1
|
Salu P, Reindl KM. Advancements in Preclinical Models of Pancreatic Cancer. Pancreas 2024; 53:e205-e220. [PMID: 38206758 PMCID: PMC10842038 DOI: 10.1097/mpa.0000000000002277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
ABSTRACT Pancreatic cancer remains one of the deadliest of all cancer types with a 5-year overall survival rate of just 12%. Preclinical models available for understanding the disease pathophysiology have evolved significantly in recent years. Traditionally, commercially available 2-dimensional cell lines were developed to investigate mechanisms underlying tumorigenesis, metastasis, and drug resistance. However, these cells grow as monolayer cultures that lack heterogeneity and do not effectively represent tumor biology. Developing patient-derived xenografts and genetically engineered mouse models led to increased cellular heterogeneity, molecular diversity, and tissues that histologically represent the original patient tumors. However, these models are relatively expensive and very timing consuming. More recently, the advancement of fast and inexpensive in vitro models that better mimic disease conditions in vivo are on the rise. Three-dimensional cultures like organoids and spheroids have gained popularity and are considered to recapitulate complex disease characteristics. In addition, computational genomics, transcriptomics, and metabolomic models are being developed to simulate pancreatic cancer progression and predict better treatment strategies. Herein, we review the challenges associated with pancreatic cancer research and available analytical models. We suggest that an integrated approach toward using these models may allow for developing new strategies for pancreatic cancer precision medicine.
Collapse
Affiliation(s)
- Philip Salu
- From the Department of Biological Sciences, North Dakota State University, Fargo, ND
| | | |
Collapse
|
2
|
The Diverse Applications of Pancreatic Ductal Adenocarcinoma Organoids. Cancers (Basel) 2021; 13:cancers13194979. [PMID: 34638463 PMCID: PMC8508245 DOI: 10.3390/cancers13194979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies. While immortalized cancer cell lines and genetically engineered murine models have increased our understanding of PDAC tumorigenesis, they do not recapitulate inter- and intra-patient heterogeneity. PDAC patient derived organoid (PDO) biobanks have overcome this hurdle, and provide an opportunity for the high throughput screening of potential new therapies. This review provides a summary of the PDAC PDO biobanks established to date, and discusses how they have advanced our understanding of PDAC biology. Looking forward, the development of coculturing techniques for specific immune or stromal cell populations will enable a better understanding of the crosstalk that occurs within the tumor microenvironment, and the impact of this crosstalk on treatment response.
Collapse
|
3
|
Choi SR, Yang Y, Huang KY, Kong HJ, Flick MJ, Han B. Engineering of biomaterials for tumor modeling. MATERIALS TODAY. ADVANCES 2020; 8:100117. [PMID: 34541484 PMCID: PMC8448271 DOI: 10.1016/j.mtadv.2020.100117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Development of biomaterials mimicking tumor and its microenvironment has recently emerged for the use of drug discovery, precision medicine, and cancer biology. These biomimetic models have developed by reconstituting tumor and stroma cells within the 3D extracellular matrix. The models are recently extended to recapitulate the in vivo tumor microenvironment, including biological, chemical, and mechanical conditions tailored for specific cancer type and its microenvironment. In spite of the recent emergence of various innovative engineered tumor models, many of these models are still early stage to be adapted for cancer research. In this article, we review the current status of biomaterials engineering for tumor models considering three main aspects - cellular engineering, matrix engineering, and engineering for microenvironmental conditions. Considering cancer-specific variability in these aspects, our discussion is focused on pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC). In addition, we further discussed the current challenges and future opportunities to create reliable and relevant tumor models.
Collapse
Affiliation(s)
- Sae Rome Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yi Yang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Kai-Yu Huang
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Joon Kong
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
4
|
Comparison of Radiosensitization by HDAC Inhibitors CUDC-101 and SAHA in Pancreatic Cancer Cells. Int J Mol Sci 2019; 20:ijms20133259. [PMID: 31269745 PMCID: PMC6651299 DOI: 10.3390/ijms20133259] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer has a poor prognosis. New treatment options are urgently required to improve patient outcomes. One promising new class of anticancer drugs are synthetic histone deacetylase inhibitors (HDACi) which modulate chromatin structure and gene expression by blocking histone deacetylation. In this study, we aimed at comparing the in vitro capacities of the HDACi SAHA and CUDC-101 to increase radiosensitivity of human pancreatic tumor cell lines. Therefore, three pancreatic cancer cell lines (Su.86.86, MIA Paca-2, T3M-4) were treated with SAHA (1.5–5 µM) or CUDC-101 (0.25–3 µM) and after 24 h irradiated. Cell proliferation, clonogenic survival and apoptosis was determined. Additionally, cell lysates were investigated for the expression of apoptosis-related proteins. CUDC-101 and SAHA increased the radiation sensitivity of pancreatic tumor cell lines in a dose-dependent manner. This was evidenced by cell proliferation and clonogenic survival. Furthermore, enhanced radiation sensitivity after CUDC-101 or SAHA treatment was confirmed for Su.86.86 and T3M-4 cells in a 3-D microtissue approach. Increased amounts of subG1 cells and diminished full length PARP-1 suggest increased radiation-induced apoptosis after SAHA or CUDC-101 treatment. The comparison of both inhibitors in these assays manifested CUDC-101 as more potent radiosensitizer than SAHA. In line, western blot quantification of the apoptosis-inhibitory proteins XIAP and survivin showed a stronger down-regulation in response to CUDC-101 treatment than after SAHA application. These proteins may contribute to the synergy between HDAC inhibition and radiation response. In conclusion, these preclinical results suggest that treatment with the HDAC inhibitors CUDC-101 or SAHA can enhance radiation-induced cytotoxicity in human pancreatic cells. However, comparison of both inhibitors identified the multi target inhibitor CUDC-101 as more potent radiosensitizer than the HDAC inhibitor SAHA.
Collapse
|
5
|
Aier I, Semwal R, Sharma A, Varadwaj PK. A systematic assessment of statistics, risk factors, and underlying features involved in pancreatic cancer. Cancer Epidemiol 2018; 58:104-110. [PMID: 30537645 DOI: 10.1016/j.canep.2018.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer remains the fourth leading cause of cancer-related death in the world, and will continue to become the number two cause of cancer-related death unless a remarkable breakthrough is achieved. With a slim chance of early diagnosis, surgery can only provide a median survival of 17-23 months. The presence of a dense stroma makes this cancer resilient to chemotherapy, with very few potent inhibitors like nab paclitaxelin available that can work in combination with chemotherapeutic agents. Survival rates, on the one hand, lie at 8.5%. Variation in types of pancreatic cancer, on the other hand, makes it notoriously difficult to come up with a practical solution for the treatment of this disease. A deeper understanding of the root cause would be beneficial for diagnosis. Advancement in the field of genomics has made the identification of novel biomarkers relatively easier. By coupling this factor with the production of suitable inhibitors, testing in large numbers can be made possible with the help of cell lines. With the combined efforts of biological knowledge and modern technology, the cure for pancreatic cancer could be at hand.
Collapse
Affiliation(s)
- Imlimaong Aier
- Department of Bioinformatics & Applied Sciences, Indian Institute of Information Technology, Allahabad, 211015, India
| | - Rahul Semwal
- Department of Bioinformatics & Applied Sciences, Indian Institute of Information Technology, Allahabad, 211015, India
| | - Anju Sharma
- Department of Bioinformatics & Applied Sciences, Indian Institute of Information Technology, Allahabad, 211015, India
| | - Pritish Kumar Varadwaj
- Department of Bioinformatics & Applied Sciences, Indian Institute of Information Technology, Allahabad, 211015, India.
| |
Collapse
|
6
|
Clark AM, Wheeler SE, Young CL, Stockdale L, Shepard Neiman J, Zhao W, Stolz DB, Venkataramanan R, Lauffenburger D, Griffith L, Wells A. A liver microphysiological system of tumor cell dormancy and inflammatory responsiveness is affected by scaffold properties. LAB ON A CHIP 2016; 17:156-168. [PMID: 27910972 PMCID: PMC5242229 DOI: 10.1039/c6lc01171c] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Distant metastasis is the major cause of breast cancer-related mortality, commonly emerging clinically after 5 or more years of seeming 'cure' of the primary tumor, indicating a quiescent dormancy. The lack of relevant accessible model systems for metastasis that recreate this latent stage has hindered our understanding of the molecular basis and the development of therapies against these lethal outgrowths. We previously reported on the development of an all-human 3D ex vivo hepatic microphysiological system that reproduces several features of liver physiology and enables spontaneous dormancy in a subpopulation of breast cancer cells. However, we observed that the dormant cells were localized primarily within the 3D tissue, while the proliferative cells were in contact with the polystyrene scaffold. As matrix stiffness is known to drive inflammatory and malignant behaviors, we explored the occurrence of spontaneous tumor dormancy and inflammatory phenotype. The microphysiological system was retrofitted with PEGDa-SynKRGD hydrogel scaffolding, which is softer and differs in the interface with the tissue. The microphysiological system incorporated donor-matched primary human hepatocytes and non-parenchymal cells (NPCs), with MDA-MB-231 breast cancer cells. Hepatic tissue in hydrogel scaffolds secreted lower levels of pro-inflammatory analytes, and was more responsive to inflammatory stimuli. The proportion of tumor cells entering dormancy was markedly increased in the hydrogel-supported tissue compared to polystyrene. Interestingly, an unexpected differential response of dormant cells to varying chemotherapeutic doses was identified, which if reflective of patient pathophysiology, has important implications for patient dosing regimens. These findings highlight the metastatic microphysiological system fitted with hydrogel scaffolds as a critical tool in the assessment and development of therapeutic strategies to target dormant metastatic breast cancer.
Collapse
Affiliation(s)
- A M Clark
- Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace St, Pittsburgh, PA 15261, USA.
| | - S E Wheeler
- Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace St, Pittsburgh, PA 15261, USA.
| | - C L Young
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - L Stockdale
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Shepard Neiman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - W Zhao
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - D B Stolz
- Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace St, Pittsburgh, PA 15261, USA. and Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA and University of Pittsburgh Cancer Center, Pittsburgh, PA, USA
| | - R Venkataramanan
- Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace St, Pittsburgh, PA 15261, USA. and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - L Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A Wells
- Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace St, Pittsburgh, PA 15261, USA. and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA and Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Cao Z, Xu J, Huang H, Shen P, You L, Zhou L, Zheng L, Zhang T, Zhao Y. MiR-1178 promotes the proliferation, G1/S transition, migration and invasion of pancreatic cancer cells by targeting CHIP. PLoS One 2015; 10:e0116934. [PMID: 25635996 PMCID: PMC4312055 DOI: 10.1371/journal.pone.0116934] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/16/2014] [Indexed: 12/21/2022] Open
Abstract
CHIP, a co-chaperone protein that interacts with Hsc/Hsp70, has been shown to be under-expressed in pancreatic cancer cells and has demonstrated a potential tumor suppressor property. Nevertheless, the underlying mechanisms of CHIP regulation in pancreatic cancer cells remain unknown. In this study, we found that miR-1178 decreased the translation of the CHIP protein by targeting the 3′-UTR region. We observed that over-expression of miR-1178 facilitated the proliferation, G1/S transition, migration and invasion of pancreatic cancer cells. Conversely, the inhibition of miR-1178 expression significantly suppressed these phenotypes. Furthermore, CHIP over-expression abrogated miR-1178-induced cell proliferation and invasion. Our data suggest that miR-1178 acts as an oncomiR in pancreatic cancer cells by inhibiting CHIP expression.
Collapse
Affiliation(s)
- Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Huang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Shen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (TZ); (YZ)
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (TZ); (YZ)
| |
Collapse
|
8
|
Guo JC, Li J, Yang YC, Zhou L, Zhang TP, Zhao YP. Oligonucleotide microarray identifies genes differentially expressed during tumorigenesis of DMBA-induced pancreatic cancer in rats. PLoS One 2013; 8:e82910. [PMID: 24376604 PMCID: PMC3871567 DOI: 10.1371/journal.pone.0082910] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/29/2013] [Indexed: 01/19/2023] Open
Abstract
The extremely dismal prognosis of pancreatic cancer (PC) is attributed, at least in part, to lack of early diagnosis. Therefore, identifying differentially expressed genes in multiple steps of tumorigenesis of PC is of great interest. In the present study, a 7,12-dimethylbenzanthraene (DMBA)-induced PC model was established in male Sprague-Dawley rats. The gene expression profile was screened using an oligonucleotide microarray, followed by real-time quantitative polymerase chain reaction (qRT-PCR) and immunohistochemical staining validation. A total of 661 differentially expressed genes were identified in stages of pancreatic carcinogenesis. According to GO classification, these genes were involved in multiple molecular pathways. Using two-way hierarchical clustering analysis, normal pancreas, acute and chronic pancreatitis, PanIN, early and advanced pancreatic cancer were completely discriminated. Furthermore, 11 upregulated and 142 downregulated genes (probes) were found by Mann-Kendall trend Monotone test, indicating homologous genes of rat and human. The qRT-PCR and immunohistochemistry analysis of CXCR7 and UBe2c, two of the identified genes, confirmed the microarray results. In human PC cell lines, knockdown of CXCR7 resulted in decreased migration and invasion. Collectively, our data identified several promising markers and therapeutic targets of PC based on a comprehensive screening and systemic validation.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Line, Tumor
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Molecular Sequence Annotation
- Oligonucleotide Array Sequence Analysis
- Pancreas/metabolism
- Pancreas/pathology
- Pancreatic Neoplasms/chemically induced
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatitis, Acute Necrotizing/chemically induced
- Pancreatitis, Acute Necrotizing/genetics
- Pancreatitis, Acute Necrotizing/metabolism
- Pancreatitis, Acute Necrotizing/pathology
- Pancreatitis, Chronic/chemically induced
- Pancreatitis, Chronic/genetics
- Pancreatitis, Chronic/metabolism
- Pancreatitis, Chronic/pathology
- Rats
- Rats, Sprague-Dawley
- Receptors, CXCR/genetics
- Receptors, CXCR/metabolism
- Ubiquitin-Conjugating Enzymes/genetics
- Ubiquitin-Conjugating Enzymes/metabolism
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Jun-Chao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jian Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ying-Chi Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Tai-Ping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yu-Pei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Chugh R, Sangwan V, Patil SP, Dudeja V, Dawra RK, Banerjee S, Schumacher RJ, Blazar BR, Georg GI, Vickers SM, Saluja AK. A preclinical evaluation of Minnelide as a therapeutic agent against pancreatic cancer. Sci Transl Med 2013; 4:156ra139. [PMID: 23076356 DOI: 10.1126/scitranslmed.3004334] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer is one of the most lethal human malignancies with an all-stage 5-year survival frequency of <5%, which highlights the urgent need for more effective therapeutic strategies. We have previously shown that triptolide, a diterpenoid, is effective against pancreatic cancer cells in vitro as well as in vivo. However, triptolide is poorly soluble in water, limiting its clinical use. We therefore synthesized a water-soluble analog of triptolide, named Minnelide. The efficacy of Minnelide was tested both in vitro and in multiple independent yet complementary in vivo models of pancreatic cancer: an orthotopic model of pancreatic cancer using human pancreatic cancer cell lines in athymic nude mice, a xenograft model where human pancreatic tumors were transplanted into severe combined immunodeficient mice, and a spontaneous pancreatic cancer mouse model (KRas(G12D); Trp53(R172H); Pdx-1Cre). In these multiple complementary models of pancreatic cancer, Minnelide was highly effective in reducing pancreatic tumor growth and spread, and improving survival. Together, our results suggest that Minnelide shows promise as a potent chemotherapeutic agent against pancreatic cancer, and support the evaluation of Minnelide in clinical trials against this deadly disease.
Collapse
Affiliation(s)
- Rohit Chugh
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Paron I, Berchtold S, Vörös J, Shamarla M, Erkan M, Höfler H, Esposito I. Tenascin-C enhances pancreatic cancer cell growth and motility and affects cell adhesion through activation of the integrin pathway. PLoS One 2011; 6:e21684. [PMID: 21747918 PMCID: PMC3126842 DOI: 10.1371/journal.pone.0021684] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 06/08/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PDAC) is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC), a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs). In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells. METHODS Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition. RESULTS Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt. CONCLUSION TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and might therefore play a role in PDAC spreading and metastasis in vivo.
Collapse
Affiliation(s)
- Igor Paron
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Sonja Berchtold
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Julia Vörös
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Madhavi Shamarla
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mert Erkan
- Department of General Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Heinz Höfler
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Irene Esposito
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Technische Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
11
|
Deer EL, González-Hernández J, Coursen JD, Shea JE, Ngatia J, Scaife CL, Firpo MA, Mulvihill SJ. Phenotype and genotype of pancreatic cancer cell lines. Pancreas 2010; 39:425-35. [PMID: 20418756 PMCID: PMC2860631 DOI: 10.1097/mpa.0b013e3181c15963] [Citation(s) in RCA: 720] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dismal prognosis of pancreatic adenocarcinoma is due in part to a lack of molecular information regarding disease development. Established cell lines remain a useful tool for investigating these molecular events. Here we present a review of available information on commonly used pancreatic adenocarcinoma cell lines as a resource to help investigators select the cell lines most appropriate for their particular research needs. Information on clinical history; in vitro and in vivo growth characteristics; phenotypic characteristics, such as adhesion, invasion, migration, and tumorigenesis; and genotypic status of commonly altered genes (KRAS, p53, p16, and SMAD4) was evaluated. Identification of both consensus and discrepant information in the literature suggests careful evaluation before selection of cell lines and attention be given to cell line authentication.
Collapse
Affiliation(s)
- Emily L Deer
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Calhoun ES, Hucl T, Gallmeier E, West KM, Arking DE, Maitra A, Iacobuzio-Donahue CA, Chakravarti A, Hruban RH, Kern SE. Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays. Cancer Res 2007; 66:7920-8. [PMID: 16912165 DOI: 10.1158/0008-5472.can-06-0721] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in oligonucleotide arrays and whole-genome complexity reduction data analysis now permit the evaluation of tens of thousands of single-nucleotide polymorphisms simultaneously for a genome-wide analysis of allelic status. Using these arrays, we created high-resolution allelotype maps of 26 pancreatic cancer cell lines. The areas of heterozygosity implicitly served to reveal regions of allelic loss. The array-derived maps were verified by a panel of 317 microsatellite markers used in a subset of seven samples, showing a 97.1% concordance between heterozygous calls. Three matched tumor/normal pairs were used to estimate the false-negative and potential false-positive rates for identifying loss of heterozygosity: 3.6 regions (average minimal region of loss, 720,228 bp) and 2.3 regions (average heterozygous gap distance, 4,434,994 bp) per genome, respectively. Genomic fractional allelic loss calculations showed that cumulative levels of allelic loss ranged widely from 17.1% to 79.9% of the haploid genome length. Regional increases in "NoCall" frequencies combined with copy number loss estimates were used to identify 41 homozygous deletions (19 first reports), implicating an additional 13 regions disrupted in pancreatic cancer. Unexpectedly, 23 of these occurred in just two lines (BxPc3 and MiaPaCa2), suggesting the existence of at least two subclasses of chromosomal instability (CIN) patterns, distinguished here by allelic loss and copy number changes (original CIN) and those also highly enriched in the genomic "holes" of homozygous deletions (holey CIN). This study provides previously unavailable high-resolution allelotype and deletion breakpoint maps in widely shared pancreatic cancer cell lines and effectively eliminates the need for matched normal tissue to define informative loci.
Collapse
Affiliation(s)
- Eric S Calhoun
- Department of Oncology,The Sol Goldman Pancreatic Cancer Research Center at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutes, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Welsch T, Endlich K, Giese T, Büchler MW, Schmidt J. Eps8 is increased in pancreatic cancer and required for dynamic actin-based cell protrusions and intercellular cytoskeletal organization. Cancer Lett 2007; 255:205-18. [PMID: 17537571 DOI: 10.1016/j.canlet.2007.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 12/14/2022]
Abstract
We investigated the role of Eps8 in pancreatic cancer. Eps8 was significantly increased in pancreatic cancer and colocalized with F-actin, predominantly in pancreatic ductal cells. Eps8 levels were higher in cell lines derived from ascites and metastases than in those from primary tumors. Expression correlated positively with the migratory potential of tumor cells. Eps8 localized to the tips of F-actin filaments, filopodia, and the leading edge of cells. Eps8 knockdown altered cell shape and actin-based cytoskeletal structures, impairing protrusion formation and cell-cell junctions. We concluded that Eps8 is increased in pancreatic cancer and correlates with migratory potential and tumor progression in vitro. Eps8 is essential for actin dynamics and cell interactions, independent of Eps8-like gene products.
Collapse
Affiliation(s)
- Thilo Welsch
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
14
|
Gysin S, Rickert P, Kastury K, McMahon M. Analysis of genomic DNA alterations and mRNA expression patterns in a panel of human pancreatic cancer cell lines. Genes Chromosomes Cancer 2005; 44:37-51. [PMID: 15929091 DOI: 10.1002/gcc.20216] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genomic alterations influencing the expression and/or activity of tumor suppressors or oncogenes such as KRAS2, CDKN2A, TP53, and DPC4 have been directly implicated in the initiation and progression of human pancreatic adenocarcinoma. In an effort further to systematically characterize the genomic alterations that occur in this disease, we conducted a genome wide analysis of alterations in gene copy number using array-based comparative genomic hybridization (CGH). For this analysis, we utilized a panel of 25 human pancreatic cancer cell lines derived from either primary or metastatic tumors. This panel also included a metastatic progression series of cell lines derived from COLO 357 cells. Array CGH permitted the identification of alterations in the copy number of genes that might participate in the aberrant behavior of pancreatic cancer cells. In addition, the acquisition of invasive and metastatic potential by derivatives of COLO 357 cells was accompanied by additional focal genomic alterations including point mutations and amplification of KRAS2. To complement the array CGH analysis, we also conducted an analysis of mRNA expression patterns in a subset of these cells using cDNA microarrays. By this means, we identified a set of candidate genes, including those regulated by RAS signaling, that may contribute to the process of cancer cell invasion and metastasis. Supplementary material for this article can be found on the Genes, Chromosomes, and Cancer website at http://www.interscience.wiley.com/jpages/1045-2257/suppmat/index.html.
Collapse
Affiliation(s)
- Stephan Gysin
- Cancer Research Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco Comprehensive Cancer Center, San Francisco, California, USA
| | | | | | | |
Collapse
|
15
|
Kawano K, Iwamura T, Yamanari H, Seo Y, Suganuma T, Chijiiwa K. Establishment and characterization of a novel human pancreatic cancer cell line (SUIT-4) metastasizing to lymph nodes and lungs in nude mice. Oncology 2004; 66:458-67. [PMID: 15452375 DOI: 10.1159/000079500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2002] [Accepted: 11/26/2003] [Indexed: 11/19/2022]
Abstract
A new tumor cell line (SUIT-4) derived from ascites of a patient with carcinoma of the pancreas has been established in tissue culture and in nude mice, and maintained for over 7 years. In tissue culture, the cells grew as a confluent monolayer with piling up of cells in some areas. The population doubling time during the exponential phase of the cell growth was 43.9 h in vitro. Chromosome count ranged from 63 to 68 with a modal number of 67. Subcutaneous injection of cultured cells into the flanks of nude mice resulted in tumor formation with a doubling time of 88.8 h. Histopathologically, xenografts in nude mice were moderately differentiated tubular adenocarcinoma, and the tumor cells showed spontaneous metastasis to the regional lymph nodes in 6 of 21 nude mice and to the lung in 4 of 21. Transmission electron microphotographs confirmed the ductal cell origin of the carcinoma and revealed that the cells had abundant mitochondria and lysosomes. SUIT-4 cells released carcinoembryonic antigen (3.08 x 10(2) ng/1 x 10(6) cells/24 h) and carbohydrate antigen 19-9 (4.75 x 10(4) U/1 x 10(6) cells/24 h) during exponential cell growth in vitro. Reverse transcriptase-polymerase chain reaction studies revealed that SUIT-4 cells expressed matrix metalloproteinases 1, 3, 7, 10 and 14.
Collapse
Affiliation(s)
- Kikuo Kawano
- Department of Surgery I, Miyazaki University School of Medicine, Kihara, Kiyotake, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Monti P, Marchesi F, Reni M, Mercalli A, Sordi V, Zerbi A, Balzano G, Di Carlo V, Allavena P, Piemonti L. A comprehensive in vitro characterization of pancreatic ductal carcinoma cell line biological behavior and its correlation with the structural and genetic profile. Virchows Arch 2004; 445:236-47. [PMID: 15258755 DOI: 10.1007/s00428-004-1053-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 05/15/2004] [Indexed: 01/07/2023]
Abstract
There are a large number of stable pancreatic ductal carcinoma cell lines (PDCL) that are used by researchers worldwide. Detailed data about their differentiation status and genetic alterations are present in the literature, but a systematic correlation with cell biological behavior is often lacking. PDCL ( n=12) were clustered by source of tumor cell (ascites, primary tumor, metastasis), and the data of functional cell biology were correlated with the reported structural and genetic profiles. Major histocompatibility complex expression, chemosensitivity and aneuploidia appeared to be related to the source of PDCL, and proliferative capacity appeared to be related to the grade of differentiation. No correlation between genetic/structural features of PDCL and biological behavior was found. All the cell lines appeared generally insensitive to in vitro treatment with 5-fluorouracil and showed variable degrees of susceptibility to gemcitabine, raltitrexed and oxaliplatin. All the PDCL showed resistance to Fas-mediated apoptosis but were significantly sensitive to the pro-apoptotic effect of inflammatory cytokines [interleukin (IL)-1beta, tumor necrosis factor (TNF)alpha and interferon gamma]. PDCL were characterized for the secretion of several factors relevant to the tumor-immune cross talk. Vascular endothelial growth factor, CCL2, CCL5 and transforming growth factor beta were the factors most frequently released; less frequent was the secretion of CXCL8, CCL22, IL-6 and sporadically CXCL12, IL-10 and hepatocyte growth factor. The cytokines IL-1beta and TNFalpha were always undetectable. In conclusion, a clear correlation between structural/genetic features and function could not be detected, suggesting the weakness of a "morphological" classification for the in vitro studies of pancreatic cancer.
Collapse
Affiliation(s)
- Paolo Monti
- Laboratory of Experimental Surgery, Department of Diabetes and Transplant Immunology, S. Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Balkwill F, Bast RC, Berek J, Chenevix-Trench G, Gore M, Hamilton T, Jacobs I, Mills G, Souhami R, Urban N, Orsulic S, Smyth J, Ursulic S. Current research and treatment for epithelial ovarian cancer. A Position Paper from the Helene Harris Memorial Trust. Eur J Cancer 2003; 39:1818-27. [PMID: 12932658 DOI: 10.1016/s0959-8049(03)00511-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In March 2003, an international mulltidisciplinary group of scientists and clinicians with a specific interest in ovarian cancer met for 4 days to discuss research into and treatment of this challenging disease. Under the headings of molecular genetics, molecular biology, the biology of ovarian cancer, old therapies, new targets and the early detection of the disease, this Position Paper summarises the presentations and discussion from the 9th Biennial Helene Harris Memorial Trust Forum on Ovarian Cancer. In particular, we highlight the potential of international collaborations in translating laboratory science into useful clinical interventions.
Collapse
Affiliation(s)
- F Balkwill
- Cancer Research UK, Queen Mary's School of Medicine and Dentistry, EC1M 6BQ London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tuch BE, Casamento FM. Outcome of xenografted fetal porcine pancreatic tissue is superior in inbred scid (C.B-17/Icr-scid/scid) compared to outbred nude (CD-1-nu/nu) mice. Cell Transplant 1999; 8:259-64. [PMID: 10442738 DOI: 10.1177/096368979900800306] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nude mice are used as recipients of foreign tissue because of their inability to reject these grafts. Our experience has been that there is variable rejection of fetal porcine insulin-producing tissue transplanted into CD-1 (athymic) outbred nude mice. To examine the suitability of this line of nude mouse as a recipient of the tissue, fetal porcine pancreas was grafted either into these outbred animals or into an inbred mutant strain of mice, the more immunocompromised severe combined immunodeficient (scid) mouse. Eight weeks after transplantation grafts were recovered from recipients and assayed for insulin content. Mean insulin levels were not significantly different between the two groups of mice, but a wider range of values was obtained from grafts recovered from nude (CD-1-nu/nu) mice. Reversal of diabetes in hyperglycemic recipients was achieved in 4 of 8 nude mice and 8 of 8 scid (C.B-17/lcr-scid/scid) mice. The time taken to achieve this was longer in the nudes than the scid mice, 121 +/- 12 vs. 44 +/- 2 days, the grafts increasing in size at a slower rate in the nude mice. Time taken for the weight of the grafts to double in size was 94 +/- 17 vs. 32 +/- 1 days, respectively. Histologically the grafts in the scid mice contained mostly epithelial cell clusters, a majority of which were insulin containing. In the nude mice that achieved normoglycemia, a similar pattern was observed and, as well, there was a localized lymphoid infiltrate. In those nude mice that remained diabetic fibrous tissue predominated together with a lymphoid infiltrate. In summary, fetal porcine pancreatic tissue grows and develops more efficiently when xenografted into scid rather than outbred nude mice.
Collapse
Affiliation(s)
- B E Tuch
- Pancreas Transplant Unit, Department of Endocrinology, Prince of Wales Hospital, Sydney, Australia.
| | | |
Collapse
|
19
|
Yatsuoka T, Furukawa T, Abe T, Yokoyama T, Sunamura M, Kobari M, Matsuno S, Horii A. Genomic analysis of the thymine-DNA glycosylase (TDG) gene on 12q22-q24.1 in human pancreatic ductal adenocarcinoma. INTERNATIONAL JOURNAL OF PANCREATOLOGY : OFFICIAL JOURNAL OF THE INTERNATIONAL ASSOCIATION OF PANCREATOLOGY 1999; 25:97-102. [PMID: 10360221 DOI: 10.1385/ijgc:25:2:97] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CONCLUSION Abnormality of the thymine-DNA glycosylase (TDG) gene on 12q22-q24.1 appears to play a limited role in pancreatic ductal carcinogenesis. BACKGROUND Recently, a human G/T-specific TDG gene was identified. This protein acts in a system correcting G/T mispairs to G/C pairs. TDG was mapped to chromosome bands 12q22-q24.1, one of the regions frequently lost in pancreatic cancer. Therefore, there is the possibility that the TDG gene on 12q is one of the genes responsible for pancreatic ductal carcinogenesis. METHODS Nucleotide sequences of the entire coding region of the TDG gene were analyzed in 21 human pancreatic cancer cell lines. mRNA expression of the TDG gene was also analyzed by Northern hybridization in several human tissues and 21 human pancreatic cancer cell lines. RESULTS Decreased levels of mRNA expression were detected in the pancreatic cancer cell lines, but no somatic mutations were observed.
Collapse
Affiliation(s)
- T Yatsuoka
- Department of Molecular Pathology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|