1
|
Yoder AD, Larsen PA. The molecular evolutionary dynamics of the vomeronasal receptor (class 1) genes in primates: a gene family on the verge of a functional breakdown. Front Neuroanat 2014; 8:153. [PMID: 25565978 PMCID: PMC4264469 DOI: 10.3389/fnana.2014.00153] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/25/2014] [Indexed: 01/24/2023] Open
Abstract
Olfaction plays a critical role in both survival of the individual and in the propagation of species. Studies from across the mammalian clade have found a remarkable correlation between organismal lifestyle and molecular evolutionary properties of receptor genes in both the main olfactory system (MOS) and the vomeronasal system (VNS). When a large proportion of intact (and putatively functional) copies is observed, the inference is made that a particular mode of chemoreception is critical for an organism’s fit to its environment and is thus under strong positive selection. Conversely, when the receptors in question show a disproportionately large number of pseudogene copies, this contraction is interpreted as evidence of relaxed selection potentially leading to gene family extinction. Notably, it appears that a risk factor for gene family extinction is a high rate of nonsynonymous substitution. A survey of intact vs. pseudogene copies among primate vomeronasal receptor Class one genes (V1Rs) appears to substantiate this hypothesis. Molecular evolutionary complexities in the V1R gene family combine rapid rates of gene duplication, gene conversion, lineage-specific expansions, deletions, and/or pseudogenization. An intricate mix of phylogenetic footprints and current adaptive landscapes have left their mark on primate V1Rs suggesting that the primate clade offers an ideal model system for exploring the molecular evolutionary and functional properties of the VNS of mammals. Primate V1Rs tell a story of ancestral function and divergent selection as species have moved into ever diversifying adaptive regimes. The sensitivity to functional collapse in these genes, consequent to their precariously high rates of nonsynonymous substitution, confer a remarkable capacity to reveal the lifestyles of the genomes that they presently occupy as well as those of their ancestors.
Collapse
Affiliation(s)
- Anne D Yoder
- Department of Biology, Duke University Durham, NC, USA
| | | |
Collapse
|
2
|
Hohenbrink P, Dempewolf S, Zimmermann E, Mundy NI, Radespiel U. Functional promiscuity in a mammalian chemosensory system: extensive expression of vomeronasal receptors in the main olfactory epithelium of mouse lemurs. Front Neuroanat 2014; 8:102. [PMID: 25309343 PMCID: PMC4173931 DOI: 10.3389/fnana.2014.00102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/05/2014] [Indexed: 01/20/2023] Open
Abstract
The vomeronasal organ (VNO) is functional in most terrestrial mammals, though progressively reduced in the primate lineage, and is used for intraspecific communication and predator recognition. Vomeronasal receptor (VR) genes comprise two families of chemosensory genes (V1R and V2R) that have been considered to be specific for the VNO. However, recently a large number of VRs were reported to be expressed in the main olfactory epithelium (MOE) of mice, but there is little knowledge of the expression of these genes outside of rodents. To explore the function of VR genes in mammalian evolution, we analyzed and compared the expression of 64 V1R and 2 V2R genes in the VNO and the MOE of the gray mouse lemur (Microcebus murinus), the primate with the largest known VR repertoire. We furthermore compared expression patterns in adults of both sexes and seasons, and in an infant. A large proportion (83-97%) of the VR loci was expressed in the VNO of all individuals. The repertoire in the infant was as rich as in adults, indicating reliance on olfactory communication from early postnatal development onwards. In concordance with mice, we also detected extensive expression of VRs in the MOE, with proportions of expressed loci in individuals ranging from 29 to 45%. TRPC2, which encodes a channel protein crucial for signal transduction via VRs, was co-expressed in the MOE in all individuals indicating likely functionality of expressed VR genes in the MOE. In summary, the large VR repertoire in mouse lemurs seems to be highly functional. Given the differences in the neural pathways of MOE and VNO signals, which project to higher cortical brain centers or the limbic system, respectively, this raises the intriguing possibility that the evolution of MOE-expression of VRs enabled mouse lemurs to adaptively diversify the processing of VR-encoded olfactory information.
Collapse
Affiliation(s)
- Philipp Hohenbrink
- Institute of Zoology, University of Veterinary Medicine Hannover Hannover, Germany ; Department of Zoology, University of Cambridge Cambridge, UK
| | - Silke Dempewolf
- Institute of Zoology, University of Veterinary Medicine Hannover Hannover, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover Hannover, Germany
| | | | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover Hannover, Germany
| |
Collapse
|
3
|
Smith TD, Muchlinski MN, Bhatnagar KP, Durham EL, Bonar CJ, Burrows AM. The vomeronasal organ of Lemur catta. Am J Primatol 2014; 77:229-38. [PMID: 25220179 DOI: 10.1002/ajp.22326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/21/2014] [Accepted: 08/05/2014] [Indexed: 11/09/2022]
Abstract
The vomeronasal organ (VNO), also known as the Jacobson's organ, is a bilateral chemosensory organ found at the base of the nasal cavity specialized for the detection of higher-molecular weight (non-volatile) chemostimuli. It has been linked to pheromone detection. The VNO has been well studied in nocturnal lemurs and lorises, but poorly studied in diurnal/cathemeral species despite the large repertoire of olfactory behaviors noted in species such as Lemur catta. Here, the VNO and associated structures were studied microanatomically in one adult female and one adult male L. catta. Traditional and immunohistochemical procedures demonstrate the VNO epithelium consists of multiple rows of sensory neurons. Immunoreactivity to Growth-associated protein 43 (GAP43) indicates the VNO is postnatally neurogenic. In volume, the VNO neuroepithelium scales similarly to palatal length compared to nocturnal strepsirrhines. Numerous taste buds present at the oral opening to the nasopalatine duct, with which the VNO communicates, provide an additional (or alternative) explanation for the flehmen behavior that has been observed in this species. The VNO of L. catta is shown to be microanatomically comparable to that of nocturnal strepsirrhines. Like nocturnal strepsirrhines, the VNO of L. catta may be functional in the reception of high-molecular weight secretions.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA; Department of Anthropology, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | |
Collapse
|
4
|
Yoder AD, Chan LM, dos Reis M, Larsen PA, Campbell CR, Rasoloarison R, Barrett M, Roos C, Kappeler P, Bielawski J, Yang Z. Molecular evolutionary characterization of a V1R subfamily unique to strepsirrhine primates. Genome Biol Evol 2014; 6:213-27. [PMID: 24398377 PMCID: PMC3914689 DOI: 10.1093/gbe/evu006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vomeronasal receptor genes have frequently been invoked as integral to the establishment and maintenance of species boundaries among mammals due to the elaborate one-to-one correspondence between semiochemical signals and neuronal sensory inputs. Here, we report the most extensive sample of vomeronasal receptor class 1 (V1R) sequences ever generated for a diverse yet phylogenetically coherent group of mammals, the tooth-combed primates (suborder Strepsirrhini). Phylogenetic analysis confirms our intensive sampling from a single V1R subfamily, apparently unique to the strepsirrhine primates. We designate this subfamily as V1Rstrep. The subfamily retains extensive repertoires of gene copies that descend from an ancestral gene duplication that appears to have occurred prior to the diversification of all lemuriform primates excluding the basal genus Daubentonia (the aye-aye). We refer to the descendent clades as V1Rstrep-α and V1Rstrep-β. Comparison of the two clades reveals different amino acid compositions corresponding to the predicted ligand-binding site and thus potentially to altered functional profiles between the two. In agreement with previous studies of the mouse lemur (genus, Microcebus), the majority of V1Rstrep gene copies appear to be intact and under strong positive selection, particularly within transmembrane regions. Finally, despite the surprisingly high number of gene copies identified in this study, it is nonetheless probable that V1R diversity remains underestimated in these nonmodel primates and that complete characterization will be limited until high-coverage assembled genomes are available.
Collapse
|
5
|
Charpentier MJE, Mboumba S, Ditsoga C, Drea CM. Nasopalatine ducts and flehmen behavior in the mandrill: reevaluating olfactory communication in Old World primates. Am J Primatol 2013; 75:703-14. [PMID: 23526642 DOI: 10.1002/ajp.22146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 02/04/2013] [Accepted: 02/08/2013] [Indexed: 11/06/2022]
Abstract
Compared to other modes of communication, chemical signaling between conspecifics generally has been overlooked in Old World primates, despite the presence in this group of secretory glands and scent-marking behavior, as well as the confirmed production and perception of olfactory signals. In other mammalian species, flehmen is a behavior thought to transport primarily nonvolatile, aqueous-soluble odorants via specialized ducts to the vomeronasal organ (VNO). By contrast, Old World primates are traditionally thought to lack a functional VNO, relying instead on the main olfactory system to process volatile odorants from their environment. Here, in the mandrill (Mandrillus sphinx), we document unusual morphological and behavioral traits that typically are associated with the uptake of conspecific chemical cues for processing by an accessory olfactory system. Notably, we confirmed that both sexes possess open nasopalatine ducts and, in response to the presentation of conspecific odorants, we found that both sexes showed stereotyped behavior consistent with the flehmen response. If, as in other species, flehmen in the mandrill serves to mediate social or reproductive information, we expected its occurrence to vary with characteristics of either the signaler or receiver. Flehmen, particularly in a given male, occurred most often in response to odorants derived from male, as opposed to female, conspecifics. Moreover, odorants derived during the breeding season elicited more flehmen responses than did odorants collected during the birthing season. Lastly, odorants from reproductively cycling females also elicited more responses than did odorants from contracepted females. Although confirming a link between the nasopalatine ducts, flehmen behavior, and olfactory processing in mandrills would require further study, our observations provide new information to suggest anatomical variability within Old World primates, calling further attention to the underappreciated role of chemical communication in this lineage.
Collapse
|
6
|
Dudley CA, Rajendren G, Moss RL. Induction of FOS immunoreactivity in central accessory olfactory structures of the female rat following exposure to conspecific males. Mol Cell Neurosci 2012; 3:360-9. [PMID: 19912880 DOI: 10.1016/1044-7431(92)90034-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/1992] [Indexed: 11/24/2022] Open
Abstract
Reproductive events in the female rat can be influenced by exposure to the odors of conspecific males. Much evidence indicates that these pheromonal effects are mediated by the accessory olfactory system (AOS); however, individual cells within the AOS that are stimulated following exposure to male odors have not yet been visualized. The present experiment was designed to determine the effect of exposure to conspecific males and male odors on signal transduction in central AOS neurons as measured by immunohistochemical detection of the induction of the fos-like protein. AOS structures examined included the accessory olfactory bulb (AOB), medial amygdala (mAMYG), and bed nucleus of the stria terminalis (BNST). Due to its importance in the control of reproductive activities and its direct link to the AOS, the ventromedial nucleus of the hypothalamus (VMH) was also examined. Adult, ovariectomized rats were injected with estradiol benzoate (EB) and 48 h later were placed in cages containing bedding material soiled by conspecific males or placed in cages containing clean bedding material. After exposure durations ranging from 10 to 180 min, the animals were sacrificed and the brains were immunohistochemically processed for detection of fos-like immunoreactivity. Another group of ovariectomized, EB-injected females was repeatedly paired with conspeciflc males for 15 min followed by 15 min of rest. Repeated matings were conducted over a 60-, 120-, or 180-min period while control animals were repeatedly exposed to clean bedding material. Quantitative analysis of the number of fos-immunopositive cells in the AOB revealed that continuous exposure to male-soiled bedding or repeated mating resulted in significant induction of foslike immunoreactivity compared to controls. Both treatments produced similar numbers of fos-like immunoreactive cells in the mitral and granule cell layers of the AOB. Fos induction was apparent after 60 min of treatment but was more prominent at 120 and 180 min. In the mAMYG, BLAST, and VMH, differences between the two treatments were noted. Exposure to male-soiled bedding for 60 min produced scattered staining in the mAMYG, BLAST, and VMH, whereas 60 min of repetitive mating resulted in a more dense distribution of fos-like immunoreactive cells in these areas. Strikingly distinct patterns of fos-like immunoreactive cells were observed in the mAMYG, BLAST, and VMH following 120 or 180 min of repetitive mating. These patterns were not present in animals exposed to male odors. The findings indicate that exposure of female rats to reproductively relevant stimuli resulted in induction of fos-like immunoreactivity within the AOS and that both olfactory and nonolfactory cues probably contributed to this effect.
Collapse
Affiliation(s)
- C A Dudley
- University of Texas Southwestern Medical Center, Department of Physiology, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9040, USA
| | | | | |
Collapse
|
7
|
Yang H, Shi P. Molecular and evolutionary analyses of formyl peptide receptors suggest the absence of VNO-specific FPRs in primates. J Genet Genomics 2011; 37:771-8. [PMID: 21193155 DOI: 10.1016/s1673-8527(09)60094-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 11/27/2022]
Abstract
Formyl peptide receptors (FPRs) were observed to expand in rodents and were recently suggested as candidate vomeronasal chemosensory receptors. Since vomeronasal chemosensory receptors usually underwent positive selection and evolved concordantly with the vomeronasal organ (VNO) morphology, we surveyed FPRs in primates in which VNO morphology is greatly diverse and thus it would provide us a clearer view of VNO-FPRs evolution. By screening available primate genome sequences, we obtained the FPR repertoires in representative primate species. As a result, we did not find FPR family size expansion in primates. Further analyses showed no evolutionary force variance between primates with or without VNO structure, which indicated that there was no functional divergence among primates FPRs. Our results suggest that primates lack the VNO-specific FPRs and the FPR expansion is not a common phenomenon in mammals outside rodent lineage, regardless of VNO complexity.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | |
Collapse
|
8
|
Abstract
Accessory olfaction is defined as the chemoreceptive system that employs the vomeronasal complex (VNC) and its distinct central projections to the accessory olfactory bulb (AOB) and limbic/cortical systems. Comparisons of the structural and functional features of primate accessory olfaction can now be made at many levels. Advances in the understanding of molecular mechanisms of odorant transfer and detection, physiological analyses of signal processing, and appreciation of ontogenetic timetables have clarified the contribution of accessory chemoreception to the sensory map. Two principal functions dominate: the decoding of social information through the uptake of signals (often fluid-borne), and the provision of an essential pathway for the "migration" of presumptive neurocrine (GnRH) cells from the olfactory placode to the hypothalamus. VN "smelling" (vomerolfaction) is now seen to overlap with primary olfaction. Both systems detect signal compounds along the spectrum of volatility/molecular weight, and neither is an exclusive sensor. Both main and accessory chemoreception seem to require collaborative molecular devices to assist in odorant transfer (binding proteins) and (for the VNO) signal recognition (MHC1 proteins). Most adaptive-selective features of primate chemocommunication variously resemble those of other terrestrial mammals. VN function, along with its genome, has been maintained within the Strepsirrhines and tarsiers, reduced in Platyrrhines, and nearly extinguished at the Catarrhine up to hominin levels. It persists as an intriguing ancient sense that retains key features of past evolutionary events.
Collapse
Affiliation(s)
- C S Evans
- Glasgow Caledonian University, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
9
|
Kinzinger JH, Johnson EW, Bhatnagar KP, Bonar CJ, Burrows AM, Mooney MP, Siegel MI, Smith TD. Comparative study of lectin reactivity in the vomeronasal organ of human and nonhuman primates. ACTA ACUST UNITED AC 2005; 284:550-60. [PMID: 15880783 DOI: 10.1002/ar.a.20194] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The main and accessory olfactory systems of certain mammals (e.g., rodents, ungulates, and carnivores) have been investigated using lectin histochemistry to probe for sugar residues that may reflect physiological aspects of signal transduction or development. Morphologically, the vomeronasal organs (VNOs) of strepsirrhine primates (lemurs and lorises) are typical of functional VNOs in other mammals, whereas in humans and chimpanzees the VNOs appear vestigial. However, the human VNO is considered functional by some authors. To elucidate the cellular nature of the VNO in human and chimpanzees, a panel of six lectins (Con-A, ECL, PNA, RCA, s-WGA, and UEA-1) was applied to the VNO in eight species of primates, including humans and chimpanzees. The results indicated that there were few, if any, lectin-reactive cells in the human or chimpanzee VNO that resembled those seen in the vomeronasal neuroepithelium in other primates. The overall pattern of lectin reactivity in the human and chimpanzee VNO is unlike that seen in mammals with chemosensory VNOs, suggesting that the VNO of these hominoids does not function similarly to that of other primates.
Collapse
Affiliation(s)
- Jonathan H Kinzinger
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania 16057, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cayetanot F, Némoz-Bertholet F, Aujard F. Age effects on pheromone induced Fos expression in olfactory bulbs of a primate. Neuroreport 2005; 16:1091-5. [PMID: 15973154 DOI: 10.1097/00001756-200507130-00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the gray mouse lemur, a prosimian primate, aging is associated with a reduction of olfactory behaviors and sexual stimulation. To assess the effect of aging on the central response to pheromone stimulation in this primate, we measured the c-fos expression in the main and accessory olfactory bulbs of adult and aged male mouse lemurs, following exposure to the volatile phase of urine from proestrous females. In adults, pheromone exposure increased the number of Fos-positive neurons in the main olfactory bulb without changes in the accessory olfactory bulb. Fos expression was not increased by the odorant stimulation in aged mouse lemurs. Our results may explain the age-related decrease in behaviors associated with olfactory stimulation in this primate.
Collapse
Affiliation(s)
- Florence Cayetanot
- Ecophysiology, CNRS/MNHN UMR 5176, 4 Avenue du petit Château, 91800 Brunoy, France
| | | | | |
Collapse
|
11
|
Séguy M, Perret M. Changes in olfactory inputs modify the energy balance response to short days in male gray mouse lemurs. Physiol Behav 2005; 84:23-31. [PMID: 15642603 DOI: 10.1016/j.physbeh.2004.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 10/07/2004] [Indexed: 11/19/2022]
Abstract
The role of olfaction/olfactory cues on photoperiodic responses was assessed in Malagasy primate, the gray mouse lemur. When exposed to short photoperiod (SP), this primate demonstrates rapid changes in energy balance as adaptive anticipatory response for winter survival. To follow early changes induced by SP exposure, body mass, food intake, resting metabolism (RMR) and free thyroxin levels in plasma (T4) were measured in males abruptly transferred to SP: six intact males (controls), eight males that underwent bilateral olfactory removal (BOX) and eight males exposed to male urinary cues (U-exposed). To assess the effect of SP exposure, two other groups were maintained for 6 weeks under LP: six controls and six BOX males. Whereas all studied parameters remained constant in controls and BOX males maintained under LP, exposure to SP led to different responses according to groups. In controls, SP exposure led to a regular increase in body mass and after 4 weeks under SP, plasma T4 levels, food consumption and RMR significantly decreased. Even if BOX males demonstrated hyperphagic patterns regardless of the photoperiod, an increase in body mass was also induced by SP exposure but without changes in RMR or food intake that were body mass-dependent. In U-exposed males, body mass gain was significantly reduced while food intake and RMR remained high. In both BOX and U-exposed males, SP exposure led to a transient but high increase in T4 levels compared to controls. These results suggest that olfaction/olfactory cues may delay the SP-mediated changes in energy balance.
Collapse
Affiliation(s)
- M Séguy
- Département d'Ecologie et de Gestion de la Biodiversité, CNRS -MNHN 8571, 4 avenue du petit château, F-91800 Brunoy, France.
| | | |
Collapse
|
12
|
Smith TD, Dennis JC, Bhatnagar KP, Bonar CJ, Burrows AM, Morrison EE. Ontogenetic observations on the vomeronasal organ in two species of tamarins using neuron-specific beta-tubulin III. ACTA ACUST UNITED AC 2004; 278:409-18. [PMID: 15103735 DOI: 10.1002/ar.a.20035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Callitrichid primates (tamarins, marmosets) have extreme variation in the vomeronasal organ (VNO), including ontogenetic differences in the neuroepithelium and vomeronasal duct (VND) patency at birth. Such differences render the timing and extent of VNO maturation debatable in callitrichids, but no studies have used neuron-specific immunohistochemical markers to address this question. The present study compared the number of VNO epithelial cells that express immunoreactivity to neuron-specific beta-tubulin III (BT), VNO length, and VNO cross-sectional area between two species of tamarins (Leontopithecus rosalia and Saguinus geoffroyi) that differed in perinatal VND patency. Neonatal lemurs and adult marmosets and bushbabies were also examined for a comparison to species previously shown to have a relatively large amount of VNO neuroepithelium and patent VNDs. The head of each specimen was serially sectioned in the coronal plane. Based on known rostrocaudal start/stop points of the VNO, selected unstained sections were used for BT protocols and area measurement at three percentiles (25th, 50th, 75th) in each specimen. Each section was photographed and enlarged for cell counts and measurement of cross-sectional epithelial area. In each specimen, the number of BT(+) cells in the VNO was counted at each percentile and expressed as a number per mm(2). Results indicated that lemur VNOs had a dense population of BT(+) cells at birth, but the VNO was more varied in the tamarin species. S. geoffroyi had few or no BT(+) cells in VNOs of neonates, which had fused VNDs, but had an increased BT(+) population by 1 and 2 months postnatal age, when the VND was patent. Of the species with patent VNDs at birth, neonatal L. rosalia had a denser population of BT(+) cells compared to S. geoffroyi, though not to the degree seen in neonatal lemurs or adult marmosets and bushbabies. These findings show that BT immunohistochemistry is a useful comparative method for the study of VNOs in subadult primates. Since the quantity of nonsensory VNO epithelium varies substantially between species, epithelial area measurements may be misleading, and BT(+) cell counts appeared to be the best quantitative method for comparing receptor neuron numbers among primates. It is suggested that the greater BT(+) cell population in L. rosalia at all subadult stages examined reveals an earlier maturation of the neuroepithelium compared to S. geoffroyi. Further investigation should consider whether this may relate to a comparatively brief subadult ontogeny and early onset of adult behaviors in L. rosalia compared to other tamarins studied to date.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA 16057, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Smith TD, Bhatnagar KP, Bonar CJ, Shimp KL, Mooney MP, Siegel MI. Ontogenetic characteristics of the vomeronasal organ in Saguinus geoffroyi and Leontopithecus rosalia, with comparisons to other primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2003; 121:342-53. [PMID: 12884316 DOI: 10.1002/ajpa.10165] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It has been suggested that the variability of the primate vomeronasal organ (VNO) may be greater than previously thought, especially among New World monkeys. It is not clear to what extent VNO variation reflects ontogenetic, functional, or phylogenetic differences among primates. The present study investigated VNO anatomy in an ontogenetic series of two genera of callitrichid primates, in order to assess recent attempts to develop VNO character states and to examine the evidence for VNO functionality at different life stages. A sample of six Leontopithecus rosalia, one L. chrysomelas, and six Saguinus geoffroyi was serially sectioned and stained using various methods. Two adult Callithrix jacchus were also sectioned for comparative purposes. The VNO of each primate was examined by light microscopy along its entire rostrocaudal extent. VNOs of the tamarins were described to determine whether they fit into 1 of 3 character states recently attributed to various New World monkeys. At birth, the two species of tamarins differed in the nature of communication between the VNO and nasopalatine duct (NPD). Two of 3 neonatal S. geoffroyi exhibited a fused VNO duct in a more dorsal position (adjacent to the nasal cavity) compared to that of L. rosalia. The VNO duct communicated with the NPD and was patent in neonatal L. rosalia. Both species appeared to have an age-related increase in the amount of sensory epithelium in the VNO. Subadult L. rosalia had caudal regions of the VNO that were exceptionally well-developed, similar to those of strepsirhine primates. Compared to subadults, all adult callitrichids appeared to have more ventral communications of the VNO duct directly into the NPD. Adult S. geoffroyi and L. chrysomelas both had VNO sensory epithelium separated by multiple patches of nonsensory epithelium. This contrasted with the VNOs of C. jacchus, which had a nearly continuous distribution of receptors on all surfaces of the VNO. The findings indicate that tamarins have delayed maturation of the VNO epithelium, and that some species have little or no perinatal function. These results also suggest that ontogenetic changes in craniofacial form may alter the position of the VNO in tamarins. The present study supports the use of at least two character states to categorize the VNO of various callitrichids, but it is suggested that one of these, previously called "reduced sensory epithelium" should be instead termed "interrupted sensory epithelium." The distribution of VNO sensory epithelium does not appear to reflect phylogenetic influences; it is more likely a functional characteristic that varies throughout postnatal life. Therefore, this chemosensory system has a high degree of plasticity relating to age and function, which in some instances can confound the use of characteristics as phylogenetic traits. Further study is needed to quantify VNO receptors in various species to determine if functional differences exist and if some species have more precocious VNO function than others.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania 16057, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Krishna NS, Getchell ML, Getchell TV. Expression of the putative pheromone and odorant transporter vomeromodulin mRNA and protein in nasal chemosensory mucosae. J Neurosci Res 1994; 39:243-59. [PMID: 7869418 DOI: 10.1002/jnr.490390303] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In nasal chemosensory systems, glandular proteins associated with the vomeronasal and olfactory epithelia perform specific perireceptor functions associated with sensory transduction. Vomeromodulin, a recently identified glycoprotein synthesized by the lateral nasal glands, is proposed to be a pheromone transporter (Khew-Goodall et al., FASEB J 5:2976-2982, 1991). In our study, we have investigated its expression in vomeronasal, olfactory, and respiratory nasal mucosae of rats and humans using in situ hybridization and immunocytochemical techniques. In the rat, vomeromodulin mRNA and protein were localized abundantly in the glandular acini of the maxillary sinus component of the lateral nasal glands. In addition, the vomeronasal and posterior glands of the nasal septum also expressed vomeromodulin mRNA and protein. Vomeromodulin immunoreactivity was localized extracellularly in the mucus of the sensory and non-sensory epithelia of the vomeronasal organ, and in the mucociliary complex of the olfactory, respiratory, and associated nasal epithelia. In human nasal mucosae, vomeromodulin immunoreactivity was localized in the mucociliary complex of the vomeronasal and respiratory epithelia. Comparison of the localization of vomeromodulin with that of odorant-binding protein, which is also synthesized in the lateral nasal glands of rats, revealed that odorant-binding protein was expressed in a completely separate glandular region, namely the ventral component. In the septal glands, vomeromodulin was expressed in the posterior glands whereas odorant-binding protein was localized in the anterior glands. Odorant-binding protein immunoreactivity was not observed in the vomeronasal glands. In contrast, both proteins were localized in the mucus of vomeronasal, olfactory, and respiratory epithelia. Our results suggest that vomeromodulin, like odorant-binding protein, functions as a chemosensory stimulus transporter associated with perireceptor processes in vomeronasal and olfactory transduction.
Collapse
Affiliation(s)
- N S Krishna
- Department of Physiology, (M.L.G., T.V.G.), University of Kentucky College of Medicine, Lexington, 40536
| | | | | |
Collapse
|
15
|
Holtzman DA, Gordon E, Halpern M. Developmental changes in cytochrome oxidase histochemistry in the main and accessory olfactory bulbs of embryonic and neonatal garter snakes (Thamnophis sirtalis spp.). J Morphol 1993; 218:323-32. [PMID: 7506313 DOI: 10.1002/jmor.1052180307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Developmental studies examining the changes in oxidative metabolic activity are useful for understanding how and if the vomeronasal and olfactory systems respond to stimulation during embryogenesis. Garter snakes are good candidates for examining the potential functionality of the vomeronasal system in utero. In adult garter snakes, the vomeronasal system mediates many behaviors. Neonatal garter snakes exhibit these same behaviors, and the vomeronasal system has been shown to mediate feeding behavior in neonates. Using cytochrome oxidase histochemistry, we examined changes in the oxidative metabolic activity of main and accessory olfactory bulbs of embryonic and neonatal garter snakes (Thamnophis sirtalis sirtalis and T. s. parietalis). Cytochrome oxidase staining is greater in the accessory olfactory bulb than in the main olfactory bulb of embryonic garter snakes. However, neonates show no differences in the staining of the accessory and main olfactory bulbs, suggesting a change in the stimulation of the main olfactory bulb after birth. This is the first report of cytochrome oxidase histochemistry in reptiles and in the vomeronasal system of embryonic vertebrates.
Collapse
Affiliation(s)
- D A Holtzman
- State University of New York Health Science Center at Brooklyn 11203
| | | | | |
Collapse
|
16
|
Meredith M. Sensory processing in the main and accessory olfactory systems: comparisons and contrasts. J Steroid Biochem Mol Biol 1991; 39:601-14. [PMID: 1892791 DOI: 10.1016/0960-0760(91)90258-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The vomeronasal organ (VNO) and accessory olfactory system (AOS) are present in most terrestrial vertebrates except birds and higher primates. The receptor neurons of the AOS are sequestered inside the VNO, away from the main airflow to the main olfactory receptor neurons. Mechanisms of stimulus access to the sensory neurons vary across species but in most cases there is a system for delivering stimuli faster than would be possible by diffusion. Vomeronasal (VN) receptor neurons typically lack cilia, the site of most of the transduction apparatus in the main olfactory receptors. The VN receptor neurons have a restricted but privileged pathway to the areas of the brain concerned with reproduction and social behavior. In contrast, the main olfactory neurons have a broad pathway to wide areas of the brain, including the neocortex. Experiments where the VNOs or other parts of the accessory olfactory pathway were ablated indicate that the system is important in many behavioral and physiological responses to pheromones (chemical signals carrying information about gender or reproductive or dominance status), some of which may be proteins. VN sensory neurons respond to both volatile and non-volatile stimuli. There is no evidence in the vertebrate AOS for the extreme sensitivity or selectivity characteristic of insect pheromone detectors, but this has not been adequately tested. There is some evidence for learning, possibly by synaptic modification at the second-order neuron level. Social and reproductive cues stimulating the AOS often elicit an intracerebral release of LHRH--which may act at receptors different from those of the pituitary to facilitate behavior. Whether the LHRH release is necessary for AOS-mediated behavioral response is not yet clear.
Collapse
Affiliation(s)
- M Meredith
- Department of Biological Science, Florida State University, Tallahassee 32306-3050
| |
Collapse
|