1
|
Polysialylation and disease. Mol Aspects Med 2020; 79:100892. [PMID: 32863045 DOI: 10.1016/j.mam.2020.100892] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Polysialic acid (polySia, PSA) is a unique constituent of the glycocalyx on the surface of bacterial and vertebrate cells. In vertebrates, its biosynthesis is highly regulated, not only in quantity and quality, but also in time and location, which allows polySia to be involved in various important biological phenomena. Therefore, impairments in the expression and structure of polySia sometimes relate to diseases, such as schizophrenia, bipolar disorder, and cancer. Some bacteria express polySia as a tool for protecting themselves from the host immune system during invasion. PolySia is proven to be a biosafe material; polySia, as well as polySia-recognizing molecules, are key therapeutic agents. This review first comprehensive outlines the occurrence, features, biosynthesis, and functions of polySia and subsequently focuses on the related diseases.
Collapse
|
2
|
Abstract
Sialic acid (Sia) is involved in many biological activities and commonly occurs as a monosialyl residue at the nonreducing terminal end of glycoconjugates. The loss of activity of UDP-GlcNAc2-epimerase/ManNAc kinase, which is a key enzyme in Sia biosynthesis, is lethal to the embryo, which clearly indicates the importance of Sia in embryogenesis. Occasionally, oligo/polymeric Sia structures such as disialic acid (diSia), oligosialic acid (oligoSia), and polysialic acid (polySia) occur in glycoconjugates. In particular, polySia, a well-known epitope that commonly occurs in neuroinvasive bacteria and vertebrate brains, is one of the most well-known and biologically/neurologically important glycotopes in vertebrates. The biological effects of polySia, especially on neural cell-adhesion molecules, have been well studied, and in-depth knowledge regarding polySia has been accumulated. In addition, the importance of diSia and oligoSia epitopes has been reported. In this chapter, the recent advances in the study of diSia, oligoSia, and polySia residues in glycoproteins in neurology, and their history, definition, occurrence, analytical methods, biosynthesis, and biological functions evaluated by phenotypes of gene-targeted mice, biochemical features, and related diseases are described.
Collapse
|
3
|
Seco-Rovira V, Beltrán-Frutos E, Martínez-Hernández J, Ferrer C, Pastor LM. The Use of Lectin Histochemistry for Detecting Apoptotic Cells in the Seminiferous Epithelium. Methods Mol Biol 2017; 1560:133-144. [PMID: 28155150 DOI: 10.1007/978-1-4939-6788-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Lectin histochemistry is commonly used to characterize the pattern of glycoconjugates in cells and tissues. Recent studies show that alterations in these glycoconjugates are associated with the entry of cells into apoptosis. A widely used technique for the detection of apoptotic cell death is TUNEL. In this chapter, we study the sensitivity of both techniques to identify apoptotic cells in the testis of photo-inhibited Syrian hamster.
Collapse
Affiliation(s)
- Vicente Seco-Rovira
- Department of Cell Biology and Histology, School of Medicine, IMIB-Arrixaca, University of Murcia, Regional Campus of International Excellence, Campus Mare Nostrum, Espinardo, Murcia, 30100, Spain
| | - Ester Beltrán-Frutos
- Department of Cell Biology and Histology, School of Medicine, IMIB-Arrixaca, University of Murcia, Regional Campus of International Excellence, Campus Mare Nostrum, Espinardo, Murcia, 30100, Spain
| | - Jesús Martínez-Hernández
- Department of Cell Biology and Histology, School of Medicine, IMIB-Arrixaca, University of Murcia, Regional Campus of International Excellence, Campus Mare Nostrum, Espinardo, Murcia, 30100, Spain
| | - Concepción Ferrer
- Department of Cell Biology and Histology, School of Medicine, IMIB-Arrixaca, University of Murcia, Regional Campus of International Excellence, Campus Mare Nostrum, Espinardo, Murcia, 30100, Spain
| | - Luis Miguel Pastor
- Department of Cell Biology and Histology, School of Medicine, IMIB-Arrixaca, University of Murcia, Regional Campus of International Excellence, Campus Mare Nostrum, Espinardo, Murcia, 30100, Spain.
| |
Collapse
|
4
|
Mörgelin M. Negative Staining and Transmission Electron Microscopy of Bacterial Surface Structures. Methods Mol Biol 2017; 1535:211-217. [PMID: 27914081 DOI: 10.1007/978-1-4939-6673-8_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Negative staining is an essential and versatile staining technique in transmission electron microscopy that can be employed for visualizing bacterial cell morphology, size, and surface architecture at high resolution. Bacteria are usually transferred by passive electrostatic adsorption from suspensions in physiological saline onto suitable hydrophilic support films on electron microscopic grids. There they are contrasted, or "stained," by heavy metal ions in solution such as tungsten, uranyl, molybdate, or vanadate compounds. Here, I describe how to visualize the interaction between the bacterial M1 protein and complement factors C1q and C3 on the surface of group A streptococcus by negative staining with uranyl formate on carbon support films. The methodology should be generally applicable to the study of a large number of other bacteria-protein interactions.
Collapse
Affiliation(s)
- Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, BMC B14, SE-221 84, Lund, Sweden.
| |
Collapse
|
5
|
Wilkat M, Herdoiza E, Forsbach-Birk V, Walther P, Essig A. Electron tomography and cryo-SEM characterization reveals novel ultrastructural features of host-parasite interaction during Chlamydia abortus infection. Histochem Cell Biol 2014; 142:171-84. [PMID: 24522393 DOI: 10.1007/s00418-014-1189-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2014] [Indexed: 01/06/2023]
Abstract
Chlamydia (C.) abortus is a widely spread pathogen among ruminants that can be transmitted to women during pregnancy leading to severe systemic infection with consecutive abortion. As a member of the Chlamydiaceae, C. abortus shares the characteristic feature of an obligate intracellular biphasic developmental cycle with two morphological forms including elementary bodies (EBs) and reticulate bodies (RBs). In contrast to other chlamydial species, C. abortus ultrastructure has not been investigated yet. To do so, samples were fixed by high-pressure freezing and processed by different electron microscopic methods. Freeze-substituted samples were analysed by transmission electron microscopy, scanning transmission electron microscopical tomography and immuno-electron microscopy, and freeze-fractured samples were analysed by cryo-scanning electron microscopy. Here, we present three ultrastructural features of C. abortus that have not been reported up to now. Firstly, the morphological evidence that C. abortus is equipped with the type three secretion system. Secondly, the accumulation and even coating of whole inclusion bodies by membrane complexes consisting of multiple closely adjacent membranes which seems to be a C. abortus specific feature. Thirdly, the formation of small vesicles in the periplasmic space of RBs in the second half of the developmental cycle. Concerning the time point of their formation and the fact that they harbour chlamydial components, these vesicles might be morphological correlates of an intermediate step during the process of redifferentiation of RBs into EBs. As this feature has also been shown for C. trachomatis and C. pneumoniae, it might be a common characteristic of the family of Chlamydiaceae.
Collapse
Affiliation(s)
- M Wilkat
- Institute of Medical Microbiology and Hygiene, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany,
| | | | | | | | | |
Collapse
|
6
|
Philimonenko VV, Philimonenko AA, Šloufová I, Hrubý M, Novotný F, Halbhuber Z, Krivjanská M, Nebesářová J, Šlouf M, Hozák P. Simultaneous detection of multiple targets for ultrastructural immunocytochemistry. Histochem Cell Biol 2014; 141:229-39. [PMID: 24449180 PMCID: PMC3935117 DOI: 10.1007/s00418-013-1178-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2013] [Indexed: 11/25/2022]
Abstract
Simultaneous detection of biological molecules by means of indirect immunolabeling provides valuable information about their localization in cellular compartments and their possible interactions in macromolecular complexes. While fluorescent microscopy allows for simultaneous detection of multiple antigens, the sensitive electron microscopy immunodetection is limited to only two antigens. In order to overcome this limitation, we prepared a set of novel, shape-coded metal nanoparticles readily discernible in transmission electron microscopy which can be conjugated to antibodies or other bioreactive molecules. With the use of novel nanoparticles, various combinations with commercial gold nanoparticles can be made to obtain a set for simultaneous labeling. For the first time in ultrastructural histochemistry, up to five molecular targets can be identified simultaneously. We demonstrate the usefulness of the method by mapping of the localization of nuclear lipid phosphatidylinositol-4,5-bisphosphate together with four other molecules crucial for genome function, which proves its suitability for a wide range of biomedical applications.
Collapse
Affiliation(s)
- V V Philimonenko
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14200, Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Immunogold cytochemistry in neuroscience. Nat Neurosci 2013; 16:798-804. [PMID: 23799472 DOI: 10.1038/nn.3418] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/06/2013] [Indexed: 02/08/2023]
Abstract
The complexity of the central nervous system calls for immunocytochemical procedures that allow target proteins to be localized with high precision and with opportunities for quantitation. Immunogold procedures stand out as particularly powerful in this regard. Although these procedures have found wide application in the neuroscience community, they present limitations and pitfalls that must be taken into account. At the same time, these procedures offer potentials that remain to be fully realized.
Collapse
|
8
|
Hanson HH, Reilly JE, Lee R, Janssen WG, Phillips GR. Streamlined embedding of cell monolayers on gridded glass-bottom imaging dishes for correlative light and electron microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2010; 16:747-54. [PMID: 20961484 PMCID: PMC2995264 DOI: 10.1017/s1431927610094092] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Correlative light and electron microscopy (CLEM) has facilitated study of intracellular trafficking. Routine application of CLEM would be advantageous for many laboratories but previously described techniques are particularly demanding, even for those with access to laser scanning confocal microscopy (LSCM) and transmission electron microscopy (TEM). We describe streamlined methods for TEM of green fluorescent protein (GFP)-labeled organelles after imaging by LSCM using gridded glass bottom imaging dishes. GFP-MAP 1A/1B LC3 (GFP-LC3) transfected cells were treated with rapamycin, fixed and imaged by LSCM. Confocal image stacks were acquired enabling full visualization of each GFP-LC3 labeled organelle. After LSCM, cells were embedded for TEM using a simplified two step method that stabilizes the glass bottom such that the block can be separated from the glass by mild heating. All imaging and TEM processing are performed in the same dish. The LSCM imaged cells were relocated on the block and serial sectioned. Correlation of LSCM, DIC, and TEM images was facilitated by cellular landmarks. All GFP labeled structures were successfully reidentified and imaged by serial section TEM. This method could make CLEM more accessible to nonspecialized laboratories with basic electron microscopy expertise and could be used routinely to confirm organelle localization of fluorescent puncta.
Collapse
Affiliation(s)
- Hugo H Hanson
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
9
|
Powell RD, Hainfeld JF. Preparation and high-resolution microscopy of gold cluster labeled nucleic acid conjugates and nanodevices. Micron 2010; 42:163-74. [PMID: 20869258 DOI: 10.1016/j.micron.2010.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 11/15/2022]
Abstract
Nanogold and undecagold are covalently linked gold cluster labels which enable the identification and localization of biological components with molecular precision and resolution. They can be prepared with different reactivities, which means they can be conjugated to a wide variety of molecules, including nucleic acids, at specific, unique sites. The location of these sites can be synthetically programmed in order to preserve the binding affinity of the conjugate and impart novel characteristics and useful functionality. Methods for the conjugation of undecagold and Nanogold to DNA and RNA are discussed, and applications of labeled conjugates to the high-resolution microscopic identification of binding sites and characterization of biological macromolecular assemblies are described. In addition to providing insights into their molecular structure and function, high-resolution microscopic methods also show how Nanogold and undecagold conjugates can be synthetically assembled, or self-assemble, into supramolecular materials to which the gold cluster labels impart useful functionality.
Collapse
Affiliation(s)
- Richard D Powell
- Nanoprobes, Incorporated, 95 Horseblock Road, Unit 1, Yaphank, NY 11980, United States.
| | | |
Collapse
|
10
|
Lucocq JM, Gawden-Bone C. Quantitative assessment of specificity in immunoelectron microscopy. J Histochem Cytochem 2010; 58:917-27. [PMID: 20458060 DOI: 10.1369/jhc.2010.956243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In immunoelectron microscopy (immuno-EM) on ultrathin sections, gold particles are used for localization of molecular components of cells. These particles are countable, and quantitative methods have been established to estimate and evaluate the density and distribution of "raw" gold particle counts from a single uncontrolled labeling experiment. However, these raw counts are composed of two distinct elements: particles that are specific (specific labeling) and particles that are not (nonspecific labeling) for the target component. So far, approaches for assessment of specific labeling and for correction of raw gold particle counts to reveal specific labeling densities and distributions have not attracted much attention. Here, we discuss experimental strategies for determining specificity in immuno-EM, and we present methods for quantitative assessment of (1) the probability that an observed gold particle is specific for the target, (2) the density of specific labeling, and (3) the distribution of specific labeling over a series of compartments. These methods should be of general utility for researchers investigating the distribution of cellular components using on-section immunogold labeling.
Collapse
Affiliation(s)
- John Milton Lucocq
- Division of Cell Biology and Immunology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, Scotland, UK.
| | | |
Collapse
|
11
|
Abstract
A method for achieving both the light and electron microscopic observations of the same immunolabeled semithin section is described. Mild ion etching (IE) was performed on the semithin LR white resin sections of rat pancreas to evaluate conditions for scanning electron microscopic secondary electron image observations. Before immunocytochemical staining, very mild, rapid etching was conducted as follows: ionization voltage 300 V, operating vacuum 35 Pa, and etching time 1 min, employing an ion coater above sections on glass slides. The sections were immunohistochemically stained with anti-insulin and immunogold in association with silver enhancement techniques for light microscopic observation, in which B cells in pancreatic islets were positively stained brown. Subsequently, essential mild IE was performed over the stained section as follows: 350 V, 38 Pa, 29 min. The samples were coated with platinum for scanning electron microscopic secondary electron images, in which the cores of secretory granules of the B cells were positively labeled with gold-silver particles. The present method is suitable for detection of substances involving immunogold labeling. It enables us to obtain high-resolution images at low magnification that can be correlated with light microscopic observations. Middle to high magnifications are applicable for detailed observations with secondary electron imaging scanning electron microscopy.
Collapse
Affiliation(s)
- Junko Yahiro
- Department of Morphological Biology, Fukuoka Dental College, Sawara-ku Fukuoka, Japan.
| | | |
Collapse
|
12
|
Bakalova R, Ohba H. Interaction of soybean agglutinin with leukemic T-cells and its use for their in vitro separation from normal lymphocytes by lectin-affinity chromatography. Biomed Chromatogr 2003; 17:239-49. [PMID: 12833389 DOI: 10.1002/bmc.218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A procedure for separation of leukemic T-cells from normal lymphocytes, using lectin-affinity column chromatography, is described. CNBr-activated Sepharose 6MB was used as a non-mobile phase. The gel was covalently coupled with soybean agglutinin (SBA), then served as an affinity probe for fractionation of mixture of normal lymphocytes and leukemic cells. Leukemic cell lines, derived from acute lymphoblastic leukemia (Jurkat, MOLT-4, RPMI-8402), were tested. The elution of normal lymphocytes was carried out by PBS(-). The leukemic T-cells, interacting with SBA, were removed by N-acetyl-D-galactosamine or low-concentration acetic acid. The type and viability of the separated cell fractions were analyzed by flow cytometry and fluorescent microscopy, using adequate fluorescent antibodies. The interaction of leukemic T-cells with free SBA, as well as with SBA-conjugated Sepharose beads, was examined fluorimetrically and visualized by fluorescent microscopy, using FITC-SBA as a marker. The rate of cell elution on SBA-affinity column decreased in order: normal > leukemic T-cells. Both normal lymphocytes and leukemic T-cells were removed in a mixture from SBA-free Sepharose 6MB by PBS(-) and were not fractionated discretely. The leukemic T-cells specifically interacted with SBA as well as with SBA-affinity adsorbent. In contrast, the normal lymphocytes did not interact with free SBA as well as with SBA-conjugated Sepharose beads in the concentrations applied. The method potentially combines a discrete cell fractionation with manifestation of a specific target cytotoxicity of SBA against leukemic T-cells, without any influence on normal lymphocytes.
Collapse
Affiliation(s)
- R Bakalova
- Natural Substance-Composed Materials Group, Institute for Structural and Engineering Materials, Kyushu, 807-1 Shuku-machi, Tosu, Saga-ken 841-0052, Japan.
| | | |
Collapse
|
13
|
Tang W, Mafune K, Nakata M, Konishi T, Kojima N, Mizuochi T, Makuuchi M. Association of histochemical expression of Maackia amurensis leukoagglutinin-positive glycoconjugates with behaviour of human gastric cancer. Histopathology 2003; 42:239-45. [PMID: 12605643 DOI: 10.1046/j.1365-2559.2003.01557.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the relationship between sialylation of glycoconjugates and clinicopathological characteristics of gastric cancer. METHODS AND RESULTS Sialylation of glycoconjugates was examined histochemically in 71 gastric cancers using Maackia amurensis leukoagglutinin (MAL), a lectin that recognizes the trisaccharide sequence NeuAc alpha 2,3Gal beta 1,4GlcNAc/Glc. Positive staining with MAL was observed in the tumour region of all of the samples, but the populations of MAL-positive tumour cells in the tumour region varied among the samples. In the corresponding non-cancerous regions, however, no positive staining was observed. Calculating the percentage of MAL-positive tumour cells as part of the total tumour cells with respect to the MAL-staining index (MI) allowed the gastric cancer to be classified into two distinct groups: high and low levels of MI, with a cut-off level of 40% of MI. Furthermore, statistical analyses using the MI level and clinicopathological characteristics of the tumour indicated that a high MI level in gastric tumour tissues is related to a poorer prognosis. CONCLUSIONS The appearance of MAL-positive glycoconjugates in gastric tumour cells is associated with the behaviour of gastric cancer.
Collapse
Affiliation(s)
- W Tang
- Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang F, Goto M, Kim YS, Higashi M, Imai K, Sato E, Yonezawa S. Altered GalNAc-alpha-2,6-sialylation compartments for mucin-associated sialyl-Tn antigen in colorectal adenoma and adenocarcinoma. J Histochem Cytochem 2001; 49:1581-92. [PMID: 11724906 DOI: 10.1177/002215540104901212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sialyl-Tn (STn), a mucin-associated disaccharide antigen carried by apomucins such as MUC2, plays an important role in tumor biology. However, little is known about the subcellular localization and compartments involved in STn synthesis. In this study we used immunoelectron microscopy to localize STn and MUC2 apomucin in human colorectal tissues. MUC2 apomucin was localized predominantly in the rough endoplasmic reticulum (RER) in normal colorectal mucosa (n=6), colorectal adenoma (n=8), and colorectal adenocarcinoma (n=10). STn, recognized by monoclonal antibody TKH2, was not readily detectable in normal colorectal mucosa but becomes manifest in both trans-Golgi apparatus and mucin droplets in colorectal adenoma. In colorectal adenocarcinoma, STn was localized not only in late but also in early Golgi compartments, and particularly in some RER lumens. Furthermore, electron microscopic in situ hybridization revealed that gold particles representing MUC2 mRNA are primarily localized over the RER. Our findings indicate that in colorectal adenoma STn sialylation takes place in the trans-Golgi apparatus, whereas in colorectal cancer STn sialylation occurs in all the Golgi compartments and in the RER.
Collapse
Affiliation(s)
- F Wang
- Department of Pathology, Kagoshima University Faculty of Medicine, Kagoshima, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Matsumoto H, Natsume A, Ueda H, Saitoh T, Ogawa H. Screening of a unique lectin from 16 cultivable mushrooms with hybrid glycoprotein and neoproteoglycan probes and purification of a novel N-acetylglucosamine-specific lectin from Oudemansiella platyphylla fruiting body. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1526:37-43. [PMID: 11287120 DOI: 10.1016/s0304-4165(01)00094-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hybrid glycoprotein and neoproteoglycan probes were prepared by coupling various glycoproteins or polysaccharides to peroxidase or biotinyl bovine serum albumin, respectively. Lectins recognizable by the neoglycoconjugate probes were extracted from 16 cultivable mushrooms. Dot-blot assay revealed five extracts to be reactive with only hybrid glycoprotein probes, but others also reacted with neoproteoglycan probes. According to the reactivity pattern with probe screening, the one lectin from Oudemansiella platyphylla extract (OPL) bound best with asialotransferrin-- and asialoagalactotransferrin--peroxidase probes and was isolated using an asialotransferrin column, but it did not bind with other hybrid glycoprotein or neoproteoglycan probes. OPL, consisting of two polypeptides with high homology in the N-terminal amino acid sequences, exhibited weak hemagglutinating activity. Purified OPL specifically bound the beta-GlcNAc probe among various biotinylated polymeric sugar probes, while it exhibited essentially the same binding specificity toward neoglycoconjugate probes as that of the crude extract, showing a preference for the asialobiantennary complex type of N-linked glycans. These results indicate that the neoglycoconjugate probes are valuable in lectin screening.
Collapse
Affiliation(s)
- H Matsumoto
- Graduate School of Humanities and Sciences, Course of Advanced Biosciences, Ochanomizu University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
16
|
Veiga VF, Holandino C, Rodrigues ML, Capella MA, Menezes S, Alviano CS. Cellular damage and altered carbohydrate expression in P815 tumor cells induced by direct electric current: an in vitro analysis. Bioelectromagnetics 2000; 21:597-607. [PMID: 11102950 DOI: 10.1002/1521-186x(200012)21:8<597::aid-bem6>3.0.co;2-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Treatment with direct electric current (DC) can inhibit tumor growth in several systems. To evaluate the cellular reactions generated by this treatment, we stimulated mouse mastocytoma P815 cells with DC and examined their viability and ultrastructural characteristics, as well as the effect of DC on surface carbohydrate expression. DC treatment affected cell viability and caused marked alterations in vital structures of P815 cells. Alterations varied depending on the duration of stimulation and polarity of electrode. Anodic and cathodic treatments caused decrease in cell viability, although the latter was more effective in generating cell lysis. DC stimulation also induced changes such as membrane damage, alterations in cell shape and chromatin organization, mitochondrial swelling and condensation, cytoplasmic swelling, and matrix rarefaction. Stimulation of P815 cells without contact with electrodes produced no alterations, suggesting that this contact might be essential for the occurrence of the cellular modifications. DC treatment also altered the membrane distribution of anionic sites of P815 cells, as well as the surface carbohydrate exposition, involving a diminished binding of Concanavalin A to the cell surface after cathodic stimulation, and an increased binding of sialic acid- and fucose-specific lectins after anodic treatment. In this work we describe important cellular targets for the action of DC, which may contribute to the understanding of the mechanisms by which DC supresses several kinds of tumors.
Collapse
Affiliation(s)
- V F Veiga
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
17
|
Vallejo V, Reyes-Leyva J, Hernández J, Ramírez H, Delannoy P, Zenteno E. Differential expression of sialic acid on porcine organs during the maturation process. Comp Biochem Physiol B Biochem Mol Biol 2000; 126:415-24. [PMID: 11007184 PMCID: PMC7129425 DOI: 10.1016/s0305-0491(00)00213-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sialylated structures play important roles in cell communication, and change in a regulated manner during development and differentiation. In this work, we report the main glycosidic modifications that occur during the maturation of porcine tissues, involving the sialylation process as determined with lectins. Sialic acids were identified at several levels in a broad range of cell types of nervous, respiratory, genitourinary and lymphoid origin. Nevertheless, the most contrasting was the type of glycosidic linkage between 5-N-acetyl-neuraminic acid (Neu5Ac) and galactose (Gal) expressed in central nervous system (CNS). Newborn CNS abundantly expressed Neu5Acalpha2,3Gal, but weakly or scarcely expressed Neu5Acalpha2,6Gal/GalNAc. Maturation of CNS induced drastic changes in sialic acid expression. These changes include decrease or complete loss of NeuAcalpha2,3Gal residues, mainly in olfactory structures and brain cortex, which were replaced by their isomers Neu5Acalpha2,6Gal/GalNAc. In the brain cortex and cerebellum, the increase of Neu5Acalpha2,6Gal/GalNAc molecules was paralleled by an increase of 5-N-acetyl-9-O-acetyl-neuraminic acid (Neu5,9Ac2). In addition, terminal Gal and N-acetyl-D-galactosamine (GalNAc) residues also increased their expression in adult CNS tissues, but this was more significant in structures forming the encephalic trunk. Our results show that sialylation of porcine CNS is finely modulated throughout the maturation process.
Collapse
Affiliation(s)
- V Vallejo
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | | | | | | | | | | |
Collapse
|
18
|
Härtig W, Derouiche A, Welt K, Brauer K, Grosche J, Mäder M, Reichenbach A, Brückner G. Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res 1999; 842:15-29. [PMID: 10526091 DOI: 10.1016/s0006-8993(99)01784-9] [Citation(s) in RCA: 268] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Perineuronal nets (PNs) are known as chondroitin sulphate-rich, lattice-like coatings of the extracellular matrix. In the cortex of mammalian species investigated so far, they were mainly found around GABAergic neurons, but to a lesser degree also around pyramidal cells. Previous investigations in the rat revealed similar distribution patterns of fast-firing neurons expressing both the Kv3.1b subunit of voltage-gated potassium channels and the calcium-binding protein parvalbumin. In the present study, triple fluorescence labelling was applied for the simultaneous demonstration of PNs with the N-acetylgalactosamine-specific Wisteria floribunda agglutinin (WFA), parvalbumin-immunoreactivity (ir) with a monoclonal antibody and of Kv3.1b-ir with several rabbit antibodies. Subsets of non-pyramidal neurons - enwrapped by PNs and expressing parvalbumin and Kv3.1b - were detected in the rat and monkey neocortex and hippocampus. In the rat, faintly stained PNs were additionally found around several layer II/III and V pyramidal cells immunonegative for Kv3.1b, but contacted by Kv3.1b-containing boutons. In the monkey, more intensely labelled PNs frequently occurred around pyramidal cells which themselves appeared to be Kv3. 1b-immunopositive. We also observed minor Kv3.1b-ir and parvalbumin-ir cortical cell populations which were devoid of PNs; occasionally, nets were detected around neurons lacking both immunoreactivities. By confocal laser scanning microscopy, Kv3.1b-ir and WFA-binding sites were found adjoining at the soma and proximal dendritic surface, while lectin-binding sites usually extended on more distal dendritic segments and the axon initial segments which failed to express detectable Kv3.1b-ir. This spatial relationship of both markers was also confirmed by combined WFA-gold labelling and Kv3.1b-immunoperoxidase staining at the electron microscopic level. The data are used for a critical examination of current hypotheses concerning the functional role of PNs. We conclude that PNs may serve as rapid local buffers of excess cation changes in the extracellular space. Somatic membranes of fast-spiking neurons seem to be a main, but not the only source of such changes.
Collapse
Affiliation(s)
- W Härtig
- University of Leipzig, Paul Flechsig Institute for Brain Research, Jahnallee 59, D-04109, Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Strokan V, Mölne J, Svalander CT, Breimer ME. Heterogeneous expression of Gal alpha1-3Gal xenoantigen in pig kidney: a lectin and immunogold electron microscopic study. Transplantation 1998; 66:1495-503. [PMID: 9869091 DOI: 10.1097/00007890-199812150-00013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND The Gal alpha1-3Gal antigen (Gal alpha) is the primary target for human natural anti-pig xenoantibodies. The presence of Gal alpha has been shown in porcine endothelial cells (ECs) using light microscopy, whereas the expression of Gal alpha in other cell structures in the porcine kidney is only partially characterized. METHODS Immunogold electron microscopy of pig kidney cryosections was performed using Griffonia simplicifolia isolectin B4 and affinity isolated human anti-Gal alpha1-3Gal antibodies. RESULTS The most intense expression of Gal alpha was found on the apical and basolateral portions of the plasma membrane of the proximal convoluted tubule segments 1 and 2 cells, whereas segment 3 and 4 cells were negative. A strong staining was found in peritubular capillary ECs and in the inner medullary and papillary collecting duct cells. Moderate labeling of ECs and subendothelium was observed in large blood vessels, whereas glomerular ECs reacted weakly. Additionally, glomerular parietal epithelial cells, connecting tubule cells, and some cortical collecting duct cells were labeled. Among interstitial cells, a part of type-1 cells and all type-2 cells were labeled, whereas others were negative. CONCLUSIONS By immune electron microscopy, a detailed information of the Gal alpha antigen distribution in porcine nephrons and blood vessels has been revealed, which clarifies conflicting data obtained by light microscopy. In addition, expression of the Gal alpha antigen in the renal interstitial cells was documented for the first time. These data are of importance for the understanding of xenoantibody-mediated hyperacute rejection, for interpretation of pig kidney xenograft biopsies, and for generating transgenic pigs lacking the Gal alpha epitope.
Collapse
Affiliation(s)
- V Strokan
- Department of Surgery, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | |
Collapse
|
20
|
Roth J. The silver anniversary of gold: 25 years of the colloidal gold marker system for immunocytochemistry and histochemistry. Histochem Cell Biol 1996; 106:1-8. [PMID: 8858362 DOI: 10.1007/bf02473197] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Since 1971, when W.P. Faulk and G.M. Taylor published "An immunocolloid method for the electron microscope", colloidal gold has become a very widely used marker in microscopy. It has been used to detect a huge range of cellular and extracellular constituents by in situ hybridization, immunogold, lectin-gold, and enzyme-gold labeling. Besides its use in light microscopic immunogold and lectin-gold silver staining, colloidal gold remains the label of choice for transmission electron microscopy studying thin sections, freeze-etch, and surface replicas, as well as for scanning electron microscopy. The year 1996 is the 25th anniversary of the introduction of colloidal gold as a marker in immunoelectron microscopy and this overview outlines some of the major milestones in the development of the colloidal gold marker system.
Collapse
Affiliation(s)
- J Roth
- Department of Pathology, University of Zürich, Switzerland
| |
Collapse
|