1
|
Treinys R, Kaselis A, Jover E, Bagnard D, Šatkauskas S. R-type calcium channels are crucial for semaphorin 3A-induced DRG axon growth cone collapse. PLoS One 2014; 9:e102357. [PMID: 25032951 PMCID: PMC4102519 DOI: 10.1371/journal.pone.0102357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/18/2014] [Indexed: 12/20/2022] Open
Abstract
Semaphorin 3A (Sema3A) is a secreted protein involved in axon path-finding during nervous system development. Calcium signaling plays an important role during axonal growth in response to different guidance cues; however it remains unclear whether this is also the case for Sema3A. In this study we used intracellular calcium imaging to figure out whether Sema3A-induced growth cone collapse is a Ca2+ dependent process. Intracellular Ca2+ imaging results using Fura-2 AM showed Ca2+ increase in E15 mice dorsal root ganglia neurons upon Sema3A treatment. Consequently we analyzed Sema3A effect on growth cones after blocking or modifying intracellular and extracellular Ca2+ channels that are expressed in E15 mouse embryos. Our results demonstrate that Sema3A increased growth cone collapse rate is blocked by the non-selective R- and T- type Ca2+ channel blocker NiCl2 and by the selective R-type Ca2+ channel blocker SNX482. These Ca2+ channel blockers consistently decreased the Sema3A-induced intracellular Ca2+ concentration elevation. Overall, our results demonstrate that Sema3A-induced growth cone collapses are intimately related with increase in intracellular calcium concentration mediated by R-type calcium channels.
Collapse
Affiliation(s)
- Rimantas Treinys
- Biophysical Research Group, Biology department, Vytautas Magnus University, Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Andrius Kaselis
- Biophysical Research Group, Biology department, Vytautas Magnus University, Kaunas, Lithuania
| | - Emmanuel Jover
- INCI – UPR-CNRS 3212, Neurotransmission et sécrétion neuroendocrine, Strasbourg, France
| | - Dominique Bagnard
- INSERM U1109, MN3t lab, Labex Medalis, University of Strasbourg, Strasbourg, France
| | - Saulius Šatkauskas
- Biophysical Research Group, Biology department, Vytautas Magnus University, Kaunas, Lithuania
- * E-mail:
| |
Collapse
|
2
|
Cell adhesion promotion strategies for signal transduction enhancement in microelectrode array in vitro electrophysiology: An introductory overview and critical discussion. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
3
|
A novel Na+ channel splice form contributes to the regulation of an androgen-dependent social signal. J Neurosci 2008; 28:9173-82. [PMID: 18784298 DOI: 10.1523/jneurosci.2783-08.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Na(+) channels are often spliced but little is known about the functional consequences of splicing. We have been studying the regulation of Na(+) current inactivation in an electric fish model in which systematic variation in the rate of inactivation of the electric organ Na(+) current shapes the electric organ discharge (EOD), a sexually dimorphic, androgen-sensitive communication signal. Here, we examine the relationship between an Na(+) channel (Na(v)1.4b), which has two splice forms, and the waveform of the EOD. One splice form (Na(v)1.4bL) possesses a novel first exon that encodes a 51 aa N-terminal extension. This is the first report of an Na(+) channel with alternative splicing in the N terminal. This N terminal is present in zebrafish suggesting its general importance in regulating Na(+) currents in teleosts. The extended N terminal significantly speeds fast inactivation, shifts steady-state inactivation, and dramatically enhances recovery from inactivation, essentially fulfilling the functions of a beta subunit. Both splice forms are equally expressed in muscle in electric fish and zebrafish but Na(v)1.4bL is the dominant form in the electric organ implying electric organ-specific transcriptional regulation. Transcript abundance of Na(v)1.4bL in the electric organ is positively correlated with EOD frequency and lowered by androgens. Thus, shaping of the EOD waveform involves the androgenic regulation of a rapidly inactivating splice form of an Na(+) channel. Our results emphasize the role of splicing in the regulation of a vertebrate Na(+) channel and its contribution to a known behavior.
Collapse
|
4
|
Serum differentially modifies the transcription and translation of NMDAR subunits in retinal neurons. Neurochem Res 2008; 33:1442-51. [PMID: 18270826 DOI: 10.1007/s11064-007-9572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 12/12/2007] [Indexed: 10/22/2022]
Abstract
The N-methyl-D-aspartate type of glutamate receptor (NMDAR) plays a major role in the vertebrate retina. Expression of NR1 splice-variants and NR2 subunits in the retina differs from that in the brain, suggesting a tissue-specific heteromeric assembly of NMDARs. We previously demonstrated that serum alters retinal glutamate receptor properties. In order to relate this effect to NMDAR subunit composition, we here studied the effect of serum on the expression of NMDAR subunits and splice-variants in chick retinal neurons in primary culture. Our results show that mRNA and protein expression of NR1 alternative splice-variants and NR2 subunits are differentially modified by glutamate contained in serum. Such alteration suggests that NMDAR structure is reversed to embryonic heteromeric composition, through the control of subunit availability. The present findings could be relevant for the understanding of the lack of effect in the retina, of drugs which have been shown to protect cortical neurons from glutamate-induced excitotoxicity in those pathological or clinical conditions in which the retina is exposed to serum.
Collapse
|
5
|
Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 2007; 82:163-201. [PMID: 17643733 DOI: 10.1016/j.pneurobio.2007.06.005] [Citation(s) in RCA: 641] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 02/18/2007] [Accepted: 06/14/2007] [Indexed: 01/01/2023]
Abstract
Injuries to the peripheral nerves result in partial or total loss of motor, sensory and autonomic functions conveyed by the lesioned nerves to the denervated segments of the body, due to the interruption of axons continuity, degeneration of nerve fibers distal to the lesion and eventual death of axotomized neurons. Injuries to the peripheral nervous system may thus result in considerable disability. After axotomy, neuronal phenotype switches from a transmitter to a regenerative state, inducing the down- and up-regulation of numerous cellular components as well as the synthesis de novo of some molecules normally not expressed in adult neurons. These changes in gene expression activate and regulate the pathways responsible for neuronal survival and axonal regeneration. Functional deficits caused by nerve injuries can be compensated by three neural mechanisms: the reinnervation of denervated targets by regeneration of injured axons, the reinnervation by collateral branching of undamaged axons, and the remodeling of nervous system circuitry related to the lost functions. Plasticity of central connections may compensate functionally for the lack of specificity in target reinnervation; plasticity in human has, however, limited effects on disturbed sensory localization or fine motor control after injuries, and may even result in maladaptive changes, such as neuropathic pain, hyperreflexia and dystonia. Recent research has uncovered that peripheral nerve injuries induce a concurrent cascade of events, at the systemic, cellular and molecular levels, initiated by the nerve injury and progressing throughout plastic changes at the spinal cord, brainstem relay nuclei, thalamus and brain cortex. Mechanisms for these changes are ubiquitous in central substrates and include neurochemical changes, functional alterations of excitatory and inhibitory connections, atrophy and degeneration of normal substrates, sprouting of new connections, and reorganization of somatosensory and motor maps. An important direction for ongoing research is the development of therapeutic strategies that enhance axonal regeneration, promote selective target reinnervation, but are also able to modulate central nervous system reorganization, amplifying those positive adaptive changes that help to improve functional recovery but also diminishing undesirable consequences.
Collapse
Affiliation(s)
- X Navarro
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| | | | | |
Collapse
|
6
|
Liu H, Wu MM, Zakon HH. Individual variation and hormonal modulation of a sodium channel β subunit in the electric organ correlate with variation in a social signal. Dev Neurobiol 2007; 67:1289-304. [PMID: 17638382 DOI: 10.1002/dneu.20404] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The sodium channel beta1 subunit affects sodium channel gating and surface density, but little is known about the factors that regulate beta1 expression or its participation in the fine control of cellular excitability. In this study we examined whether graded expression of the beta1 subunit contributes to the gradient in sodium current inactivation, which is tightly controlled and directly related to a social behavior, the electric organ discharge (EOD), in a weakly electric fish Sternopygus macrurus. We found the mRNA and protein levels of beta1 in the electric organ both correlate with EOD frequency. We identified a novel mRNA splice form of this gene and found the splicing preference for this novel splice form also correlates with EOD frequency. Androgen implants lowered EOD frequency and decreased the beta1 mRNA level but did not affect splicing. Coexpression of each splice form in Xenopus oocytes with either the human muscle sodium channel gene, hNav1.4, or a Sternopygus ortholog, smNav1.4b, sped the rate of inactivation of the sodium current and shifted the steady-state inactivation toward less negative membrane potentials. The translational product of the novel mRNA splice form lacks a previously identified important tyrosine residue but still functions normally. The properties of the fish alpha and coexpressed beta1 subunits in the oocyte replicate those of the electric organ's endogenous sodium current. These data highlight the role of ion channel beta subunits in regulating cellular excitability.
Collapse
Affiliation(s)
- He Liu
- Section of Neurobiology and the Institute of Neuroscience, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
7
|
Abstract
Glioma cells show up-regulation and constitutive activation of erbB2, and its expression correlates positively with increased malignancy. A similar correlation has been demonstrated for the expression of gBK, a calcium-sensitive, large-conductance K(+) channel. We show here that glioma BK channels are a downstream target of erbB2/neuregulin signaling. Tyrphostin AG825 was able to disrupt the constituitive erbB2 activation in a dose-dependent manner, causing a 30-mV positive shift in gBK channel activation in cell-attached patches. Conversely, maximal stimulation of erbB2 with a recombinant neuregulin (NRG-1beta) caused a 12-mV shift in the opposite direction. RT-PCR studies reveal no change in the BK splice variants expressed in treated glioma cells. Furthermore, isolation of surface proteins through biotinylation did not show a change in gBK channel expression, and probing with phospho-specific antibodies showed no alteration in channel phosphorylation. However, fura-II Ca(2+) fluorescence imaging revealed a 35% decrease in the free intracellular Ca(2+) concentration after erbB2 inhibition and an increase in NRG-1beta-treated cells, suggesting that the observed changes most likely were due to alterations in [Ca(2+)](i). Consistent with this conclusion, neither tyrphostin AG825 nor NRG-1beta was able to modulate gBK channels under inside-out or whole-cell recording conditions when intracellular Ca(2+) was fixed. Thus, gBK channels are a downstream target for the abundantly expressed neuregulin-1 receptor erbB2 in glioma cells. However, unlike the case in other systems, this modulation appears to occur via changes in [Ca(2+)](i) without changes in channel expression or phosphorylation. The enhanced sensitivity of gBK channels in glioma cells to small, physiological Ca(2+) changes appears to be a prerequisite for this modulation.
Collapse
Affiliation(s)
- M L Olsen
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
8
|
Chemin J, Nargeot J, Lory P. Ca(v)3.2 calcium channels control an autocrine mechanism that promotes neuroblastoma cell differentiation. Neuroreport 2004; 15:671-5. [PMID: 15094473 DOI: 10.1097/00001756-200403220-00019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Calcium influx via low-voltage activated alpha(1H) (Ca(v)3.2) T-currents participates in the morphological and electrical differentiation of neuroblastoma NG108-15 cells. We investigated whether an autocrine mechanism could contribute to this differentiation process. The presence of factors secreted by NG108-15 cells was identified through the use of conditioned media (CM) obtained from differentiated cells. These CM significantly increased neuritogenesis with no change in the HVA calcium channel expression. CM-induced neuritogenesis persists during alpha(1H) current block, whereas CM obtained from cells transfected with an alpha(1H) antisense did not induce neuritogenesis. These data indicate that morphological differentiation of NG108-15 cells depends on an autocrine mechanism, which is controlled by alpha(1H) currents. Such a mechanism is likely to play a role in the various differentiation processes that imply alpha(1H) T-type Ca(2+) channels.
Collapse
Affiliation(s)
- Jean Chemin
- Laboratoire de Génomique Fonctionnelle, UPR 2580 CNRS, Institut de Génétique Humaine, 141 rue de la Cardonille, F-34094 Montpellier cedex 05, France
| | | | | |
Collapse
|
9
|
Valero-Cabré A, Navarro X. Changes in crossed spinal reflexes after peripheral nerve injury and repair. J Neurophysiol 2002; 87:1763-71. [PMID: 11929897 DOI: 10.1152/jn.00305.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the changes induced in crossed extensor reflex responses after peripheral nerve injury and repair in the rat. Adults rats were submitted to non repaired sciatic nerve crush (CRH, n = 9), section repaired by either aligned epineurial suture (CS, n = 11) or silicone tube (SIL4, n = 13), and 8 mm resection repaired by tubulization (SIL8, n = 12). To assess reinnervation, the sciatic nerve was stimulated proximal to the injury site, and the evoked compound muscle action potential (M and H waves) from tibialis anterior and plantar muscles and nerve action potential (CNAP) from the tibial nerve and the 4th digital nerve were recorded at monthly intervals for 3 mo postoperation. Nociceptive reinnervation to the hindpaw was also assessed by plantar algesimetry. Crossed extensor reflexes were evoked by stimulation of the tibial nerve at the ankle and recorded from the contralateral tibialis anterior muscle. Reinnervation of the hindpaw increased progressively with time during the 3 mo after lesion. The degree of muscle and sensory target reinnervation was dependent on the severity of the injury and the nerve gap created. The crossed extensor reflex consisted of three bursts of activity (C1, C2, and C3) of gradually longer latency, lower amplitude, and higher threshold in control rats. During follow-up after sciatic nerve injury, all animals in the operated groups showed recovery of components C1 and C2 and of the reflex H wave, whereas component C3 was detected in a significantly lower proportion of animals in groups with tube repair. The maximal amplitude of components C1 and C2 recovered to values higher than preoperative values, reaching final levels between 150 and 245% at the end of the follow-up in groups CRH, CS, and SIL4. When reflex amplitude was normalized by the CNAP amplitude of the regenerated tibial nerve, components C1 (300-400%) and C2 (150-350%) showed highly increased responses, while C3 was similar to baseline levels. In conclusion, reflexes mediated by myelinated sensory afferents showed, after nerve injuries, a higher degree of facilitation than those mediated by unmyelinated fibers. These changes tended to decline toward baseline values with progressive reinnervation but still remained significant 3 mo after injury.
Collapse
Affiliation(s)
- Antoni Valero-Cabré
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | | |
Collapse
|
10
|
Valero-Cabré A, Navarro X. H reflex restitution and facilitation after different types of peripheral nerve injury and repair. Brain Res 2001; 919:302-12. [PMID: 11701142 DOI: 10.1016/s0006-8993(01)03052-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study addresses the restitution of monosynaptic H reflex after nerve injuries and their role in the recovery of walking. Adult rats were submitted to sciatic crush, complete section repaired by aligned or crossed fascicular suture, or an 8-mm resection repaired by autograft or tube repair. The sciatic nerve was stimulated proximal to the injury site and the M and H waves were recorded from gastrocnemius (GCm) and plantar (PLm) muscles at monthly intervals during 3 months postoperation. Walking track tests were also carried out and the sciatic functional index (SFI) calculated to assess gait recovery. The M and H waves reappeared in all the animals at the end of the follow-up. The H/M amplitude ratio increased during the first stages of regeneration and tended to decrease to control values as muscle reinnervation progressed. However, final values of the H/M ratio for the PLm remained significantly higher in all the groups except that with a nerve crush. The walking track pattern showed an appreciable recovery only after crush injury. Final SFI values correlated positively with the M wave amplitude and negatively with the H/M ratio. In conclusion, H reflex is facilitated after peripheral nerve injury and regeneration and tends to return to normal excitability with time. Changes in the H reflex circuitry and excitability correlated positively with the deficient recovery of walking pattern after severe nerve injury.
Collapse
Affiliation(s)
- A Valero-Cabré
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 01893 Bellaterra, Spain
| | | |
Collapse
|
11
|
Cox RH, Folander K, Swanson R. Differential Expression of Voltage-Gated K
+
Channel Genes in Arteries From Spontaneously Hypertensive and Wistar-Kyoto Rats. Hypertension 2001; 37:1315-22. [PMID: 11358947 DOI: 10.1161/01.hyp.37.5.1315] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
—Voltage-gated K
+
currents play an important role in determining membrane potential, intracellular Ca
2+
, and contraction in arterial smooth muscle. In this study, the expression of genes encoding voltage-gated K
+
channels of the Kv1.X family was compared in arteries from spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). Expression of Kv1.X in thoracic aorta, mesenteric arteries, tail artery, and heart was determined, both qualitatively and quantitatively, by reverse transcription–polymerase chain reaction. Our results demonstrate distinct but overlapping patterns of expression in vascular tissues. In general, Kv1.2 and Kv1.5 were most highly represented, and the levels of Kv1.2 were significantly larger in all tissues from SHR. Levels of Kv1.5 in arteries did not differ significantly between strains but were greater in SHR heart. Moderate levels of Kv1.3 and Kvβ1.1 expression were also found in all tissues and were larger in SHR. Kv1.1 expression was not different between the 2 strains, and no significant expression of Kv1.4 (except in heart and aorta), Kv1.6, or Kvβ2.1 was observed in either strain. Kv1.2 and Kv1.5 transcripts represent ≈1 to 2 parts/10
5
of total mesenteric arterial RNA with ≈2- to 5-fold lower levels in aorta and tail artery. Whole-cell voltage-gated K
+
channel currents, recorded from mesenteric arterial myocytes, were larger in SHR than WKY (eg, at 0 mV: 7.3±0.8 versus 10.9±1.2 pA/pF). The voltage dependence of activation was more negative in SHR (V
0.5
: −20±4 mV versus −32±3 mV) but that of availability was not different. These results indicate that Kv1.X genes are differentially expressed between WKY and SHR (especially Kv1.2 and Kvβ1.1). These differences in gene expression are associated with a greater voltage-gated K
+
channel current density in SHR and shifted voltage-dependent activation compared with WKY. These differences may be a compensatory mechanism related to the membrane potential depolarization in SHR or some manifestation thereof.
Collapse
Affiliation(s)
- R H Cox
- Department of Physiology, University of Pennsylvania, Philadelphia, USA
| | | | | |
Collapse
|
12
|
Abstract
AMPA receptors expressed at auditory nerve synapses in the mammalian and avian cochlear nuclei display exceptionally rapid channel gating, an adaptation well suited for acoustic processing. We examined whether cellular interactions during development might determine the subunit composition of these receptors. After synapse formation in the avian nucleus magnocellularis (nMag) in vivo, the rate of receptor desensitization increased threefold, sensitivity to channel block by polyamines increased, and sensitivity to cyclothiazide, an inhibitor of desensitization, increased, indicating a reduction in glutamate receptor subunit 2 and of flip splice variants. This phenotypic switch was prevented, but not reversed, by isolating nMag neurons in a cell-culture environment. We propose that the switch in receptor kinetics is an outcome of cellular interactions during a critical period that result in the long-term determination of receptor phenotype.
Collapse
|
13
|
Voltage-activated K+ channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in glial progenitor cells. J Neurosci 1999. [PMID: 10377348 DOI: 10.1523/jneurosci.19-13-05380.1999] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural cell development is regulated by membrane ion channel activity. We have previously demonstrated that cell membrane depolarization with veratridine or blockage of K+ channels with tetraethylammonium (TEA) inhibit oligodendrocyte progenitor (OP) proliferation and differentiation (); however the molecular events involved are largely unknown. Here we show that forskolin (FSK) and its derivative dideoxyforskolin (DFSK) block K+ channels in OPs and inhibit cell proliferation. The antiproliferative effects of TEA, FSK, DFSK, and veratridine were attributable to OP cell cycle arrest in G1 phase. In fact, (1) cyclin D accumulation in synchronized OP cells was not affected by K+ channel blockers or veratridine; (2) these agents prevented OP cell proliferation only if present during G1 phase; and (3) G1 blockers, such as rapamycin and deferoxamine, mimicked the anti-proliferative effects of K+ channel blockers. DFSK also prevented OP differentiation, whereas FSK had no effect. Blockage of K+ channels and membrane depolarization also caused accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in OP cells. The antiproliferative effects of K+ channel blockers and veratridine were still present in OP cells isolated from INK4a-/- mice, lacking the cyclin-dependent kinase inhibitors p16(INK4a) and p19(ARF). Our results demonstrate that blockage of K+ channels and cell depolarization induce G1 arrest in the OP cell cycle through a mechanism that may involve p27(Kip1) and p21(CIP1) and further support the conclusion that OP cell cycle arrest and differentiation are two uncoupled events.
Collapse
|