1
|
Kwon YJ, Seo EB, Kim SK, Noh KH, Lee H, Joung YW, Shin HM, Jang YA, Kim YM, Lee JT, Ye SK. Chamaecyparis obtusa (Siebold & Zucc.) Endl. leaf extracts prevent inflammatory responses via inhibition of the JAK/STAT axis in RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114493. [PMID: 34364971 DOI: 10.1016/j.jep.2021.114493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) has been used as folk medicine in East Asia and has been reported to alleviate inflammatory diseases. However, the detailed mechanisms for the anti-inflammatory effects of C. obtusa remain unclear. AIM OF THE STUDY Although the anti-inflammatory mechanisms of natural products have been studied for decades, it is still important to identify the potential anti-inflammatory effects of natural sources. In this study, we investigated the anti-inflammatory effects and underlying mechanism of C. obtusa leaf extracts. MATERIAL &METHODS The cell viability was determined by MTT and crystal violet staining. NO production in the supernatant was measured using Griess reagent. The cell lysates were analyzed by immunoblotting and RT-qPCR. Secreted cytokines were analyzed using ELISA kit and cytokine array kit. mRNA expression from the GSE9632 database set. Z-scores were calculated for each gene and visualized by heat map. RESULTS Among the extracts of C. obtusa obtained with different extraction methods, the 99% ethanol leaf extract (CO99EL) strongly inhibited lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and Janus kinase/signaling transducer and activator of transcription (JAK/STAT) phosphorylation in RAW264.7 cells. In addition, CO99EL strongly inhibited LPS-induced interleukin (IL)-1β, IL-6, IL-27, and C-C motif chemokine ligand (CCL)-1 production and directly inhibited LPS-induced JAK/STAT phosphorylation in RAW264.7 cells. CONCLUSIONS These findings demonstrate that CO99EL significantly prevents LPS-induced macrophage activation by inhibiting the JAK/STAT axis. Therefore, we suggest the use of C. obtusa extracts as therapeutic approach for inflammatory diseases.
Collapse
Affiliation(s)
- Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Kum Hee Noh
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Yeo-Won Joung
- Department of Cosmeceutical Science, Daegu Haany University, Gyeongsan, 38578, South Korea.
| | - Hyun Mu Shin
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, South Korea.
| | - Young-Ah Jang
- Convergence Research Center for Smart Healthcare of KS R & DB Foundation, Kyungsung University, Busan, 48434, South Korea.
| | - Yu Mi Kim
- Binotec Co., Ltd, Daegu, 42149, South Korea.
| | - Jin-Tae Lee
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, South Korea.
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, South Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, South Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea; Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
2
|
Casalino-Matsuda SM, Berdnikovs S, Wang N, Nair A, Gates KL, Beitel GJ, Sporn PHS. Hypercapnia selectively modulates LPS-induced changes in innate immune and DNA replication-related gene transcription in the macrophage. Interface Focus 2021; 11:20200039. [PMID: 33633835 DOI: 10.1098/rsfs.2020.0039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Hypercapnia, the elevation of CO2 in blood and tissues, commonly occurs in severe acute and chronic respiratory diseases and is associated with increased risk of death. Recent studies have shown that hypercapnia inhibits expression of select innate immune genes and suppresses host defence against bacterial and viral pneumonia in mice. In the current study, we evaluated the effect of culture under conditions of hypercapnia (20% CO2) versus normocapnia (5% CO2), both with normoxia, on global gene transcription in human THP-1 and mouse RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS). We found that hypercapnia selectively downregulated transcription of LPS-induced genes associated with innate immunity, antiviral response, type I interferon signalling, cytokine signalling and other inflammatory pathways in both human and mouse macrophages. Simultaneously, hypercapnia increased expression of LPS-downregulated genes associated with mitosis, DNA replication and DNA repair. These CO2-induced changes in macrophage gene expression help explain hypercapnic suppression of antibacterial and antiviral host defence in mice and reveal a mechanism that may underlie, at least in part, the high mortality of patients with severe lung disease and hypercapnia.
Collapse
Affiliation(s)
- S Marina Casalino-Matsuda
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sergejs Berdnikovs
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Naizhen Wang
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Aisha Nair
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Khalilah L Gates
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Greg J Beitel
- Department of Molecular Biosciences, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Peter H S Sporn
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Medical Service, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
3
|
He R, Li Y, Zhou L, Su X, Li Y, Pan P, Hu C. miR-146b overexpression ameliorates lipopolysaccharide-induced acute lung injury in vivo and in vitro. J Cell Biochem 2018; 120:2929-2939. [PMID: 30500983 DOI: 10.1002/jcb.26846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/09/2018] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a type of acute lung injury (ALI), which causes high morbidity and mortality. So far, effective clinical treatment of ARDS is still limited. Recently, miR-146b has been reported to play a key role in inflammation. In the present study, we evaluated the functional role of miR-146b in ARDS using the murine model of lipopolysaccharide (LPS)-induced ALI. The miR-146b expression could be induced by LPS stimulation, and miR-146b overexpression was required in the maintenance of body weight and survival of ALI mice; after miR-146b overexpression, LPS-induced lung injury, pulmonary inflammation, total cell and neutrophil counts, proinflammatory cytokines, and chemokines in bronchial alveolar lavage (BAL) fluid were significantly reduced. The promotive effect of LPS on lung permeability through increasing total protein, albumin and IgM in BAL fluid could be partially reversed by miR-146b overexpression. Moreover, in murine alveolar macrophages, miR-146b overexpression reduced LPS-induced TNF-α and interleukin (IL)-1β releasing. Taken together, we demonstrated that miR-146b overexpression could effectively improve the LPS-induced ALI; miR-146b is a promising target in ARDS treatment.
Collapse
Affiliation(s)
- Ruoxi He
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Li
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Li Zhou
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoli Su
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Li
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Pinhua Pan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Muñoz MD, Della Vedova MC, Bushel PR, Ganini da Silva D, Mason RP, Zhai Z, Gomez Mejiba SE, Ramirez DC. The nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide dampens lipopolysaccharide-induced transcriptomic changes in macrophages. Inflamm Res 2018; 67:515-530. [PMID: 29589052 DOI: 10.1007/s00011-018-1141-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/26/2018] [Accepted: 03/21/2018] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE M1-like inflammatory phenotype of macrophages plays a critical role in tissue damage in chronic inflammatory diseases. Previously, we found that the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) dampens lipopolysaccharide (LPS)-triggered inflammatory priming of RAW 264.7 cells. Herein, we tested whether DMPO by itself can induce changes in macrophage transcriptome, and that these effects may prevent LPS-induced activation of macrophages. MATERIALS AND METHODS To test our hypothesis, we performed a transcriptomic and bioinformatics analysis in RAW 264.7 cells incubated with or without LPS, in the presence or in the absence of DMPO. RESULTS Functional data analysis showed 79 differentially expressed genes (DEGs) when comparing DMPO vs Control. We used DAVID databases for identifying enriched gene ontology terms and Ingenuity Pathway Analysis for functional analysis. Our data showed that DMPO vs Control comparison of DEGs is related to downregulation immune-system processes among others. Functional analysis indicated that interferon-response factor 7 and toll-like receptor were related (predicted inhibitions) to the observed transcriptomic effects of DMPO. Functional data analyses of the DMPO + LPS vs LPS DEGs were consistent with DMPO-dampening LPS-induced inflammatory transcriptomic profile in RAW 264.7. These changes were confirmed using Nanostring technology. CONCLUSIONS Taking together our data, surprisingly, indicate that DMPO by itself affects gene expression related to regulation of immune system and that DMPO dampens LPS-triggered MyD88- and TRIF-dependent signaling pathways. Our research provides critical data for further studies on the possible use of DMPO as a structural platform for the design of novel mechanism-based anti-inflammatory drugs.
Collapse
Affiliation(s)
- M D Muñoz
- Laboratory of Experimental and Translational Medicine, IMIBIO-SL-School of Chemistry, Biochemistry and Pharmacy, National University of San Luis-CONICET, San Luis, 5700, San Luis, Argentina.,Laboratory of Experimental Therapeutics, School of Health Sciences-IMIBIO-SL, CONICET-National University of San Luis, San Luis, 5700, San Luis, Argentina
| | - M C Della Vedova
- Laboratory of Experimental and Translational Medicine, IMIBIO-SL-School of Chemistry, Biochemistry and Pharmacy, National University of San Luis-CONICET, San Luis, 5700, San Luis, Argentina.,Laboratory of Experimental Therapeutics, School of Health Sciences-IMIBIO-SL, CONICET-National University of San Luis, San Luis, 5700, San Luis, Argentina
| | - P R Bushel
- Biostatistics and Computational Biology Branch, NIEHS, NIH, USDHHS, RTP, Durham, 27709, NC, USA
| | - D Ganini da Silva
- Immunity, Inflammation and Disease Laboratory, NIEHS, NIH, USDHHS, RTP, Durham, 27709, NC, USA
| | - R P Mason
- Immunity, Inflammation and Disease Laboratory, NIEHS, NIH, USDHHS, RTP, Durham, 27709, NC, USA
| | - Z Zhai
- Department of Dermatology, University of Colorado Denver, Aurora, 80045, CO, USA
| | - S E Gomez Mejiba
- Laboratory of Experimental Therapeutics, School of Health Sciences-IMIBIO-SL, CONICET-National University of San Luis, San Luis, 5700, San Luis, Argentina.
| | - D C Ramirez
- Laboratory of Experimental and Translational Medicine, IMIBIO-SL-School of Chemistry, Biochemistry and Pharmacy, National University of San Luis-CONICET, San Luis, 5700, San Luis, Argentina.
| |
Collapse
|
5
|
Enforced expression of miR-125b attenuates LPS-induced acute lung injury. Immunol Lett 2014; 162:18-26. [PMID: 25004393 DOI: 10.1016/j.imlet.2014.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 01/11/2023]
Abstract
The acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) in humans, is a leading cause of morbidity and mortality in critically ill patients. Despite decades of research, few therapeutic strategies for clinical ARDS have emerged. Recent evidence implicated a potential role of miR-125b in development of ALI. Here we evaluated the miR-125b-based strategy in treatment of ARDS using the murine model of lipopolysaccharide (LPS)-induced ALI. We found that up-regulation of miR-125b expression maintained the body weight and survival of ALI mice, and significantly reduced LPS-induced pulmonary inflammation as reflected by reductions in total cell and neutrophil counts, proinflammatory cytokines, as well as chemokines in BAL fluid. Further, enforced expression of miR-125b resulted in remarkable reversal of LPS-induced increases in lung permeability as assessed by reductions in total protein, albumin and IgM in BAL fluid, and ameliorated the histopathology changes of lung in LPS-induced ALI mice. Of interest, serum miR-125b expression was also decreased and inversely correlated with the disease severity in patients with ARDS. Our findings strongly demonstrated that enforced expression of miR-125b could effectively ameliorate the LPS-induced ALI, suggesting a potential application for miR-125b-based therapy to treat clinical ARDS.
Collapse
|
6
|
Tseng-Crank J, Sung S, Jia Q, Zhao Y, Burnett B, Park DR, Woo SS. A medicinal plant extract of Scutellaria Baicalensis and Acacia catechu reduced LPS-stimulated gene expression in immune cells: a comprehensive genomic study using QPCR, ELISA, and microarray. J Diet Suppl 2012; 7:253-72. [PMID: 22432516 DOI: 10.3109/19390211.2010.493169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A standardized, combined flavonoid extracts of Scutellaria baicalensis and Acacia catechu, UP446, demonstrates favorable anti-inflammatory properties. In this study, DNA microarray, quantitative polymerase chain reaction (QPCR), and enzyme-linked immunosorbent assay (ELISA) were used to study the effect of UP446 on the lipopolysaccharide (LPS)-induced pro-inflammatory gene regulation of both animal and human immortalized cell lines and also primary human cells. One consistent result from microarray was that the gene expression levels stimulated or suppressed by LPS were returned to normal levels by the UP446 co-treatment. This normalization effect from UP446 was also shown for pro-inflammatory genes cyclooxygenase (COX)-2, tissue necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 using QPCR, and TNF-α using ELISA. The controlling transcriptional factor of these genes, NFκB, was also down-regulated by UP446 in the LPS-induced cell models. Microarray analysis for numerous genes, including cytokines, chemokines, receptors, transcriptional factors, caspase, growth factors, and phosphatases, suggests not only a genomic anti-inflammatory activity for UP446 but also signaling pathways of cell proliferation, cell death, and lipid metabolism demonstrated on different types of cells.
Collapse
|
7
|
Garmire LX, Garmire DG, Huang W, Yao J, Glass CK, Subramaniam S. A global clustering algorithm to identify long intergenic non-coding RNA--with applications in mouse macrophages. PLoS One 2011; 6:e24051. [PMID: 21980340 PMCID: PMC3184070 DOI: 10.1371/journal.pone.0024051] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 08/02/2011] [Indexed: 01/22/2023] Open
Abstract
Identification of diffuse signals from the chromatin immunoprecipitation and high-throughput massively parallel sequencing (ChIP-Seq) technology poses significant computational challenges, and there are few methods currently available. We present a novel global clustering approach to enrich diffuse CHIP-Seq signals of RNA polymerase II and histone 3 lysine 4 trimethylation (H3K4Me3) and apply it to identify putative long intergenic non-coding RNAs (lincRNAs) in macrophage cells. Our global clustering method compares favorably to the local clustering method SICER that was also designed to identify diffuse CHIP-Seq signals. The validity of the algorithm is confirmed at several levels. First, 8 out of a total of 11 selected putative lincRNA regions in primary macrophages respond to lipopolysaccharides (LPS) treatment as predicted by our computational method. Second, the genes nearest to lincRNAs are enriched with biological functions related to metabolic processes under resting conditions but with developmental and immune-related functions under LPS treatment. Third, the putative lincRNAs have conserved promoters, modestly conserved exons, and expected secondary structures by prediction. Last, they are enriched with motifs of transcription factors such as PU.1 and AP.1, previously shown to be important lineage determining factors in macrophages, and 83% of them overlap with distal enhancers markers. In summary, GCLS based on RNA polymerase II and H3K4Me3 CHIP-Seq method can effectively detect putative lincRNAs that exhibit expected characteristics, as exemplified by macrophages in the study.
Collapse
Affiliation(s)
- Lana X. Garmire
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, United States of America
| | - David G. Garmire
- Department of Electrical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Wendy Huang
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Joyee Yao
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Shankar Subramaniam
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
8
|
Ha J, Lee Y, Kim HH. CXCL2 mediates lipopolysaccharide-induced osteoclastogenesis in RANKL-primed precursors. Cytokine 2011; 55:48-55. [DOI: 10.1016/j.cyto.2011.03.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/12/2011] [Accepted: 03/24/2011] [Indexed: 01/06/2023]
|
9
|
Güttsches AK, Löseke S, Zähringer U, Sonnenborn U, Enders C, Gatermann S, Bufe A. Anti-inflammatory modulation of immune response by probiotic Escherichia coli Nissle 1917 in human blood mononuclear cells. Innate Immun 2011; 18:204-16. [PMID: 21382908 DOI: 10.1177/1753425910396251] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Escherichia coli Nissle 1917 (EcN) bears a defect in its LPS biosynthesis leading to truncated variable oligosaccharide-antigen chains and a semi-rough phenotype. It is effectively inactivated by complement factors due to resolved serum resistance and is, therefore, safe as a probiotic strain, i.e. for the treatment of inflammatory gastrointestinal diseases. It is unknown whether the modification of LPS in EcN contributes to its probiotic properties. Purified LPS from EcN and wild-type LPS from uropathogenic E. coli W536 together with raw lysates of both strains were analyzed for their gene expression activity with human PBMCs measured by microarrays. Comparing the two LPS molecules and the two lysate variants with each other, respectively, no differences of transcriptional patterns were observed. However, when comparing LPS with lysate patterns, pro-inflammatory cytokine IL-12p40 was up-regulated by both LPS molecules and anti-inflammatory IL-10 by both lysates. The higher the lysate concentration, the higher IL-10 release from PBMCs, clearly exceeding LPS induced IL-12p40 release. Furthermore, inflammatory chemokine CCL24 (eotaxin) was down-regulated by lysates and quantitative real-time PCR revealed that EcN compared to wild-type LPS was 8 times stronger in down-regulation of CCL24. We conclude that truncated LPS may down-regulate CCL24-mediated inflammation and that EcN lysate contains as yet unidentified factors which preferably induce anti-inflammatory activity. Both effects may contribute to the probiotic properties of EcN.
Collapse
|
10
|
Rajamäki K, Lappalainen J, Oörni K, Välimäki E, Matikainen S, Kovanen PT, Eklund KK. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One 2010; 5:e11765. [PMID: 20668705 PMCID: PMC2909263 DOI: 10.1371/journal.pone.0011765] [Citation(s) in RCA: 752] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 06/24/2010] [Indexed: 12/21/2022] Open
Abstract
Background Chronic inflammation of the arterial wall is a key element in the pathogenesis of atherosclerosis, yet the factors that trigger and sustain the inflammation remain elusive. Inflammasomes are cytoplasmic caspase-1-activating protein complexes that promote maturation and secretion of the proinflammatory cytokines interleukin(IL)-1β and IL-18. The most intensively studied inflammasome, NLRP3 inflammasome, is activated by diverse substances, including crystalline and particulate materials. As cholesterol crystals are abundant in atherosclerotic lesions, and IL-1β has been linked to atherogenesis, we explored the possibility that cholesterol crystals promote inflammation by activating the inflammasome pathway. Principal Findings Here we show that human macrophages avidly phagocytose cholesterol crystals and store the ingested cholesterol as cholesteryl esters. Importantly, cholesterol crystals induced dose-dependent secretion of mature IL-1β from human monocytes and macrophages. The cholesterol crystal-induced secretion of IL-1β was caspase-1-dependent, suggesting the involvement of an inflammasome-mediated pathway. Silencing of the NLRP3 receptor, the crucial component in NLRP3 inflammasome, completely abolished crystal-induced IL-1β secretion, thus identifying NLRP3 inflammasome as the cholesterol crystal-responsive element in macrophages. The crystals were shown to induce leakage of the lysosomal protease cathepsin B into the cytoplasm and inhibition of this enzyme reduced cholesterol crystal-induced IL-1β secretion, suggesting that NLRP3 inflammasome activation occurred via lysosomal destabilization. Conclusions The cholesterol crystal-induced inflammasome activation in macrophages may represent an important link between cholesterol metabolism and inflammation in atherosclerotic lesions.
Collapse
|
11
|
MyD88-dependent and independent pathways of Toll-Like Receptors are engaged in biological activity of Triptolide in ligand-stimulated macrophages. BMC CHEMICAL BIOLOGY 2010; 10:3. [PMID: 20385024 PMCID: PMC2873377 DOI: 10.1186/1472-6769-10-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 04/12/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Triptolide is a diterpene triepoxide from the Chinese medicinal plant Tripterygium wilfordii Hook F., with known anti-inflammatory, immunosuppressive and anti-cancer properties. RESULTS Here we report the expression profile of immune signaling genes modulated by triptolide in LPS induced mouse macrophages. In an array study triptolide treatment modulated expression of 22.5% of one hundred and ninety five immune signaling genes that included Toll-like receptors (TLRs). TLRs elicit immune responses through their coupling with intracellular adaptor molecules, MyD88 and TRIF. Although it is known that triptolide inhibits NFkappaB activation and other signaling pathways downstream of TLRs, involvement of TLR cascade in triptolide activity was not reported. In this study, we show that triptolide suppresses expression of proinflammatory downstream effectors induced specifically by different TLR agonists. Also, the suppressive effect of triptolide on TLR-induced NFkappaB activation was observed when either MyD88 or TRIF was knocked out, confirming that both MyD88 and TRIF mediated NFkappaB activation may be inhibited by triptolide. Within the TLR cascade triptolide downregulates TLR4 and TRIF proteins. CONCLUSIONS This study reveals involvement of TLR signaling in triptolide activity and further increases understanding of how triptolide activity may downregulate NFkappaB activation during inflammatory conditions.
Collapse
|
12
|
Covert J, Mathison AJ, Eskra L, Banai M, Splitter G. Brucella melitensis, B. neotomae and B. ovis elicit common and distinctive macrophage defense transcriptional responses. Exp Biol Med (Maywood) 2009; 234:1450-67. [PMID: 19934366 DOI: 10.3181/0904-rm-124] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Brucella spp. establish an intracellular replicative niche in macrophages, while macrophages attempt to eliminate the bacteria by innate defense mechanisms. Brucella spp. possess similar genomes yet exhibit different macrophage infections. Few B. melitensis and B. neotomae enter macrophages with intracellular adaptation occurring over 4-8 hr. Conversely, B. ovis are readily ingested by macrophages and exhibit a persistent plateau of infection. Evaluating early macrophage interaction with Brucella spp. allows discovery of host entry and intracellular translocation mechanisms. Microarray analysis of macrophage transcriptional response following a 4 hr infection by different Brucella spp. revealed common macrophage genes altered in expression compared to uninfected macrophages. Macrophage infection with three different Brucella spp. provokes a common innate immune theme with increased transcript levels of chemokines and defense response genes and decreased transcript levels of GTPase signaling and cytoskeletal function that may affect trafficking of Brucella containing vesicles. For example, transcript levels of genes associated with chemotaxis (IL-1beta, MIP-1alpha), cytokine regulation (Socs3) and defense (Fas, Tnf) were increased, while transcript levels of genes associated with vesicular trafficking (Rab3d) and lysosomal associated enzymes (prosaposin) were decreased. Genes with altered macrophage transcript levels among Brucella spp. infections may correlate with species specific host defenses and intracellular survival strategies. Depending on the infecting Brucella species, gene ontology categorization identified genes differentially involved in cell growth and maintenance, endopeptidase inhibitor activity and G-protein mediated signaling. Examples of decreased gene expression in B. melitensis infection but not other Brucella spp. were growth arrest (Gas2), immunoglobulin receptor (FcgammarI) and chemokine receptor (Cxcr4) genes, suggesting opposing effects on intracellular functions.
Collapse
Affiliation(s)
- Jill Covert
- University of Wisconsin-Madison, 1656 Linden Dr., Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
13
|
Grinberg S, Hasko G, Wu D, Leibovich SJ. Suppression of PLCbeta2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2439-53. [PMID: 19850892 DOI: 10.2353/ajpath.2009.090290] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Toll-like receptor (TLR) 2, 4, 7, and 9 agonists, together with adenosine A(2A) receptor (A(2A)R) agonists, switch macrophages from an inflammatory (M1) to an angiogenic (M2-like) phenotype. This switch involves induction of A(2A)Rs by TLR agonists, down-regulation of tumor necrosis factor alpha (TNFalpha) and interleukin-12, and up-regulation of vascular endothelial growth factor (VEGF) and interleukin-10 expression. We show here that the TLR4 agonist lipopolysaccharide (LPS) induces rapid and specific post-transcriptional down-regulation of phospholipase C(PLC)beta1 and beta2 expression in macrophages by de-stabilizing their mRNAs. The PLCbeta inhibitor U73122 down-regulates TNFalpha expression by macrophages, and in the presence of A(2A)R agonists, up-regulates VEGF, mimicking the synergistic action of LPS with A(2A)R agonists. Selective down-regulation of PLCbeta2, but not PLCbeta1, using small-interfering RNA resulted in increased VEGF expression in response to A(2A)R agonists, but did not suppress TNFalpha expression. Macrophages from PLCbeta2(-/-) mice also expressed increased VEGF in response to A(2A)R agonists. LPS-mediated suppression of PLCbeta1 and beta2 is MyD88-dependent. In a model of endotoxic shock, LPS (35 microg/mouse, i.p.) suppressed PLCbeta1 and beta2 expression in spleen, liver, and lung of wild-type but not MyD88(-/-) mice. These studies indicate that LPS suppresses PLCbeta1 and beta2 expression in macrophages in vitro and in several tissues in vivo. These results suggest that suppression of PLCbeta2 plays an important role in switching M1 macrophages into an M2-like state.
Collapse
Affiliation(s)
- Stan Grinberg
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
14
|
Worm J, Stenvang J, Petri A, Frederiksen KS, Obad S, Elmén J, Hedtjärn M, Straarup EM, Hansen JB, Kauppinen S. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF. Nucleic Acids Res 2009; 37:5784-92. [PMID: 19596814 PMCID: PMC2761263 DOI: 10.1093/nar/gkp577] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
microRNA-155 (miR-155) has been implicated as a central regulator of the immune system, but its function during acute inflammatory responses is still poorly understood. Here we show that exposure of cultured macrophages and mice to lipopolysaccharide (LPS) leads to up-regulation of miR-155 and that the transcription factor c/ebp Beta is a direct target of miR-155. Interestingly, expression profiling of LPS-stimulated macrophages combined with overexpression and silencing of miR-155 in murine macrophages and human monocytic cells uncovered marked changes in the expression of granulocyte colony-stimulating factor (G-CSF), a central regulator of granulopoiesis during inflammatory responses. Consistent with these data, we show that silencing of miR-155 in LPS-treated mice by systemically administered LNA-antimiR results in derepression of the c/ebp Beta isoforms and down-regulation of G-CSF expression in mouse splenocytes. Finally, we report for the first time on miR-155 silencing in vivo in a mouse inflammation model, which underscores the potential of miR-155 antagonists in the development of novel therapeutics for treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jesper Worm
- Santaris Pharma, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jang HS, Chung HS, Ko E, Shin JS, Shin MK, Hong MC, Kim Y, Min BI, Bae H. Microarray analysis of gene expression profiles in response to treatment with bee venom in lipopolysaccharide activated RAW 264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2009; 121:213-220. [PMID: 18852038 DOI: 10.1016/j.jep.2008.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 05/26/2023]
Abstract
AIM OF THE STUDY The therapeutic application of bee venom (BV) has been used in traditional medicine to treat diseases such as arthritis, rheumatism and pain. Macrophages produce molecules that are known to play roles in inflammatory responses. MATERIAL AND METHODS We performed microarray analysis to evaluate the global gene expression profiles of RAW264.7 macrophage cells treated with BV. In addition, six genes were subjected to real-time PCR to confirm the results of the microarray. The cells were treated with lipopolysaccharide (LPS) or BV plus LPS for 30 min or 1h. RESULTS 124 genes were found to be up-regulated and 158 were found to be down-regulated in cells that were treated with BV plus LPS for 30 min, whereas 211 genes were up-regulated and 129 were down-regulated in cells that were treated with BV plus LPS for 1h when compared with cells that were treated with LPS alone. Furthermore, the results of real-time PCR were similar to those of the microarray. BV inhibited the expression of specific inflammatory genes that were up-regulated by nuclear factor-kappa B in the presence of LPS, including mitogen-activated protein kinase kinase kinase 8 (MAP3K8), TNF, TNF-alpha-induced protein 3 (TNFAIP3), suppressor of cytokine signaling 3 (SOCS3), TNF receptor-associated factor 1 (TRAF1), JUN, and CREB binding protein (CBP). CONCLUSIONS These results demonstrate the potent activity of BV as a modulator of the LPS-mediated nuclear factor-kappaB (NF-kappaB)/MAPK pathway in activated macrophages. In addition, these results can be used to understand other effects of BV treatment.
Collapse
Affiliation(s)
- Hyoung-Seok Jang
- Department of East-West Medicine, Graduate School, Kyung-Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Harms JS, Durward MA, Magnani DM, Splitter GA. Evaluation of recombinant invasive, non-pathogenic Eschericia coli as a vaccine vector against the intracellular pathogen, Brucella. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2009; 7:1. [PMID: 19126207 PMCID: PMC2633335 DOI: 10.1186/1476-8518-7-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/06/2009] [Indexed: 01/18/2023]
Abstract
Background There is no safe, effective human vaccine against brucellosis. Live attenuated Brucella strains are widely used to vaccinate animals. However these live Brucella vaccines can cause disease and are unsafe for humans. Killed Brucella or subunit vaccines are not effective in eliciting long term protection. In this study, we evaluate an approach using a live, non-pathogenic bacteria (E. coli) genetically engineered to mimic the brucellae pathway of infection and present antigens for an appropriate cytolitic T cell response. Methods E. coli was modified to express invasin of Yersinia and listerialysin O (LLO) of Listeria to impart the necessary infectivity and antigen releasing traits of the intracellular pathogen, Brucella. This modified E. coli was considered our vaccine delivery system and was engineered to express Green Fluorescent Protein (GFP) or Brucella antigens for in vitro and in vivo immunological studies including cytokine profiling and cytotoxicity assays. Results The E. coli vaccine vector was able to infect all cells tested and efficiently deliver therapeutics to the host cell. Using GFP as antigen, we demonstrate that the E. coli vaccine vector elicits a Th1 cytokine profile in both primary and secondary immune responses. Additionally, using this vector to deliver a Brucella antigen, we demonstrate the ability of the E. coli vaccine vector to induce specific Cytotoxic T Lymphocytes (CTLs). Conclusion Protection against most intracellular bacterial pathogens can be obtained mostly through cell mediated immunity. Data presented here suggest modified E. coli can be used as a vaccine vector for delivery of antigens and therapeutics mimicking the infection of the pathogen and inducing cell mediated immunity to that pathogen.
Collapse
Affiliation(s)
- Jerome S Harms
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
17
|
Lin CS, Kuo CL, Wang JP, Cheng JS, Huang ZW, Chen CF. Growth inhibitory and apoptosis inducing effect of Perilla frutescens extract on human hepatoma HepG2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2007; 112:557-67. [PMID: 17574356 DOI: 10.1016/j.jep.2007.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 03/29/2007] [Accepted: 05/01/2007] [Indexed: 05/15/2023]
Abstract
Perilla frutescens (L.) Britt. (Lamiaceae) has traditionally been used to treat diseases, including tumors, but the antitumorigenesis mechanism is unclear. We evaluated the effects of Perilla frutescens leaf extract (PLE) on proliferation and apoptosis inducing in human hepatoma HepG2 cells using a cell proliferation assay, flow cytometry, and cDNA microarrays. Gene expression and apoptosis were also assessed in HepG2 cells treated with a major constituent of PLE, rosmarinic acid (RosA). In the PLE-treated HepG2 cells, antiproliferative activity (105 microg/mL) were observed, flow cytometry revealed significant apoptosis, and microarray data indicated that the expression of a lot apoptosis-related genes were regulated in a time-dependent manner. Compared with PLE, RosA (10 microg/mL; a dose equivalent to 105 microg/mL of PLE) was less effective in increasing the expression of apoptosis-related genes and apoptosis inducing in HepG2 cells. Thus, additional PLE constituents may influence apoptosis in HepG2 cells. The results of our study suggest that the PLE should be further investigated as a promising to treat hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30050, Taiwan.
| | | | | | | | | | | |
Collapse
|