Causes Altered Intracellular Calcium Handling and Arrhythmias. Int J Mol Sci 2024; 25:4932. [PMID: 38732146 PMCID: PMC11084437 DOI: 10.3390/ijms25094932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is an essential mechanism responsible for the selective degradation of substrate proteins via their conjugation with ubiquitin. Since cardiomyocytes have very limited self-renewal capacity, as they are prone to protein damage due to constant mechanical and metabolic stress, the UPS has a key role in cardiac physiology and pathophysiology. While altered proteasomal activity contributes to a variety of cardiac pathologies, such as heart failure and ischemia/reperfusion injury (IRI), the environmental cues affecting its activity are still unknown, and they are the focus of this work. Following a recent study by Ciechanover's group showing that amino acid (AA) starvation in cultured cancer cell lines modulates proteasome intracellular localization and activity, we tested two hypotheses in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs, CMs): (i) AA starvation causes proteasome translocation in CMs, similarly to the observation in cultured cancer cell lines; (ii) manipulation of subcellular proteasomal compartmentalization is associated with electrophysiological abnormalities in the form of arrhythmias, mediated via altered intracellular Ca2+ handling. The major findings are: (i) starving CMs to AAs results in proteasome translocation from the nucleus to the cytoplasm, while supplementation with the aromatic amino acids tyrosine (Y), tryptophan (W) and phenylalanine (F) (YWF) inhibits the proteasome recruitment; (ii) AA-deficient treatments cause arrhythmias; (iii) the arrhythmias observed upon nuclear proteasome sequestration(-AA+YWF) are blocked by KB-R7943, an inhibitor of the reverse mode of the sodium-calcium exchanger NCX; (iv) the retrograde perfusion of isolated rat hearts with AA starvation media is associated with arrhythmias. Collectively, our novel findings describe a newly identified mechanism linking the UPS to arrhythmia generation in CMs and whole hearts.
Collapse
Affiliation(s)
- Shunit Neeman-Egozi
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Ido Livneh
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Irit Dolgopyat
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Udi Nussinovitch
- Department of Cardiology, Edith Wolfson Medical Center, Holon 5822012, Israel
- The Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Helena Milman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Nadav Cohen
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Aaron Ciechanover
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| |
Collapse
|
8
|
Gumede NAC, Khathi A. The Role of Pro-Opiomelanocortin Derivatives in the Development of Type 2 Diabetes-Associated Myocardial Infarction: Possible Links with Prediabetes. Biomedicines 2024; 12:314. [PMID: 38397916 PMCID: PMC10887103 DOI: 10.3390/biomedicines12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Myocardial infarction is a major contributor to CVD-related mortality. T2DM is a risk factor for MI. Stress activates the HPA axis, SNS, and endogenous OPS. These POMC derivatives increase the blood glucose and cardiovascular response by inhibiting the PI3K/AkT insulin signaling pathway and increasing cardiac contraction. Opioids regulate the effect of the HPA axis and SNS and they are cardioprotective. The chronic activation of the stress response may lead to insulin resistance, cardiac dysfunction, and MI. Stress and T2DM, therefore, increase the risk of MI. T2DM is preceded by prediabetes. Studies have shown that prediabetes is associated with an increased risk of MI because of inflammation, hyperlipidemia, endothelial dysfunction, and hypertension. The HPA axis is reported to be dysregulated in prediabetes. However, the SNS and the OPS have not been explored during prediabetes. The effect of prediabetes on POMC derivatives has yet to be fully explored and understood. The impact of stress and prediabetes on the cardiovascular response needs to be investigated. This study sought to review the potential impact of prediabetes on the POMC derivatives and pathways that could lead to MI.
Collapse
Affiliation(s)
- Nompumelelo Anna-Cletta Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| | | |
Collapse
|
9
|
Wan H, Yang YD, Zhang Q, Chen YH, Hu XM, Huang YX, Shang L, Xiong K. VDAC1, as a downstream molecule of MLKL, participates in OGD/R-induced necroptosis by inducing mitochondrial damage. Heliyon 2024; 10:e23426. [PMID: 38173512 PMCID: PMC10761567 DOI: 10.1016/j.heliyon.2023.e23426] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury constitutes a significant risk factor for a range of diseases, including ischemic stroke, myocardial infarction, and trauma. Following the restoration of blood flow post-tissue ischemia, oxidative stress can lead to various forms of cell death, including necrosis, apoptosis, autophagy, and necroptosis. Recent evidence has highlighted the crucial role of mitochondrial dysfunction in I/R injury. Nevertheless, there remains much to be explored regarding the molecular signaling network governing cell death under conditions of oxidative stress. Voltage-dependent anion channel 1 (VDAC1), a major component in the outer mitochondrial membrane, is closely involved in the regulation of cell death. In a cellular model of oxygen-glucose deprivation and reoxygenation (OGD/R), which effectively simulates I/R injury in vitro, our study reveals that OGD/R induces VDAC1 oligomerization, consequently exacerbating cell death. Furthermore, we have revealed the translocation of mixed lineage kinase domain-like protein (MLKL) to the mitochondria, where it interacts with VDAC1 following OGD/R injury, leading to an increased mitochondrial membrane permeability. Notably, the inhibition of MLKL by necrosulfonamide hinders the binding of MLKL to VDAC1, primarily by affecting the membrane translocation of MLKL, and reduces OGD/R-induced VDAC1 oligomerization. Collectively, our findings provide preliminary evidence of the functional association between MLKL and VDAC1 in the regulation of necroptosis.
Collapse
Affiliation(s)
- Hao Wan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yan-di Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yu-hua Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China
| | - Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yan-xia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| |
Collapse
|
10
|
Xia R, Sun M, Li Y, Yin J, Liu H, Yang J, Liu J, He Y, Wu B, Yang G, Li J. The pathogenesis and therapeutic strategies of heat stroke-induced myocardial injury. Front Pharmacol 2024; 14:1286556. [PMID: 38259273 PMCID: PMC10800451 DOI: 10.3389/fphar.2023.1286556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Heat stroke (HS) is a febrile illness characterized by an elevation in the core body temperature to over 40°C, accompanied by central nervous system impairment and subsequent multi-organ dysfunction syndrome. In recent years, the mortality rate from HS has been increasing as ambient temperatures continue to rise each year. The cardiovascular system plays an important role in the pathogenesis process of HS, as it functions as one of the key system for thermoregulation and its stability is associated with the severity of HS. Systemic inflammatory response and endothelial cell damage constitute pivotal attributes of HS, other factors such as ferroptosis, disturbances in myocardial metabolism and heat shock protein dysregulation are also involved in the damage to myocardial tissue in HS. In this review, a comprehensively detailed description of the pathogenesis of HS-induced myocardial injury is provided. The current treatment strategies and the promising therapeutic targets for HS are also discussed.
Collapse
Affiliation(s)
- Rui Xia
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Meng Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuling Li
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Yin
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huan Liu
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Jun Yang
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Jing Liu
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Yanyu He
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Bing Wu
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Guixiang Yang
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Jianhua Li
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| |
Collapse
|
11
|
Pastena P, Frye JT, Ho C, Goldschmidt ME, Kalogeropoulos AP. Ischemic cardiomyopathy: epidemiology, pathophysiology, outcomes, and therapeutic options. Heart Fail Rev 2024; 29:287-299. [PMID: 38103139 DOI: 10.1007/s10741-023-10377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Ischemic cardiomyopathy (ICM) is the most prevalent cause of heart failure (HF) in developed countries, with significant morbidity and mortality, despite constant improvements in the management of coronary artery disease. Current literature on this topic remains fragmented. Therefore, this review aimed to summarize the most recent data on ICM, focusing on its definition, epidemiology, outcomes, and therapeutic options. The most widely accepted definition is represented by a left ventricular dysfunction in the presence of significant coronary artery disease. The prevalence of ICM is largely influenced by age and sex, with older individuals and males being more affected. Its pathophysiology is characterized by plaque buildup, thrombus formation, hypoperfusion, ischemic cell death, and left ventricular remodeling. Despite improvements in therapy, ICM still represents a public health burden, with a 1-year mortality rate of 16% and a 5-year mortality rate of approximately 40% in the USA and Europe. Therefore, optimization of cardiovascular function, prevention of progressive remodeling, reduction of HF symptoms, and improved survival are the main goals of treatment. Therapeutic options for ICM include lifestyle changes, optimal medical therapy, revascularization, device therapy, mechanical circulatory support, and cardiac transplantation. Personalized management strategies and tailored patient care are needed to improve the outcomes of patients with ICM.
Collapse
Affiliation(s)
- Paola Pastena
- Division of Cardiology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jesse T Frye
- Division of Cardiology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Carson Ho
- College of Arts and Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Marc E Goldschmidt
- Division of Cardiology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Andreas P Kalogeropoulos
- Division of Cardiology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
- Stony Brook University Medical Center, Health Sciences Center, 101 Nicolls Road, T-16-080, Stony Brook, NY, USA.
| |
Collapse
|
12
|
Luo Y, Zhou S, Xu T, Wu W, Shang P, Wang S, Pan D, Li D. SENP2-mediated SERCA2a deSUMOylation increases calcium overload in cardiomyocytes to aggravate myocardial ischemia/reperfusion injury. Chin Med J (Engl) 2023; 136:2496-2507. [PMID: 37462038 PMCID: PMC10586866 DOI: 10.1097/cm9.0000000000002757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) is a key protein that maintains myocardial Ca 2+ homeostasis. The present study aimed to investigate the mechanism underlying the SERCA2a-SUMOylation (small ubiquitin-like modifier) process after ischemia/reperfusion injury (I/RI) in vitro and in vivo . METHODS Calcium transient and systolic/diastolic function of cardiomyocytes isolated from Serca2a knockout (KO) and wild-type mice with I/RI were compared. SUMO-relevant protein expression and localization were detected by quantitative real-time PCR (RT-qPCR), Western blotting, and immunofluorescence in vitro and in vivo . Serca2a-SUMOylation, infarct size, and cardiac function of Senp1 or Senp2 overexpressed/suppressed adenovirus infected cardiomyocytes, were detected by immunoprecipitation, triphenyltetrazolium chloride (TTC)-Evans blue staining, and echocardiography respectively. RESULTS The results showed that the changes of Fura-2 fluorescence intensity and contraction amplitude of cardiomyocytes decreased in the I/RI groups and were further reduced in the Serca2a KO + I/RI groups. Senp1 and Senp2 messenger ribose nucleic acid (mRNA) and protein expression levels in vivo and in cardiomyocytes were highest at 6 h and declined at 12 h after I/RI. However, the highest levels in HL-1 cells were recorded at 12 h. Senp2 expression increased in the cytoplasm, unlike that of Senp1. Inhibition of Senp2 protein reversed the I/RI-induced Serca2a-SUMOylation decline, reduced the infarction area, and improved cardiac function, while inhibition of Senp1 protein could not restore the above indicators. CONCLUSION I/RI activated Senp1 and Senp2 protein expression, which promoted Serca2a-deSUMOylation, while inhibition of Senp2 expression reversed Serca2a-SUMOylation and improved cardiac function.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Shuaishuai Zhou
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Tao Xu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Wanling Wu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Pingping Shang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Shuai Wang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Dongye Li
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
13
|
Xiao L, Chen XJ, Feng JK, Li WN, Yuan S, Hu Y. Natural products as the calcium channel blockers for the treatment of arrhythmia: Advance and prospect. Fitoterapia 2023; 169:105600. [PMID: 37419421 DOI: 10.1016/j.fitote.2023.105600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Arrhythmia is one of the commonly heart diseases with observed abnormal heart-beat rhythm that caused by the obstacles of cardiac activity and conduction. The arrhythmic pathogenesis is complex and capricious and related with other cardiovascular diseases that may lead to heart failure and sudden death. In particular, calcium overload is recognized as the main reason causing arrhythmia through inducing apoptosis in cardiomyocytes. Moreover, calcium channel blockers have been widely used as the routine drugs for the treatment of arrhythmia, but the different arrhythmic complications and adverse effects limit their further applications and demand new drug discovery. Natural products have always been the rich minerals for the development of new drugs that could be employed as the versatile player for the discovery of safe and effective anti-arrhythmia drugs with new mechanisms. In this review, we summarized natural products with the activity against calcium signaling and the relevant mechanism of actions. We are expected to provide an inspiration for the pharmaceutical chemists to develop more potent calcium channel blockers for the treatment of arrhythmia.
Collapse
Affiliation(s)
- Lu Xiao
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| | - Xing-Juan Chen
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| | | | - Wei-Na Li
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China.
| | - Ying Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
14
|
Wu T, Jiang Y, Shi W, Wang Y, Li T. Endoplasmic reticulum stress: a novel targeted approach to repair bone defects by regulating osteogenesis and angiogenesis. J Transl Med 2023; 21:480. [PMID: 37464413 PMCID: PMC10353205 DOI: 10.1186/s12967-023-04328-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Bone regeneration therapy is clinically important, and targeted regulation of endoplasmic reticulum (ER) stress is important in regenerative medicine. The processing of proteins in the ER controls cell fate. The accumulation of misfolded and unfolded proteins occurs in pathological states, triggering ER stress. ER stress restores homeostasis through three main mechanisms, including protein kinase-R-like ER kinase (PERK), inositol-requiring enzyme 1ɑ (IRE1ɑ) and activating transcription factor 6 (ATF6), collectively known as the unfolded protein response (UPR). However, the UPR has both adaptive and apoptotic effects. Modulation of ER stress has therapeutic potential for numerous diseases. Repair of bone defects involves both angiogenesis and bone regeneration. Here, we review the effects of ER stress on osteogenesis and angiogenesis, with emphasis on ER stress under high glucose (HG) and inflammatory conditions, and the use of ER stress inducers or inhibitors to regulate osteogenesis and angiogenesis. In addition, we highlight the ability for exosomes to regulate ER stress. Recent advances in the regulation of ER stress mediated osteogenesis and angiogenesis suggest novel therapeutic options for bone defects.
Collapse
Affiliation(s)
- Tingyu Wu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Weipeng Shi
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yingzhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Tao Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China.
| |
Collapse
|
15
|
Thareja SK, Anfinson M, Cavanaugh M, Kim MS, Lamberton P, Radandt J, Brown R, Liang HL, Stamm K, Afzal MZ, Strande J, Frommelt MA, Lough JW, Fitts RH, Mitchell ME, Tomita-Mitchell A. Altered contractility, Ca 2+ transients, and cell morphology seen in a patient-specific iPSC-CM model of Ebstein's anomaly with left ventricular noncompaction. Am J Physiol Heart Circ Physiol 2023; 325:H149-H162. [PMID: 37204873 PMCID: PMC10312315 DOI: 10.1152/ajpheart.00658.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Patients with two congenital heart diseases (CHDs), Ebstein's anomaly (EA) and left ventricular noncompaction (LVNC), suffer higher morbidity than either CHD alone. The genetic etiology and pathogenesis of combined EA/LVNC remain largely unknown. We investigated a familial EA/LVNC case associated with a variant (p.R237C) in the gene encoding Kelch-like protein 26 (KLHL26) by differentiating induced pluripotent stem cells (iPSCs) generated from affected and unaffected family members into cardiomyocytes (iPSC-CMs) and assessing iPSC-CM morphology, function, gene expression, and protein abundance. Compared with unaffected iPSC-CMs, CMs containing the KLHL26 (p.R237C) variant exhibited aberrant morphology including distended endo(sarco)plasmic reticulum (ER/SR) and dysmorphic mitochondria and aberrant function that included decreased contractions per minute, altered calcium transients, and increased proliferation. Pathway enrichment analyses based on RNASeq data indicated that the "structural constituent of muscle" pathway was suppressed, whereas the "ER lumen" pathway was activated. Taken together, these findings suggest that iPSC-CMs containing this KLHL26 (p.R237C) variant develop dysregulated ER/SR, calcium signaling, contractility, and proliferation.NEW & NOTEWORTHY We demonstrate here that iPSCs derived from patients with Ebstein's anomaly and left ventricular noncompaction, when differentiated into cardiomyocytes, display significant structural and functional changes that offer insight into disease pathogenesis, including altered ER/SR and mitochondrial morphology, contractility, and calcium signaling.
Collapse
Affiliation(s)
- Suma K Thareja
- Division of Congenital Heart Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Melissa Anfinson
- Division of Congenital Heart Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Matthew Cavanaugh
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States
| | - Min-Su Kim
- Division of Congenital Heart Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Peter Lamberton
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States
| | - Jackson Radandt
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States
| | - Ryan Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Huan-Ling Liang
- Division of Congenital Heart Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Karl Stamm
- Division of Congenital Heart Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Muhammad Zeeshan Afzal
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jennifer Strande
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Michele A Frommelt
- Division of Pediatric Cardiology, Department of Pediatrics, Children's Wisconsin, Milwaukee, Wisconsin, United States
- Herma Heart Institute, Children's Wisconsin, Milwaukee, Wisconsin, United States
| | - John W Lough
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Robert H Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States
| | - Michael E Mitchell
- Division of Congenital Heart Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Herma Heart Institute, Children's Wisconsin, Milwaukee, Wisconsin, United States
| | - Aoy Tomita-Mitchell
- Division of Congenital Heart Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Herma Heart Institute, Children's Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
16
|
Jhuo SJ, Lin YH, Liu IH, Lin TH, Wu BN, Lee KT, Lai WT. Sodium Glucose Cotransporter 2 (SGLT2) Inhibitor Ameliorate Metabolic Disorder and Obesity Induced Cardiomyocyte Injury and Mitochondrial Remodeling. Int J Mol Sci 2023; 24:ijms24076842. [PMID: 37047815 PMCID: PMC10095421 DOI: 10.3390/ijms24076842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023] Open
Abstract
Sodium-glucose transporter 2 inhibitors (SGLT2is) exert significant cardiovascular and heart failure benefits in type 2 diabetes mellitus (DM) patients and can help reduce cardiac arrhythmia incidence in clinical practice. However, its effect on regulating cardiomyocyte mitochondria remain unclear. To evaluate its effect on myocardial mitochondria, C57BL/6J mice were divided into four groups, including: (1) control, (2) high fat diet (HFD)-induced metabolic disorder and obesity (MDO), (3) MDO with empagliflozin (EMPA) treatment, and (4) MDO with glibenclamide (GLI) treatment. All mice were sacrificed after 16 weeks of feeding and the epicardial fat secretome was collected. H9c2 cells were treated with the different secretomes for 18 h. ROS production, Ca2+ distribution, and associated proteins expression in mitochondria were investigated to reveal the underlying mechanisms of SGLT2is on cardiomyocytes. We found that lipotoxicity, mitochondrial ROS production, mitochondrial Ca2+ overload, and the levels of the associated protein, SOD1, were significantly lower in the EMPA group than in the MDO group, accompanied with increased ATP production in the EMPA-treated group. The expression of mfn2, SIRT1, and SERCA were also found to be lower after EMPA-secretome treatment. EMPA-induced epicardial fat secretome in mice preserved a better cardiomyocyte mitochondrial biogenesis function than the MDO group. In addition to reducing ROS production in mitochondria, it also ameliorated mitochondrial Ca2+ overload caused by MDO-secretome. These findings provide evidence and potential mechanisms for the benefit of SGLT2i in heart failure and arrhythmias.
Collapse
Affiliation(s)
- Shih-Jie Jhuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Hsiung Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - I-Hsin Liu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kun-Tai Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wen-Ter Lai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
17
|
Abrams ST, Alhamdi Y, Zi M, Guo F, Du M, Wang G, Cartwright EJ, Toh CH. Extracellular Histone-Induced Protein Kinase C Alpha Activation and Troponin Phosphorylation Is a Potential Mechanism of Cardiac Contractility Depression in Sepsis. Int J Mol Sci 2023; 24:ijms24043225. [PMID: 36834636 PMCID: PMC9967552 DOI: 10.3390/ijms24043225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Reduction in cardiac contractility is common in severe sepsis. However, the pathological mechanism is still not fully understood. Recently it has been found that circulating histones released after extensive immune cell death play important roles in multiple organ injury and disfunction, particularly in cardiomyocyte injury and contractility reduction. How extracellular histones cause cardiac contractility depression is still not fully clear. In this work, using cultured cardiomyocytes and a histone infusion mouse model, we demonstrate that clinically relevant histone concentrations cause significant increases in intracellular calcium concentrations with subsequent activation and enriched localization of calcium-dependent protein kinase C (PKC) α and βII into the myofilament fraction of cardiomyocytes in vitro and in vivo. Furthermore, histones induced dose-dependent phosphorylation of cardiac troponin I (cTnI) at the PKC-regulated phosphorylation residues (S43 and T144) in cultured cardiomyocytes, which was also confirmed in murine cardiomyocytes following intravenous histone injection. Specific inhibitors against PKCα and PKCβII revealed that histone-induced cTnI phosphorylation was mainly mediated by PKCα activation, but not PKCβII. Blocking PKCα also significantly abrogated histone-induced deterioration in peak shortening, duration and the velocity of shortening, and re-lengthening of cardiomyocyte contractility. These in vitro and in vivo findings collectively indicate a potential mechanism of histone-induced cardiomyocyte dysfunction driven by PKCα activation with subsequent enhanced phosphorylation of cTnI. These findings also indicate a potential mechanism of clinical cardiac dysfunction in sepsis and other critical illnesses with high levels of circulating histones, which holds the potential translational benefit to these patients by targeting circulating histones and downstream pathways.
Collapse
Affiliation(s)
- Simon T. Abrams
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Coagulation Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
| | - Yasir Alhamdi
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Sheffield Teaching Hospital NHS Foundation Trust, Sheffield S5 7AU, UK
| | - Min Zi
- Institute of Cardiovascular Sciences, Centre for Cardiac Research, University of Manchester, Manchester M13 9PT, UK
| | - Fengmei Guo
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- The Medical School, Southeast University, Nanjing 210009, China
| | - Min Du
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Guozheng Wang
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Coagulation Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
- Correspondence: (G.W.); (C.-H.T.)
| | - Elizabeth J. Cartwright
- Institute of Cardiovascular Sciences, Centre for Cardiac Research, University of Manchester, Manchester M13 9PT, UK
| | - Cheng-Hock Toh
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
- Correspondence: (G.W.); (C.-H.T.)
| |
Collapse
|
18
|
Hamstra SI, Braun JL, Chelko SP, Fajardo VA. GSK3-inhibition improves maximal SERCA activity in a murine model of Arrhythmogenic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166536. [PMID: 36057371 DOI: 10.1016/j.bbadis.2022.166536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Sophie I Hamstra
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada; Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Jessica L Braun
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada; Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Stephen P Chelko
- Department of Medicine/Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA.
| | - Val A Fajardo
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada; Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
19
|
Filseth OM, Kondratiev T, Sieck GC, Tveita T. Functional recovery after accidental deep hypothermic cardiac arrest: Comparison of different cardiopulmonary bypass rewarming strategies. Front Physiol 2022; 13:960652. [PMID: 36134333 PMCID: PMC9483155 DOI: 10.3389/fphys.2022.960652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Using a porcine model of accidental immersion hypothermia and hypothermic cardiac arrest (HCA), the aim of the present study was to compare effects of different rewarming strategies on CPB on need for vascular fluid supply, level of cardiac restitution, and cerebral metabolism and pressures. Materials and Methods: Totally sixteen healthy, anesthetized castrated male pigs were immersion cooled to 20°C to induce HCA, maintained for 75 min and then randomized into two groups: 1) animals receiving CPB rewarming to 30°C followed by immersion rewarming to 36°C (CPB30, n = 8), or 2) animals receiving CPB rewarming to 36°C (CPB36, n = 8). Measurements of cerebral metabolism were collected using a microdialysis catheter. After rewarming to 36°C, surviving animals in both groups were further warmed by immersion to 38°C and observed for 2 h. Results: Survival rate at 2 h after rewarming was 5 out of 8 animals in the CPB30 group, and 8 out of 8 in the CPB36 group. All surviving animals displayed significant acute cardiac dysfunction irrespective of rewarming method. Differences between groups in CPB exposure time or rewarming rate created no differences in need for vascular volume supply, in variables of cerebral metabolism, or in cerebral pressures and blood flow. Conclusion: As 3 out of 8 animals did not survive weaning from CPB at 30°C, early weaning gave no advantages over weaning at 36°C. Further, in surviving animals, the results showed no differences between groups in the need for vascular volume replacement, nor any differences in cerebral blood flow or pressures. Most prominent, after weaning from CPB, was the existence of acute cardiac failure which was responsible for the inability to create an adequate perfusion irrespective of rewarming strategy.
Collapse
Affiliation(s)
- Ole Magnus Filseth
- Anesthesia and Critical Care Research Group, Faculty of Health Sciences, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
- Emergency Medical Services, University Hospital of North Norway, Tromsø, Norway
| | - Timofei Kondratiev
- Anesthesia and Critical Care Research Group, Faculty of Health Sciences, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Gary C. Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Torkjel Tveita
- Anesthesia and Critical Care Research Group, Faculty of Health Sciences, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Torkjel Tveita,
| |
Collapse
|
20
|
Sargsyan Y, Kalinowski J, Thoms S. Calcium in peroxisomes: An essential messenger in an essential cell organelle. Front Cell Dev Biol 2022; 10:992235. [PMID: 36111338 PMCID: PMC9468670 DOI: 10.3389/fcell.2022.992235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Calcium is a central signal transduction element in biology. Peroxisomes are essential cellular organelles, yet calcium handling in peroxisomes has been contentious. Recent advances show that peroxisomes are part of calcium homeostasis in cardiac myocytes and therefore may contribute to or even shape their calcium-dependent functionality. However, the mechanisms of calcium movement between peroxisomes and other cellular sites and their mediators remain elusive. Here, we review calcium handling in peroxisomes in concert with other organelles and summarize the most recent knowledge on peroxisomal involvement in calcium dynamics with a focus on mammalian cells.
Collapse
Affiliation(s)
- Yelena Sargsyan
- Department for Biochemistry and Molecular Medicine, Medical School EWL, Bielefeld University, Bielefeld, Germany
- Department of Child and Adolescent Health, University Medical Center, Göttingen, Germany
| | - Julia Kalinowski
- Department for Biochemistry and Molecular Medicine, Medical School EWL, Bielefeld University, Bielefeld, Germany
| | - Sven Thoms
- Department for Biochemistry and Molecular Medicine, Medical School EWL, Bielefeld University, Bielefeld, Germany
- Department of Child and Adolescent Health, University Medical Center, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- *Correspondence: Sven Thoms,
| |
Collapse
|
21
|
Printemps R, Guilbot S, Didier H, Nalin R, Le Grand B. The Cardiotoxic Effect of Roundup® is not Induced by Glyphosate: A Non-specific Blockade of Human Ca V1.2 Channels. Cardiovasc Toxicol 2022; 22:676-688. [PMID: 35595953 DOI: 10.1007/s12012-022-09749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/22/2022] [Indexed: 11/03/2022]
Abstract
In Roundup®, the active principle glyphosate is formulated with adjuvants that help it to penetrate the plants' cell membranes. Several reports and reviews report cardiovascular effects of Roundup®, pointing the presence of arrhythmias as a potential consequence of Roundup® toxicity and death cause. However, it still remains debatable whether these cardiac events are related to glyphosate per se or to the Roundup® adjuvants. The present study aims to compare the pro-arrhythmogenic properties of Roundup® and glyphosate in an animal model and in human cardiomyocytes. In isolated guinea pig heart, the cardiotoxicity of Roundup® (significant effect on heart rate and depressive effect on ventricular contractility) was demonstrated with the highest concentrations (100 µM). In human cardiomyocytes, the cardiotoxicity is confirmed by a marked effect on contractility and a strong effect on cell viability. Finally, this Roundup® depressive effect on heart contractility is due to a concentration-dependent blocking effect on cardiac calcium channel CaV1.2 with an IC50 value of 3.76 µM. Surprisingly, no significant effect on each parameter has been shown with glyphosate. Glyphosate was devoid of major effect on cardiac calcium channel with a maximal effect at 100 µM (- 27.2 ± 1.7%, p < 0.01). In conclusion, Roundup® could induce severe cardiac toxicity by a blockade of CaV1.2 channel, leading to a worsening of heart contractility and genesis of arrhythmias. This toxicity could not be attributed to glyphosate.
Collapse
Affiliation(s)
| | | | - Hélène Didier
- PhysioStim, 10 rue Henri Regnault, 81100, Castres, France
| | - Renaud Nalin
- PhysioStim, 10 rue Henri Regnault, 81100, Castres, France
| | - Bruno Le Grand
- PhysioStim, 10 rue Henri Regnault, 81100, Castres, France
| |
Collapse
|
22
|
Zhang M, Qi J, He Q, Ma D, Li J, Chu X, Zuo S, Zhang Y, Li L, Chu L. Liquiritigenin protects against myocardial ischemic by inhibiting oxidative stress, apoptosis, and L-type Ca 2+ channels. Phytother Res 2022; 36:3619-3631. [PMID: 35747908 DOI: 10.1002/ptr.7528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 12/07/2022]
Abstract
Liquiritigenin (Lq) offers cytoprotective effects against various cardiac injuries, but its beneficial effects on myocardial ischemic (MI) injury and the related mechanisms remain unclear. In the in vivo study, an animal model of MI was induced by intraperitoneal injection of isoproterenol (Iso, 85 mg/kg). ECG, heart rate, serum levels of CK and CK-MB, histopathological changes, and reactive oxygen species (ROS) levels were all measured. In vitro, H9c2 cells were divided into four groups and treated for 24 hr with liquiritigenin (30 μmol/L and 100 μmol/L) followed with CoCl2 (800 μmol/L) for another 24 hr. Cell viability, apoptosis, mitochondrial membrane potential, and intracellular Ca2+ concentration ([Ca2+ ]i ) were then assessed. The L-type Ca2+ current (ICa-L ) was detected using a patch clamp technique on isolated rat ventricular myocytes. The myocyte contraction and Ca2+ transients were measured using an IonOptix detection system. The remarkable cardiac injury and generation of intracellular ROS induced by Iso were alleviated via treatment with Lq. CoCl2 administration induced cell apoptosis, mitochondrial dysfunction, and Ca2+ overload in H9c2; Lq reduces these deleterious effects of CoCl2 . Meanwhile, Lq blocked ICa-L in a dose-dependent manner. The half-maximal inhibitory concentration of Lq was 110.87 μmol/L. Lq reversibly reduced the amplitude of cell contraction as well as the Ca2+ transients. The results show that Lq protects against MI injury by antioxidation, antiapoptosis, counteraction mitochondrial dysfunction, and inhibition of ICa-L , thus damping intracellular Ca2+ .
Collapse
Affiliation(s)
- Muqing Zhang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jiaying Qi
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qianqian He
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jing Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xi Chu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Saijie Zuo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yixin Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.,International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Li Chu
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
23
|
Filseth OM, Hermansen SE, Kondratiev T, Sieck GC, Tveita T. Cooling to Hypothermic Circulatory Arrest by Immersion vs. Cardiopulmonary Bypass (CPB): Worse Outcome After Rewarming in Immersion Cooled Pigs. Front Physiol 2022; 13:862729. [PMID: 35431978 PMCID: PMC9008231 DOI: 10.3389/fphys.2022.862729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Cooling by cardiopulmonary bypass (CPB) to deep hypothermic cardiac arrest (HCA) for cardiac surgical interventions, followed by CPB-rewarming is performed on a routine basis with relatively low mortality. In contrast, victims of deep accidental hypothermia rewarmed with CPB generally have a much worse prognosis. Thus, we have developed an intact pig model to compare effects on perfusion pressures and global oxygen delivery (DO2) during immersion cooling versus cooling by CPB. Further, we compared the effects of CPB-rewarming between groups, to restitute cardiovascular function, brain blood flow, and brain metabolism. Materials and Methods Total sixteen healthy, anesthetized juvenile (2–3 months) castrated male pigs were randomized in a prospective, open placebo-controlled experimental study to immersion cooling (IMMc, n = 8), or cooling by CPB (CPBc, n = 8). After 75 minutes of deep HCA in both groups, pigs were rewarmed by CPB. After weaning from CPB surviving animals were observed for 2 h before euthanasia. Results Survival rates at 2 h after completed rewarming were 4 out of 8 in the IMMc group, and 8 out of 8 in the CPBc group. Compared with the CPBc-group, IMMc animals showed significant reduction in DO2, mean arterial pressure (MAP), cerebral perfusion pressure, and blood flow during cooling below 25°C as well as after weaning from CPB after rewarming. After rewarming, brain blood flow returned to control in CPBc animals only, and brain micro dialysate-data showed a significantly increase in the lactate/pyruvate ratio in IMMc vs. CPBc animals. Conclusion Our data indicate that, although global O2 consumption was independent of DO2, regional ischemic damage may have taken place during cooling in the brain of IMMc animals below 25°C. The need for prolonged extracorporeal membrane oxygenation (ECMO) should be considered in all victims of accidental hypothermic arrest that cannot be weaned from CPB immediately after rewarming.
Collapse
Affiliation(s)
- Ole Magnus Filseth
- Anesthesia and Critical Care Research Group, Faculty of Health Sciences, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
- Emergency Medical Services, University Hospital of North Norway, Tromsø, Norway
| | - Stig Eggen Hermansen
- Cardiothoracic Research Group, Faculty of Health Sciences, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Timofei Kondratiev
- Anesthesia and Critical Care Research Group, Faculty of Health Sciences, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Gary C. Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, MN, United States
| | - Torkjel Tveita
- Anesthesia and Critical Care Research Group, Faculty of Health Sciences, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, MN, United States
- *Correspondence: Torkjel Tveita,
| |
Collapse
|
24
|
Blackwell DJ, Faggioni M, Wleklinski MJ, Gomez-Hurtado N, Venkataraman R, Gibbs CE, Baudenbacher FJ, Gong S, Fishman GI, Boyle PM, Pfeifer K, Knollmann BC. The Purkinje-myocardial junction is the anatomic origin of ventricular arrhythmia in CPVT. JCI Insight 2022; 7:e151893. [PMID: 34990403 PMCID: PMC8855823 DOI: 10.1172/jci.insight.151893] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmia syndrome caused by gene mutations that render RYR2 Ca release channels hyperactive, provoking spontaneous Ca release and delayed afterdepolarizations (DADs). What remains unknown is the cellular source of ventricular arrhythmia triggered by DADs: Purkinje cells in the conduction system or ventricular cardiomyocytes in the working myocardium. To answer this question, we used a genetic approach in mice to knock out cardiac calsequestrin either in Purkinje cells or in ventricular cardiomyocytes. Total loss of calsequestrin in the heart causes a severe CPVT phenotype in mice and humans. We found that loss of calsequestrin only in ventricular myocytes produced a full-blown CPVT phenotype, whereas mice with loss of calsequestrin only in Purkinje cells were comparable to WT mice. Subendocardial chemical ablation or restoration of calsequestrin expression in subendocardial cardiomyocytes neighboring Purkinje cells was sufficient to protect against catecholamine-induced arrhythmias. In silico modeling demonstrated that DADs in ventricular myocardium can trigger full action potentials in the Purkinje fiber, but not vice versa. Hence, ectopic beats in CPVT are likely generated at the Purkinje-myocardial junction via a heretofore unrecognized tissue mechanism, whereby DADs in the ventricular myocardium trigger full action potentials in adjacent Purkinje cells.
Collapse
Affiliation(s)
- Daniel J. Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michela Faggioni
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Matthew J. Wleklinski
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pharmacology and
| | - Nieves Gomez-Hurtado
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Raghav Venkataraman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Chelsea E. Gibbs
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Franz J. Baudenbacher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Shiaoching Gong
- Laboratory of Molecular Biology, Rockefeller University, New York, New York, USA
| | - Glenn I. Fishman
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Patrick M. Boyle
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Institute for Stem Cell and Regenerative Medicine and
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA
| | - Karl Pfeifer
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Bjorn C. Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pharmacology and
| |
Collapse
|
25
|
Shiels HA, White E, Couturier CS, Hall D, Royal S, Galli GL, Stecyk JA. The air-breathing Alaska blackfish (Dallia pectoralis) remodels ventricular Ca2+ cycling with chronic hypoxic submergence to maintain ventricular contractility. Curr Res Physiol 2022; 5:25-35. [PMID: 35072107 PMCID: PMC8763628 DOI: 10.1016/j.crphys.2022.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
The Alaska blackfish (Dallia pectoralis) is a facultative air-breather endemic to northern latitudes where it remains active in winter under ice cover in cold hypoxic waters. To understand the changes in cellular Ca2+ cycling that allow the heart to function in cold hypoxic water, we acclimated Alaska blackfish to cold (5 °C) normoxia or cold hypoxia (2.1–4.2 kPa; no air access) for 5–8 weeks. We then assessed the impact of the acclimation conditions on intracellular Ca2+ transients (Δ[Ca2+]i) of isolated ventricular myocytes and contractile performance of isometrically-contracting ventricular strips. Measurements were obtained at various contractile frequencies (0.2–0.6 Hz) in normoxia, during acute exposure to hypoxia, and reoxygenation at 5 °C. The results show that hypoxia-acclimated Alaska blackfish compensate against the depressive effects of hypoxia on excitation-contraction coupling by remodelling cellular Δ[Ca2+]i to maintain ventricular contractility. When measured at 0.2 Hz in normoxia, hypoxia-acclimated ventricular myocytes had a 3.8-fold larger Δ[Ca2+]i peak amplitude with a 4.1-fold faster rate of rise, compared to normoxia-acclimated ventricular myocytes. At the tissue level, maximal developed force was 2.1-fold greater in preparations from hypoxia-acclimated animals. However, maximal attainable contraction frequencies in hypoxia were lower in hypoxia-acclimated myocytes and strips than preparations from normoxic animals. Moreover, the inability of hypoxia-acclimated ventricular myocytes and strips to contract at high frequency persisted upon reoxygenation. Overall, the findings indicate that hypoxia alters aspects of Alaska blackfish cardiac myocyte Ca2+ cycling, and that there may be consequences for heart rate elevation during hypoxia, which may impact cardiac output in vivo. The air-breathing Alaska blackfish remains active under ice cover in hypoxic waters. Maintained activity is supported by compensation of intracellular Ca2+ transients. The compensation permits greater ventricular maximal developed force. However, maximal attainable contraction frequencies are limited by hypoxia exposure.
Collapse
|
26
|
Wang J, Trinh TN, Vu ATV, Kim JC, Hoang ATN, Ohk CJ, Zhang YH, Nguyen CM, Woo SH. Chrysosplenol-C Increases Contraction by Augmentation of Sarcoplasmic Reticulum Ca 2+ Loading and Release via Protein Kinase C in Rat Ventricular Myocytes. Mol Pharmacol 2022; 101:13-23. [PMID: 34764211 DOI: 10.1124/molpharm.121.000365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022] Open
Abstract
Naturally found chrysosplenol-C (4',5,6-trihydroxy-3,3',7-trimethoxyflavone) increases the contractility of cardiac myocytes independent of β-adrenergic signaling. We investigated the cellular mechanism for chrysosplenol-C-induced positive inotropy. Global and local Ca2+ signals, L-type Ca2+ current (ICa), and contraction were measured from adult rat ventricular myocytes using two-dimensional confocal Ca2+ imaging, the whole-cell patch-clamp technique, and video-edge detection, respectively. Application of chrysosplenol-C reversibly increased Ca2+ transient magnitude with a maximal increase of ∼55% within 2- to 3-minute exposures (EC50 ≅ 21 μM). This chemical did not alter ICa and slightly increased diastolic Ca2+ level. The frequency and size of resting Ca2+ sparks were increased by chrysosplenol-C. Chrysosplenol-C significantly increased sarcoplasmic reticulum (SR) Ca2+ content but not fractional release. Pretreatment of protein kinase C (PKC) inhibitor but not Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor abolished the stimulatory effects of chrysosplenol-C on Ca2+ transients and Ca2+ sparks. Chrysosplenol-C-induced positive inotropy was removed by the inhibition of PKC but not CaMKII or phospholipase C. Western blotting assessment revealed that PKC-δ protein level in the membrane fractions significantly increase within 2 minutes after chrysosplenol-C exposure with a delayed (5-minute) increase in PKC-α levels in insoluble membrane. These results suggest that chrysosplenol-C enhances contractility via PKC (most likely PKC-δ)-dependent enhancement of SR Ca2+ releases in ventricular myocytes. SIGNIFICANCE STATEMENT: Study shows that chrysosplenol-C, a natural flavone showing a positive inotropic effect, increases SR Ca2+ releases on depolarizations and Ca2+ sparks with an increase of SR Ca2+ loading but not L-type Ca2+ current in ventricular myocytes. Chrysosplenol-C-induced enhancement in contraction is eliminated by PKC inhibition, and it is associated with redistributions of PKC to the membrane. These indicate that chrysosplenol-C enhances contraction via PKC-dependent augmentations of SR Ca2+ release and Ca2+ loading during action potentials.
Collapse
Affiliation(s)
- J Wang
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - T N Trinh
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - A T V Vu
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - J C Kim
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - A T N Hoang
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - C J Ohk
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - Y H Zhang
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - C M Nguyen
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - S H Woo
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| |
Collapse
|
27
|
Shi X, Cao Y, Zhang X, Gu C, Liang F, Xue J, Ni HW, Wang Z, Li Y, Wang X, Cai Z, Hocher B, Shen LH, He B. Comprehensive Analysis of N6-Methyladenosine RNA Methylation Regulators Expression Identify Distinct Molecular Subtypes of Myocardial Infarction. Front Cell Dev Biol 2021; 9:756483. [PMID: 34778266 PMCID: PMC8578940 DOI: 10.3389/fcell.2021.756483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Myocardial infarction (MI) is one of the leading threats to human health. N6-methyladenosine (m6A) modification, as a pivotal regulator of messenger RNA stability, protein expression, and cellular processes, exhibits important roles in the development of cardiac remodeling and cardiomyocyte contractile function. Methods: The expression levels of m6A regulators were analyzed using the GSE5406 database. We analyzed genome-wide association study data and single-cell sequencing data to confirm the functional importance of m6A regulators in MI. Three molecular subtypes with different clinical characteristics were established to tailor treatment strategies for patients with MI. We applied pathway analysis and differentially expressed gene (DEG) analysis to study the changes in gene expression and identified four common DEGs. Furthermore, we constructed the protein–protein interaction network and confirmed several hub genes in three clusters of MI. To lucubrate the potential functions, we performed a ClueGO analysis of these hub networks. Results: In this study, we identified that the levels of FTO, YTHDF3, ZC3H13, and WTAP were dramatically differently expressed in MI tissues compared with controls. Bioinformatics analysis showed that DEGs in MI were significantly related to modulating calcium signaling and chemokine signaling, and m6A regulators were related to regulating glucose measurement and elevated blood glucose levels. Furthermore, genome-wide association study data analysis showed that WTAP single-nucleotide polymorphism was significantly related to the progression of MI. In addition, single-cell sequencing found that WTAP is widely expressed in the heart tissues. Moreover, we conducted consensus clustering for MI in view of the dysregulated m6A regulators’ expression in MI. According to the expression levels, we found MI patients could be clustered into three subtypes. Pathway analysis showed the DEGs among different clusters in MI were assigned to HIF-1, IL-17, MAPK, PI3K-Akt signaling pathways, etc. The module analysis detected several genes, including BAG2, BAG3, MMP2, etc. We also found that MI-related network was significantly related to positive and negative regulation of angiogenesis and response to heat. The hub networks in MI clusters were significantly related to antigen processing and ubiquitin-mediated proteolysis, RNA splicing, and stability, indicating that these processes may contribute to the development of MI. Conclusion: Collectively, our study could provide more information for understanding the roles of m6A in MI, which may provide a novel insight into identifying biomarkers for MI treatment and diagnosis.
Collapse
Affiliation(s)
- Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaochen Cao
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xiaobin Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Gu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jieyuan Xue
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Han-Wen Ni
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zi Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Berthold Hocher
- 5th Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Rheumatology), University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ling-Hong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Tveita T, Sieck GC. Physiological Impact of Hypothermia: The Good, the Bad and the Ugly. Physiology (Bethesda) 2021; 37:69-87. [PMID: 34632808 DOI: 10.1152/physiol.00025.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hypothermia is defined as a core body temperature of < 35°C, and as body temperature is reduced the impact on physiological processes can be beneficial or detrimental. The beneficial effect of hypothermia enables circulation of cooled experimental animals to be interrupted for 1-2 h without creating harmful effects, while tolerance of circulation arrest in normothermia is between 4 and 5 min. This striking difference has attracted so many investigators, experimental as well as clinical, to this field, and this discovery was fundamental for introducing therapeutic hypothermia in modern clinical medicine in the 1950's. Together with the introduction of cardiopulmonary bypass, therapeutic hypothermia has been the cornerstone in the development of modern cardiac surgery. Therapeutic hypothermia also has an undisputed role as a protective agent in organ transplantation and as a therapeutic adjuvant for cerebral protection in neonatal encephalopathy. However, the introduction of therapeutic hypothermia for organ protection during neurosurgical procedures or as a scavenger after brain and spinal trauma has been less successful. In general, the best neuroprotection seems to be obtained by avoiding hyperthermia in injured patients. Accidental hypothermia occurs when endogenous temperature control mechanisms are incapable of maintaining core body temperature within physiologic limits and core temperature becomes dependent on ambient temperature. During hypothermia spontaneous circulation is considerably reduced and with deep and/or prolonged cooling, circulatory failure may occur, which may limit safe survival of the cooled patient. Challenges that limit safe rewarming of accidental hypothermia patients include cardiac arrhythmias, uncontrolled bleeding, and "rewarming shock".
Collapse
Affiliation(s)
- Torkjel Tveita
- Anesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
29
|
Goda AE, Elenany AM, Elsisi AE. Novel in vivo potential of trifluoperazine to ameliorate doxorubicin-induced cardiotoxicity involves suppression of NF-κB and apoptosis. Life Sci 2021; 283:119849. [PMID: 34343539 DOI: 10.1016/j.lfs.2021.119849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 11/25/2022]
Abstract
AIMS Cardiotoxicity of doxorubicin frequently complicates treatment outcome. Aberrantly activated calcium/calmodulin pathway can eventually trigger signaling cascades that mediate cardiotoxicity. Therefore, we tested the hypothesis that trifluoperazine, a strong calmodulin antagonist, may alleviate this morbidity. MATERIALS AND METHODS Heart failure and cardiotoxicity were assessed via echocardiography, PCR, immunohistochemistry, histopathology, Masson's trichrome staining and transmission electron microscopy. Whereas liver and kidney structural and functional alterations were evaluated histopathologically and biochemically. KEY FINDINGS Results revealed that combination treatment with trifluoperazine could overcome doxorubicin-induced heart failure with reduced ejection fraction. Moreover, heart weight/body weight ratio and histopathological examination showed that trifluoperazine mitigated doxorubicin-induced cardiac atrophy, inflammation and myofibril degeneration. Transmission electron microscopy further confirmed the marked restoration of the left ventricular ultrastructures by trifluoperazine pretreatment. In addition, Masson's trichrome staining revealed that trifluoperazine could significantly inhibit doxorubicin-induced left ventricular remodeling by fibrosis. Of note, doxorubicin induced the expression of myocardial nuclear NF-κB-p65 and caspase-3 which were markedly inhibited by trifluoperazine, suggesting that cardioprotection conferred by trifluoperazine involved, at least in part, suppression of NF-κB and apoptosis. Furthermore, biochemical and histopathological examinations showed that trifluoperazine improved doxorubicin-induced renal and hepatic impairments both functionally and structurally. SIGNIFICANCE In conclusion, the present in vivo study is the first to provide evidences underscoring the protective effects of trifluoperazine that may pave the way for repurposing this calmodulin antagonist in ameliorating organ toxicity by doxorubicin.
Collapse
Affiliation(s)
- Ahmed E Goda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Egypt.
| | - Amr M Elenany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Egypt
| | - Alaa E Elsisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Egypt
| |
Collapse
|
30
|
Impact of Dietary Factors on Brugada Syndrome and Long QT Syndrome. Nutrients 2021; 13:nu13082482. [PMID: 34444641 PMCID: PMC8401538 DOI: 10.3390/nu13082482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
A healthy regime is fundamental for the prevention of cardiovascular diseases (CVD). In inherited channelopathies, such as Brugada syndrome (BrS) and Long QT syndrome (LQTS), unfortunately, sudden cardiac death could be the first sign for patients affected by these syndromes. Several known factors are used to stratify the risk of developing cardiac arrhythmias, although none are determinative. The risk factors can be affected by adjusting lifestyle habits, such as a particular diet, impacting the risk of arrhythmogenic events and mortality. To date, the importance of understanding the relationship between diet and inherited channelopathies has been underrated. Therefore, we describe herein the effects of dietary factors on the development of arrhythmia in patients affected by BrS and LQTS. Modifying the diet might not be enough to fully prevent arrhythmias, but it can help lower the risk.
Collapse
|
31
|
Li Y, Zhang Z, Li S, Yu T, Jia Z. Therapeutic Effects of Traditional Chinese Medicine on Cardiovascular Diseases: the Central Role of Calcium Signaling. Front Pharmacol 2021; 12:682273. [PMID: 34305595 PMCID: PMC8299363 DOI: 10.3389/fphar.2021.682273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Calcium, as a second messenger, plays an important role in the pathogenesis of cardiovascular diseases (CVDs). The malfunction of calcium signaling in endothelial cells and vascular smooth muscle cells promotes hypertension. In cardiomyocytes, calcium overload induces apoptosis, leading to myocardial infarction and arrhythmias. Moreover, the calcium–calcineurin–nuclear factor of activated T cells (NFAT) pathway is essential for expressing the cardiac pro-hypertrophic gene. Heart failure is also characterized by reduced calcium transient amplitude and enhanced sarcoplasmic reticulum (SR) calcium leakage. Traditional Chinese medicine (TCM) has been used to treat CVDs for thousands of years in China. Because of its multicomponent and multitarget characteristics, TCM's unique advantages in CVD treatment are closely related to the modulation of multiple calcium handling proteins and calcium signaling pathways in different types of cells involved in distinct CVDs. Thus, we systematically review the diverse mechanisms of TCM in regulating calcium pathways to treat various types of CVDs, ranging from hypertrophic cardiomyopathy to diabetic heart disease.
Collapse
Affiliation(s)
- Yuxin Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhang Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoqi Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
32
|
Perbellini F, Thum T. Living myocardial slices: a novel multicellular model for cardiac translational research. Eur Heart J 2021; 41:2405-2408. [PMID: 31711161 PMCID: PMC7327529 DOI: 10.1093/eurheartj/ehz779] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/30/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022] Open
Abstract
Heart function relies on the interplay of several specialized cell types and a precisely regulated network of chemical and mechanical stimuli. Over the last few decades, this complexity has often been undervalued and progress in translational cardiovascular research has been significantly hindered by the lack of appropriate research models. The data collected are often oversimplified and these make the translation of results from the laboratory to clinical trials challenging and occasionally misleading. Living myocardial slices are ultrathin (100–400μm) sections of living cardiac tissue that maintain the native multicellularity, architecture, and structure of the heart and can provide information at a cellular/subcellular level. They overcome most of the limitations that affect other in vitro models and they can be prepared from human specimens, proving a clinically relevant multicellular human model for translational cardiovascular research. The publication of a reproducible protocol, and the rapid progress in methodological and technological discoveries which prevent significant structural and functional changes associated with chronic in vitro culture, has overcome the last barrier for the in vitro use of this human multicellular preparations. This technology can bridge the gap between in vitro and in vivo human studies and has the potential to revolutionize translational research approaches.
Collapse
Affiliation(s)
- Filippo Perbellini
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, Du Cane road, W12 0NN, London, UK
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, Du Cane road, W12 0NN, London, UK
| |
Collapse
|
33
|
Nilsen JH, Schanche T, Kondratiev TV, Hevrøy O, Sieck GC, Tveita T. Maintaining intravenous volume mitigates hypothermia-induced myocardial dysfunction and accumulation of intracellular Ca 2. Exp Physiol 2021; 106:1196-1207. [PMID: 33728692 DOI: 10.1113/ep089397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/11/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Detailed guidelines for volume replacement to counteract hypothermia-induced intravascular fluid loss are lacking. Evidence suggests colloids might have beneficial effects compared to crystalloids. Are central haemodynamic function and level of hypothermia-induced calcium overload, as a marker of cardiac injury, restored by fluid substitution during rewarming, and are colloids favourable to crystalloids? What is the main finding and its importance? Infusion with crystalloid or dextran during rewarming abolished post-hypothermic cardiac dysfunction, and partially mitigated myocardial calcium overload. The effects of volume replacement to support haemodynamic function are comparable to those using potent cardio-active drugs. These findings underline the importance of applying intravascular volume replacement to maintain euvolaemia during rewarming. ABSTRACT Previous research exploring pathophysiological mechanisms underlying circulatory collapse after rewarming victims of severe accidental hypothermia has documented post-hypothermic cardiac dysfunction and hypothermia-induced elevation of intracellular Ca2+ concentration ([Ca2+ ]i ) in myocardial cells. The aim of the present study was to examine if maintaining euvolaemia during rewarming mitigates cardiac dysfunction and/or normalizes elevated myocardial [Ca2+ ]i . A total of 21 male Wistar rats (300 g) were surface cooled to 15°C, then maintained at 15°C for 4 h, and subsequently rewarmed to 37°C. The rats were randomly assigned to one of three groups: (1) non-intervention control (n = 7), (2) dextran treated (i.v. 12 ml/kg dextran 70; n = 7), or (3) crystalloid treated (24 ml/kg 0.9% i.v. saline; n = 7). Infusions occurred during the first 30 min of rewarming. Arterial blood pressure, stroke volume (SV), cardiac output (CO), contractility (dP/dtmax ) and blood gas changes were measured. Post-hypothermic changes in [Ca2+ ]i were measured using the method of radiolabelled Ca2+ (45 Ca2+ ). Untreated controls displayed post-hypothermic cardiac dysfunction with significantly reduced CO, SV and dP/dtmax . In contrast, rats receiving crystalloid or dextran treatment showed a return to pre-hypothermic control levels of CO and SV after rewarming, with the dextran group displaying significantly better amelioration of post-hypothermic cardiac dysfunction than the crystalloid group. Compared to the post-hypothermic increase in myocardial [Ca2+ ]i in non-treated controls, [Ca2+ ]i values with crystalloid and dextran did not increase to the same extent after rewarming. Volume replacement with crystalloid or dextran during rewarming abolishes post-hypothermic cardiac dysfunction, and partially mitigates the hypothermia-induced elevation of [Ca2+ ]i .
Collapse
Affiliation(s)
- Jan Harald Nilsen
- Anesthesia and Critical Care research group, Department of Clinical Medicine, UiT, Arctic University of Norway, Tromsø, Norway.,Department of Research and Education, Norwegian Air Ambulance Foundation, Drøbak, Norway.,Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| | - Torstein Schanche
- Anesthesia and Critical Care research group, Department of Clinical Medicine, UiT, Arctic University of Norway, Tromsø, Norway.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Timofei V Kondratiev
- Anesthesia and Critical Care research group, Department of Clinical Medicine, UiT, Arctic University of Norway, Tromsø, Norway
| | - Olav Hevrøy
- Department of Anesthesiology and Intensive Care, Haukeland University Hospital, Bergen, Norway
| | - Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Torkjel Tveita
- Anesthesia and Critical Care research group, Department of Clinical Medicine, UiT, Arctic University of Norway, Tromsø, Norway.,Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Han CR, Wang H, Hoffmann V, Zerfas P, Kruhlak M, Cheng SY. Thyroid Hormone Receptor α Mutations Cause Heart Defects in Zebrafish. Thyroid 2021; 31:315-326. [PMID: 32762296 PMCID: PMC7891307 DOI: 10.1089/thy.2020.0332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Mutations of thyroid hormone receptor α1 (TRα1) cause resistance to thyroid hormone (RTHα). Patients exhibit growth retardation, delayed bone development, anemia, and bradycardia. By using mouse models of RTHα, much has been learned about the molecular actions of TRα1 mutants that underlie these abnormalities in adults. Using zebrafish models of RTHα that we have recently created, we aimed to understand how TRα1 mutants affect the heart function during this period. Methods: In contrast to human and mice, the thra gene is duplicated, thraa and thrab, in zebrafish. Using CRISPR/Cas9-mediated targeted mutagenesis, we created C-terminal mutations in each of two duplicated thra genes in zebrafish (thraa 8-bp insertion or thrab 1-bp insertion mutations). We recently showed that these mutant fish faithfully recapitulated growth retardation as found in patients and thra mutant mice. In the present study, we used histological analysis, gene expression profiles, confocal fluorescence, and transmission electron microscopy (TEM) to comprehensively analyze the phenotypic characteristics of mutant fish heart during development. Results: We found both a dilated atrium and an abnormally shaped ventricle in adult mutant fish. The retention of red blood cells in the two abnormal heart chambers, and the decreased circulating blood speed and reduced expression of contractile genes indicated weakened contractility in the heart of mutant fish. These abnormalities were detected in mutant fish as early as 35 days postfertilization (juveniles). Furthermore, the expression of genes associated with the sarcomere assembly was suppressed in the heart of mutant fish, resulting in abnormalities of sarcomere organization as revealed by TEM, suggesting that the abnormal sarcomere organization could underlie the bradycardia exhibited in mutant fish. Conclusions: Using a zebrafish model of RTHα, the present study demonstrated for the first time that TRα1 mutants could act to cause abnormal heart structure, weaken contractility, and disrupt sarcomere organization that affect heart functions. These findings provide new insights into the bradycardia found in RTHα patients.
Collapse
Affiliation(s)
- Cho Rong Han
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hui Wang
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria Hoffmann
- Diagnostic and Research Services Branch, Office of Research Services, National Institutes of Health, Bethesda, Maryland, USA
| | - Patricia Zerfas
- Diagnostic and Research Services Branch, Office of Research Services, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Address correspondence to: Sheue-Yann Cheng, PhD, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5128, Bethesda, MD 20892-4264, USA
| |
Collapse
|
35
|
Ni N, Su Y, Wei Y, Ma Y, Zhao L, Sun X. Tuning Nanosiliceous Framework for Enhanced Cancer Theranostic Applications. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nengyi Ni
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Yaoquan Su
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing 211198 China
| | - Yuchun Wei
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing 211198 China
| | - Xiao Sun
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| |
Collapse
|
36
|
Wang S, Zhou Y, Luo Y, Kan R, Chen J, Xuan H, Wang C, Chen J, Xu T, Li D. SERCA2a ameliorates cardiomyocyte T-tubule remodeling via the calpain/JPH2 pathway to improve cardiac function in myocardial ischemia/reperfusion mice. Sci Rep 2021; 11:2037. [PMID: 33479390 PMCID: PMC7820433 DOI: 10.1038/s41598-021-81570-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
Transverse-tubules (T-tubules) play pivotal roles in Ca2+-induced, Ca2+ release and excitation–contraction coupling in cardiomyocytes. The purpose of this study was to uncover mechanisms where sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2a) improved cardiac function through T-tubule regulation during myocardial ischemia/reperfusion (I/R). SERCA2a protein expression, cytoplasmic [Ca2+]i, calpain activity, junctophilin-2 (JPH2) protein expression and intracellular localization, cardiomyocyte T-tubules, contractility and calcium transients in single cardiomyocytes and in vivo cardiac functions were all examined after SERCA2a knockout and overexpression, and Calpain inhibitor PD150606 (PD) pretreatment, following myocardial I/R. This comprehensive approach was adopted to clarify SERCA2a mechanisms in improving cardiac function in mice. Calpain was activated during myocardial I/R, and led to the proteolytic cleavage of JPH2. This altered the T-tubule network, the contraction function/calcium transients in cardiomyocytes and in vivo cardiac functions. During myocardial I/R, PD pretreatment upregulated JPH2 expression and restored it to its intracellular location, repaired the T-tubule network, and contraction function/calcium transients of cardiomyocytes and cardiac functions in vivo. SERCA2a suppressed calpain activity via [Ca2+]i, and ameliorated these key indices. Our results suggest that SERCA2a ameliorates cardiomyocyte T-tubule remodeling via the calpain/JPH2 pathway, thereby improving cardiac function in myocardial I/R mice.
Collapse
Affiliation(s)
- Shuai Wang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - You Zhou
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Rongsheng Kan
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jingwen Chen
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Haochen Xuan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Chaofan Wang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Junhong Chen
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Tongda Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, People's Republic of China.
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, People's Republic of China.
| |
Collapse
|
37
|
Qiu X, Liang X, Li H, Sun R. LPS-induced vein endothelial cell injury and acute lung injury have Btk and Orai 1 to regulate SOC-mediated calcium influx. Int Immunopharmacol 2021; 90:107039. [PMID: 33127334 DOI: 10.1016/j.intimp.2020.107039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
Patients with sepsis and sepsis-related complications have a high mortality. Endothelial cell dysfunction plays a central role in sepsis pathophysiological process. In sepsis patients, endothelial cell apoptosis is associated with intracellular calcium overload. Multiple functions in the apoptotic process have been found to be regulated by calcium signaling. Our previous work had proved that LPS-induced cell injury was associated with store-operated calcium (SOC) entry mediated by stromal interaction molecule-1 (STIM 1) in Human umbilical vein endothelial cells (HUVEC), but the underlying molecular mechanism has not been adequately defined. Here we report that the LPS-induced cell injury is related to the calcium overload in HUVEC. SOC entry mediated by calcium release-activated calcium modulator (Orai) 1 and transient receptor potential canonical (TRPC) 1 was associated with LPS-induced calcium overload and cell apoptosis. Bruton's tyrosine kinase (Btk)/Phospholipase C(PLC) γ/inositol 1,4,5-triphosphate receptor (IP3R) played a major role in regulating calcium overload in LPS-induced HUVEC. Knockdown of Btk markedly inhibited the expressions of Orai 1 and its downstream molecule IP3R but not that of TRPC1 in LPS-induced HUVEC. In mice, knockdown of Btk and Orai 1 inhibited LPS-induced calcium overload, pulmonary vascular endothelial cell (VEC) injury and acute lung injury. These findings demonstrated that Btk acts as a regulator of calcium-dependent signaling, especially in the Orai 1-mediated SOC entry of the LPS-induced VEC.
Collapse
Affiliation(s)
- Xiaochen Qiu
- Department of General Surgery, the Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China
| | - Xiaobo Liang
- Department of Dermatology, the Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Rongju Sun
- Department of Emergency, the First Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100853, China.
| |
Collapse
|
38
|
Sridhar KC, Hersch N, Dreissen G, Merkel R, Hoffmann B. Calcium mediated functional interplay between myocardial cells upon laser-induced single-cell injury: an in vitro study of cardiac cell death signaling mechanisms. Cell Commun Signal 2020; 18:191. [PMID: 33371897 PMCID: PMC7771078 DOI: 10.1186/s12964-020-00689-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023] Open
Abstract
Background The electromechanical function of myocardial tissue depends on the intercellular communication between cardiomyocytes (CMs) as well as their crosstalk with other cell types. Cell injury, and subsequent death trigger inflammation as in myocardial infarction (MI) resulting in myocardial remodeling. Although mechanisms underlying myocardial cell death have been studied so far, the signaling events following single cell death and spontaneous response of connected cells in the myocardial tissue is still barely understood. Methods Here, we investigated the effect of laser-induced single cell death on Calcium (Ca2+) concentrations and transport in myocardial cell clusters in vitro. Spatial and temporal changes in intracellular Ca2+ concentrations [Ca2+]i were studied using a fluorescent calcium indicator, Fluo-4AM. Spontaneous signaling events following cell death were studied in rat embryonic cardiomyocytes and non-myocytes using separate cell culture systems. Results Cell death triggered spontaneous increase in intracellular Ca2+ levels ([Ca2+]i) of surrounding cells. The spread of the observed propagating Ca2+ signal was slow and sustained in myocytes while it was rapid and transient in fibroblasts (Fbs). Further, sustained high Ca2+ levels temporarily impaired the contractility in CMs. The cell-type specific effect of ablation was confirmed using separate cultures of CMs and Fbs. Comparing Ca2+ propagation speed in myocytes and fibroblasts, we argue for a diffusion-driven Ca2+ propagation in myocytes, but not in fibroblasts. Radial and sequential Ca2+ diffusion across the CMs through cell–cell contacts and presence of Cx43-based intercellular junctions indicated a gap junction flow of Ca2+. Conclusions These findings illustrate the spontaneous Ca2+-mediated functional interplay in myocardial cell clusters upon mechanical injury and, further, the difference in Ca2+ signaling in cardiomyocytes and fibroblasts. Video Abstract
Collapse
Affiliation(s)
- Krishna Chander Sridhar
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nils Hersch
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Georg Dreissen
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
39
|
Alcalde J, Munk M, González-Muñoz M, Panina S, Berchtold MW, Villalobo A. Calmodulin downregulation in conditional knockout HeLa cells inhibits cell migration. Arch Biochem Biophys 2020; 697:108680. [PMID: 33220265 DOI: 10.1016/j.abb.2020.108680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
The study of calmodulin (CaM) functions in living cells has been tackled up to date using cell-permeant CaM inhibitors or interference-RNA methods. CaM inhibitors may lack specificity and the siRNA interference approach is challenging, as all three CaM genes expressing an identical protein in mammals have to be blocked. Therefore, we recently introduced a novel genetic system using CRISPR/Cas9-mediated gene deletion and conditional CaM expression to study the function of CaM in HeLa cells. Here, we describe the effect of CaM downregulation on the basal and epidermal growth factor (EGF)-dependent 2D- and 3D-migration in HeLa cells. CaM downregulation inhibited cell migration on a 2D-surface in the absence but not in the presence of EGF. In contrast, CaM downregulation led to inhibition of 3D-migration across a porous membrane both in the absence and presence of EGF. CaM downregulation decreased the expression of Rac1, Cdc42 and RhoA, all known to play crucial roles in cell migration. These results show that EGF-dependent 2D- and 3D-migration utilize distinct CaM-regulated systems and identify several essential migratory proteins directly or indirectly regulated by CaM.
Collapse
Affiliation(s)
- Juan Alcalde
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100, Copenhagen Ø, Denmark; Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Mads Munk
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100, Copenhagen Ø, Denmark
| | - María González-Muñoz
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Svetlana Panina
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100, Copenhagen Ø, Denmark
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100, Copenhagen Ø, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain; Cancer and Human Molecular Genetics Area - Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046, Madrid, Spain.
| |
Collapse
|
40
|
Zhou J. Two potential molecular signaling pathways of the UFL1 gene to induce the endoplasmic reticulum stress and apoptosis of the ovarian granulosa cell. Med Hypotheses 2020; 145:110328. [PMID: 33035966 DOI: 10.1016/j.mehy.2020.110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022]
Abstract
Endoplasmic reticulum stress (ERS) is a crucial physiological and pathological process takes place in the endoplasmic reticulum that usually induced by various intracellular and extracellular factors. It causes multiple diseases, including breast cancer, hepatocellular carcinoma, and premature ovarian failure that mainly associates with the ovarian granulosa cells. To effectively alleviate and cure the ERS and following diseases, molecular signaling pathways that are responsible for inducing ERS must be deeply investigated. There are many intracellular pathways to initiate the ERS, among which, detailed molecular mechanism the UFM1-specific ligase 1 (UFL1) gene induced analogous ubiquitylation related pathway is still unclear. However, some researches have reported that the UFL1 gene is responsible for initiating the ERS in the ovarian granulosa cell and premature ovarian failure. In this article, a new, highly possible molecular signaling pathway is proposed and hoping to provide a unique aspect for the following researches about ERS, especially in the ovarian granulosa cell.
Collapse
Affiliation(s)
- Jingyang Zhou
- Class 182, Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, Jiangxi Province, People's Republic of China.
| |
Collapse
|
41
|
Burdine RD, Preston CC, Leonard RJ, Bradley TA, Faustino RS. Nucleoporins in cardiovascular disease. J Mol Cell Cardiol 2020; 141:43-52. [PMID: 32209327 DOI: 10.1016/j.yjmcc.2020.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is a pressing health problem with significant global health, societal, and financial burdens. Understanding the molecular basis of polygenic cardiac pathology is thus essential to devising novel approaches for management and treatment. Recent identification of uncharacterized regulatory functions for a class of nuclear envelope proteins called nucleoporins offers the opportunity to understand novel putative mechanisms of cardiac disease development and progression. Consistent reports of nucleoporin deregulation associated with ischemic and dilated cardiomyopathies, arrhythmias and valvular disorders suggests that nucleoporin impairment may be a significant but understudied variable in cardiopathologic disorders. This review discusses and converges existing literature regarding nuclear pore complex proteins and their association with cardiac pathologies, and proposes a role for nucleoporins as facilitators of cardiac disease.
Collapse
Affiliation(s)
- Ryan D Burdine
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America; School of Health Sciences, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, United States of America
| | - Claudia C Preston
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Riley J Leonard
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Tyler A Bradley
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Randolph S Faustino
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America; Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22(nd) Street, Sioux Falls, SD 57105, United States of America.
| |
Collapse
|
42
|
Ivanova J, Kamenova K, Petrova E, Vladov I, Gluhcheva Y, Dorkov P. Comparative study on the effects of salinomycin, monensin and meso-2,3-dimercaptosuccinic acid on the concentrations of lead, calcium, copper, iron and zinc in lungs and heart in lead-exposed mice. J Trace Elem Med Biol 2020; 58:126429. [PMID: 31760328 DOI: 10.1016/j.jtemb.2019.126429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIM Environmental lead (Pb) exposure damages the lungs and is a risk factor for death from cardiovascular disease. Pb induces toxicity by a mechanism, which involves alteration of the essential elements homeostasis. In this study we compare the effects of salinomycin (Sal), monensin (Mon) and meso-2,3-dimercaptosuccinic acid (DMSA) on the concentrations of lead (Pb), calcium (Ca), copper (Cu), iron (Fe) and zinc (Zn) in the lungs and heart of lead-exposed mice. METHODS Sixty days old male ICR mice were divided into five groups: control (Ctrl) - untreated mice obtained distilled water for 28 days; Pb-intoxicated group (Pb) - exposed to 80 mg/kg body weight (BW) Pb(NO3)2 during the first 14 days of the experimental protocol; DMSA-treated (Pb + DMSA) - Pb-exposed mice, subjected to treatment with an average daily dose of 20 mg/kg BW DMSA for two weeks; Monensin-treated (Pb + Mon) - Pb-exposed mice, obtained an average daily dose of 20 mg/kg BW tetraethylammonium salt of monensic acid for 14 days; Pb + Sal - Pb-exposed mice, treated with an average daily dose of 20 mg/kg BW tetraethylammonium salt of salinomycinic acid for two weeks. On the 29th day of the experiment the samples (lungs and heart) were taken for atomic absorption analysis. RESULTS The results revealed that exposure of mice to Pb for 14 days significantly increased the concentration of the toxic metal in both organs and elevated the cardiac concentrations of Ca, Cu and Fe compared to untreated mice. Pb exposure diminished the lung concentrations of Ca and Zn compared to that of untreated controls. DMSA, monensin and salinomycin decreased the concentration of Pb in the lungs and heart. Among the tested chelating agents, only salinomycin restored the cardiac Fe concentration to normal control values. CONCLUSION The results demonstrated the potential application of polyether ionophorous antibiotic salinomycin as antidote for treatment of Pb-induced toxicity in the lungs and heart. The possible complexation of the polyether ionophorous antibiotics with Ca(II) and Zn(II), which can diminish the endogenous concentrations of both ions in the lungs should be taken into account.
Collapse
Affiliation(s)
- Juliana Ivanova
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1 Kozjak Street, 1407, Sofia, Bulgaria
| | - Kalina Kamenova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 James Bourchier Blvd., 1164, Sofia, Bulgaria
| | - Emilia Petrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum - BAS, Acad. Georgi Bonchev Str., bl. 25, 1113, Sofia, Bulgaria.
| | - Ivelin Vladov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum - BAS, Acad. Georgi Bonchev Str., bl. 25, 1113, Sofia, Bulgaria
| | - Yordanka Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum - BAS, Acad. Georgi Bonchev Str., bl. 25, 1113, Sofia, Bulgaria
| | - Petar Dorkov
- Chemistry Department, R&D, BIOVET JSC, 39 Peter Rakov Str., 4550, Peshtera, Bulgaria
| |
Collapse
|
43
|
Yuan X, Juan Z, Zhang R, Sun X, Yan R, Yue F, Huang Y, Yu J, Xia X. Clemastine Fumarate Protects Against Myocardial Ischemia Reperfusion Injury by Activating the TLR4/PI3K/Akt Signaling Pathway. Front Pharmacol 2020; 11:28. [PMID: 32116705 PMCID: PMC7025565 DOI: 10.3389/fphar.2020.00028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/10/2020] [Indexed: 01/22/2023] Open
Abstract
Our pilot studies have shown that clemastine fumarate (CLE) can protect against myocardial ischemia-reperfusion injury (MIRI) through regulation of toll like receptor 4 (TLR4). However, the protective mechanism of CLE and related signaling pathways for MIRI remains unclear. The objective of this study is to determine the mechanism by which CLE relieves MIRI in cardiomyocytes and its relationship with the TLR4/PI3K/Akt signaling pathway. CCK8 analysis was used to test the optimal concentration of TLR4 inhibitor CLI-095 and TLR4 agonist lipopolysaccharide (LPS) on MIRI. The expression of inflammatory factors, oxidative stress response, cell damage, and intracellular calcium redistribution of cardiomyocytes were examined using the ELISA kits, Total Superoxide Dismutase Assay Kit with WST-8 and Lipid Peroxidation MDA Assay Kit, LDH Cytotoxicity Assay Kit, and laser scanning confocal microscope. The expression of TLR4/PI3K/Akt and cleaved caspase-3 were determined by Western blotting and immunofluorescent staining. Our results showed that MIRI aggravated the inflammatory response, oxidative stress, cellular damage of cardiomyocytes, and caused redistribution of intracellular calcium, upregulated the expression of TLR4 protein, cleaved caspase-3 protein, and down-regulated the expression of PI3K/Akt protein. After treatment with CLE, the inflammatory response, oxidative stress, and cellular damage of cardiomyocytes were alleviated, and intracellular calcium ion accumulation decreased. The expression of TLR4 protein, cleaved caspase-3 protein declined, but PI3K/Akt protein expression increased in cardiomyocytes treated with CLE. In addition, after treatment with the TLR4 inhibitor CLI-095, the results were similar to those of CLE treatment. The TLR4 agonist LPS aggravated the reactions caused by MIRI. The role of LPS was reversed after CLE treatment. These results suggested that CLE can attenuate MIRI by activating the TLR4/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaoxiao Yuan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Zhaodong Juan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Rui Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Xiaotong Sun
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Ru Yan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Feng Yue
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Yaru Huang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Jiacheng Yu
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Xiaohui Xia
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China
| |
Collapse
|
44
|
Pérez-Treviño P, Sepúlveda-Leal J, Altamirano J. Simultaneous assessment of calcium handling and contractility dynamics in isolated ventricular myocytes of a rat model of post-acute isoproterenol-induced cardiomyopathy. Cell Calcium 2019; 86:102138. [PMID: 31838436 DOI: 10.1016/j.ceca.2019.102138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Stress-induced cardiomyopathy (SIC) results from a profound catecholaminergic surge during strong emotional or physical stress. SIC is characterized by acute left ventricular apex hypokinesia, in the absence of coronary arteries occlusion, and can lead to arrhythmias and acute heart failure. Although, most SIC patients recover, the process could be slow, and recurrence or death may occur. Despite that the SIC common denominator is a large catecholamine discharge, the pathophysiological mechanism is incompletely understood. It is thought that catecholamines have direct cytotoxicity on apical ventricular myocytes (VM), which have the highest β-adrenergic receptors density, and whose overstimulation might cause acute Ca2+ overload and oxidative stress, causing death in some VM and stunning others. Rodents receiving acute isoproterenol (ISO) overdose (OV) mimic SIC development, however, they have not been used to simultaneously assess Ca2+ handling and contractility status in isolated VM, which might explain ventricular hypokinesia. Therefore, treating rats with a single ISO-OV (67 mg/kg body weight), we sought out to characterize, with confocal imaging, Ca2+ and shortening dynamics in Fluo-4-loaded VM, during the early (1-5 days) and late post-acute phases (15 days). We found that ISO-OV VM showed contractile dysfunction; blunted shortening with slower force development and relaxation. These correlated with Ca2+ mishandling; blunted Ca2+ transient, with slower time to peak and SR Ca2+ recovery. SR Ca2+ content was low, nevertheless, diastolic Ca2+ sparks were more frequent, and their duration increased. Contractility and Ca2+ dysfunction aggravated or remained altered over time, explaining slow recovery. We conclude that diminished VM contractility is the main determinant of ISO-OV hypokinesia and is mostly related to Ca2+ mishandling.
Collapse
Affiliation(s)
- Perla Pérez-Treviño
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L., 64710, Mexico
| | - José Sepúlveda-Leal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L., 64710, Mexico
| | - Julio Altamirano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L., 64710, Mexico.
| |
Collapse
|
45
|
Averin AS, Nakipova OV, Kosarsky LS, Pimenov OY, Galimova MH, Nenov MN, Berejnov AV, Alekseev AE. Activation of Sarcolemmal α2 Adrenoceptors Supports Са2+ Homeostasis and Prevents Ventricular Arrhythmia under Sympathetic Stress. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919050014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
46
|
Pimenov OY, Galimova MH, Evdokimovskii EV, Averin AS, Nakipova OV, Reyes S, Alekseev AE. Myocardial α2-Adrenoceptors as Therapeutic Targets to Prevent Cardiac Hypertrophy and Heart Failure. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s000635091905021x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
47
|
Li T, Zhang Y, Tian J, Yang L, Wang J. Ginkgo biloba Pretreatment Attenuates Myocardial Ischemia-Reperfusion Injury via mitoBKCa. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1057-1073. [PMID: 31327236 DOI: 10.1142/s0192415x1950054x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ginkgo biloba extracts (EGb) alleviate myocardial ischemia/reperfusion (MI/R) injury. However, the underlying mechanisms have not yet been characterized. This study aimed to investigate whether activation of large-conductance [Formula: see text]-activated [Formula: see text] channels at the inner mitochondrial membrane ([Formula: see text] of cardiomyocytes is involved in Ginkgo biloba extract-mediated cardioprotection. Shuxuening injection (SXNI, 12.5[Formula: see text]ml/kg/d), a widely prescribed herbal medicine containing Ginkgo biloba extracts in China, or vehicle, was administered to C57BL/6 mice via tail vein injection for one week prior to surgical procedures. The mitoBKCa blocker paxilline (PAX) (1[Formula: see text]ml/kg, 115 nM) was administered via tail vein injection 30[Formula: see text]min prior to the onset of ischemia. The mice were randomly divided into the following groups: Sham, MI/R, MI/R+SXNI, and MI/R+SXNI+PAX. MI/R was induced by ligating the left anterior descending coronary artery for 30[Formula: see text]min with subsequent reperfusion for 24[Formula: see text]h. SXNI pretreatment conferred cardioprotective effects against MI/R injury as evidenced by reduced infarct size, improved cardiac function, and improved mitochondrial function. However, these effects were abrogated by co-administration with PAX. In addition, activation of mitoBKCa by Ginkgo biloba extract EGb761 reduced hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury in vitro through the inhibition of mitochondrial fragmentation, restoration of the mitochondrial membrane potential, decreased generation of superoxide, and inhibition of apoptosis which is associated with alleviating mitochondrial [Formula: see text] overload. These results indicated that Ginkgo biloba extracts pretreatment protected against MI/R injury via activation of mitoBKCa.
Collapse
Affiliation(s)
- Tonghua Li
- School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, P. R. China
- Department of Cardiology, Xi’an No.1 Hospital, Xi’an, Shaanxi 710002, P. R. China
| | - Yuyang Zhang
- Department of Cardiology, Xi’an No.1 Hospital, Xi’an, Shaanxi 710002, P. R. China
| | - Jianwei Tian
- Department of Cardiology, Air Force Medical Center, PLA, Beijing 100142, P. R. China
| | - Lu Yang
- Department of Physiology, Fourth Military Medical University, Xi’an 710032, P. R. China
| | - Jianchang Wang
- Geriatrics Research Center, Air Force Medical Center, PLA, Beijing 100142, P. R. China
| |
Collapse
|
48
|
Pereira CLV, Ximenes CF, Merlo E, Sciortino AS, Monteiro JS, Moreira A, Jacobsen BB, Graceli JB, Ginsburg KS, Ribeiro Junior RF, Bers DM, Stefanon I. Cardiotoxicity of environmental contaminant tributyltin involves myocyte oxidative stress and abnormal Ca 2+ handling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:371-382. [PMID: 30690233 PMCID: PMC7724993 DOI: 10.1016/j.envpol.2019.01.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 05/11/2023]
Abstract
Tributyltin (TBT) is an organotin environmental pollutant widely used as an agricultural and wood biocide and in antifouling paints. Countries began restricting TBT use in the 2000s, but their use continues in some agroindustrial processes. We studied the acute effect of TBT on cardiac function by analyzing myocardial contractility and Ca2+ handling. Cardiac contractility was evaluated in isolated papillary muscle and whole heart upon TBT exposure. Isolated ventricular myocytes were used to measure calcium (Ca2+) transients, sarcoplasmic reticulum (SR) Ca2+ content and SR Ca2+ leak (as Ca2+ sparks). Reactive oxygen species (ROS), as superoxide anion (O2•-) was detected at intracellular and mitochondrial myocardium. TBT depressed cardiac contractility and relaxation in papillary muscle and intact whole heart. TBT increased cytosolic, mitochondrial ROS production and decreased mitochondrial membrane potential. In isolated cardiomyocytes TBT decreased both Ca2+ transients and SR Ca2+ content and increased diastolic SR Ca2+ leak. Decay of twitch and caffeine-induced Ca2+ transients were slowed by the presence of TBT. Dantrolene prevented and Tiron limited the reduction in SR Ca2+ content and transients. The environmental contaminant TBT causes cardiotoxicity within minutes, and may be considered hazardous to the mammalian heart. TBT acutely induced a negative inotropic effect in isolated papillary muscle and whole heart, increased arrhythmogenic SR Ca2+ leak leading to reduced SR Ca2+ content and reduced Ca2+ transients. TBT-induced myocardial ROS production, may destabilize the SR Ca2+ release channel RyR2 and reduce SR Ca2+ pump activity as key factors in the TBT-induced negative inotropic and lusitropic effects.
Collapse
Affiliation(s)
- C L V Pereira
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil
| | - C F Ximenes
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil
| | - E Merlo
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil
| | - A S Sciortino
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil
| | - J S Monteiro
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil
| | - A Moreira
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil
| | - B B Jacobsen
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil; Department of Pharmacology, University of California, Davis, USA
| | - J B Graceli
- Department of Morphology, Federal University of Espírito Santo-UFES, Espírito Santo, Brazil
| | - K S Ginsburg
- Department of Pharmacology, University of California, Davis, USA
| | - R F Ribeiro Junior
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil; Department of Pharmacology, University of California, Davis, USA
| | - D M Bers
- Department of Pharmacology, University of California, Davis, USA
| | - I Stefanon
- Department of Physiology, Federal University of Espírito Santo- UFES, Espírito Santo, Brazil; Department of Pharmacology, University of California, Davis, USA.
| |
Collapse
|
49
|
Alekseev AE, Park S, Pimenov OY, Reyes S, Terzic A. Sarcolemmal α2-adrenoceptors in feedback control of myocardial response to sympathetic challenge. Pharmacol Ther 2019; 197:179-190. [PMID: 30703415 DOI: 10.1016/j.pharmthera.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α2-adrenoceptor (α2-AR) isoforms, abundant in sympathetic synapses and noradrenergic neurons of the central nervous system, are integral in the presynaptic feed-back loop mechanism that moderates norepinephrine surges. We recently identified that postsynaptic α2-ARs, found in the myocellular sarcolemma, also contribute to a muscle-delimited feedback control capable of attenuating mobilization of intracellular Ca2+ and myocardial contractility. This previously unrecognized α2-AR-dependent rheostat is able to counteract competing adrenergic receptor actions in cardiac muscle. Specifically, in ventricular myocytes, nitric oxide (NO) and cGMP are the intracellular messengers of α2-AR signal transduction pathways that gauge the kinase-phosphatase balance and manage cellular Ca2+ handling preventing catecholamine-induced Ca2+ overload. Moreover, α2-AR signaling counterbalances phospholipase C - PKC-dependent mechanisms underscoring a broader cardioprotective potential under sympathoadrenergic and angiotensinergic challenge. Recruitment of such tissue-specific features of α2-AR under sustained sympathoadrenergic drive may, in principle, be harnessed to mitigate or prevent cardiac malfunction. However, cardiovascular disease may compromise peripheral α2-AR signaling limiting pharmacological targeting of these receptors. Prospective cardiac-specific gene or cell-based therapeutic approaches aimed at repairing or improving stress-protective α2-AR signaling may offer an alternative towards enhanced preservation of cardiac muscle structure and function.
Collapse
Affiliation(s)
- Alexey E Alekseev
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya 3, Pushchino, Moscow Region 142290, Russia.
| | - Sungjo Park
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Oleg Yu Pimenov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Santiago Reyes
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| |
Collapse
|
50
|
Wang Q, Zhu C, Sun M, Maimaiti R, Ford SP, Nathanielsz PW, Ren J, Guo W. Maternal obesity impairs fetal cardiomyocyte contractile function in sheep. FASEB J 2018; 33:2587-2598. [PMID: 30289749 DOI: 10.1096/fj.201800988r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a major public health problem worldwide. In the United States, one-third of women of reproductive age are obese. Human studies show that maternal obesity (MO) predisposes offspring to cardiovascular disease. However, the underlying mechanisms remain unclear. Given the similarities between pregnancy in sheep and humans, we studied sheep to examine the impact of MO on fetal cardiomyocyte contractility at term. We observed that MO impaired cardiomyocyte contractility by reducing peak shortening and shortening/relengthening velocity, prolonging time to relengthening. MO disrupted Ca2+ homeostasis in fetal cardiomyocytes, increasing intracellular Ca2+ and inducing cellular Ca2+ insensitivity. The Ca2+-release channel was impaired, but Ca2+ uptake was unaffected by MO. The upstream kinases that phosphorylate the Ca2+-release channel-ryanodine receptor-2, PKA, and calmodulin-dependent protein kinase II-were activated in MO fetuses. Contractile dysfunction was associated with an increased ratio of myosin heavy chain (MHC)-β to MHC-α and upregulated cardiac troponin (cTn)-T and tropomyosin, as well as cTn-I phosphorylation. In summary, this is the first characterization of the effects of MO on fetal cardiomyocyte contractility. Our findings indicate that MO impairs fetal cardiomyocyte contractility through altered intracellular Ca2+ handling, overloading fetal cardiomyocyte intracellular Ca2+ and aberrant myofilament protein composition. These mechanisms may contribute to developmental programming by MO of offspring cardiac function and predisposition to later life cardiovascular disease in the offspring.-Wang, Q., Zhu, C., Sun, M., Maimaiti, R., Ford, S. P., Nathanielsz, P. W., Ren, J., Guo, W. Maternal obesity impairs fetal cardiomyocyte contractile function in sheep.
Collapse
Affiliation(s)
- Qiurong Wang
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, Wyoming, USA.,Animal Science Department, University of Wyoming, Laramie, Wyoming, USA; and
| | - Chaoqun Zhu
- Animal Science Department, University of Wyoming, Laramie, Wyoming, USA; and
| | - Mingming Sun
- Animal Science Department, University of Wyoming, Laramie, Wyoming, USA; and
| | - Rexiati Maimaiti
- Animal Science Department, University of Wyoming, Laramie, Wyoming, USA; and
| | - Stephen P Ford
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, Wyoming, USA.,Animal Science Department, University of Wyoming, Laramie, Wyoming, USA; and
| | - Peter W Nathanielsz
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, Wyoming, USA.,Animal Science Department, University of Wyoming, Laramie, Wyoming, USA; and
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, Wyoming, USA
| | - Wei Guo
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, Wyoming, USA.,Animal Science Department, University of Wyoming, Laramie, Wyoming, USA; and.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|