1
|
Bodbin SE, Denning C, Mosqueira D. Transfection of hPSC-Cardiomyocytes Using Viafect™ Transfection Reagent. Methods Protoc 2020; 3:E57. [PMID: 32784848 PMCID: PMC7564709 DOI: 10.3390/mps3030057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Twenty years since their first derivation, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have shown promise in disease modelling research, while their potential for cardiac repair is being investigated. However, low transfection efficiency is a barrier to wider realisation of the potential this model system has to offer. We endeavoured to produce a protocol for improved transfection of hPSC-CMs using the ViafectTM reagent by Promega. Through optimisation of four essential parameters: (i) serum supplementation, (ii) time between replating and transfection, (iii) reagent to DNA ratio and (iv) cell density, we were able to successfully transfect hPSC-CMs to ~95% efficiencies. Transfected hPSC-CMs retained high purity and structural integrity despite a mild reduction in viability, and preserved compatibility with phenotyping assays of hypertrophy. This protocol greatly adds value to the field by overcoming limited transfection efficiencies of hPSC-CMs in a simple and quick approach that ensures sustained expression of transfected genes for at least 14 days, opening new opportunities in mechanistic discovery for cardiac-related diseases.
Collapse
Affiliation(s)
- Sara E. Bodbin
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chris Denning
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Diogo Mosqueira
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
2
|
Hassan AO, Dmitriev IP, Kashentseva EA, Zhao H, Brough DE, Fremont DH, Curiel DT, Diamond MS. A Gorilla Adenovirus-Based Vaccine against Zika Virus Induces Durable Immunity and Confers Protection in Pregnancy. Cell Rep 2019; 28:2634-2646.e4. [PMID: 31484074 PMCID: PMC6750284 DOI: 10.1016/j.celrep.2019.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/26/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023] Open
Abstract
The teratogenic potential of Zika virus (ZIKV) has made the development of an effective vaccine a global health priority. Here, we generate two gorilla adenovirus-based ZIKV vaccines that encode for pre-membrane (prM) and envelope (E) proteins (GAd-Zvp) or prM and the ectodomain of E protein (GAd-Eecto). Both vaccines induce humoral and cell-mediated immune responses and prevent lethality after ZIKV challenge in mice. Protection is antibody dependent, CD8+ T cell independent, and for GAd-Eecto requires the complement component C1q. Immunization of GAd-Zvp induces antibodies against a key neutralizing epitope on domain III of E protein and confers durable protection as evidenced by memory B and long-lived plasma cell responses and challenge studies 9 months later. In two models of ZIKV infection during pregnancy, GAd-Zvp prevents maternal-to-fetal transmission. The gorilla adenovirus-based vaccine platform encoding full-length prM and E genes is a promising candidate for preventing congenital ZIKV syndrome and possibly infection by other flaviviruses.
Collapse
Affiliation(s)
- Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Haiyan Zhao
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Douglas E Brough
- Precigen, 20358 Seneca Meadows Parkway, Germantown, MD 20876, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Barrera J, Brake DA, Kamicker BJ, Purcell C, Kaptur R, Schieber T, Lechtenberg K, Miller TD, Ettyreddy D, Brough DE, Butman BT, Colby M, Neilan JG. Safety profile of a replication-deficient human adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle. Transbound Emerg Dis 2017; 65:447-455. [PMID: 29076657 DOI: 10.1111/tbed.12724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 11/27/2022]
Abstract
The safety of a replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was evaluated in five independent safety studies. The target animal safety studies were designed in compliance with United States (U.S.) regulatory requirements (Title 9, U.S. Code of Federal Regulation [9CFR]) and international standard guidelines (VICH Topic GL-44) for veterinary live vaccines. The first three studies were conducted in a total of 22 vaccinees and demonstrated that the AdtA24 master seed virus (MSV) was safe, did not revert to virulence and was not shed or spread from vaccinees to susceptible cattle or pigs. The fourth safety study conducted in 10 lactating cows using an AdtA24 vaccine serial showed that the vaccine was completely absent from milk. The fifth safety study was conducted under typical U.S. production field conditions in 500 healthy beef and dairy cattle using two AdtA24 vaccine serials. These results demonstrated that the vaccine was safe when used per the product label recommendations. Additional data collected during these five studies confirmed that AdtA24 vaccinees developed FMDV A24 and the HAd5 vaccine vector serum neutralization antibodies that test negative in a FMDV non-structural protein antibody test, confirming AdtA24 vaccine's capability to differentiate infected from vaccinated animals (DIVA). In conclusion, results from this comprehensive set of cattle studies demonstrated the safety of the replication-deficient AdtA24 vaccine and fulfilled safety-related requirements for U.S. regulatory requirements.
Collapse
Affiliation(s)
- J Barrera
- The McConnell Group, Inc., Plum Island Animal Disease Center, Greenport, NY, USA
| | - D A Brake
- BioQuest Associates, LLC, Plum Island Animal Disease Center, Greenport, NY, USA
| | - B J Kamicker
- Leidos, Plum Island Animal Disease Center, Greenport, NY, USA
| | | | - R Kaptur
- Central States Research Centre, Oakland, NE, USA
| | - T Schieber
- Midwest Veterinary Service, Inc., Oakland, NE, USA
| | | | - T D Miller
- Benchmark Biolabs, Inc., Lincoln, NE, USA
| | | | | | | | - M Colby
- U.S. Department of Homeland Security Science and Technology Directorate, Washington, DC, USA
| | - J G Neilan
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, Greenport, NY, USA
| |
Collapse
|
4
|
Unique cellular and humoral immunogenicity profiles generated by aerosol, intranasal, or parenteral vaccination in rhesus macaques. Vaccine 2016; 35:639-646. [PMID: 28041780 DOI: 10.1016/j.vaccine.2016.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/31/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022]
Abstract
Respiratory mucosa immunization is capable of eliciting both local and distal mucosal immune responses; it is a potentially powerful yet largely unused modality for vaccination against respiratory diseases. Targeting the lower versus upper airways by aerosol delivery alters the immunogenicity profile of a vaccine, although the full extent of this impact is not well characterized. We set out to define the cellular and humoral response profiles elicited by immunization via intranasal, small aerosol droplets, and large aerosol droplets. We compared responses following adenovirus-vectored vaccination by these routes in macaques, either for the generation of primary immune responses or for the boosting of previously primed systemic responses. Aerosol delivery (4 or 10μm diameter droplets, addressing lower or upper airways, respectively) generated the highest magnitude lung CD4 and CD8 T-cell responses, reaching 10-30% vaccine-specific levels in bronchoalveolar lavage cells. In contrast, intranasal delivery was less immunogenic with >10-fold lower peak lung T-cell responses. Systemic (blood) T-cell responses were only observed following 4μm aerosol (and parenteral) immunization, while all delivery routes elicited similar humoral responses. These data demonstrate distinct immune response profiles with each respiratory tract vaccination modality and suggest that small droplet aerosol offers several immunological advantages over other respiratory routes.
Collapse
|
5
|
Schutta C, Barrera J, Pisano M, Zsak L, Grubman MJ, Mayr GA, Moraes MP, Kamicker BJ, Brake DA, Ettyreddy D, Brough DE, Butman BT, Neilan JG. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using homologous challenge. Vaccine 2015; 34:3214-3220. [PMID: 26707216 DOI: 10.1016/j.vaccine.2015.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 11/27/2022]
Abstract
The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularly to a total of 150 steers in doses ranging from approximately 1.0×10(8) to 2.1×10(11) particle units per animal. No detectable local or systemic reactions were observed after vaccination. At 7 days post-vaccination (dpv), vaccinated and control animals were challenged with FMDV serotype A24 Cruzeiro via the intradermal lingual route. Vaccine efficacy was measured by FMDV A24 serum neutralizing titers and by protection from clinical disease and viremia after challenge. The results of eight studies demonstrated a strong correlation between AdtA24 vaccine dose and protection from clinical disease (R(2)=0.97) and viremia (R(2)=0.98). There was also a strong correlation between FMDV A24 neutralization titers on day of challenge and protection from clinical disease (R(2)=0.99). Vaccination with AdtA24 enabled differentiation of infected from vaccinated animals (DIVA) as demonstrated by the absence of antibodies to the FMDV nonstructural proteins in vaccinates prior to challenge. Lack of AdtA24 vaccine shedding after vaccination was indicated by the absence of neutralizing antibody titers to both the adenovector and FMDV A24 Cruzeiro in control animals after co-mingling with vaccinated cattle for three to four weeks. In summary, a non-adjuvanted AdtA24 experimental vaccine was shown to be safe, immunogenic, consistently protected cattle at 7 dpv against direct, homologous FMDV challenge, and enabled differentiation of infected from vaccinated cattle prior to challenge.
Collapse
Affiliation(s)
- Christopher Schutta
- Plum Island Animal Disease Center, U. S. Department of Homeland Security Science and Technology Directorate, P.O. Box 848, Greenport, NY 11944, USA
| | - José Barrera
- The McConnell Group, Inc., Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA
| | - Melia Pisano
- The McConnell Group, Inc., Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA; Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, USA
| | - Laszlo Zsak
- Plum Island Animal Disease Center, U. S. Department of Homeland Security Science and Technology Directorate, P.O. Box 848, Greenport, NY 11944, USA
| | - Marvin J Grubman
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U. S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, USA
| | - Gregory A Mayr
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U. S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, USA
| | - Mauro P Moraes
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U. S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, USA
| | - Barbara J Kamicker
- Leidos, Inc., Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA
| | - David A Brake
- Leidos, Inc., Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA
| | - Damodar Ettyreddy
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Douglas E Brough
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Bryan T Butman
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - John G Neilan
- Plum Island Animal Disease Center, U. S. Department of Homeland Security Science and Technology Directorate, P.O. Box 848, Greenport, NY 11944, USA.
| |
Collapse
|
6
|
Gilbert R, Guilbault C, Gagnon D, Bernier A, Bourget L, Elahi SM, Kamen A, Massie B. Establishment and validation of new complementing cells for production of E1-deleted adenovirus vectors in serum-free suspension culture. J Virol Methods 2014; 208:177-88. [DOI: 10.1016/j.jviromet.2014.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 11/17/2022]
|
7
|
Hagen CJ, Titong A, Sarnoski EA, Verardi PH. Antibiotic-dependent expression of early transcription factor subunits leads to stringent control of vaccinia virus replication. Virus Res 2014; 181:43-52. [PMID: 24394294 DOI: 10.1016/j.virusres.2013.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022]
Abstract
The use of vaccinia virus (VACV) as the vaccine against variola virus resulted in the eradication of smallpox. VACV has since been used in the development of recombinant vaccine and therapeutic vectors, but complications associated with uncontrolled viral replication have constrained its use as a live viral vector. We propose to improve the safety of VACV as a live-replicating vector by using elements of the tet operon to control the transcription of genes that are essential for viral growth. Poxviruses encode all enzymes and factors necessary for their replication within the host cell cytoplasm. One essential VACV factor is the vaccinia early transcription factor (VETF) packaged into the viral core. This heterodimeric protein is required for expression of early VACV genes. VETF is composed of a large subunit encoded by the A7L gene and a small subunit encoded by the D6R gene. Two recombinant VACVs were generated in which either the A7L or D6R gene was placed under the control of tet operon elements to allow their transcription, and therefore viral replication, to be dependent on tetracycline antibiotics such as doxycycline. In the absence of inducers, no plaques were produced but abortively infected cells could be identified by expression of a reporter gene. In the presence of doxycycline, both recombinant viruses replicated indistinguishably from the wild-type strain. This stringent control of VACV replication can be used for the development of safer, next-generation VACV vaccines and therapeutic vectors. Such replication-inducible VACVs would only replicate when administered with tetracycline antibiotics, and if adverse events were to occur, treatment would be as simple as antibiotic cessation.
Collapse
Affiliation(s)
- Caitlin J Hagen
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture and Natural Resources, University of Connecticut, Storrs, CT 06269, United States
| | - Allison Titong
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture and Natural Resources, University of Connecticut, Storrs, CT 06269, United States
| | - Ethan A Sarnoski
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture and Natural Resources, University of Connecticut, Storrs, CT 06269, United States
| | - Paulo H Verardi
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture and Natural Resources, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
8
|
Kraft S, Hsu C, Brough DE, Staecker H. Atoh1 induces auditory hair cell recovery in mice after ototoxic injury. Laryngoscope 2013; 123:992-9. [PMID: 23483451 DOI: 10.1002/lary.22171] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/11/2011] [Accepted: 05/16/2011] [Indexed: 11/12/2022]
Abstract
OBJECTIVES/HYPOTHESIS To evaluate the ability of the Ad28.gfap.atoh1 to promote hair cell regeneration and hearing recovery in cochlea injured with kanamycin and furosemide. STUDY DESIGN In vivo model of hair cell ablation and subsequent treatment with Atoh1. METHODS The hair cells of C57BL/6 mice were ablated with systemic administration of kanamycin and furosemide. The left ears were treated with Ad28.gfap.atoh1. The right ears were not treated. Preablation audiograms and distortion product otoacoustic emissions (DPOAEs) were compared to 1- or 2-month postablation studies. Harvested cochleae were examined for histologic evidence of hair cell regeneration and spiral ganglion cell survival. RESULTS Delivery of Ad28.gfap.atoh1 results in development of auditory hair cells. There was no recovery of DPOAEs at 1 or 2 months post-treatment. Two months after delivery of Ad28.gfap.atoh1, the left ear exhibited a moderate recovery of hearing at 4 and 8 kHz (P < .01). There was no significant difference at 16 or 32 kHz. One month after treatment, myosin VII-positive immunohistochemical staining can be seen in both the inner and outer hair cells of the treated ear. In the untreated ear, minimal myosin VII-positive debris is seen, with no indication of normal hair cells. Two months after ablation, there is evidence of hair cell recovery on the treated side, whereas the untreated cochlea demonstrates a flattened epithelium. Untreated ears showed decreased spiral ganglion cell density at the basal turn compared to treated ears. CONCLUSIONS Ad28.gfap.atoh1 promotes hair cell regeneration in cochlea ablated with kanamycin and furosemide resulting in moderate hearing recovery.
Collapse
Affiliation(s)
- Shannon Kraft
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
9
|
Dias CC, Moraes MP, Weiss M, Diaz-San Segundo F, Perez-Martin E, Salazar AM, de los Santos T, Grubman MJ. Novel antiviral therapeutics to control foot-and-mouth disease. J Interferon Cytokine Res 2012; 32:462-73. [PMID: 22924938 DOI: 10.1089/jir.2012.0012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. Vaccines require ∼7 days to induce protection; thus, before this time, vaccinated animals are still susceptible to the disease. Our group has previously shown that swine inoculated with 1×10(11) focus forming units (FFU) of a replication-defective human adenovirus containing the gene for porcine interferon alpha (Adt-pIFN-α) are sterilely protected from FMDV serotypes A24, O1 Manisa, or Asia 1 when the animals are challenged 1 day postadministration, and protection can last for 3-5 days. Polyriboinosinic-polyribocytidylic acid stabilized with poly-l-lysine and carboxymethyl cellulose (poly ICLC) is a synthetic double-stranded RNA that is a viral mimic and activates multiple innate immune pathways through interaction with toll-like receptor 3 and MDA-5. It is a potent inducer of IFNs. In this study, we initially examined the effect of poly IC and IFN-α on FMDV replication and gene induction in cell culture. Poly ICLC alone or combined with Adt-pIFN-α was then evaluated for its therapeutic efficacy in swine against intradermal challenge with FMDV A24, 1 day post-treatment. Groups of swine were subcutaneously inoculated either with poly ICLC alone (4 or 8 mg) or in combination with different doses of Adt-pIFN-α (2.5×10(9), 1×10(9), or 2.5×10(8) FFU). While different degrees of protection were achieved in all the treated animals, a dose of 8 mg of poly ICLC alone or combined with 1×10(9) FFU of Adt-pIFN-α was sufficient to sterilely protect swine when challenged 24 h later with FMDV A24. IFN-stimulated gene (ISG) expression in peripheral blood mononuclear cells at 1 day post-treatment was broader and higher in protected animals than in nonprotected animals. These data indicate that poly ICLC is a potent stimulator of IFN and ISGs in swine and at an adequate dose is sufficient to induce complete protection against FMD.
Collapse
Affiliation(s)
- Camila C Dias
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates. Vaccine 2012; 30:5991-8. [PMID: 22732429 PMCID: PMC3425710 DOI: 10.1016/j.vaccine.2012.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 06/04/2012] [Accepted: 06/11/2012] [Indexed: 12/04/2022]
Abstract
Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag immunization alone elicited robust measles-specific humoral and cellular responses, but failed to elicit transgene (Gag)-specific immune responses, following aerosol or intratracheal/intramuscular delivery. However, when administered as a priming vaccine to a heterologous boost with recombinant adenovirus serotype 5 expressing the same transgene, rMV-Gag significantly enhanced Gag-specific T lymphocyte responses following rAd5 immunization. Gag-specific humoral responses were not enhanced, however, which may be due to either the transgene or the vector. Cellular response priming by rMV against the transgene was highly effective even when using a suboptimal dose of rAd5 for the boost. These data demonstrate feasibility of using rMV as a priming component of heterologous prime-boost vaccine regimens for pathogens requiring strong cellular responses.
Collapse
|
11
|
Comparison of systemic and mucosal vaccination: impact on intravenous and rectal SIV challenge. Mucosal Immunol 2012; 5:41-52. [PMID: 22031182 PMCID: PMC3732474 DOI: 10.1038/mi.2011.45] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mucosal tissues are the primary route of transmission for most respiratory and sexually transmitted diseases, including human immunodeficiency virus. We aimed to generate strong mucosal immune responses to simian immunodeficiency virus (SIV) in rhesus macaques by targeting recombinant adenovirus serotype 5 (rAd5) to the lung. The immunogenicity and efficacy of aerosol (AE) vaccination was compared with intramuscular (IM) delivery in either an intravenous (IV) or intrarectal (IR) SIV(mac251) challenge model. Aerosolized rAd5 induced strong cellular responses in the lung and systemic humoral responses equivalent to IM. Strikingly, all immunization groups controlled acute viremia in the IV challenge model by 1-2 logs. By contrast, after IR challenge, only peak viremia was reduced by immunization, with no significant effect on SIV infection acquisition rate or mucosal CD4(+) T-cell preservation. Improved disease outcome was associated with pre-challenge cellular and humoral responses, while post-challenge T-cell responses were highly correlated with viremia control. The similar outcomes achieved by systemic and airway mucosal immunization support AE delivery as a safe, effective, and less invasive alternative to parenteral vaccination.
Collapse
|
12
|
Roy CJ, Ault A, Sivasubramani SK, Gorres JP, Wei CJ, Andersen H, Gall J, Roederer M, Rao SS. Aerosolized adenovirus-vectored vaccine as an alternative vaccine delivery method. Respir Res 2011; 12:153. [PMID: 22103776 PMCID: PMC3287261 DOI: 10.1186/1465-9921-12-153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/21/2011] [Indexed: 11/10/2022] Open
Abstract
Conventional parenteral injection of vaccines is limited in its ability to induce locally-produced immune responses in the respiratory tract, and has logistical disadvantages in widespread vaccine administration. Recent studies suggest that intranasal delivery or vaccination in the respiratory tract with recombinant viral vectors can enhance immunogenicity and protection against respiratory diseases such as influenza and tuberculosis, and can offer more broad-based generalized protection by eliciting durable mucosal immune responses. Controlled aerosolization is a method to minimize vaccine particle size and ensure delivery to the lower respiratory tract. Here, we characterize the dynamics of aerosolization and show the effects of vaccine concentration on particle size, vector viability, and the actual delivered dose of an aerosolized adenoviral vector. In addition, we demonstrate that aerosol delivery of a recombinant adenoviral vaccine encoding H1N1 hemagglutinin is immunogenic and protects ferrets against homologous viral challenge. Overall, aerosol delivery offers comparable protection to intramuscular injection, and represents an attractive vaccine delivery method for broad-based immunization campaigns.
Collapse
Affiliation(s)
- Chad J Roy
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70447, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schlecker C, Praetorius M, Brough DE, Presler RG, Hsu C, Plinkert PK, Staecker H. Selective atonal gene delivery improves balance function in a mouse model of vestibular disease. Gene Ther 2011; 18:884-90. [PMID: 21472006 PMCID: PMC3136627 DOI: 10.1038/gt.2011.33] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 11/08/2022]
Abstract
Loss of balance is often due to loss of vestibular hair cells. In mammals, regeneration of functional hair cells in the mature sensory epithelium is limited; therefore, loss of sensory cells can lead to debilitating balance problems. Delivery of the transcription factor atonal (atoh1) after aminoglycoside ototoxicity has previously been shown to induce the transdifferentiation of supporting cells into new hair cells and restore function. A problem with mouse aminoglycoside models is that the partial loss of hair cells seen in human disease is difficult to establish consistently. To more closely mirror human clinical balance dysfunction, we have used systemic application of 3,3'-iminodipropionitrile (IDPN), a vestibulotoxic nitrile compound known to cause vestibular hair cell loss, to induce a consistent partial loss of vestibular hair cells. To determine if balance function could be restored, we delivered atoh1 using a new adenovirus vector, based on Ad28. The Ad28 adenovector is based on a human serotype with a low seroprevalence that appears to target gene delivery to vestibular supporting cells. To further provide cell type selectivity of gene delivery, we expressed atoh1 using the supporting cell-specific glial fibrillary acid protein promoter. Delivery of this vector to IDPN-damaged vestibular organs resulted in a significant recovery of vestibular hair cells and restoration of balance, as measured by time on rotarod compared with untreated controls.
Collapse
Affiliation(s)
- Christina Schlecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas, USA
- Department of Otolaryngology, University of Heidelberg, Heidelberg, Germany
| | - Mark Praetorius
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas, USA
- Department of Otolaryngology, University of Heidelberg, Heidelberg, Germany
| | | | | | - Chi Hsu
- GenVec Inc., Gaithersburg, Maryland, USA
| | - Peter K. Plinkert
- Department of Otolaryngology, University of Heidelberg, Heidelberg, Germany
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas, USA
| |
Collapse
|
14
|
Selective atonal gene delivery improves balance function in a mouse model of vestibular disease. Gene Ther 2011. [PMID: 21472006 DOI: 10.1038/gt.2011.33gt201133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Loss of balance is often due to loss of vestibular hair cells. In mammals, regeneration of functional hair cells in the mature sensory epithelium is limited; therefore, loss of sensory cells can lead to debilitating balance problems. Delivery of the transcription factor atonal (atoh1) after aminoglycoside ototoxicity has previously been shown to induce the transdifferentiation of supporting cells into new hair cells and restore function. A problem with mouse aminoglycoside models is that the partial loss of hair cells seen in human disease is difficult to establish consistently. To more closely mirror human clinical balance dysfunction, we have used systemic application of 3,3'-iminodipropionitrile (IDPN), a vestibulotoxic nitrile compound known to cause vestibular hair cell loss, to induce a consistent partial loss of vestibular hair cells. To determine if balance function could be restored, we delivered atoh1 using a new adenovirus vector, based on Ad28. The Ad28 adenovector is based on a human serotype with a low seroprevalence that appears to target gene delivery to vestibular supporting cells. To further provide cell type selectivity of gene delivery, we expressed atoh1 using the supporting cell-specific glial fibrillary acid protein promoter. Delivery of this vector to IDPN-damaged vestibular organs resulted in a significant recovery of vestibular hair cells and restoration of balance, as measured by time on rotarod compared with untreated controls.
Collapse
|
15
|
Dias CC, Moraes MP, Segundo FDS, de los Santos T, Grubman MJ. Porcine Type I Interferon Rapidly Protects Swine Against Challenge with Multiple Serotypes of Foot-and-Mouth Disease Virus. J Interferon Cytokine Res 2011; 31:227-36. [DOI: 10.1089/jir.2010.0055] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Camila C.A. Dias
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York
- Plum Island Animal Disease Center Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Mauro P. Moraes
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York
| | - Fayna Diaz-San Segundo
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York
- Plum Island Animal Disease Center Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Teresa de los Santos
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York
| | - Marvin J. Grubman
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York
| |
Collapse
|
16
|
McVey D, Zuber M, Ettyreddy D, Reiter CD, Brough DE, Nabel GJ, King CR, Gall JGD. Characterization of human adenovirus 35 and derivation of complex vectors. Virol J 2010; 7:276. [PMID: 20959004 PMCID: PMC2984591 DOI: 10.1186/1743-422x-7-276] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/19/2010] [Indexed: 02/08/2023] Open
Abstract
Background Replication-deficient recombinant adenoviral vectors based on human serotype 35 (Ad35) are desirable due to the relatively low prevalence of neutralizing antibodies in the human population. The structure of the viral genome and life cycle of Ad35 differs from the better characterized Ad5 and these differences require differences in the strategies for the generation of vectors for gene delivery. Results Sequences essential for E1 and E4 function were identified and removed and the effects of the deletions on viral gene transcription were determined. In addition, the non-essential E3 region was deleted from rAd35 vectors and a sequence was found that did not have an effect on viability but reduced viral fitness. The packaging capacity of rAd35 was dependent on pIX and vectors were generated with stable genome sizes of up to 104% of the wild type genome size. These data were used to make an E1-, E3-, E4-deleted rAd35 vector. This rAd35 vector with multiple gene deletions has the advantages of multiple blocks to viral replication (i.e., E1 and E4 deletions) and a transgene packaging capacity of 7.6 Kb, comparable to rAd5 vectors. Conclusions The results reported here allow the generation of larger capacity rAd35 vectors and will guide the derivation of adenovirus vectors from other serotypes.
Collapse
Affiliation(s)
- Duncan McVey
- Department of Research, GenVec, Inc, Gaithersburg, MD 20874, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Grubman MJ, Moraes MP, Schutta C, Barrera J, Neilan J, Ettyreddy D, Butman BT, Brough DE, Brake DA. Adenovirus serotype 5-vectored foot-and-mouth disease subunit vaccines: the first decade. Future Virol 2010. [DOI: 10.2217/fvl.09.68] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The results of the first decade of the development of a replication-defective human adenovirus serotype 5 (Ad5) containing the capsid- and 3C protease-coding regions of foot-and-mouth disease (FMD) virus as a vaccine candidate are presented. In proof-of-concept studies, it was demonstrated that a single inoculation with this vaccine vector containing the capsid of FMD virus A24 Cruzeiro protected both swine and cattle following homologous challenge by direct inoculation 1 week postvaccination. We have expanded these studies in cattle with larger numbers of animals and by testing the vaccine in direct-contact challenge studies, including its ability to prevent FMD virus shedding and transmission. Furthermore, we have developed manufacturing protocols to allow the scalable production of these FMD molecular vaccine products for US Department of Agriculture licensure approval and availability for inclusion in the US National Veterinary Stockpile. We have also constructed and initiated cattle efficacy testing of Ad5 vectors containing the capsid-coding regions from other FMD virus serotypes and subtypes, as well as initiated studies to improve FMD molecular vaccine potency.
Collapse
Affiliation(s)
- Marvin J Grubman
- USDA, ARS, NAA, Plum Island Animal Disease Center, PO Box 848, Greenport, NY 11944, USA
| | - Mauro P Moraes
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, US Department of Agriculture, Greenport, NY 11944, USA
| | - Christopher Schutta
- Plum Island Animal Disease Center, Department of Homeland Security, Science & Technology Directorate, Greenport, NY 11944, USA
| | - Jose Barrera
- The McConnell Group, Inc., Dublin, PA 18917, USA
| | - John Neilan
- Plum Island Animal Disease Center, Department of Homeland Security, Science & Technology Directorate, Greenport, NY 11944, USA
| | | | | | | | | |
Collapse
|