1
|
Jacquerioz FA, La Rosa M, González-Lagos E, Alvarez C, Tipismana M, Luhmann K, Gotuzzo E. Progression of HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis after Pregnancy: A Case Series and Review of the Literature. Pathogens 2024; 13:731. [PMID: 39338922 PMCID: PMC11435342 DOI: 10.3390/pathogens13090731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
HTLV-1-associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a progressive non-remitting and incapacitating disease more frequently seen in women and with a patchy worldwide distribution. HAM/TSP develops in a small percentage of HTLV-1-infected individuals during their lifetime and etiologic factors for disease progression are still unclear. This study aims to describe the first case series of the progression of HAM/TSP in relation to pregnancy. Between January and March of 2012, we reviewed medical charts of women with HAM/TSP currently enrolled in the HTLV-1 cohort at the institute of tropical medicine of Cayetano Heredia University. Inclusion criteria included having a diagnosis of HAM/TSP according to the WHO guidelines and self-reported initial symptoms of HAM/TSP during pregnancy or within six months of delivery. Fifteen women reported having had symptoms compatible with HAM/TSP within four months of delivery. Among them, ten women had no symptoms before pregnancy and reported gait impairment after delivery. Five women with mild gait impairment before pregnancy noticed a worsening of their symptoms after delivery. Symptoms worsened after successive pregnancies. Recent studies have shown that HTLV-1 infection induces a strong T cell-mediated response and that the quality of this response plays a role in HAM/TSP pathogenesis. The relative immunosuppression during pregnancy, including blunting of the T-cell response, might allowed in certain women enhanced replication of HTLV-1 and disease progression in the postpartum. This is the first study looking specifically at HAM/TSP and pregnancy and the number of cases is remarkable. Further prospective studies of HTLV-1-infected women assessing immune markers during pregnancy are warranted. Breastfeeding was the main route of transmission. Strategies to prevent vertical transmission need to be evaluated in HTLV-1 endemic countries of Latin America.
Collapse
Affiliation(s)
- Frederique A. Jacquerioz
- Department of Tropical Medicine, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (E.G.-L.); (C.A.); (M.T.); (K.L.)
| | - Mauricio La Rosa
- Department of Obstetrics and Gynecology, Pennsylvania Hospital, Philadelphia, PA 19107, USA;
| | - Elsa González-Lagos
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (E.G.-L.); (C.A.); (M.T.); (K.L.)
| | - Carolina Alvarez
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (E.G.-L.); (C.A.); (M.T.); (K.L.)
| | - Martin Tipismana
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (E.G.-L.); (C.A.); (M.T.); (K.L.)
- Department of Neurology, Hospital Cayetano Heredia, Lima 15102, Peru
| | - Karen Luhmann
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (E.G.-L.); (C.A.); (M.T.); (K.L.)
| | - Eduardo Gotuzzo
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (E.G.-L.); (C.A.); (M.T.); (K.L.)
| |
Collapse
|
2
|
Gois LL, Ribeiro-Soares B, Regis-Silva CG, Zanette DL, Lisboa R, Nascimento RS, Coutinho Junior R, Galvão-Castro B, Grassi MFR. Imbalanced IL10/TGF-β production by regulatory T-lymphocytes in patients with HTLV-1-associated myelopathy/ tropical spastic paraparesis. BMC Infect Dis 2024; 24:652. [PMID: 38943078 PMCID: PMC11214226 DOI: 10.1186/s12879-024-09494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Human T-cell lymphotropic virus type 1 (HTLV-1), also denominated Human T-cell leukemia virus-1, induces immune activation and secretion of proinflammatory cytokines, especially in individuals with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Regulatory T lymphocytes (Tregs) may control of inflammation through the production of regulatory cytokines, including IL10 and TGF-β. In this study we determined the frequencies of CD4 + and CD8 + Tregs in a HAM/TSP population, compared to asymptomatic carriers and uninfected individuals, as well as investigated the profiles of regulatory and inflammatory cytokines. METHODS Asymptomatic HTLV-1 carriers and HAM/TSP patients were matched by sex and age. The frequencies of IL10- and/or TGF-β-producing Tregs were quantified by flow cytometry. Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to quantify HTLV-1 proviral load and the mRNA expression of cytokines and cellular receptors in peripheral blood mononuclear cells. RESULTS Total frequencies of CD4 + Tregs, as well as the IL10-producing CD4 + and CD8 + Treg subsets, were statistically higher in patients with HAM/TSP compared to asymptomatic HTLV-1-infected individuals. In addition, a positive correlation was found between the frequency of CD4 + IL10 + Tregs and proviral load in the HAM/TSP patients evaluated. A positive correlation was also observed between gene expression of proinflammatory versus regulatory cytokines only in HAM / TSP group. CONCLUSIONS A higher frequencies of IL10-producing Tregs were identified in patients with HAM/TSP. Imbalanced production of IL10 in relation to TGF-β may contribute to the increased inflammatory response characteristically seen in HAM/TSP patients.
Collapse
Affiliation(s)
- Luana Leandro Gois
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
- Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia (ICS/UFBA), Salvador-Bahia, Brazil
| | - Bárbara Ribeiro-Soares
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Carlos Gustavo Regis-Silva
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Dalila L Zanette
- Laboratório de Ciências e Tecnologias Aplicadas a Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz (ICC/FIOCRUZ-PR), Curitiba-Paraná, Brazil
| | - Raphaella Lisboa
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Regina Santos Nascimento
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Raimundo Coutinho Junior
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Bernardo Galvão-Castro
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Maria Fernanda Rios Grassi
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil.
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil.
| |
Collapse
|
3
|
Infection of defective human T-lymphotropic virus type 1. Hum Cell 2017; 30:117-123. [PMID: 28070874 DOI: 10.1007/s13577-016-0156-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/23/2016] [Indexed: 01/01/2023]
Abstract
In a previous study, we reported that an identical defective provirus had integrated into multiple sites of the genome of a representative human T-lymphotropic virus type 1 (HTLV-1) cell line, MT-2. A possible explanation for this may be the repeated infection of this defective provirus to a cell. Therefore, we attempted to determine whether a defective provirus could transmit during the co-culture of HTLV-1 uninfected human T-cell line, Jurkat, with MT-2 cells treated with mitomycin C. As a result, we established not only a cell line with the integration of one complete provirus, but also a cell line with the integration of one defective provirus. The rearrangement of the T-cell receptor -γ gene of these cell lines showed them to be derived from Jurkat cells. Both HTLV-1 Tax/Rex and HBZ RNA were detected in the cell line, which harbors a complete provirus. On the other hand, HBZ RNA and transcriptional product specific for the defective provirus were detected in the cell line, which harbors a defective HTLV-1 provirus only. These results suggested that a defective HTLV-1 provirus with large depletion of internal sequence could transmit to other cells. Moreover, the defective provirus can be transcriptionally active. This suggested the possibility that the defective HTLV-1 provirus found in the lymphocytes of HTLV-1 carriers and patients with adult T-cell leukemia may transmit to other T-cells in vivo. The results also suggested that defective provirus in HTLV-1 carriers could be functional and may play a role in leukemogenesis.
Collapse
|
4
|
Aida Y, Murakami H, Takahashi M, Takeshima SN. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol 2013; 4:328. [PMID: 24265629 PMCID: PMC3820957 DOI: 10.3389/fmicb.2013.00328] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/17/2013] [Indexed: 11/27/2022] Open
Abstract
Bovine leukemia virus (BLV) and human T-cell leukemia virus type 1 (HTLV-1) make up a unique retrovirus family. Both viruses induce chronic lymphoproliferative diseases with BLV affecting the B-cell lineage and HTLV-1 affecting the T-cell lineage. The pathologies of BLV- and HTLV-induced infections are notably similar, with an absence of chronic viraemia and a long latency period. These viruses encode at least two regulatory proteins, namely, Tax and Rex, in the pX region located between the env gene and the 3′ long terminal repeat. The Tax protein is a key contributor to the oncogenic potential of the virus, and is also the key protein involved in viral replication. However, BLV infection is not sufficient for leukemogenesis, and additional events such as gene mutations must take place. In this review, we first summarize the similarities between the two viruses in terms of genomic organization, virology, and pathology. We then describe the current knowledge of the BLV model, which may also be relevant for the understanding of leukemogenesis caused by HTLV-1. In addition, we address our improved understanding of Tax functions through the newly identified BLV Tax mutants, which have a substitution between amino acids 240 and 265.
Collapse
Affiliation(s)
- Yoko Aida
- Viral Infectious Diseases Unit, RIKEN Wako, Saitama, Japan
| | | | | | | |
Collapse
|
5
|
Amano M, Setoyama M, Grant A, Kerdel FA. Human T-lymphotropic virus 1 (HTLV-1) infection--dermatological implications. Int J Dermatol 2011; 50:915-20. [PMID: 21781059 DOI: 10.1111/j.1365-4632.2011.04882.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is a type C retrovirus primarily endemic to Japan, Central and South America, the Middle East, regions of Africa, and the Caribbean. Currently, an estimated 10-20 million people worldwide are infected with this virus. Although the majority of infected individuals remain asymptomatic, HTLV-1 is the causative agent of a number of disorders, notably adult T-cell leukemia/lymphoma (ATLL) and a progressive demyelinating neurological disorder, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). In addition to ATLL and HAM/TSP, HTLV-1 has been associated with a spectrum of skin disorders, such as infective dermatitis associated with HTLV-1, crusted scabies, and leprosy. The understanding of the interaction between virus and host response has improved markedly, but there are still few treatment options.
Collapse
Affiliation(s)
- Masahiro Amano
- Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
6
|
Mylonas I, Brüning A, Kainer F, Friese K. HTLV infection and its implication in gynaecology and obstetrics. Arch Gynecol Obstet 2010; 282:493-501. [PMID: 20567840 DOI: 10.1007/s00404-010-1559-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 06/08/2010] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Worldwide, 20-30 million people are estimated to be infected with HTLV. HTLV-1 is endemic in Western Africa and Southern Japan, whereas HTLV-2 is considered to be spread among native American people. MATERIALS AND METHODS The impact of HTLV in gynaecology and obstetrics is being reviewed. Search strategy and selection criteria for identifying relevant data were performed by searching Medline, Current Contents, Web of Science, Embase and references from relevant articles. English and German gynaecological and infectious diseases textbooks as well as national and international guidelines and recommendations were also reviewed. RESULTS Transmission may occur by sexual intercourse or cellular blood products. Although materno-fetal transmission is debated, transmission through maternal breast milk has been confirmed. An HTLV-infection can lead to adult T-cell leukaemia (ATL) or cumulative opportunistic and neurological disorders that can occur with varying degrees of severity. Diagnosis can be done by antibody detection via the use of ELISA and western blot analysis as well as PCR diagnosis. CONCLUSION Due to inadequate treatment options and the lack of an effective vaccination, prevention is currently only possible by restricting transmission, including the usage of condoms during sexual intercourse or avoiding breastfeeding in HTLV-seropositive mothers. If, due to socio-economic reasons, breastfeeding cannot be avoided, short-term breastfeeding for a maximum of up to 6 months is suggested.
Collapse
Affiliation(s)
- Ioannis Mylonas
- First Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University Munich, 80337 Munich, Germany.
| | | | | | | |
Collapse
|
7
|
Human T-cell leukemia virus type I (HTLV-1) proviral load and disease progression in asymptomatic HTLV-1 carriers: a nationwide prospective study in Japan. Blood 2010; 116:1211-9. [PMID: 20448111 DOI: 10.1182/blood-2009-12-257410] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Definitive risk factors for the development of adult T-cell leukemia (ATL) among asymptomatic human T-cell leukemia virus type I (HTLV-1) carriers remain unclear. Recently, HTLV-1 proviral loads have been evaluated as important predictors of ATL, but a few small prospective studies have been conducted. We prospectively evaluated 1218 asymptomatic HTLV-1 carriers (426 males and 792 females) who were enrolled during 2002 to 2008. The proviral load at enrollment was significantly higher in males than females (median, 2.10 vs 1.39 copies/100 peripheral blood mononuclear cells [PBMCs]; P < .001), in those 40 to 49 and 50 to 59 years of age than that of those 40 years of age and younger (P = .02 and .007, respectively), and in those with a family history of ATL than those without the history (median, 2.32 vs 1.33 copies/100 PBMCs; P = .005). During follow-up, 14 participants progressed to overt ATL. Their baseline proviral load was high (range, 4.17-28.58 copies/100 PBMCs). None developed ATL among those with a baseline proviral load lower than approximately 4 copies. Multivariate Cox analyses indicated that not only a higher proviral load, advanced age, family history of ATL, and first opportunity for HTLV-1 testing during treatment for other diseases were independent risk factors for progression of ATL.
Collapse
|
8
|
Involvement of TORC2, a CREB co-activator, in the in vivo-specific transcriptional control of HTLV-1. Retrovirology 2009; 6:73. [PMID: 19664292 PMCID: PMC2734550 DOI: 10.1186/1742-4690-6-73] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/11/2009] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1 (HTLV-1) causes adult T -cell leukemia (ATL) but the expression of HTLV-1 is strongly suppressed in the peripheral blood of infected people. However, such suppression, which may explain the long latency in the development of ATL, is readily reversible, and viral expression resumes quickly with ex vivo culture of infected T -cells. To investigate the mechanism of in vivo -specific transcriptional suppression, we established a mouse model in which mice were intraperitoneally administered syngeneic EL4 T -lymphoma cells transduced with a recombinant retrovirus expressing a GFP-Tax fusion protein, Gax, under the control of the HTLV-1 enhancer (EL4-Gax). RESULTS Gax gene transcription was silenced in vivo but quickly up-regulated in ex vivo culture. Analysis of integrated Gax reporter gene demonstrated that neither CpG methylation of the promoter DNA nor histone modification was associated with the reversible suppression. ChIP-analysis of LTR under suppression revealed reduced promoter binding of TFIIB and Pol-II, but no change in the binding of CREB or CBP/p300 to the viral enhancer sequence. However, the expression of TORC2, a co-activator of CREB, decreased substantially in the EL4-Gax cells in vivo, and this returned to normal levels in ex vivo culture. The reduced expression of TORC2 was associated with translocation from the nucleus to the cytoplasm. A knock-down experiment with siRNA confirmed that TORC2 was the major functional protein of the three TORC-family proteins (TORC1, 2, 3) in EL4-Gax cells. CONCLUSION These results suggest that the TORC2 may play an important role in the in vivo -specific transcriptional control of HTLV-1. This study provides a new model for the reversible mechanism that suppresses HTLV-1 expression in vivo without the DNA methylation or hypoacetylated histones that is observed in the primary cells of most HTLV-1 -infected carriers and a substantial number of ATL cases.
Collapse
|
9
|
Truncated MTA-1: a pitfall in ELISA-based immunoassay of HTLV-1 infection. J Biomed Biotechnol 2008; 2008:846371. [PMID: 18566680 PMCID: PMC2426754 DOI: 10.1155/2008/846371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/23/2008] [Accepted: 03/26/2008] [Indexed: 11/18/2022] Open
Abstract
HTLV-1 causes adult T-cell leukemia (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Recombinant envelope glycoprotein is used in production of diagnostic enzyme-linked immunosorbent assay (ELISA) kit. There are some reports that a significant percentage of Iranian HTLV-1 infected patients showed no seroreactivity with MTA-1 peptide, while HTLV-1 had been confirmed by PCR detection methods or ELISA kits containing a cocktail of HTLV-1 specific peptides. This report describes experiments designed to determine whether some discrepancies between ELISA and PCR results could be due to truncation of immunodominant epitopes using immunoassay method. We have cloned the MTA-1 epitope of env gene from HTLV-1 in NotI/NdeI sites of pET22b(+) expression vector. Sequencing analysis of recombinant plasmids revealed an insertion of a cytosine in position 271 causing a stop codon in the MTA-1 protein translation. SDS-PAGE analysis also failed to reveal the presence of the desired protein. Subjects with a mutant HTLV-1 env gene were shown to be seronegative using ELISA, but positive with PCR.
Collapse
|
10
|
Nadella MVP, Shu ST, Dirksen WP, Thudi NK, Nadella KS, Fernandez SA, Lairmore MD, Green PL, Rosol TJ. Expression of parathyroid hormone-related protein during immortalization of human peripheral blood mononuclear cells by HTLV-1: implications for transformation. Retrovirology 2008; 5:46. [PMID: 18541021 PMCID: PMC2435116 DOI: 10.1186/1742-4690-5-46] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 06/09/2008] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Adult T-cell leukemia/lymphoma (ATLL) is initiated by infection with human T-lymphotropic virus type-1 (HTLV-1); however, additional host factors are also required for T-cell transformation and development of ATLL. The HTLV-1 Tax protein plays an important role in the transformation of T-cells although the exact mechanisms remain unclear. Parathyroid hormone-related protein (PTHrP) plays an important role in the pathogenesis of humoral hypercalcemia of malignancy (HHM) that occurs in the majority of ATLL patients. However, PTHrP is also up-regulated in HTLV-1-carriers and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients without hypercalcemia, indicating that PTHrP is expressed before transformation of T-cells. The expression of PTHrP and the PTH/PTHrP receptor during immortalization or transformation of lymphocytes by HTLV-1 has not been investigated. RESULTS We report that PTHrP was up-regulated during immortalization of lymphocytes from peripheral blood mononuclear cells by HTLV-1 infection in long-term co-culture assays. There was preferential utilization of the PTHrP-P2 promoter in the immortalized cells compared to the HTLV-1-transformed MT-2 cells. PTHrP expression did not correlate temporally with expression of HTLV-1 tax. HTLV-1 infection up-regulated the PTHrP receptor (PTH1R) in lymphocytes indicating a potential autocrine role for PTHrP. Furthermore, co-transfection of HTLV-1 expression plasmids and PTHrP P2/P3-promoter luciferase reporter plasmids demonstrated that HTLV-1 up-regulated PTHrP expression only mildly, indicating that other cellular factors and/or events are required for the very high PTHrP expression observed in ATLL cells. We also report that macrophage inflammatory protein-1alpha (MIP-1alpha), a cellular gene known to play an important role in the pathogenesis of HHM in ATLL patients, was highly expressed during early HTLV-1 infection indicating that, unlike PTHrP, its expression was enhanced due to activation of lymphocytes by HTLV-1 infection. CONCLUSION These data demonstrate that PTHrP and its receptor are up-regulated specifically during immortalization of T-lymphocytes by HTLV-1 infection and may facilitate the transformation process.
Collapse
Affiliation(s)
- Murali VP Nadella
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| | - Sherry T Shu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| | - Wessel P Dirksen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| | - Nanda K Thudi
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Kiran S Nadella
- Human Cancer Genetics, The Ohio State University, Columbus, OH, USA
| | - Soledad A Fernandez
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Michael D Lairmore
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| | - Patrick L Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| | - Thomas J Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Fett NM, Siddiqui J, Creswell CH, Zhang D, Lloyd R, Wood GS. Adult T-cell leukemia/lymphoma in a patient from Romania: a case report and review of the literature. J Cutan Pathol 2008; 35 Suppl 1:32-7. [PMID: 18544058 DOI: 10.1111/j.1600-0560.2007.00962.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a rare malignancy caused by human T-cell leukemia virus-1. ATLL is endemic to Japan, and to date, there are only four case reports of patients from Romania who have developed ATLL. Here, we describe a woman living in Madison, Wisconsin, originally from Romania, who presented with an atypical papulosquamous eruption and was ultimately diagnosed with smoldering ATLL. Narrow-band ultraviolet-B (UV-B) therapy and mid-potency topical steroids resulted in skin clearing for approximately 5 months after diagnosis; however, she subsequently relapsed with disease refractory to both narrow band UV-B and psoralen plus ultraviolet A (PUV-A), progressed to acute ATLL and expired secondary to complications.
Collapse
Affiliation(s)
- Nicole M Fett
- Department of Dermatology, University of Wisconsin and Veterans Affairs Medical Center, Madison, WI 53715, USA
| | | | | | | | | | | |
Collapse
|
12
|
Satou Y, Matsuoka M. Implication of the HTLV-I bZIP factor gene in the leukemogenesis of adult T-cell leukemia. Int J Hematol 2007; 86:107-12. [PMID: 17875522 DOI: 10.1532/ijh97.07103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adult T-cell leukemia (ATL) is a leukemia derived from CD4+ mature T-cells and induced by human T-cell leukemia virus type I (HTLV-I) infection. Although previous studies have revealed many aspects of its leukemogenesis, enigmas remain about how HTLV-I transforms mature T-cells in infected individuals. Furthermore, an effective therapy for ATL has not yet been established. The critical role of a nonstructural regulatory viral protein, Tax, in transformation has been established through many molecular studies, in vitro cell culture experiments, and transgenic mouse model systems. In addition, other accessory viral proteins have been implicated in ATL pathogenesis. Recent studies of a minus strand viral gene, HTLV-I bZIP factor (HBZ), suggest it plays a role in ATL leukemogenesis. In addition to viral components, genetic and epigenetic events of the host cellular genome must be considered in developing a complete picture of the transformation process. In this review, we summarize the molecular and cellular mechanisms involved in the leukemogenesis induced by HTLV-I; we consider both viral and host cellular factors and focus particularly on the viral gene HBZ.
Collapse
Affiliation(s)
- Yorifumi Satou
- Laboratory for Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
13
|
Yasunaga JI, Matsuoka M. Leukaemogenic mechanism of human T-cell leukaemia virus type I. Rev Med Virol 2007; 17:301-11. [PMID: 17621367 DOI: 10.1002/rmv.548] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adult T-cell leukaemia (ATL) is a neoplastic disease derived from CD4(+) T-lymphocytes and etiologically associated with human T-cell leukaemia virus type I (HTLV-I). In addition to structural genes, HTLV-I encodes regulatory and accessory genes in the pX region. Among them, Tax is thought to play a central role in leukaemogenesis through its potent transforming activity. However, since Tax is a major target of the host immune system, its expression is often lost in ATL cells, indicating Tax is dispensable in the last phase of leukaemogenesis. The HTLV-I bZIP factor (HBZ), encoded on the HTLV-I minus strand, was recently shown to be expressed in all ATL cells, and to support growth of human T-cell lines. These findings suggest that HBZ is critical to ATL onset. In addition to viral factors and genetic and epigenetic changes in cellular genes, the host immune status and genetic background also function in leukaemogenesis.
Collapse
Affiliation(s)
- Jun-ichirou Yasunaga
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
14
|
Yasunaga JI, Matsuoka M. Human T-cell leukemia virus type I induces adult T-cell leukemia: from clinical aspects to molecular mechanisms. Cancer Control 2007; 14:133-40. [PMID: 17387298 DOI: 10.1177/107327480701400206] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Human T-cell leukemia virus type I (HTLV-I) is a causative virus of adult T-cell leukemia (ATL), HTLV-I-associated myelopathy/tropical spastic paraparesis, and HTLV-I-associated uveitis. ATL is a neoplastic disease of CD4-positive T lymphocytes that is characterized by pleomorphic tumor cells with hypersegmented nuclei, termed "flower cells." The mechanisms of leukemogenesis have not been fully clarified. METHODS The authors reviewed the virological, clinical, and immunological features of HTLV-I and ATL and summarized recent findings on the oncogenic mechanisms of ATL and therapeutic advances. RESULTS Multiple factors, such as viral genes, genetic and epigenetic alterations, and the host immune system, may be implicated in the leukemogenesis of ATL. Among them, viral genes, tax, and HBZ have been thought to play important roles. The prognosis of aggressive-type ATL remains poor, regardless of intensive chemotherapy. Effectiveness of allogeneic stem cell transplantation for ATL has been recently reported. CONCLUSIONS Although the precise mechanism of leukemogenesis of ATL remains unclear, recent progress provides important clues in oncogenesis by HTLV-I. Future research should focus on the composition of novel therapeutic strategies, including prevention, based on the evidence in the leukemogenic mechanisms.
Collapse
Affiliation(s)
- Jun-ichirou Yasunaga
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| | | |
Collapse
|
15
|
Yasunaga JI, Matsuoka M. [HTLV-I and leukemogenesis]. Uirusu 2007; 56:241-9. [PMID: 17446673 DOI: 10.2222/jsv.56.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-I) is a causative virus of adult T-cell leukemia (ATL). ATL is a highly aggressive neoplastic disease of CD4 positive T lymphocyte, which is featured by the pleomorphic tumor cells with hypersegmented nuclei, called " flower cell". HTLV-I increases its copy number by clonal proliferation of the host cells, not by replication of the virus. Therefore, HTLV-I eventually induces ATL. Tax, encoded by HTLV-I pX region, has been recognized as a protein that plays a central role of the transformation of HTLV-I-infected cells by its pleiotropic actions. However, fresh ATL cells frequently lose Tax protein expression by several mechanisms. Recently, HBZ was identified in the complementary strand of HTLV-I and it is suggested that HBZ is a critical gene in leukemogenesis. Furthermore, there is a long latency period before onset of ATL, indicating the multistep mechanisms of leukemogenesis. Therefore, it is suggested that multiple factors, such as viral proteins, genetic and epigenetic changes of host genome, and immune status of the hosts, could be implicated in leukemogenesis of ATL.
Collapse
Affiliation(s)
- Jun-ichirou Yasunaga
- Laboratory of Human Tumor Viruses Department of Viral Oncology Institute for Virus Research, Kyoto University.
| | | |
Collapse
|
16
|
Miyazaki M, Yasunaga JI, Taniguchi Y, Tamiya S, Nakahata T, Matsuoka M. Preferential selection of human T-cell leukemia virus type 1 provirus lacking the 5' long terminal repeat during oncogenesis. J Virol 2007; 81:5714-23. [PMID: 17344291 PMCID: PMC1900290 DOI: 10.1128/jvi.02511-06] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In adult T-cell leukemia (ATL) cells, a defective human T-cell leukemia virus type 1 (HTLV-1) provirus lacking the 5' long terminal repeat (LTR), designated type 2 defective provirus, is frequently observed. To investigate the mechanism underlying the generation of the defective provirus, we sequenced HTLV-1 provirus integration sites from cases of ATL. In HTLV-1 proviruses retaining both LTRs, 6-bp repeat sequences were adjacent to the 5' and 3' LTRs. In 8 of 12 cases with type 2 defective provirus, 6-bp repeats were identified at both ends. In five of these cases, a short repeat was bound to CA dinucleotides of the pol and env genes at the 5' end, suggesting that these type 2 defective proviruses were formed before integration. In four cases lacking the 6-bp repeat, short (6- to 26-bp) deletions in the host genome were identified, indicating that these defective proviruses were generated after integration. Quantification indicated frequencies of type 2 defective provirus of less than 3.9% for two carriers, which are much lower than those seen for ATL cases (27.8%). In type 2 defective proviruses, the second exons of the tax, rex, and p30 genes were frequently deleted, leaving Tax unable to activate NF-kappaB and CREB pathways. The HTLV-1 bZIP factor gene, located on the minus strand, is expressed in ATL cells with this defective provirus, and its coding sequences are intact, suggesting its significance in oncogenesis.
Collapse
Affiliation(s)
- Maki Miyazaki
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Shogoin Kawara-cho 53, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Sibon D, Gabet AS, Zandecki M, Pinatel C, Thête J, Delfau-Larue MH, Rabaaoui S, Gessain A, Gout O, Jacobson S, Mortreux F, Wattel E. HTLV-1 propels untransformed CD4 lymphocytes into the cell cycle while protecting CD8 cells from death. J Clin Invest 2006; 116:974-83. [PMID: 16585963 PMCID: PMC1421359 DOI: 10.1172/jci27198] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 01/10/2006] [Indexed: 01/03/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) infects both CD4+ and CD8+ lymphocytes, yet it induces adult T cell leukemia/lymphoma (ATLL) that is regularly of the CD4+ phenotype. Here we show that in vivo infected CD4+ and CD8+ T cells displayed similar patterns of clonal expansion in carriers without malignancy. Cloned infected cells from individuals without malignancy had a dramatic increase in spontaneous proliferation, which predominated in CD8+ lymphocytes and depended on the amount of tax mRNA. In fact, the clonal expansion of HTLV-1-positive CD8+ and CD4+ lymphocytes relied on 2 distinct mechanisms--infection prevented cell death in the former while recruiting the latter into the cell cycle. Cell cycling, but not apoptosis, depended on the level of viral-encoded tax expression. Infected tax-expressing CD4+ lymphocytes accumulated cellular defects characteristic of genetic instability. Therefore, HTLV-1 infection establishes a preleukemic phenotype that is restricted to CD4+ infected clones.
Collapse
Affiliation(s)
- David Sibon
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne-Sophie Gabet
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Marc Zandecki
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Christiane Pinatel
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Julien Thête
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie-Hélène Delfau-Larue
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Samira Rabaaoui
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Antoine Gessain
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Olivier Gout
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven Jacobson
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Franck Mortreux
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Wattel
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Satou Y, Yasunaga JI, Yoshida M, Matsuoka M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci U S A 2006; 103:720-5. [PMID: 16407133 PMCID: PMC1334651 DOI: 10.1073/pnas.0507631103] [Citation(s) in RCA: 464] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human T cell leukemia virus type I (HTLV-I) causes adult T cell leukemia (ATL) in 2-5% of carriers after a long latent period. An HTLV-I encoded protein, Tax, induces proliferation and inhibits apoptosis, resulting in clonal proliferation of infected cells. However, tax gene expression in ATL cells is disrupted by several mechanisms, including genetic changes in the tax gene and DNA methylation/deletion of the 5' long terminal repeat (LTR). Because Tax is the major target of cytotoxic T-lymphocytes in vivo, loss of Tax expression should enable ATL cells to escape the host immune system. The 5' LTR of HTLV-I is frequently hypermethylated or deleted in ATL cells, whereas the 3' LTR remains unmethylated and intact, suggesting the involvement of the 3' LTR in leukemogenesis. Here we show that a gene encoded by the minus strand of the HTLV-I proviral genome, HTLV-I basic leucine zipper factor (HBZ), is transcribed from 3'-LTR in all ATL cells. Suppression of HBZ gene transcription by short interfering RNA inhibits proliferation of ATL cells. In addition, HBZ gene expression promotes proliferation of a human T cell line. Analyses of T cell lines transfected with mutated HBZ genes showed that HBZ promotes T cell proliferation in its RNA form, whereas HBZ protein suppresses Tax-mediated viral transcription through the 5' LTR. Thus, the single HBZ gene has bimodal functions in two different molecular forms. The growth-promoting activity of HBZ RNA likely plays an important role in oncogenesis by HTLV-I.
Collapse
Affiliation(s)
- Yorifumi Satou
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
19
|
Lee SM, Morcos Y, Jang H, Stuart JM, Levin MC. HTLV-1 induced molecular mimicry in neurological disease. Curr Top Microbiol Immunol 2006; 296:125-36. [PMID: 16323422 DOI: 10.1007/3-540-30791-5_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
As a model for molecular mimicry, we study patients infected with human T-lymphotropic virus type 1 (HTLV-1) who develop a neurological disease called HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a disease with important biological similarities to multiple sclerosis (MS) (Khan et al. 2001; Levin et al. 1998, 2002a; Levin and Jacobson 1997). The study of HAM/TSP, a disease associated with a known environmental agent (HTLV-1), allows for the direct comparison of the infecting agent with host antigens. Neurological disease in HAM/TSP patients is associated with immune responses to HTLV-1-tax (a regulatory and immunodominant protein) and human histocompatibility leukocyte antigen (HLA) DRB1*0101 (Bangham 2000; Jacobson et al. 1990; Jeffery et al. 1999; Lal 1996). Recently, we showed that HAM/TSP patients make antibodies to heterogeneous nuclear ribonuclear protein A1 (hnRNP A1), a neuron-specific autoantigen (Levin et al. 2002a). Monoclonal antibodies to tax cross-reacted with hnRNP A1, indicating molecular mimicry between the two proteins. Infusion of cross-reactive antibodies with an ex vivo system completely inhibited neuronal firing indicative of their pathogenic nature (Kalume et al. 2004; Levin et al. 2002a). These data demonstrate a clear link between chronic viral infection and autoimmune disease of the central nervous system (CNS) in humans and, we believe, in turn will give insight into the pathogenesis of MS.
Collapse
Affiliation(s)
- S M Lee
- Department of Neurology, University of Tennessee Health Sciences Center, Memphis 38163, USA
| | | | | | | | | |
Collapse
|
20
|
Shuh M, Beilke M. The human T-cell leukemia virus type 1 (HTLV-1): New insights into the clinical aspects and molecular pathogenesis of adult t-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-associated myelopathy (TSP/HAM). Microsc Res Tech 2005; 68:176-96. [PMID: 16276549 DOI: 10.1002/jemt.20231] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus to be identified in the early 1980s. The isolation and identification of a related virus, HTLV-2, and the distantly related human immunodeficiency virus (HIV) immediately followed. Of the three retroviruses, two are associated definitively with specific diseases, HIV, with acquired immune deficiency syndrome (AIDS) and HTLV-1, with adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). While an estimated 10-20 million people worldwide are infected with HTLV-I, infection is endemic in the Caribbean, parts of Africa, southwestern Japan, and Italy. Approximately 4% of HTLV-I infected individuals develop ATLL, a disease with a poor prognosis. The clinical manifestations of infection and the current biology of HTLV viruses with emphasis on HTLV-1 are discussed in detail. The implications for improvements in diagnosis, treatment, intervention, and vaccination are included, as well as a discussion of the emergence of HTLV-1 and -2 as copathogens among HIV-1-infected individuals.
Collapse
Affiliation(s)
- Maureen Shuh
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, Louisiana 70118, USA.
| | | |
Collapse
|
21
|
Taniguchi Y, Nosaka K, Yasunaga JI, Maeda M, Mueller N, Okayama A, Matsuoka M. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms. Retrovirology 2005; 2:64. [PMID: 16242045 PMCID: PMC1289293 DOI: 10.1186/1742-4690-2-64] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 10/22/2005] [Indexed: 12/13/2022] Open
Abstract
Background Human T-cell leukemia virus type I (HTLV-I) causes adult T-cell leukemia (ATL) after a long latent period. Among accessory genes encoded by HTLV-I, the tax gene is thought to play a central role in oncogenesis. However, Tax expression is disrupted by several mechanims including genetic changes of the tax gene, deletion/hypermethylation of 5'-LTR. To clarify the role of epigenetic changes, we analyzed DNA methylation and histone modification in the whole HTLV-I provirus genome. Results The gag, pol and env genes of HTLV-I provirus were more methylated than pX region, whereas methylation of 5'-LTR was variable and 3'-LTR was not methylated at all. In ATL cell lines, complete DNA methylation of 5'-LTR was associated with transcriptional silencing of viral genes. HTLV-I provirus was more methylated in primary ATL cells than in carrier state, indicating the association with disease progression. In seroconvertors, DNA methylation was already observed in internal sequences of provirus just after seroconversion. Taken together, it is speculated that DNA methylation first occurs in the gag, pol and env regions and then extends in the 5' and 3' directions in vivo, and when 5'-LTR becomes methylated, viral transcription is silenced. Analysis of histone modification in the HTLV-I provirus showed that the methylated provirus was associated with hypoacetylation. However, the tax gene transcript could not be detected in fresh ATL cells regardless of hyperacetylated histone H3 in 5'-LTR. The transcription rapidly recovered after in vitro culture in such ATL cells. Conclusion These results showed that epigenetic changes of provirus facilitated ATL cells to evade host immune system by suppressing viral gene transcription. In addition, this study shows the presence of another reversible mechanism that suppresses the tax gene transcription without DNA methylation and hypoacetylated histone.
Collapse
Affiliation(s)
- Yuko Taniguchi
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Kisato Nosaka
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
- Department of Hematology, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan
| | - Jun-ichirou Yasunaga
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Michiyuki Maeda
- Laboratory of Infection and Prevention, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Nancy Mueller
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Akihiko Okayama
- Department of Laboratory Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Masao Matsuoka
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
22
|
Balestrieri E, Sciortino MT, Mastino A, Macchi B. Protective effect of the acyclic nucleoside phosphonate tenofovir toward human T-cell leukemia/lymphotropic virus type 1 infection of human peripheral blood mononuclear cells in vitro. Antiviral Res 2005; 68:154-62. [PMID: 16271772 DOI: 10.1016/j.antiviral.2005.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 09/20/2005] [Accepted: 09/20/2005] [Indexed: 11/30/2022]
Abstract
9-(R)-[(2-Phosphonomethoxy)propyls]adenine (tenofovir), is an acyclic nucleoside phosphonate known to inhibit HIV replication in vitro and to reduce viremia in HIV-infected patients. Here we have investigated whether tenofovir is able to protect peripheral blood mononuclear cells (PBMCs) from healthy donors against human T-cell leukemia/lymphotropic virus type 1 (HTLV-1) infection in vitro. PBMCs were pre-treated with tenofovir and infected by exposure to an irradiated cell line chronically harbouring HTLV-1. Measurements of viral DNA, as well as viral gene and protein expression, at 4 weeks after infection, revealed that tenofovir at concentrations of 1 microM and higher completely protected PBMCs against HTLV-1; lower concentrations did not fully prevent HTLV-1 infection of the cultures. Nevertheless, in the long term, cell growth of infected PBMCs was inhibited in vitro even by 0.1 microM tenofovir. In addition, tenofovir directly inhibited HTLV-1 reverse transcriptase activity, in a cell-free assay that utilizes a crude preparation from HTLV-1 viral particles as a source of the enzyme. The selectivity index of tenofovir for HTLV-1, was about four times higher than that of azidothymidine. Taken together our results strongly encourage further studies to investigate the real impact of tenofovir towards HTLV-1 infection.
Collapse
Affiliation(s)
- Emanuela Balestrieri
- Department of Neuroscience, University of Rome Tor Vergata, Via Montpellier 1, 00135 Rome, Italy
| | | | | | | |
Collapse
|
23
|
Taylor GP, Matsuoka M. Natural history of adult T-cell leukemia/lymphoma and approaches to therapy. Oncogene 2005; 24:6047-57. [PMID: 16155611 DOI: 10.1038/sj.onc.1208979] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
After cell-to-cell transmission, HTLV-I increases its viral genome by de novo infection and proliferation of infected cells. Proliferation of infected cells is clonal and persistent in vivo. During the carrier state, infected cells are selected in vivo by the host's immune system, the genetic and epigenetic environment of proviral integration sites, and other factors. In leukemic cells, tax gene expression is frequently impaired by genetic and epigenetic mechanisms. Such loss of Tax expression enables ATL cells to escape the host immune system. On the other hand, ATL cells acquire the ability to proliferate without Tax by intracellular genetic and epigenetic changes. Despite advances in support and the development of novel treatment agents, the prognosis for ATLL remains poor. A number of therapies, however, do appear to improve prognosis compared to CHOP (VEPA). These include interferon-alpha plus zidovudine (probably after 1-2 cycles of CHOP), intensive chemotherapy as in LSG-15 with G-CSF support and Allo-SCT (which includes the potential for cure). Emerging novel approaches include HDAC inhibitors, monoclonal antibodies, and proteasome inhibitors. Comparison between different therapeutic approaches is complicated by the range of natural history of ATLL, different recruitments of naïve-to-therapy, refractory or relapsed patients, and variations in the reporting of outcome that frequently excludes difficult-to-evaluate patients. Moreover, results from relatively small proof-of-principle studies have not been extended with randomized, controlled trials. As a result, currently, there is no clear evidence to support the value of any particular treatment approach over others. To avoid further unnecessary patient suffering and to identify optimal therapy as rapidly as possible, large randomized, controlled trials encompassing multicenter, international collaborations will be necessary.
Collapse
Affiliation(s)
- Graham P Taylor
- Department of GU Medicine & Communicable Diseases, Faculty of Medicine, Imperial College, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|
24
|
Lairmore MD, Silverman L, Ratner L. Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation. Oncogene 2005; 24:6005-15. [PMID: 16155607 PMCID: PMC2652704 DOI: 10.1038/sj.onc.1208974] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past 25 years, animal models of human T-lymphotropic virus type 1 (HTLV-1) infection and transformation have provided critical knowledge about viral and host factors in adult T-cell leukemia/lymphoma (ATL). The virus consistently infects rabbits, some non-human primates, and to a lesser extent rats. In addition to providing fundamental concepts in viral transmission and immune responses against HTLV-1 infection, these models have provided new information about the role of viral proteins in carcinogenesis. Mice and rats, in particular immunodeficient strains, are useful models to assess immunologic parameters mediating tumor outgrowth and therapeutic invention strategies against lymphoma. Genetically altered mice including both transgenic and knockout mice offer important models to test the role of specific viral and host genes in the development of HTLV-1-associated lymphoma. Novel approaches in genetic manipulation of both HTLV-1 and animal models are available to address the complex questions that remain about viral-mediated mechanisms of cell transformation and disease. Current progress in the understanding of the molecular events of HTLV-1 infection and transformation suggests that answers to these questions are approachable using animal models of HTLV-1-associated lymphoma.
Collapse
Affiliation(s)
- Michael D Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210-1093, USA.
| | | | | |
Collapse
|
25
|
Matsuoka M. Human T-cell leukemia virus type I (HTLV-I) infection and the onset of adult T-cell leukemia (ATL). Retrovirology 2005; 2:27. [PMID: 15854229 PMCID: PMC1131926 DOI: 10.1186/1742-4690-2-27] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 04/26/2005] [Indexed: 11/13/2022] Open
Abstract
The clinical entity of adult T-cell leukemia (ATL) was established around 1977, and human T-cell leukemia virus type 1 (HTLV-I) was subsequently identified in 1980. In the 25 years since the discovery of HTLV-I, HTLV-I infection and its associated diseases have been extensively studied, and many of their aspects have been clarified. However, the detailed mechanism of leukemogenesis remains unsolved yet, and the prognosis of ATL patients still poor because of its resistance to chemotherapy and immunodeficiency. In this review, I highlight the recent progress and remaining enigmas in HTLV-I infection and its associated diseases, especially ATL.
Collapse
Affiliation(s)
- Masao Matsuoka
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
26
|
Doi K, Wu X, Taniguchi Y, Yasunaga JI, Satou Y, Okayama A, Nosaka K, Matsuoka M. Preferential selection of human T-cell leukemia virus type I provirus integration sites in leukemic versus carrier states. Blood 2005; 106:1048-53. [PMID: 15840694 DOI: 10.1182/blood-2004-11-4350] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type I (HTLV-I) is a causative agent of neoplastic disease, adult T-cell leukemia (ATL). Although the encoding viral proteins play an important role in oncogenesis, the role of the HTLV-I proviral integration site remains unsolved. We determined the integration sites of HTLV-I proviruses in ATL cells and HTLV-I-infected cells in asymptomatic carriers. In carrier and ATL cells, HTLV-I provirus was integrated into the transcriptional unit at frequencies of 26.8% (15/56) and 33.9% (20/59), respectively, which were equivalent to the frequency calculated based on random integration (33.2%). In addition, HTLV-I provirus was prone to integration near the transcriptional start sites in leukemic cells (P = .006), and the transcriptional direction of the provirus was in accordance with that of integrated cellular genes in 70% of cases. More importantly, the integration sites in the carrier cells favored the alphoid repetitive sequences (11/56; 20%) whereas in leukemic cells they disfavored these sequences (2/59; 3.4%). Taken together, during natural course from carrier to onset of ATL, HTLV-I-infected cells with integration sites favorable for viral gene transcription are susceptible to malignant transformation due to increased viral gene expression.
Collapse
Affiliation(s)
- Keitarou Doi
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nair A, Michael B, Hiraragi H, Fernandez S, Feuer G, Boris-Lawrie K, Lairmore M. Human T lymphotropic virus type 1 accessory protein p12I modulates calcium-mediated cellular gene expression and enhances p300 expression in T lymphocytes. AIDS Res Hum Retroviruses 2005; 21:273-84. [PMID: 15943569 PMCID: PMC2668121 DOI: 10.1089/aid.2005.21.273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T cell leukemia/lymphoma (ATLL), an aggressive CD4+ T lymphocyte malignancy. Activation of T lymphocytes is required for effective retroviral integration into the host cell genome and subsequent viral replication, but the molecular mechanisms involved in HTLV-1-mediated T cell activation remain unclear. HTLV-1 encodes various accessory proteins such as p12I, which has been demonstrated to be critical for HTLV-1 infectivity in vivo in rabbits and in vitro in quiescent primary human T lymphocytes. This hydrophobic protein localizes in the endoplasmic reticulum, increases intracellular calcium, and activates nuclear factor of activated T cell-mediated transcription. To further elucidate the role of p12I in regulation of cellular gene expression, we performed gene array analysis on stable p12I-expressing Jurkat T cells, using Affymetrix U133A arrays. Our data indicate that p12I altered the expression of genes associated with a network of interrelated pathways including T cell signaling, cell proliferation, and apoptosis. Expression of several calcium-regulated genes was found to be altered by p12I, consistent with known properties of the viral protein. Gene array findings were confirmed by semiquantitative RT-PCR in Jurkat T cells and primary CD4+ T lymphocytes. Furthermore, dose-dependent expression of p12I in Jurkat T cells resulted in significant increases in p300 and p300-dependent transcription. This is the first report of a viral protein influencing the transcription of p300, a rate-limiting coadapter critical in HTLV-1-mediated T cell activation. Collectively, our data strongly indicate that HTLV-1 p12I modulates cellular gene expression patterns to hasten the activation of T lymphocytes and thereby promote efficient viral infection.
Collapse
Affiliation(s)
- Amrithraj Nair
- Center for Retrovirus Research and Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Epidemiological studies have demonstrated that the relative percentage of malignant lymphoid proliferations varies widely according to geographical location and ethnic populations. HTLV-I is the etiological agent of adult T-cell leukemia/lymphoma (ATLL) and is also associated with cutaneous T-cell lymphoma (CTCL). However, a definite role of HTLV-I in mycosis fungoides (MF) and/or Sezary syndrome (SS) remains controversial. While most HTLV-I-infected individuals remain asymptomatic carriers, 1-5% will develop ATLL, an invariably fatal expansion of virus-infected CD4+ T cells. This low incidence and the long latency period preceding occurrence of the disease suggest that additional factors are involved in development of ATLL. In this review, diagnosis, clinical features, and molecular pathogenesis of HTLV-I are discussed.
Collapse
Affiliation(s)
- Christophe Nicot
- Department of Microbiology, Immunology and Molecular Genetics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| |
Collapse
|
29
|
Michael B, Nair AM, Hiraragi H, Shen L, Feuer G, Boris-Lawrie K, Lairmore MD. Human T lymphotropic virus type-1 p30II alters cellular gene expression to selectively enhance signaling pathways that activate T lymphocytes. Retrovirology 2004; 1:39. [PMID: 15560845 PMCID: PMC538277 DOI: 10.1186/1742-4690-1-39] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 11/23/2004] [Indexed: 11/13/2022] Open
Abstract
Background Human T-lymphotropic virus type-1 (HTLV-1) is a deltaretrovirus that causes adult T-cell leukemia/lymphoma and is implicated in a variety of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13II and p30II, which are incompletely defined in the virus life cycle or HTLV-1 pathogenesis. Proviral clones of the virus with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. Exogenous expression of p30II differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and represses tax/rex RNA nuclear export. Results Herein, we further characterized the role of p30II in regulation of cellular gene expression, using stable p30II expression system employing lentiviral vectors to test cellular gene expression with Affymetrix U133A arrays, representing ~33,000 human genes. Reporter assays in Jurkat T cells and RT-PCR in Jurkat and primary CD4+ T-lymphocytes were used to confirm selected gene expression patterns. Our data reveals alterations of interrelated pathways of cell proliferation, T-cell signaling, apoptosis and cell cycle in p30II expressing Jurkat T cells. In all categories, p30II appeared to be an overall repressor of cellular gene expression, while selectively increasing the expression of certain key regulatory genes. Conclusions We are the first to demonstrate that p30II, while repressing the expression of many genes, selectively activates key gene pathways involved in T-cell signaling/activation. Collectively, our data suggests that this complex retrovirus, associated with lymphoproliferative diseases, relies upon accessory gene products to modify cellular environment to promote clonal expansion of the virus genome and thus maintain proviral loads in vivo.
Collapse
Affiliation(s)
- Bindhu Michael
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Safety Assessment, Merck &Co., Inc. WP45-224, West Point PA 19486, USA
| | - Amrithraj M Nair
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Safety Assessment, Merck &Co., Inc. WP45-224, West Point PA 19486, USA
| | - Hajime Hiraragi
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | - Lei Shen
- Department of Statistics, College of Mathematical and Physical Sciences, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gerold Feuer
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | - Kathleen Boris-Lawrie
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael D Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
30
|
Yasunaga JI, Taniguchi Y, Nosaka K, Yoshida M, Satou Y, Sakai T, Mitsuya H, Matsuoka M. Identification of Aberrantly Methylated Genes in Association with Adult T-Cell Leukemia. Cancer Res 2004; 64:6002-9. [PMID: 15342380 DOI: 10.1158/0008-5472.can-04-1422] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we identified 53 aberrantly hypermethylated DNA sequences in adult T-cell leukemia (ATL) cells using methylated CpG island amplification/representational difference analysis method. We also observed a proportionate increase in the methylation density of these regions with disease progression. Seven genes, which were expressed in normal T cells, but suppressed in ATL cells, were identified near the hypermethylated regions. Among these silenced genes, Kruppel-like factor 4 (KLF4) gene is a cell cycle regulator and early growth response 3 (EGR3) gene is a critical transcriptional factor for induction of Fas ligand (FasL) expression. Treatment with 5-aza-2'-deoxycytidine resulted in the recovery of their transcription, indicating that their silencing might be associated with DNA hypermethylation. To study their functions in ATL cells, we transfected recombinant adenovirus vectors expressing KLF4 and EGR3 genes. Expression of KLF4 induced apoptosis of ATL cells whereas enforced expression of EGR3 induced the expression of FasL gene, resulting in apoptosis. Thus, suppressed expression of EGR3 enabled ATL cells to escape from activation-induced cell death mediated by FasL. Our results showed that the methylated CpG island amplification/representational difference analysis method allowed the isolation of hypermethylated DNA regions specific to leukemic cells and thus shed light on the roles of DNA methylation in leukemogenesis.
Collapse
Affiliation(s)
- Jun-Ichirou Yasunaga
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Human T-lymphotropic virus type I (HTLV-I) and type II (HTLV-II) are closely related retroviruses with similar biological properties and common modes of transmission. HTLV-I infection is endemic in well-defined geographic regions, and it is estimated that some 20 million individuals are infected worldwide. Although most infected individuals are asymptomatic carriers, some 2 to 5% will develop a chronic encephalomyelopathy, HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). In contrast with HTLV-I, the role of HTLV-II in the development of neurological disorders is much less clear. HTLV-II is endemic in many native Amerindian groups and epidemic in injecting drug users (IDUs) worldwide. To evaluate the role of HTLV-II in neurological disease, we have critically reviewed all reported cases of HTLV-II-associated disorders. This has confirmed that although rare infection is associated with a disorder clinically similar or identical to HAM/TSP. However, most reports that have attributed infection to a range of other neurological disorders are difficult to evaluate in that in many cases either the association appears to be fortuitous or the presentations were confounded by a background of concomitant human immunodeficiency virus-1 infection and/or active IDU. In view of the many HTLV-II-infected individuals in urban areas of North America and Europe, neurologists should be aware of the potential clinical consequences of this infection.
Collapse
Affiliation(s)
- Abelardo Araujo
- Evandro Chagas Clinical Research Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | |
Collapse
|