1
|
Liu X, Sun X, Bao H, Ren Z, Wang S. Identification of two immunoglobulin light chain types and expression of immunoglobulin diversity in Chinese giant salamander (Andrias davidianus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105358. [PMID: 40090472 DOI: 10.1016/j.dci.2025.105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/22/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Lacking research on immunoglobulins in the Chinese giant salamanders (Andrias davidianus) has left their populations vulnerable to pathogen infections, contributing to a sharp decline in their numbers. In this study, we employed the rapid amplification of cDNA ends (RACE) technique along with paired-end 300 bp read length (PE300) sequencing. This approach was used to construct a DNA library, which enabled us to investigate the diversity of immunoglobulin gene expression. Through this approach, we identified structural features of immunoglobulin light chains. Our results revealed the presence of Igλ and Igσ. Similar to other vertebrates, the immunoglobulin light chains of Chinese giant salamanders are composed of variable (V) and constant (C) domains connected by recombination activating gene (RAG) mediated V-J (joining) recombination. This canonical gene organization allows combinatorial diversity through rearrangement of multiple V and J gene segments. The IgLC features FPPS and FYP motifs, showing high similarity to both mammalian IgLC sequences and the IgLC of the Chinese Alligator (Alligator sinensis). The IgSC, characterized by SSYL structures, showed strong homology with fish and amphibian IgSC sequences, notably the axolotl (Ambystoma mexicanum) IgSC. Both the IgLV and IgSV sequences exhibit a YYCXX fold in the last five residues of framework region 3 (FR3). FR3 is a critical framework region within the V domain that anchors the antigen binding complementarity determining regions. Notably, the FPPS/FYP motifs in Igλ and SSYL motifs in Igσ exhibited evolutionary conservation patterns consistent with those in other vertebrates. In terms of gene expression diversity, the IgH is composed of 7 IgHV, 7 IgHD, and 6 IgHJ subgroups, while the Igλ consists of 10 IgLV and 7 IgLJ subgroups, and the Igσ comprises 5 IgSV and 7 IgSJ subgroups. Dominant IgH combinations are IgHV4-IgHD3-IgHJ4 and IgHV4-IgHD2-IgHJ4. The Igλ shows high usage of IgLV8, IgLV3, IgLJ7, and IgLJ3, while the Igσ is predominantly characterized by IgSV3-IgSJ3. Notably, Cys utilization in the complementarity determining region 3 (CDR3) region was extremely low, suggesting that gene conversion plays a significant role in immune adaptation. This research enriches the immune genetic map of the Chinese giant salamanders and enhances our understanding of immunoglobulin evolution in tetrapods.
Collapse
Affiliation(s)
- Xiangyu Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Shaanxi, China
| | - Huyang Bao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China.
| |
Collapse
|
2
|
Saporiti S, Bianchi D, Ben Mariem O, Rossi M, Guerrini U, Eberini I, Centola F. In silico evaluation of the role of Fab glycosylation in cetuximab antibody dynamics. Front Immunol 2024; 15:1429600. [PMID: 39185413 PMCID: PMC11342397 DOI: 10.3389/fimmu.2024.1429600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction N-glycosylation is a post-translational modification that is highly important for the development of monoclonal antibodies (mAbs), as it regulates their biological activity, particularly in terms of immune effector functions. While typically added at the Fc level, approximately 15-25% of circulating antibodies exhibit glycosylation in the Fab domains as well. To the best of our knowledge, cetuximab (Erbitux®) is the only therapeutic antibody presenting Fab glycosylation approved world-wide targeting the epidermal growth factor receptor for the treatment of metastatic-colorectal and head and neck cancers. Additionally, it can trigger antibody-dependent cell cytotoxicity (ADCC), a response that typically is influenced by N-glycosylation at Fc level. However, the role of Fab glycosylation in cetuximab remains poorly understood. Hence, this study aims to investigate the structural role of Fab glycosylation on the conformational behavior of cetuximab. Methods The study was performed in silico via accelerated molecular dynamics simulations. The commercial cetuximab was compared to its form without Fab glycosylation and structural descriptors were evaluated to establish conformational differences. Results The results clearly show a correlation between the Fab glycosylation and structural descriptors that may modulate the conformational freedom of the antibody, potentially affecting Fc effector functions, and suggesting a negative role of Fab glycosylation on the interaction with FcγRIIIa. Conclusion Fab glycosylation of cetuximab is the most critical challenge for biosimilar development, but the differences highlighted in this work with respect to its aglycosylated form can improve the knowledge and represent also a great opportunity to develop novel strategies of biotherapeutics.
Collapse
Affiliation(s)
- Simona Saporiti
- Analytical Excellence and Program Management, Merck Serono S.p.A., Rome, Italy
| | - Davide Bianchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Mara Rossi
- Analytical Excellence and Program Management, Merck Serono S.p.A., Rome, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari & Data Science Research Center (DSRC), Università degli Studi di Milano, Milan, Italy
| | - Fabio Centola
- Analytical Excellence and Program Management, Merck Serono S.p.A., Rome, Italy
| |
Collapse
|
3
|
Damelang T, Brinkhaus M, van Osch TLJ, Schuurman J, Labrijn AF, Rispens T, Vidarsson G. Impact of structural modifications of IgG antibodies on effector functions. Front Immunol 2024; 14:1304365. [PMID: 38259472 PMCID: PMC10800522 DOI: 10.3389/fimmu.2023.1304365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Immunoglobulin G (IgG) antibodies are a critical component of the adaptive immune system, binding to and neutralizing pathogens and other foreign substances. Recent advances in molecular antibody biology and structural protein engineering enabled the modification of IgG antibodies to enhance their therapeutic potential. This review summarizes recent progress in both natural and engineered structural modifications of IgG antibodies, including allotypic variation, glycosylation, Fc engineering, and Fc gamma receptor binding optimization. We discuss the functional consequences of these modifications to highlight their potential for therapeutical applications.
Collapse
Affiliation(s)
- Timon Damelang
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Maximilian Brinkhaus
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Thijs L. J. van Osch
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Janine Schuurman
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Aran F. Labrijn
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Theo Rispens
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Qiu Y, Yi X, Tang X, Wei Y, Zhang B, Duan S, Wang S, Sun X. Differential analysis of immunoglobulin gene expression pattern in chickens of distinct breeds and developmental periods. J Anim Sci 2024; 102:skae111. [PMID: 38651250 PMCID: PMC11107122 DOI: 10.1093/jas/skae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/20/2024] [Indexed: 04/25/2024] Open
Abstract
Immunoglobulin is an essential component of the body's defense against pathogens, aiding in the recognition and clearance of foreign antigens. Research concerning immunoglobulin gene and its diversity of expression across different breeds within the same species is relatively scarce. In this study, we employed RACE (Rapid Amplification of cDNA Ends) technology, prepared DNA libraries, performed high-throughput sequencing, and conducted related bioinformatics analysis to analyze the differences in immunoglobulin gene diversity and expression at different periods in Hy-line brown hens, Lueyang black-bone chickens, and Beijing-You chickens. The study found that the composition of chicken immunoglobulin genes is relatively simple, with both the light chain and heavy chain having a functional V gene. Additionally, the mechanisms of immunoglobulin diversity generation tended to be consistent among different breeds and periods of chickens, primarily relying on abundant junctional diversity, somatic hypermutation (SHM), and gene conversion (GCV) to compensate for the limitations of low-level V(D)J recombination. As the age increased, the junctional diversity of IgH and IgL tended to diversify and showed similar expression patterns among different breeds. In the three chicken breeds, the predominant types of mutations observed in IGHV and IGLV SHM were A to G and G to A transitions. Specifically, IGLV exhibited a preference for A to G mutations, whereas IGHV displayed a bias toward G to A mutations. The regions at the junctions between framework regions (FR) and complementarity-determining regions (CDR) and within the CDR regions themselves are typically prone to mutations. The locations of GCV events in IGLV and IGHV do not show significant differences, and replacement segments are concentrated in the central regions of FR1, CDR, and FR2. Importantly, gene conversion events are not random occurrences. Additionally, our investigation revealed that CDRH3 in chickens of diverse breeds and periods the potential for diversification through the incorporation of cysteine. This study demonstrates that the diversity of immunoglobulin expression tends to converge among Hy-line brown hens, Lueyang black-bone chickens, and Beijing-You chickens, indicating that the immunoglobulin gene expression mechanisms in different breeds of chickens do not exhibit significant differences due to selective breeding.
Collapse
Affiliation(s)
- Yanbo Qiu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Yanpei Wei
- College of Grassland Agriculture, Northwest A&F University, Shaanxi, China
| | - Beibei Zhang
- College of Grassland Agriculture, Northwest A&F University, Shaanxi, China
| | - Shunan Duan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Shaanxi, China
| |
Collapse
|
5
|
Dingess KA, Hoek M, van Rijswijk DMH, Tamara S, den Boer MA, Veth T, Damen MJA, Barendregt A, Romijn M, Juncker HG, van Keulen BJ, Vidarsson G, van Goudoever JB, Bondt A, Heck AJR. Identification of common and distinct origins of human serum and breastmilk IgA1 by mass spectrometry-based clonal profiling. Cell Mol Immunol 2023; 20:26-37. [PMID: 36447030 PMCID: PMC9707141 DOI: 10.1038/s41423-022-00954-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
The most abundant immunoglobulin present in the human body is IgA. It has the highest concentrations at the mucosal lining and in biofluids such as milk and is the second most abundant class of antibodies in serum. We assessed the structural diversity and clonal repertoire of IgA1-containing molecular assemblies longitudinally in human serum and milk from three donors using a mass spectrometry-based approach. IgA-containing molecules purified from serum or milk were assessed by the release and subsequent analysis of their Fab fragments. Our data revealed that serum IgA1 consists of two distinct structural populations, namely monomeric IgA1 (∼80%) and dimeric joining (J-) chain coupled IgA1 (∼20%). Also, we confirmed that IgA1 in milk is present solely as secretory (S)IgA, consisting of two (∼50%), three (∼33%) or four (∼17%) IgA1 molecules assembled with a J-chain and secretory component (SC). Interestingly, the serum and milk IgA1-Fab repertoires were distinct between monomeric, and J-chain coupled dimeric IgA1. The serum dimeric J-chain coupled IgA1 repertoire contained several abundant clones also observed in the milk IgA1 repertoire. The latter repertoire had little to no overlap with the serum monomeric IgA1 repertoire. This suggests that human IgA1s have (at least) two distinct origins; one of these produces dimeric J-chain coupled IgA1 molecules, shared in human serum and milk, and another produces monomeric IgA1 ending up exclusively in serum.
Collapse
Affiliation(s)
- Kelly A Dingess
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Danique M H van Rijswijk
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Tim Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Mirjam J A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Michelle Romijn
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Hannah G Juncker
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Britt J van Keulen
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Johannes B van Goudoever
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
| |
Collapse
|
6
|
Pandey MK. The Role of Alpha-Synuclein Autoantibodies in the Induction of Brain Inflammation and Neurodegeneration in Aged Humans. Front Aging Neurosci 2022; 14:902191. [PMID: 35721016 PMCID: PMC9204601 DOI: 10.3389/fnagi.2022.902191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Manoj Kumar Pandey,
| |
Collapse
|
7
|
Saporiti S, Parravicini C, Pergola C, Guerrini U, Rossi M, Centola F, Eberini I. IgG1 conformational behavior: elucidation of the N-glycosylation role via molecular dynamics. Biophys J 2021; 120:5355-5370. [PMID: 34710380 DOI: 10.1016/j.bpj.2021.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/05/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022] Open
Abstract
Currently, monoclonal antibodies (mAbs) are the most used biopharmaceuticals for human therapy. One of the key aspects in their development is the control of effector functions mediated by the interaction between fragment crystallizable (Fc) and Fcγ receptors, which is a secondary mechanism of the action of biotherapeutics. N-glycosylation at the Fc portion can regulate these mechanisms, and much experimental evidence suggests that modifications of glycosidic chains can affect antibody binding to FcγRIIIa, consequently impacting the immune response. In this work, we try to elucidate via in silico procedures the structural role exhibited by glycans, particularly fucose, in mAb conformational freedom that can potentially affect the receptor recognition. By using adalimumab, a marketed IgG1, as a general template, after rebuilding its three-dimensional (3D) structure through homology modeling approaches, we carried out molecular dynamics simulations of three differently glycosylated species: aglycosylated, afucosylated, and fucosylated antibody. Trajectory analysis showed different dynamical behaviors and pointed out that sugars can influence the overall 3D structure of the antibody. As a result, we propose a putative structural mechanism by which the presence of fucose introduces conformational constraints in the whole antibody and not only in the Fc domain, preventing a conformation suitable for the interaction with the receptor. As secondary evidence, we observed a high flexibility of the antibodies that is translated into an asymmetric behavior of Fab portions shown by all the simulated biopolymers, making the dynamical asymmetry a new, to our knowledge, molecular aspect that may be further investigated. In conclusion, these findings can help understand the contribution of sugars on the structural architecture of mAbs, paving the way to novel strategies of pharmaceutical development.
Collapse
Affiliation(s)
- Simona Saporiti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Carlo Pergola
- Analytical Development Biotech, Merck Serono S.p.A., Rome, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Mara Rossi
- Global Analytical Pharmaceutical Science and Innovation, Merck Serono S.p.A., Rome, Italy
| | - Fabio Centola
- Global Analytical Pharmaceutical Science and Innovation, Merck Serono S.p.A., Rome, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari & DSRC, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
8
|
Štambuk J, Nakić N, Vučković F, Pučić-Baković M, Razdorov G, Trbojević-Akmačić I, Novokmet M, Keser T, Vilaj M, Štambuk T, Gudelj I, Šimurina M, Song M, Wang H, Salihović MP, Campbell H, Rudan I, Kolčić I, Eller LA, McKeigue P, Robb ML, Halfvarson J, Kurtoglu M, Annese V, Škarić-Jurić T, Molokhia M, Polašek O, Hayward C, Kibuuka H, Thaqi K, Primorac D, Gieger C, Nitayaphan S, Spector T, Wang Y, Tillin T, Chaturvedi N, Wilson JF, Schanfield M, Filipenko M, Wang W, Lauc G. Global variability of the human IgG glycome. Aging (Albany NY) 2020; 12:15222-15259. [PMID: 32788422 PMCID: PMC7467356 DOI: 10.18632/aging.103884] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022]
Abstract
Immunoglobulin G (IgG) is the most abundant serum antibody which structural characteristics and effector functions are modulated through the attachment of various sugar moieties called glycans. Composition of the IgG N-glycome changes with age of an individual and in different diseases. Variability of IgG glycosylation within a population is well studied and is known to be affected by both genetic and environmental factors. However, global inter-population differences in IgG glycosylation have never been properly addressed. Here we present population-specific N-glycosylation patterns of IgG, analyzed in 5 different populations totaling 10,482 IgG glycomes, and of IgG's fragment crystallizable region (Fc), analyzed in 2,579 samples from 27 populations sampled across the world. Country of residence associated with many N-glycan features and the strongest association was with monogalactosylation where it explained 38% of variability. IgG monogalactosylation strongly correlated with the development level of a country, defined by United Nations health and socioeconomic development indicators, and with the expected lifespan. Subjects from developing countries had low levels of IgG galactosylation, characteristic for inflammation and ageing. Our results suggest that citizens of developing countries may be exposed to environmental factors that can cause low-grade chronic inflammation and the apparent increase in biological age.
Collapse
Affiliation(s)
- Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Natali Nakić
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | | | | | | | | | | | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marija Vilaj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Tamara Štambuk
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Mirna Šimurina
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Manshu Song
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Hao Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | | | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ivana Kolčić
- School of Medicine, University of Split, Split, Croatia
| | - Leigh Anne Eller
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Paul McKeigue
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Merlin L. Robb
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Metin Kurtoglu
- Department of Oncology, Koç University School of Medicine, Istanbul, Turkey
| | - Vito Annese
- Careggi University Hospital, Florence, Italy
| | | | - Mariam Molokhia
- School of Population Health and Environmental Sciences, King's College London, London, United Kingdom
| | - Ozren Polašek
- School of Medicine, University of Split, Split, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Kujtim Thaqi
- Institute of Clinical Biochemistry, Priština, Kosovo
| | | | - Christian Gieger
- Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Therese Tillin
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, London, United Kingdom
| | - Nish Chaturvedi
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, London, United Kingdom
| | - James F. Wilson
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Moses Schanfield
- Department of Forensic Sciences, George Washington University, Washington, DC 20007, USA
| | - Maxim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
9
|
Batonick M, Holland EG, Busygina V, Alderman D, Kay BK, Weiner MP, Kiss MM. Platform for high-throughput antibody selection using synthetically-designed antibody libraries. N Biotechnol 2015; 33:565-73. [PMID: 26607994 DOI: 10.1016/j.nbt.2015.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 11/30/2022]
Abstract
Synthetic humanized antibody libraries are frequently generated by random incorporation of changes at multiple positions in the antibody hypervariable regions. Although these libraries have very large theoretical diversities (>10(20)), the practical diversity that can be achieved by transformation of Escherichia coli is limited to about 10(10). To constrain the practical diversity to sequences that more closely mimic the diversity of natural human antibodies, we generated a scFv phage library using entirely pre-defined complementarity determining regions (CDR). We have used this library to select for novel antibodies against four human protein targets and demonstrate that identification of enriched sequences at each of the six CDRs in early selection rounds can be used to reconstruct a consensus antibody with selectivity for the target.
Collapse
Affiliation(s)
- Melissa Batonick
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States.
| | - Erika G Holland
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States
| | - Valeria Busygina
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States
| | - Dawn Alderman
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States
| | - Brian K Kay
- University of Illinois at Chicago, 845 West Taylor Street Chicago, IL 60607, United States
| | - Michael P Weiner
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States
| | - Margaret M Kiss
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States
| |
Collapse
|
10
|
Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 2014; 5:520. [PMID: 25368619 PMCID: PMC4202688 DOI: 10.3389/fimmu.2014.00520] [Citation(s) in RCA: 1802] [Impact Index Per Article: 163.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
Of the five immunoglobulin isotypes, immunoglobulin G (IgG) is most abundant in human serum. The four subclasses, IgG1, IgG2, IgG3, and IgG4, which are highly conserved, differ in their constant region, particularly in their hinges and upper CH2 domains. These regions are involved in binding to both IgG-Fc receptors (FcγR) and C1q. As a result, the different subclasses have different effector functions, both in terms of triggering FcγR-expressing cells, resulting in phagocytosis or antibody-dependent cell-mediated cytotoxicity, and activating complement. The Fc-regions also contain a binding epitope for the neonatal Fc receptor (FcRn), responsible for the extended half-life, placental transport, and bidirectional transport of IgG to mucosal surfaces. However, FcRn is also expressed in myeloid cells, where it participates in both phagocytosis and antigen presentation together with classical FcγR and complement. How these properties, IgG-polymorphisms and post-translational modification of the antibodies in the form of glycosylation, affect IgG-function will be the focus of the current review.
Collapse
Affiliation(s)
- Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Gillian Dekkers
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|