1
|
Pankammoon P, Salinas MBS, Thitaram C, Sathanawongs A. The Complexities of Interspecies Somatic Cell Nuclear Transfer: From Biological and Molecular Insights to Future Perspectives. Int J Mol Sci 2025; 26:3310. [PMID: 40244161 PMCID: PMC11989385 DOI: 10.3390/ijms26073310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
For nearly three decades, interspecies somatic cell nuclear transfer (iSCNT) has been explored as a potential tool for cloning, regenerative medicine, and wildlife conservation. However, developmental inefficiencies remain a major challenge, largely due to persistent barriers in nucleocytoplasmic transport, mitonuclear communication, and epigenome crosstalk. This review synthesized peer-reviewed English articles from PubMed, Web of Science, and Scopus, spanning nearly three decades, using relevant keywords to explore the molecular mechanisms underlying iSCNT inefficiencies and potential improvement strategies. We highlight recent findings deepening the understanding of interspecies barriers in iSCNT, emphasizing their interconnected complexities, including the following: (1) nucleocytoplasmic incompatibility may disrupt nuclear pore complex (NPC) assembly and maturation, impairing the nuclear transport of essential transcription factors (TFs), embryonic genome activation (EGA), and nuclear reprogramming; (2) mitonuclear incompatibility could lead to nuclear and mitochondrial DNA (nDNA-mtDNA) mismatches, affecting electron transport chain (ETC) assembly, oxidative phosphorylation, and energy metabolism; (3) these interrelated incompatibilities can further influence epigenetic regulation, potentially leading to incomplete epigenetic reprogramming in iSCNT embryos. Addressing these challenges requires a multifaceted, species-specific approach that balances multiple incompatibilities rather than isolating a single factor. Gaining insight into the molecular interactions between the donor nucleus and recipient cytoplast, coupled with optimizing strategies tailored to specific pairings, could significantly enhance iSCNT efficiency, ultimately transforming experimental breakthroughs into real-world applications in reproductive biotechnology, regenerative medicine, and species conservation.
Collapse
Affiliation(s)
- Peachanika Pankammoon
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
| | - Marvin Bryan Segundo Salinas
- Department of Basic Veterinary Sciences, College of Veterinary Science and Medicine, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines;
| | - Chatchote Thitaram
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Anucha Sathanawongs
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
2
|
Novak BJ, Brand S, Phelan R, Plichta S, Ryder OA, Wiese RJ. Towards Practical Conservation Cloning: Understanding the Dichotomy Between the Histories of Commercial and Conservation Cloning. Animals (Basel) 2025; 15:989. [PMID: 40218382 PMCID: PMC11988126 DOI: 10.3390/ani15070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Over 40 years ago, scientists imagined ways cloning could aid conservation of threatened taxa. The cloning of Dolly the sheep from adult somatic cells in 1996 was the breakthrough that finally enabled the conservation potential of the technology. Until the 2020s, conservation cloning research efforts yielded no management applications, leading many to believe cloning is not yet an effective conservation tool. In strong contrast, domestic taxa are cloned routinely for scientific and commercial purposes. In this review, we sought to understand the reasons for these divergent trends. We scoured peer-reviewed and gray literature and sent direct inquiries to scientists to analyze a more comprehensive history of the field than was analyzed in previous reviews. While most previous reviewers concluded that a lack of reproductive knowledge of wildlife species has hindered advances for wider conservation applications, we found that resource limitations (e.g., numbers of surrogates, sustainable funding) and widely held misconceptions about cloning are significant contributors to the stagnation of the field. Recent successes in cloning programs for the endangered black-footed ferret (Mustela nigripes) and Przewalski's horse (Equus przewalskii), the world's first true applied-conservation cloning efforts, are demonstrating that cloning can be used for significant conservation impact in the present. When viewed alongside the long history of cloning achievements, these programs emphasize the value of investing in the science and resources needed to meaningfully integrate cloning into conservation management, especially for species with limited genetic diversity that rely on the maintenance of small populations for many generations while conservationists work to restore habitat and mitigate threats in the wild.
Collapse
Affiliation(s)
- Ben J. Novak
- Revive & Restore, 1505 Bridgeway #203, Sausalito, CA 94965, USA
| | - Stewart Brand
- Revive & Restore, 1505 Bridgeway #203, Sausalito, CA 94965, USA
| | - Ryan Phelan
- Revive & Restore, 1505 Bridgeway #203, Sausalito, CA 94965, USA
| | - Sasha Plichta
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Oliver A. Ryder
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Robert J. Wiese
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA;
| |
Collapse
|
3
|
Nguyen TD, Li H, Zhuang Y, Chen B, Kinoshita K, Jamal MA, Xu K, Guo J, Jiao D, Tanabe K, Wei Y, Li Z, Cheng W, Qing Y, Zhao HY, Wei HJ. In vitro and in vivo development of interspecies Asian elephant embryos reconstructed with pig enucleated oocytes. Anim Biotechnol 2023; 34:1909-1918. [PMID: 35404767 DOI: 10.1080/10495398.2022.2058005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Interspecies somatic cell nuclear transfer (iSCNT) has an immense potential to rescue endangered animals and extinct species like mammoths. In this study, we successfully established an Asian elephant's fibroblast cell lines from ear tissues, performed iSCNT with porcine oocytes and evaluated the in vitro and in vivo development of reconstructed embryos. A total of 7780 elephant-pig iSCNT embryos were successfully reconstructed and showed in vitro development with cleavage rate, 4-cell, 8-cell and blastocyst rate of 73.01, 30.48, 5.64, and 4.73%, respectively. The total number of elephant-pig blastocyte cells and diameter of hatched blastocyte was 38.67 and 252.75 μm, respectively. Next, we designed species-specific markers targeting EDNRB, AGRP and TYR genes to verify the genome of reconstructed embryos with donor nucleus/species. The results indicated that 53.2, 60.8, and 60.8% of reconstructed embryos (n = 235) contained elephant genome at 1-cell, 2-cell and 4-cell stages, respectively. However, the percentages decreased to 32.3 and 32.7% at 8-cell and blastocyst stages, respectively. Furthermore, we also evaluated the in vivo development of elephant-pig iSCNT cloned embryos and transferred 2260 reconstructed embryos into two surrogate gilts that successfully became pregnant and a total of 11 (1 and 10) fetuses were surgically recovered after 17 and 19 days of gestation, respectively. The crown-rump length and width of elephant-pig cloned fetuses were smaller than the control group. Unfortunately, none of these fetuses contained elephant genomes, which suggested that elephant embryos failed to develop in vivo. In conclusion, we successfully obtained elephant-pig reconstructed embryos for the first time and these embryos are able to develop to blastocyst, but the in vivo developmental failure needs further investigated.
Collapse
Affiliation(s)
- Tien Dat Nguyen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Honghui Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yiquan Zhuang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Bowei Chen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Keiji Kinoshita
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
| | - Muhammad Ameen Jamal
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kaixiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jianxiong Guo
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kumiko Tanabe
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
| | - Yunfang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhuo Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wenming Cheng
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yubo Qing
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Hisey EA, Ross PJ, Meyers S. Genetic Manipulation of the Equine Oocyte and Embryo. J Equine Vet Sci 2021; 99:103394. [PMID: 33781418 PMCID: PMC8605602 DOI: 10.1016/j.jevs.2021.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/19/2023]
Abstract
As standard in vitro fertilization is not a viable technique in horses yet, many different techniques have been used to create equine embryos for research purposes. One such method is parthenogenesis in which an oocyte is induced to mature into an embryo-like state without the introduction of a spermatozoon, and thus they are not considered true embryos. Another method is somatic cell nuclear transfer (SCNT), in which a somatic cell nucleus from an extant horse is inserted into an enucleated oocyte, creating a genetic clone of the donor horse. Due to limited availability of equine oocytes in the United States, researchers have investigated the potential for combining equine somatic cell nuclei with oocytes from other species to make embryos for research purposes, which has not been successful to date. There has also been a rising interest in producing transgenic animals using sperm exposed to exogenous DNA. The successful creation of transgenic equine blastocysts shows the promise of sperm mediated gene transfer (SMGT), but this method is not ideal for other applications, like gene therapy, because it cannot be used to induce targeted mutations. That is why technologies like CRISPR/Cas9 are vital. In this review, we argue that parthenogenesis, SCNT, and interspecies SCNT can be considered genetic manipulation strategies as they create embryos that are genetically identical to their parent cell. Here, we describe how these methods are performed and their applications and we also describe the few methods that have been used to directly modify equine embryos: SMGT and CRISPR/Cas9.
Collapse
Affiliation(s)
- Erin A. Hisey
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, CA
| | - Stuart Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA,Corresponding author at: S. Meyers, 1089 Veterinary Medicine Dr. Davis CA 95616. (S. Meyers)
| |
Collapse
|
5
|
Mrowiec P, Bugno-Poniewierska M, Młodawska W. The perspective of the incompatible of nucleus and mitochondria in interspecies somatic cell nuclear transfer for endangered species. Reprod Domest Anim 2020; 56:199-207. [PMID: 33190359 DOI: 10.1111/rda.13864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 01/02/2023]
Abstract
Taking into account the latest Red List of the International Union for Conservation of Nature in which 25% of all mammals are threatened with extinction, somatic cell nuclear transfer (SCNT) could be a beneficial tool and holds a lot of potential for aiding the conservation of endangered, exotic or even extinct animal species if somatic cells of such animals are available. In the case of shortage and sparse amount of wild animal oocytes, interspecies somatic cell nuclear transfer (iSCNT), where the recipient ooplasm and donor nucleus are derived from different species, is the alternative SCNT technique. The successful application of iSCNT, resulting in the production of live offspring, was confirmed in several combination of closely related species. When nucleus donor cells and recipient oocytes have been used in many other combinations, very often with a very distant taxonomical relation iSCNT resulted only in the very early stages of cloned embryo development. Problems encountered during iSCNT related to mitochondrial DNA (mtDNA)/genomic DNA incompatibility, mtDNA heteroplasmy, embryonic genome activation of the donor nucleus by the recipient oocyte and availability of suitable foster mothers for iSCNT embryos. Implementing assisted reproductive technologies, including iSCNT, to conservation programmes also raises concerns that the production of genetically identical populations might cause problems with inbreeding. The article aims at presenting achievements, limitations and perspectives of iSCNT in maintaining animal biodiversity.
Collapse
Affiliation(s)
- Patrycja Mrowiec
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Kraków, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Kraków, Poland
| | - Wiesława Młodawska
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|
6
|
Veraguas D, Aguilera C, Echeverry D, Saez-Ruiz D, Castro FO, Rodriguez-Alvarez L. Embryo aggregation allows the production of kodkod (Leopardus guigna) blastocysts after interspecific SCNT. Theriogenology 2020; 158:148-157. [PMID: 32961350 DOI: 10.1016/j.theriogenology.2020.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/30/2020] [Accepted: 09/06/2020] [Indexed: 12/22/2022]
Abstract
The kodkod (Leopardus guigna) is a small felid endemic of Chile and is considered a vulnerable species. Domestic cat oocytes have been successfully used as recipient cytoplast to reprogram somatic cells from different felids by interspecific somatic cell nuclear transfer (iSCNT). The developmental competence of felid embryos generated by iSCNT can be improved by the aggregation method using a zona-free culture system. The objective of this research was to evaluate the developmental competence of kodkod embryos generated by iSCNT using domestic cat oocytes and the aggregation method. For this purpose, five experimental group were done: (1) cat embryos generated by IVF, (2) cat embryos generated by SCNT (Ca1x), (3) aggregated cat embryos generated by SCNT (Ca2x), (4) kodkod embryos generated by iSCNT (K1x) and (5) aggregated kodkod embryos generated by iSCNT (K2x). Cleavage, morulae and blastocyst rates were estimated. The blastocyst diameter was evaluated. The gene expression level of pluripotency (OCT4, SOX2 and NANOG) and differentiation markers (CDX2 and GATA6) was analyzed in blastocysts. Morulae rate was higher in the IVF group and when cloned embryos were cultured in aggregates (IVF: 68.2%, Ca2x: 58.0% and K2x: 62.4%) compared to individually cultured kodkod embryos (K1x: 37.0%) (P < 0.05). Embryo aggregation increased blastocysts formation in the Ca2x group (30.9%) to a similar rate compared to the IVF group (44.5%) (P > 0.05). No blastocysts were generated in the K1x group, whereas blastocysts formation was obtained in K2x group (5.9%). The diameter of blastocysts from the K2x group (172.8 μm) was significantly lower than blastocysts from the Ca2x group (P < 0.05). The relative expression of OCT4 was lower in blastocysts from Ca1x than in blastocysts from IVF (P < 0.05). Furthermore, CDX2 expression was lower in blastocysts from Ca2x than in blastocysts from Ca1x and IVF groups (P < 0.05). In kodkod embryos, only one blastocyst from the K2x group expressed OCT4. No expression of SOX2, NANOG, CDX2 and GATA6 was detected in kodkod blastocysts. In conclusion, after iSCNT, domestic cat oocytes support the development of kodkod embryos until the morula stage. The aggregation method increases the morulae rate of kodkod cloned embryos and allows blastocysts formation. However, kodkod blastocysts have a poor morphological quality and a lacking expression of pluripotency and differentiation markers, probably caused by an incomplete nuclear reprogramming.
Collapse
Affiliation(s)
- Daniel Veraguas
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | - Constanza Aguilera
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | - Diana Echeverry
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | - Darling Saez-Ruiz
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | - Lleretny Rodriguez-Alvarez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile.
| |
Collapse
|
7
|
Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse. Theriogenology 2016; 86:1081-1091. [PMID: 27157390 DOI: 10.1016/j.theriogenology.2016.03.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/03/2016] [Accepted: 03/28/2016] [Indexed: 11/22/2022]
Abstract
The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes from domestic animals tested in our study, the feline ooplasm might be the most appropriate recipient to partially allow preimplantation embryo development of iSCNT equine embryos.
Collapse
|
8
|
Effect of epigenetic modification with trichostatin A and S-adenosylhomocysteine on developmental competence and POU5F1-EGFP expression of interspecies cloned embryos in dog. ZYGOTE 2014; 23:758-70. [PMID: 25314965 DOI: 10.1017/s0967199414000410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adult canine fibroblasts stably transfected with either cytomegalovirus (CMV) or POU5F1 promoter-driven enhanced green fluorescent protein (EGFP) were used to investigate if pre-treatment of these donor cells with two epigenetic drugs [trichostatin A (TSA), or S-adenosylhomocysteine (SAH)] can improve the efficiency of interspecies somatic cell nuclear transfer (iSCNT). Fluorescence-activated cell sorting (FACS), analyses revealed that TSA, but not SAH, treatment of both transgenic and non-transgenic fibroblasts significantly increased acetylation levels compared with untreated relatives. The expression levels of Bcl2 and P53 were significantly affected in TSA-treated cells compared with untreated cells, whereas SAH treatment had no significant effect on cell apoptosis. Irrespective of epigenetic modification, dog/bovine iSCNT embryos had overall similar rates of cleavage and development to 8-16-cell and morula stages in non-transgenic groups. For transgenic reconstructed embryos, however, TSA and SAH could significantly improve development to 8-16-cell and morula stages compared with control. Even though, irrespective of cell transgenesis and epigenetic modification, none of the iSCNT embryos developed to the blastocyst stage. The iSCNT embryos carrying CMV-EGFP expressed EGFP at all developmental stages (2-cell, 4-cell, 8-16-cell, and morula) without mosaicism, while no POU5F1-EGFP signal was observed in any stage of developing iSCNT embryos irrespective of TSA/SAH epigenetic modifications. These results indicated that bovine oocytes partially remodel canine fibroblasts and that TSA and SAH have marginal beneficial effects on this process.
Collapse
|
9
|
Zhu HY, Kang JD, Li S, Jin JX, Hong Y, Jin L, Guo Q, Gao QS, Yan CG, Yin XJ. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer. Biochem Biophys Res Commun 2014; 444:638-43. [PMID: 24491539 DOI: 10.1016/j.bbrc.2014.01.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
Abstract
Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P>0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P<0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2mM valproic acid for 24h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.
Collapse
Affiliation(s)
- Hai-Ying Zhu
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Jin-Dan Kang
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Suo Li
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Jun-Xue Jin
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Yu Hong
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Long Jin
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Qing Guo
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Qing-Shan Gao
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Chang-Guo Yan
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Xi-Jun Yin
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China.
| |
Collapse
|
10
|
Blastocyst Formation and Chromosome Statuses of Reconstructed Embryos Derived from Interspecies Somatic Cell Nuclear Transfer (iSCNT). ACTA ACUST UNITED AC 2013. [DOI: 10.1016/s1001-7844(13)60019-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Abstract
The crucial facts underlying the low efficiency of cellular reprogramming are poorly understood. Cellular reprogramming occurs in nuclear transfer, induced pluripotent stem cell (iPSC) formation, cell fusion, and lineage-switching experiments. Despite these advances, there are three fundamental problems to be addressed: (1) the majority of cells cannot be reprogrammed, (2) the efficiency of reprogramming cells is usually low, and (3) the reprogrammed cells developed from a patient's own cells activate immune responses. These shortcomings present major obstacles for using reprogramming approaches in customised cell therapy. In this Perspective, the author synthesises past and present observations in the field of cellular reprogramming to propose a theoretical picture of the cellular memory disc. The current hypothesis is that all cells undergo an endogenous and exogenous holographic memorisation such that parts of the cellular memory dramatically decrease the efficiency of reprogramming cells, act like a barrier against reprogramming in the majority of cells, and activate immune responses. Accordingly, the focus of this review is mainly to describe the cellular memory disc (CMD). Based on the present theory, cellular memory includes three parts: a reprogramming-resistance memory (RRM), a switch-promoting memory (SPM) and a culture-induced memory (CIM). The cellular memory arises genetically, epigenetically and non-genetically and affects cellular behaviours. [corrected].
Collapse
Affiliation(s)
- Seyed Hadi Anjamrooz
- Cellular and Molecular Research Center, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
12
|
Narbonne P, Halley-Stott RP, Gurdon JB. On the cellular and developmental lethality of a Xenopus nucleocytoplasmic hybrid. Commun Integr Biol 2012; 5:329-33. [PMID: 23060954 PMCID: PMC3460835 DOI: 10.4161/cib.20334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nucleocytoplasmic hybrid (cybrid) embryos result from the combination of the nucleus of one species, and the egg cytoplasm of another species. Cybrid embryos can be obtained either in the haploid state by the cross-fertilization or intra-cytoplasmic injection of an enucleated egg with sperm from another species, or in the diploid state by the technique of interspecies somatic cell nuclear transfer (iSCNT). Cybrids that originate from the combination of the nucleus and the cytoplasm of distantly related species commonly expire during early embryonic development, and the cause of this arrest is currently under investigation. Here we show that cells isolated from a Xenopus cybrid (Xenopus (Silurana) tropicalis haploid nucleus combined with Xenopus laevis egg cytoplasm) embryo are unable to proliferate and expand normally in vitro. We also provide evidence that the lack of nuclear donor species maternal poly(A)+ RNA-dependent factors in the recipient species egg may contribute to the developmental dead-end of distantly-related cybrid embryos. Overall, the data are consistent with the view that the development promoted by one species’ nucleus is dependent on the presence of maternally-derived, mRNA encoded, species-specific factors. These results also show that cybrid development can be improved without nuclear species mitochondria supplementation or replacement.
Collapse
Affiliation(s)
- Patrick Narbonne
- The Wellcome Trust/Cancer Research UK Gurdon Institute; The Henry Wellcome Building of Cancer and Developmental Biology; University of Cambridge; Cambridge, UK ; Department of Zoology; University of Cambridge; Cambridge, UK
| | | | | |
Collapse
|
13
|
Narbonne P, Miyamoto K, Gurdon JB. Reprogramming and development in nuclear transfer embryos and in interspecific systems. Curr Opin Genet Dev 2012; 22:450-8. [PMID: 23062626 PMCID: PMC3654497 DOI: 10.1016/j.gde.2012.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/29/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022]
Abstract
Nuclear transfer (NT) remains the most effective method to reprogram somatic cells to totipotency. Somatic cell nuclear transfer (SCNT) efficiency however remains low, but recurrent problems occurring in partially reprogrammed cloned embryos have recently been identified and some remedied. In particular, the trophectoderm has been identified as a lineage whose reprogramming success has a large influence on SCNT embryo development. Several interspecific hybrid and cybrid reprogramming systems have been developed as they offer various technical advantages and potential applications, and together with SCNT, they have led to the identification of a series of reprogramming events and responsible reprogramming factors. Interspecific incompatibilities hinder full exploitation of cross-species reprogramming systems, yet recent findings suggest that these may not constitute insurmountable obstacles.
Collapse
Affiliation(s)
- Patrick Narbonne
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
14
|
Hosseini SM, Hajian M, Forouzanfar M, Moulavi F, Abedi P, Asgari V, Tanhaei S, Abbasi H, Jafarpour F, Ostadhosseini S, Karamali F, Karbaliaie K, Baharvand H, Nasr-Esfahani MH. Enucleated ovine oocyte supports human somatic cells reprogramming back to the embryonic stage. Cell Reprogram 2012; 14:155-63. [PMID: 22384929 DOI: 10.1089/cell.2011.0061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increased possibility of universality of ooplasmic reprogramming factors resulted in a parallel increased interest to use interspecies somatic cell nuclear transfer (iSCNT) to address basic questions of developmental biology and to improve the feasibility of cell therapy. In this study, the interactions between human somatic cells and ovine oocytes were investigated. Nuclear remodeling events were first observed 3 h post-iSCNT as nuclear swelling, chromosome condensation, and spindle formation. A time-dependent decrease in maturation promoting activity of inactivated reconstructs coincided with increased aberrations in chromosome and spindle organization of the newly developed embryos. The sequence and duration of nuclear remodeling events were irrespective of donor cell type used. Although the majority of the reconstituted embryos arrested before embryonic genome activation (8-16-cell) stage, less than 5% of them could progress beyond transcription-requiring developmental stage and formed blastocyst-like structures with distinct inner cell mass and trophectoderm at days 7 and 8 post-SCNT. Importantly, real-time assessment of three developmentally important genes (Oct4, Sox2, and Nanog) indicated their upregulation in iSCNT blastocysts. Blastocyst-derived outgrowths had alkaline phosphatase activity that was lost upon passage. Collectively, this study introduced ovine oocyte as a credible cytoplast for remodeling and reprogramming of human somatic cells back to the embryonic stage and provided a platform for further studies to unravel possible differences exist between reprogramming ability of oocytes of different mammalian species.
Collapse
Affiliation(s)
- S Morteza Hosseini
- Department of Reproduction and Development, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
NARBONNE PATRICK, GURDON JOHNB. Amphibian interorder nuclear transfer embryos reveal conserved embryonic gene transcription, but deficient DNA replication or chromosome segregation. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2012; 56:975-86. [PMID: 23417419 PMCID: PMC3785129 DOI: 10.1387/ijdb.120150jg] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Early interspecies nuclear transfer (iNT) experiments suggested that a foreign nucleus may become permanently damaged after a few rounds of cell division in the cytoplasm of another species. That is, in some distant species combinations, nucleocytoplasmic hybrid (cybrid) blastula nuclei can no longer support development, even if they are back-transferred into their own kind of egg cytoplasm. We monitored foreign DNA amplification and RNA production by quantitative PCR (qPCR) and RT-qPCR in interorder amphibian hybrids and cybrids formed by the transfer of newt (Pleurodeles waltl) embryonic nuclei into intact and enucleated frog (Xenopus laevis) eggs. We found a dramatic reduction in the expansion of foreign DNA and cell numbers in developing cybrid embryos that correlated with reduced gene transcription. Interestingly, expansion in cell numbers was rescued by the recipient species (Xenopus) maternal genome in iNT hybrids, but it did not improve P. waltl DNA expansion or gene transcription. Also, foreign gene transcripts, normalized to DNA copy numbers, were mostly normal in both iNT hybrids and cybrids. Thus, incomplete foreign DNA replication and/or chromosome segregation during cell division may be the major form of nuclear damage occurring as a result of nuclear replication in a foreign cytoplasmic environment. It also shows that the mechanisms of embryonic gene transcription are highly conserved across amphibians and may not be a major cause of cybrid lethality.
Collapse
Affiliation(s)
- PATRICK NARBONNE
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, U.K. and Department of Zoology, University of Cambridge, Cambridge, U.K
| | - JOHN B. GURDON
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, U.K. and Department of Zoology, University of Cambridge, Cambridge, U.K
| |
Collapse
|
16
|
|
17
|
Wang K, Otu HH, Chen Y, Lee Y, Latham K, Cibelli JB. Reprogrammed transcriptome in rhesus-bovine interspecies somatic cell nuclear transfer embryos. PLoS One 2011; 6:e22197. [PMID: 21799794 PMCID: PMC3143123 DOI: 10.1371/journal.pone.0022197] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/20/2011] [Indexed: 01/08/2023] Open
Abstract
Background Global activation of the embryonic genome (EGA), one of the most critical steps in early mammalian embryo development, is recognized as the time when interspecies somatic cell nuclear transfer (iSCNT) embryos fail to thrive. Methodology/Principal Findings In this study, we analyzed the EGA-related transcriptome of rhesus-bovine iSCNT 8- to 16-cell embryos and dissected the reprogramming process in terms of embryonic gene activation, somatic gene silencing, and maternal RNA degradation. Compared with fibroblast donor cells, two thousand and seven genes were activated in iSCNT embryos, one quarter of them reaching expression levels comparable to those found in in vitro fertilized (IVF) rhesus embryos. This suggested that EGA in iSCNT embryos had partially recapitulated rhesus embryonic development. Eight hundred and sixty somatic genes were not silenced properly and continued to be expressed in iSCNT embryos, which indicated incomplete nuclear reprogramming. We compared maternal RNA degradation in bovine oocytes between bovine-bovine SCNT and iSCNT embryos. While maternal RNA degradation occurred in both SCNT and iSCNT embryos, we saw more limited overall degradation of maternal RNA in iSCNT embryos than in SCNT embryos. Several important maternal RNAs, like GPF9, were not properly processed in SCNT embryos. Conclusions/Significance Our data suggested that iSCNT embryos are capable of triggering EGA, while a portion of somatic cell-associated genes maintain their expression. Maternal RNA degradation seems to be impaired in iSCNT embryos. Further understanding of the biological roles of these genes, networks, and pathways revealed by iSCNT may expand our knowledge about cell reprogramming, pluripotency, and differentiation.
Collapse
Affiliation(s)
- Kai Wang
- Michigan State University, East Lansing, Michigan, United States of America
| | - Hasan H. Otu
- BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Bioengineering, Istanbul Bilgi University, Istanbul, Turkey
| | - Ying Chen
- Michigan State University, East Lansing, Michigan, United States of America
| | - Young Lee
- Temple University, Philadelphia, Pennsylvania, United States of America
| | - Keith Latham
- Temple University, Philadelphia, Pennsylvania, United States of America
| | - Jose B. Cibelli
- Michigan State University, East Lansing, Michigan, United States of America
- Programa Andaluz de Terapia Celular, Andalucia, Spain
- * E-mail:
| |
Collapse
|
18
|
Affiliation(s)
- J Suaudeau
- Pontifical Academy for Life, Rome, Italy.
| |
Collapse
|
19
|
Blastocysts derived from adult fibroblasts of a rhesus monkey ( Macaca mulatta) using interspecies somatic cell nuclear transfer. ZYGOTE 2011; 19:199-204. [PMID: 21554770 DOI: 10.1017/s0967199411000232] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In non-human primates, it is difficult to collect sufficient numbers of oocytes for producing identical embryos by somatic cell nuclear transfer (SCNT). Because of this factor, inter-species SCNT (iSCNT) using heterospecific oocytes is an attractive alternative approach. The objective of this study was to produce iSCNT-derived blastocysts using enucleated cow (Bos taurus) metaphase II oocytes and adult rhesus monkey (Macaca mulatta) fibroblasts. Ear skin tissue from a 6-year-old male rhesus monkey was collected by biopsy and fibroblasts were isolated. Immature cumulus-oocyte complexes from cow ovaries were collected and matured in vitro in Medium 199. The enucleated oocytes were reconstructed with rhesus monkey fibroblasts and iSCNT embryos were cultured in modified synthetic oviduct fluid in an atmosphere of 5-5.5% CO2 under various conditions (37-39 °C and 5-20% O2) to examine the effects of in vitro culture conditions. Most embryos were arrested at the 8- or 16-cell stage and only three blastocysts were derived in this way using iSCNT from a total of 1153 cultured activated embryos (0.26% production rate). Two of the three blastocysts were used for counting nuclear numbers using bisbenzimide staining, which were 51 and 24. The other iSCNT-derived blastocyst was used to analyse mitochondrial DNA (mtDNA) by PCR, and both rhesus monkey and cow mtDNA were detected. Although the development rate was extremely low, this study established that iSCNT using two phylogenetically distant species, including a primate, could produce blastocysts. With improvements in the development rate, it may be possible to produce rhesus monkey iSCNT-derived embryonic stem cell lines for studies on primate nucleus and cow mitochondria interaction mechanisms.
Collapse
|
20
|
Hajian M, Hosseini SM, Forouzanfar M, Abedi P, Ostadhosseini S, Hosseini L, Moulavi F, Gourabi H, Shahverdi AH, Vosough Taghi Dizaj A, Kalantari SA, Fotouhi Z, Iranpour R, Mahyar H, Amiri-Yekta A, Nasr-Esfahani MH. “Conservation cloning” of vulnerable Esfahan mouflon (Ovis orientalis isphahanica): in vitro and in vivo studies. EUR J WILDLIFE RES 2011. [DOI: 10.1007/s10344-011-0510-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Selokar N, George A, Saha A, Sharma R, Muzaffer M, Shah R, Palta P, Chauhan M, Manik R, Singla S. Production of interspecies handmade cloned embryos by nuclear transfer of cattle, goat and rat fibroblasts to buffalo (Bubalus bubalis) oocytes. Anim Reprod Sci 2011; 123:279-82. [DOI: 10.1016/j.anireprosci.2011.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 12/05/2010] [Accepted: 01/04/2011] [Indexed: 11/16/2022]
|
22
|
Ooplasm transfer and interspecies somatic cell nuclear transfer: heteroplasmy, pattern of mitochondrial migration and effect on embryo development. ZYGOTE 2010; 19:147-56. [PMID: 20735895 DOI: 10.1017/s0967199410000419] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although interspecies somatic cell nuclear transfer (iSCNT) has potential applications in the conservation of exotic species, an in vitro developmental block has been observed in embryos produced by this approach. It has been suggested that mitochondrial mismatch between donor cell and recipient oocyte could cause embryonic developmental arrest. A series of experiments was conducted to investigate the effect of mixed mitochondrial populations (heteroplasmy) on early development of iSCNT-derived cloned embryos. The effect of combining the techniques of ooplasm transfer (OT) and somatic cell nuclear transfer (SCNT) was examined by monitoring in vitro embryonic development; the presence and pattern of migration of foreign mitochondria after OT was analysed by MitoTracker staining. In addition, the effect of transferring caprine ooplasm (iOT) into the bovine enucleated oocytes used in iSCNT was analysed. There was no significant effect of the sequence of events (OT-SCNT or SCNT-OT) on the number of fused, cleaved, blastocyst or hatched blastocyst stage embryos. MitoTracker Green staining of donor oocytes used for OT confirmed the introduction of foreign mitochondria. The distribution pattern of transferred mitochondria most commonly remained in a distinct cluster after 12, 74 and 144 h of in vitro culture. When goat ooplasm was injected into bovine enucleated oocytes (iSCNT), there was a reduction (p < 0.05) in fusion (52 vs. 82%) and subsequent cleavage rates (55 vs. 78%). The procedure of iOT prior to iSCNT had no effect in overcoming the 8- to 16-cell in vitro developmental block, and only parthenogenetic cow and goat controls reached the blastocyst (36 and 32%) and hatched blastocyst (25 and 12%) stages, respectively. This study indicates that when foreign mitochondria are introduced at the time of OT, these organelles tend to remain as distinct clusters without relocation after a few mitotic divisions. Although the bovine cytoplast appears capable of supporting mitotic divisions after iOT-iSCNT, heteroplasmy or mitochondrial incompatibilities may affect nuclear-ooplasmic events occurring at the time of genomic activation.
Collapse
|
23
|
Paris DBBP, Stout TAE. Equine embryos and embryonic stem cells: defining reliable markers of pluripotency. Theriogenology 2010; 74:516-24. [PMID: 20071015 DOI: 10.1016/j.theriogenology.2009.11.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 11/29/2009] [Accepted: 11/29/2009] [Indexed: 01/22/2023]
Abstract
Cartilage and tendon injuries are a significant source of animal wastage and financial loss within the horse-racing industry. Moreover, both cartilage and tendon have limited intrinsic capacity for self-repair, and the functionally inferior tissue produced within a lesion may reduce performance and increase the risk of reinjury. Stem cells offer tremendous potential for accelerating and improving tissue healing, and adult mesenchymal stem cells (MSCs) are already used to treat cartilage and tendon injuries in horses. However, MSCs are scarce in the bone marrow isolates used, have limited potential for proliferation and differentiation in vitro, and do not appear to noticeably improve long-term functional repair. Embryonic stem cells (ESCs) or induced pluripotent stem (iPS) cells could overcome many of the limitations and be used to generate tissues of value for equine regenerative medicine. To date, six lines of putative ESCs have been described in the horse. All expressed stem cell-associated markers and exhibited longevity and pluripotency in vitro, but none have been proven to exhibit pluripotency in vivo. Moreover, it is becoming clear that the markers used to characterize the putative ESCs were inadequate, primarily because studies in domestic species have revealed that they are not specific to ESCs or the pluripotent inner cell mass, but also because the function of most in the maintenance of pluripotency is not known. Future derivation and validation of equine embryonic or other pluripotent stem cells would benefit greatly from a reliable panel of molecular markers specific to pluripotent cells of the developing horse embryo.
Collapse
Affiliation(s)
- D B B P Paris
- Department of Equine Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands.
| | | |
Collapse
|
24
|
Chastant-Maillard S, Chebrout M, Thoumire S, Saint-Dizier M, Chodkiewicz M, Reynaud K. Embryo biotechnology in the dog: a review. Reprod Fertil Dev 2010; 22:1049-56. [DOI: 10.1071/rd09270] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/03/2010] [Indexed: 12/12/2022] Open
Abstract
Canine embryos are a scarce biological material because of difficulties in collecting in vivo-produced embryos and the inability, to date, to produce canine embryos in vitro. The procedure for the transfer of in vivo-produced embryos has not been developed adequately, with only six attempts reported in the literature that have resulted in the birth of 45 puppies. In vitro, the fertilisation rate is particularly low (∼10%) and the incidence of polyspermy particularly high. So far, no puppy has been obtained from an in vitro-produced embryo. In contrast, cloning of somatic cells has been used successfully over the past 4 years, with the birth of 41 puppies reported in the literature, a yield that is comparable to that for other mammalian species. Over the same period, canine embryonic stem sells and transgenic cloned dogs have been obtained. Thus, the latest reproductive technologies are further advanced than in vitro embryo production. The lack of fundamental studies on the specific features of reproductive physiology and developmental biology in the canine is regrettable in view of the increasing role of dogs in our society and of the current demand for new biological models in biomedical technology.
Collapse
|
25
|
Interspecies somatic cell nucleus transfer with porcine oocytes as recipients: A novel bioassay system for assessing the competence of canine somatic cells to develop into embryos. Theriogenology 2009; 72:549-59. [DOI: 10.1016/j.theriogenology.2009.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/14/2009] [Accepted: 04/08/2009] [Indexed: 01/08/2023]
|
26
|
Chung Y, Bishop CE, Treff NR, Walker SJ, Sandler VM, Becker S, Klimanskaya I, Wun WS, Dunn R, Hall RM, Su J, Lu SJ, Maserati M, Choi YH, Scott R, Atala A, Dittman R, Lanza R. Reprogramming of human somatic cells using human and animal oocytes. CLONING AND STEM CELLS 2009; 11:213-23. [PMID: 19186982 DOI: 10.1089/clo.2009.0004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is renewed interest in using animal oocytes to reprogram human somatic cells. Here we compare the reprogramming of human somatic nuclei using oocytes obtained from animal and human sources. Comparative analysis of gene expression in morula-stage embryos was carried out using single-embryo transcriptome amplification and global gene expression analyses. Genomic DNA fingerprinting and PCR analysis confirmed that the nuclear genome of the cloned embryos originated from the donor somatic cell. Although the human-human, human-bovine, and human-rabbit clones appeared morphologically similar and continued development to the morula stage at approximately the same rate (39, 36, and 36%, respectively), the pattern of reprogramming of the donor genome was dramatically different. In contrast to the interspecies clones, gene expression profiles of the human-human embryos showed that there was extensive reprogramming of the donor nuclei through extensive upregulation, and that the expression pattern was similar in key upregulation in normal control embryos. To account for maternal gene expression, enucleated oocyte transcriptome profiles were subtracted from the corresponding morula-stage embryo profiles. t-Test comparisons (median-normalized data @ fc>4; p<0.005) between human in vitro fertilization (IVF) embryos and human-bovine or human-rabbit interspecies somatic cell transfer (iSCNT) embryos found between 2400 and 2950 genes that were differentially expressed, the majority (60-70%) of which were downregulated, whereas the same comparison between the bovine and rabbit oocyte profiles found no differences at all. In contrast to the iSCNT embryos, expression profiles of human-human clones compared to the age-matched IVF embryos showed that nearly all of the differentially expressed genes were upregulated in the clones. Importantly, the human oocytes significantly upregulated Oct-4, Sox-2, and nanog (22-fold, 6-fold, and 12-fold, respectively), whereas the bovine and rabbit oocytes either showed no difference or a downregulation of these critical pluripotency-associated genes, effectively silencing them. Without appropriate reprogramming, these data call into question the potential use of these discordant animal oocyte sources to generate patient-specific stem cells.
Collapse
Affiliation(s)
- Young Chung
- Advanced Cell Technology, Worcester, MA 01605, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Nuclear reprogramming describes a switch in gene expression of one kind of cell to that of another unrelated cell type. Early studies in frog cloning provided some of the first experimental evidence for reprogramming. Subsequent procedures included mammalian somatic cell nuclear transfer, cell fusion, induction of pluripotency by ectopic gene expression, and direct reprogramming. Through these methods it becomes possible to derive one kind of specialized cell (such as a brain cell) from another, more accessible, tissue (such as skin) in the same individual. This has potential applications for cell replacement without the immunosuppression treatments that are required when cells are transferred between genetically different individuals. This article provides some background to this field, a discussion of mechanisms and efficiency, and comments on prospects for future nuclear reprogramming research.
Collapse
Affiliation(s)
- J B Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 12N, UK
| | | |
Collapse
|
28
|
Trounson A. Rats, cats, and elephants, but still no unicorn: induced pluripotent stem cells from new species. Cell Stem Cell 2008; 4:3-4. [PMID: 19097957 DOI: 10.1016/j.stem.2008.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two independent studies in this issue of Cell Stem Cell (Liao et al., 2009; Li et al., 2009) derive rat induced pluripotent stem cells (iPSCs). In one report, the method used results in rat and human iPSCs that exhibit phenotypic traits similar to mouse embryonic stem cells.
Collapse
Affiliation(s)
- Alan Trounson
- California Institute for Regenerative Medicine, San Francisco, CA 94107, USA.
| |
Collapse
|
29
|
Yu Y, Mai Q, Chen X, Wang L, Gao L, Zhou C, Zhou Q. Assessment of the developmental competence of human somatic cell nuclear transfer embryos by oocyte morphology classification. Hum Reprod 2008; 24:649-57. [DOI: 10.1093/humrep/den407] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
30
|
Li F, Cao H, Zhang Q, Li R, Chen X, Fang Z, Xue K, Chen DY, Sheng HZ. Activation of Human Embryonic Gene Expression in Cytoplasmic Hybrid Embryos Constructed between Bovine Oocytes and Human Fibroblasts. CLONING AND STEM CELLS 2008; 10:297-305. [PMID: 18578590 DOI: 10.1089/clo.2007.0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Feng Li
- Center for Developmental Biology, Xnhua Hospital, School of Medicine, Shanghai Jiao Tong University, People's Republic of China
| | - Henhua Cao
- Laboratory of Embryo Engineering, Shengneng Group, City of Linyi, Shandong Province, China
| | - Quanjun Zhang
- Laboratory of Embryo Engineering, Shengneng Group, City of Linyi, Shandong Province, China
| | - Ruichang Li
- Laboratory of Embryo Engineering, Shengneng Group, City of Linyi, Shandong Province, China
| | - Xuejin Chen
- Center for Developmental Biology, Xnhua Hospital, School of Medicine, Shanghai Jiao Tong University, People's Republic of China
| | - Zhengfu Fang
- Center for Developmental Biology, Xnhua Hospital, School of Medicine, Shanghai Jiao Tong University, People's Republic of China
| | - Ke Xue
- Center for Developmental Biology, Xnhua Hospital, School of Medicine, Shanghai Jiao Tong University, People's Republic of China
| | - Da Yuan Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hui Z. Sheng
- Center for Developmental Biology, Xnhua Hospital, School of Medicine, Shanghai Jiao Tong University, People's Republic of China
| |
Collapse
|
31
|
Pei DS, Sun YH, Zhu ZY. Identification of a novel gene K23 over-expressed in fish cross-subfamily cloned embryos. Mol Biol Rep 2008; 36:1375-80. [PMID: 18654838 DOI: 10.1007/s11033-008-9323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
Abstract
A novel gene-K23, differentially expressed in cross-subfamily cloned embryos, was isolated by RACE-PCR technique. It had 2580 base pairs (bp) in length, with a 1,425 bp open reading frame (ORF) encoding a putative protein of 474 amino acids (aa). Bioinformatic analysis indicated that K23 had 22 phosphorylation sites, but it had no signal peptides. Developmental expression analysis in zebrafish showed that K23 transcripts were maternally expressed in ovum and the amount of K23 transcripts increased gradually from zygote to pharyngula period. Subcellular localization analysis revealed that K23 protein was homogeneously distributed both in nuclei and cytoplasm. Taken together, our findings indicate that K23 gene is a novel gene differentially expressed in fish cross-subfamily cloned embryos.
Collapse
Affiliation(s)
- De-Sheng Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | |
Collapse
|
32
|
Shi LH, Miao YL, Ouyang YC, Huang JC, Lei ZL, Yang JW, Han ZM, Song XF, Sun QY, Chen DY. Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos. Dev Dyn 2008; 237:640-8. [PMID: 18265023 DOI: 10.1002/dvdy.21450] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The interspecies somatic cell nuclear transfer (iSCNT) technique for therapeutic cloning gives great promise for treatment of many human diseases. However, the incomplete nuclear reprogramming and the low blastocyst rate of iSCNT are still big problems. Herein, we observed the effect of TSA on the development of rabbit-rabbit intraspecies and rabbit-human interspecies cloned embryos. After treatment with TSA for 6 hr during activation, we found that the blastocyst rate of rabbit-rabbit cloned embryos was more than two times higher than that of untreated embryos; however, the blastocyst rate of TSA-treated rabbit-human interspecies cloned embryos decreased. We also found evident time-dependent histone deacetylation-reacetylation changes in rabbit-rabbit cloned embryos, but not in rabbit-human cloned embryos from fusion to 6 hr after activation. Our results suggest that TSA-treatment does not improve blastocyst development of rabbit-human iSCNT embryos and that abnormal histone deacetylation-reacetylation changes in iSCNT embryos may account for their poor blastocyst development.
Collapse
Affiliation(s)
- Li-Hong Shi
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mitochondrial DNA Transmission and Transcription After Somatic Cell Fusion to One or More Cytoplasts. Stem Cells 2008; 26:775-82. [DOI: 10.1634/stemcells.2007-0747] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Tecirlioglu RT, Trounson AO. Embryonic stem cells in companion animals (horses, dogs and cats): present status and future prospects. Reprod Fertil Dev 2007; 19:740-7. [PMID: 17714628 DOI: 10.1071/rd07039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 06/04/2007] [Indexed: 11/23/2022] Open
Abstract
Reproductive technologies have made impressive advances since the 1950s owing to the development of new and innovative technologies. Most of these advances were driven largely by commercial opportunities and the potential improvement of farm livestock production and human health. Companion animals live long and healthy lives and the greatest expense for pet owners are services related to veterinary care and healthcare products. The recent development of embryonic stem cell and nuclear transfer technology in primates and mice has enabled the production of individual specific embryonic stem cell lines in a number of species for potential cell-replacement therapy. Stem cell technology is a fast-developing area in companion animals because many of the diseases and musculoskeletal injuries of cats, dogs and horses are similar to those in humans. Nuclear transfer-derived stem cells may also be selected and directed into differentiation pathways leading to the production of specific cell types, tissues and, eventually, even organs for research and transplantaton. Furthermore, investigations into the treatment of inherited or acquired pathologies have been performed mainly in mice. However, mouse models do not always faithfully represent the human disease. Naturally occurring diseases in companion animals can be more ideal as disease models of human genetic and acquired diseases and could help to define the potential therapeutic efficiency and safety of stem cell therapies. In the present review, we focus on the economic implications of companion animals in society, as well as recent biotechnological progress that has been made in horse, dog and cat embryonic stem cell derivation.
Collapse
Affiliation(s)
- R Tayfur Tecirlioglu
- Monash Immunology and Stem Cell Laboratories, Monash Science Technology Research and Innovation Precinct, Monash University, Clayton, Vic. 3800, Australia.
| | | |
Collapse
|