1
|
Chen R, Su F, Zhang T, Wu D, Yang J, Guan Q, Chai C. N6-methyladenosine modification of B7-H3 mRNA promotes the development and progression of colorectal cancer. iScience 2024; 27:108956. [PMID: 38318386 PMCID: PMC10839442 DOI: 10.1016/j.isci.2024.108956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
B7-H3 is a common oncogene found in various cancer types. However, the molecular mechanisms underlying abnormal B7-H3 expression and colorectal cancer (CRC) progression need to be extensively explored. B7-H3 was upregulated in human CRC tissues and its abnormal expression was correlated with a poor prognosis in CRC patients. Notably, gain- and loss-of-function experiments revealed that B7-H3 knockdown substantially inhibited cell proliferation, migration, and invasion in vitro, whereas exogenous B7-H3 expression yielded contrasting results. In addition, silencing of B7-H3 inhibited tumor growth in a xenograft mouse model. Mechanistically, our study demonstrated that the N6-methyladenosine (m6A) binding protein YTHDF1 augmented B7-H3 expression in an m6A-dependent manner. Furthermore, rescue experiments demonstrated that reintroduction of B7-H3 considerably abolished the inhibitory effects on cell proliferation and invasion induced by silencing YTHDF1. Our results suggest that the YTHDF1-m6A-B7-H3 axis is crucial for CRC development and progression and may represent a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Rui Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fei Su
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Dongjin Wu
- People’s Hospital of Suzhou New District, Suzhou, Jiangsu 215000, P.R. China
| | - Jingru Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Quanlin Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chen Chai
- People’s Hospital of Suzhou New District, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
2
|
Fabrizio FP, Muscarella LA, Rossi A. B7-H3/CD276 and small-cell lung cancer: What's new? Transl Oncol 2024; 39:101801. [PMID: 37865049 PMCID: PMC10728701 DOI: 10.1016/j.tranon.2023.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023] Open
Abstract
Immunotherapy revolutionized the treatment landscape of several cancers, including small-cell lung cancer (SCLC), with a huge number of practice-changing trials, and becoming a new frontier for their management. The addition of an anti-PD-L1, atezolizumab or durvalumab, to platinum/etoposide regimen became the standard of care for first-line therapy of extensive-stage (ES)-SCLC with the 12 months median survival exceeded for the first time. Nevertheless, most patients show primary or acquired resistance to anti-PD-L1 therefore new promising therapeutic immune-targets are under clinical investigation in several solid tumors. Among these, B7-H3, also known as CD276, is a member of the B7 family overexpressed in tumor tissues, including SCLC, while showing limited expression in normal tissues becoming an attractive and promising target for cancer immunotherapy. B7-H3 plays a dual role in the immune system during the T-cell activation, acting as a T-cell costimulatory/coinhibitory immunoregulatory protein, and promoting pro-tumorigenic functions such as tumor migration, invasion, metastases, resistance, and metabolism. Immunohistochemistry, flow cytometry, and immunofluorescence were the most used methods to assess B7-H3 expression levels and validate a possible relationship between B7-H3 staining patterns and clinicopathological features in lung cancer patients. To date, there are no clinically available therapeutics/drugs targeting B7-H3 in any solid tumors. The most promising preliminary clinical results have been reported by DS7300a and HS-20093, both are antibody-drug conjugates, that are under investigation in ongoing trials for the treatment of pretreated SCLC. This review will provide an overview of B7-H3 and corresponding inhibitors and the clinical development in the management of SCLC.
Collapse
Affiliation(s)
- Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonio Rossi
- Oncology Centre of Excellence, Therapeutic Science & Strategy Unit, IQVIA, Milan 20019, Italy
| |
Collapse
|
3
|
Zhang X, Guo H, Chen J, Xu C, Wang L, Ke Y, Gao Y, Zhang B, Zhu J. Highly proliferative and hypodifferentiated CAR-T cells targeting B7-H3 enhance antitumor activity against ovarian and triple-negative breast cancers. Cancer Lett 2023; 572:216355. [PMID: 37597651 DOI: 10.1016/j.canlet.2023.216355] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell immunotherapy is highly effective against hematological neoplasms. However, owing to tumor variability, low antigen specificity, and impermanent viability of CAR-T cells, their use in the treatment of solid tumors is limited. Here, a novel CAR-T cell targeting B7-H3 and incorporating a 4-1BB costimulatory molecule with STAT3-and STAT5-related activation motifs was constructed using lentivirus transduction. B7-H3, a tumor-associated antigen, and its scFv antibody endowed CAR-T cells with tumor-specific targeting capabilities. Moreover, the integration of the trIL2RB and YRHQ motifs stimulated STAT5 and STAT3 in an antigen-dependent manner, inducing a remarkable increase in the proliferation and survival of CAR-T cells via the activation of the JAK-STAT signaling pathway. Besides, the proportion of less-differentiated T cells increased among BB-trIL2RB-z(YRHQ) CAR-T cells. Moreover, BB-trIL2RB-z(YRHQ) effectively inhibited ovarian cancer (OC) and triple-negative breast cancer (TNBC) in vivo at low doses, without high serum levels of inflammatory cytokines and organ toxicity. Therefore, our study proposes a combination of elements for the construction of superior pluripotent CAR-T cells to provide an effective strategy for the treatment of intractable solid tumors.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyan Guo
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Chen
- Jecho Biopharmaceutical Institute, Shanghai, 200240, China
| | - Chenxiao Xu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Gao
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China; Jecho Biopharmaceutical Institute, Shanghai, 200240, China
| |
Collapse
|
4
|
Alhamad S, Elmasry Y, Uwagboe I, Chekmeneva E, Sands C, Cooper BW, Camuzeaux S, Salam A, Parsons M. B7-H3 Associates with IMPDH2 and Regulates Cancer Cell Survival. Cancers (Basel) 2023; 15:3530. [PMID: 37444640 DOI: 10.3390/cancers15133530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is one of the most common cancers worldwide, and despite improvements in treatment regimens, patient prognosis remains poor. Lung adenocarcinomas develop from the lung epithelia and understanding how specific genetic and environmental factors lead to oncogenic transformation in these cells is of great importance to define the pathways that contribute to tumorigenesis. The recent rise in the use of immunotherapy to treat different cancers has prompted the exploration of immune modulators in tumour cells that may provide new targets to manipulate this process. Of these, the B7 family of cell surface receptors, which includes PD-1, is of particular interest due to its role in modulating immune cell responses within the tumour microenvironment. B7-H3 (CD276) is one family member that is upregulated in many cancer types and suggested to contribute to tumour-immune interactions. However, the function and ligand(s) for this receptor in normal lung epithelia and the mechanisms through which the overexpression of B7-H3 regulate cancer progression in the absence of immune cell interactions remain unclear. Here, we present evidence that B7-H3 is associated with one of the key rate-limiting metabolic enzymes IMPDH2, and the localisation of this complex is altered in human lung cancer cells that express high levels of B7-H3. Mechanistically, the IMPDH2:B7-H3 complex provides a protective role in cancer cells to escape oxidative stress triggered by chemotherapy, thus leading to cell survival. We further demonstrate that the loss of B7-H3 in cancer cells has no effect on growth or migration in 2D but promotes the expansion of 3D spheroids in an IMPDH2-dependent manner. These findings provide new insights into the B7-H3 function in the metabolic homeostasis of normal and transformed lung cancer cells, and whilst this molecule remains an interesting target for immunotherapy, these findings caution against the use of anti-B7-H3 therapies in certain clinical settings.
Collapse
Affiliation(s)
- Salwa Alhamad
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Yassmin Elmasry
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
| | - Isabel Uwagboe
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
| | - Elena Chekmeneva
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Caroline Sands
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Benjamin W Cooper
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Stephane Camuzeaux
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Ash Salam
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
| |
Collapse
|
5
|
Li J, Dong T, Wu Z, Zhu D, Gu H. The effects of MYC on tumor immunity and immunotherapy. Cell Death Discov 2023; 9:103. [PMID: 36966168 PMCID: PMC10039951 DOI: 10.1038/s41420-023-01403-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
The oncogene MYC is dysregulated in a host of human cancers, and as an important point of convergence in multitudinous oncogenic signaling pathways, it plays a crucial role in tumor immune regulation in the tumor immune microenvironment (TIME). Specifically, MYC promotes the expression of immunosuppressive factors and inhibits the expression of immune activation regulators. Undoubtedly, a therapeutic strategy that targets MYC can initiate a new era of cancer treatment. In this review, we summarize the essential role of the MYC signaling pathway in tumor immunity and the development status of MYC-related therapies, including therapeutic strategies targeting MYC and combined MYC-based immunotherapy. These studies have reported extraordinary insights into the translational application of MYC in cancer treatment and are conducive to the emergence of more effective immunotherapies for cancer.
Collapse
Affiliation(s)
- Jiajin Li
- Department of Pediatrics, Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Tingyu Dong
- Department of Pediatrics, Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- Department of Clinical Medicine, First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- Department of Clinical Medicine, First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Ding J, Sun Y, Sulaiman Z, Li C, Cheng Z, Liu S. Comprehensive Analysis Reveals Distinct Immunological and Prognostic Characteristics of CD276/B7-H3 in Pan-Cancer. Int J Gen Med 2023; 16:367-391. [PMID: 36756390 PMCID: PMC9901449 DOI: 10.2147/ijgm.s395553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Background CD276 (also known as B7-H3), a newly discovered immunoregulatory protein that belongs to the B7 family, is a significant and attractive target for cancer immunotherapy. Existing evidence demonstrates its pivotal role in the tumorigenesis of some cancers. However, there still lacks a systematic and comprehensive pan-cancer analysis of the role of CD276 in tumor immunology and prognosis. Methods We explored and validated the mRNA and protein expression levels of CD276 in multiple tumors through public databases and clinical tissues specimens. The Univariate Cox regression analysis and Kaplan-Meier analysis were applied to assess the prognostic value of CD276. The correlation between CD276 expression and clinical characteristics and immunological features in diverse tumors was also explored. GSEA was performed to illuminate the biological function and involved pathways of CD276. Moreover, the CellMiner database was used to interpret the relationship between CD276 and multiple chemotherapeutic agents. CCK-8 assay was performed to validate the biological function of CD276 in vitro. Results In general, CD276 was differentially expressed between most tumor tissues and their corresponding normal tissues. Higher expression levels of CD276 were associated with poorer survival outcomes in most tumor cohorts from TCGA. There was a close correlation between CD276 expression and clinical features, the infiltration levels of specific immune cells, immune subtypes, TMB, MSI, MMR, recognized immunoregulatory genes and drug sensitivity across diverse human cancers. The scRNA-seq data analysis further revealed that CD276 was mainly expressed on the tumor infiltrating macrophages. Additionally, in vitro experiments showed that knockdown of CD276 inhibited the proliferation of ovarian cancer (OV) and cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) cell lines. Conclusion CD276 is a potent biomarker for predicting the prognosis and immunological features in some tumors, and it may play a critical role in the tumor immune microenvironment (TIME) through macrophage-associated signaling.
Collapse
Affiliation(s)
- Jinye Ding
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yaoqi Sun
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Zubaidan Sulaiman
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Caixia Li
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, People’s Republic of China,Correspondence: Zhongping Cheng; Shupeng Liu, Email ;
| | - Shupeng Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Huang Y, Huang Z, Cai H, Zhuge L, Wang S, Yan D, Zhang X, An C, Niu L, Li Z. Evaluation of serum B7-H3 expression, ultrasound and clinical characteristics to predict the risk of cervical lymph node metastases in papillary thyroid carcinoma by nomogram. J Clin Lab Anal 2023; 37:e24811. [PMID: 36525343 PMCID: PMC9833969 DOI: 10.1002/jcla.24811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Improving the preoperative diagnosis of cervical lymph node metastasis (LNM) will help improve the clinical outcomes of papillary thyroid carcinoma (PTC) patients. B7-H3, as an immune checkpoint of the B7 family, is highly expressed in PTC tissues and related to LNM and prognosis. We aimed to explore the clinical values of serum B7-H3 (sB7-H3) in predicting LNM in PTC by a nomogram prediction model. METHODS From September 2019 to May 2021, a total of 344 PTC patients with primary surgery in our hospital were enrolled in this research. Enzyme-linked Immunosorbent Assay (ELISA) was used to detect sB7-H3 from the peripheral blood of PTC patients and normal controls. We created a nomogram prediction model in combination with sB7-H3 expression, clinical and ultrasound characteristics to predict LNM in the early stage. RESULTS Gender (p = 0.001), age (p = 0.015), tumor size (p < 0.001), number of tumors (p = 0.021) and sB7-H3 expression (p = 0.003) were independent risk factors for LNM in PTC. All the factors were included in the nomogram. The area under the curve (AUC) was 73.9% (95% CI, 68.12%-79.69%). CONCLUSION The nomogram is helpful in assessing the risk of LNM in PTC. sB7-H3 has excellent potential in predicting LNM in patients with PTC as an adjunctive ultrasound tool.
Collapse
Affiliation(s)
- Yingcheng Huang
- Department of Head and Neck SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zehao Huang
- Department of Head and Neck SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Huizhu Cai
- Department of Head and Neck SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lingdun Zhuge
- Department of Head and Neck SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shixu Wang
- Department of Head and Neck SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dangui Yan
- Department of Head and Neck SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiwei Zhang
- Department of Head and Neck SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Changming An
- Department of Head and Neck SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lijuan Niu
- Department of UltrasoundNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhengjiang Li
- Department of Head and Neck SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
8
|
The Role of Mononuclear Phagocytes in the Testes and Epididymis. Int J Mol Sci 2022; 24:ijms24010053. [PMID: 36613494 PMCID: PMC9820352 DOI: 10.3390/ijms24010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The mononuclear phagocytic system (MPS) is the primary innate immune cell group in male reproductive tissues, maintaining the balance of pro-inflammatory and immune tolerance. This article aims to outline the role of mononuclear macrophages in the immune balance of the testes and epididymis, and to understand the inner immune regulation mechanism. A review of pertinent publications was performed using the PubMed and Google Scholar databases on all articles published prior to January 2021. Search terms were based on the following keywords: 'MPS', 'mononuclear phagocytes', 'testes', 'epididymis', 'macrophage', 'Mφ', 'dendritic cell', 'DC', 'TLR', 'immune', 'inflammation', and 'polarization'. Additionally, reference lists of primary and review articles were reviewed for other publications of relevance. This review concluded that MPS exhibits a precise balance in the male reproductive system. In the testes, MPS cells are mainly suppressed subtypes (M2 and cDC2) under physiological conditions, which maintain the local immune tolerance. Under pathological conditions, MPS cells will transform into M1 and cDC1, producing various cytokines, and will activate T cell specific immunity as defense to foreign pathogens or self-antigens. In the epididymis, MPS cells vary in the different segments, which express immune tolerance in the caput and pro-inflammatory condition in the cauda. Collectively, MPS is the control point for maintaining the immune tolerance of the testes and epididymis as well as for eliminating pathogens.
Collapse
|
9
|
Yang M, Tian S, Lin Z, Fu Z, Li C. Costimulatory and coinhibitory molecules of B7-CD28 family in cardiovascular atherosclerosis: A review. Medicine (Baltimore) 2022; 101:e31667. [PMID: 36397436 PMCID: PMC9666218 DOI: 10.1097/md.0000000000031667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence supports the active involvement of vascular inflammation in atherosclerosis pathogenesis. Vascular inflammatory events within atherosclerotic plaques are predominated by innate antigen-presenting cells (APCs), including dendritic cells, macrophages, and adaptive immune cells such as T lymphocytes. The interaction between APCs and T cells is essential for the initiation and progression of vascular inflammation during atherosclerosis formation. B7-CD28 family members that provide either costimulatory or coinhibitory signals to T cells are important mediators of the cross-talk between APCs and T cells. The balance of different functional members of the B7-CD28 family shapes T cell responses during inflammation. Recent studies from both mouse and preclinical models have shown that targeting costimulatory molecules on APCs and T cells may be effective in treating vascular inflammatory diseases, especially atherosclerosis. In this review, we summarize recent advances in understanding how APC and T cells are involved in the pathogenesis of atherosclerosis by focusing on B7-CD28 family members and provide insight into the immunotherapeutic potential of targeting B7-CD28 family members in atherosclerosis.
Collapse
Affiliation(s)
- Mao Yang
- Department of Cardiology, Electrophysiological Center of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Simeng Tian
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhenkun Fu
- Basic Medicine College, Harbin Medical University, Harbin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Department of Immunology, Wu Lien-Teh Institute, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Heilongjiang Academy of Medical Science, Harbin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| |
Collapse
|
10
|
Zhao B, Li H, Xia Y, Wang Y, Wang Y, Shi Y, Xing H, Qu T, Wang Y, Ma W. Immune checkpoint of B7-H3 in cancer: from immunology to clinical immunotherapy. J Hematol Oncol 2022; 15:153. [PMID: 36284349 PMCID: PMC9597993 DOI: 10.1186/s13045-022-01364-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
Immunotherapy for cancer is a rapidly developing treatment that modifies the immune system and enhances the antitumor immune response. B7-H3 (CD276), a member of the B7 family that plays an immunoregulatory role in the T cell response, has been highlighted as a novel potential target for cancer immunotherapy. B7-H3 has been shown to play an inhibitory role in T cell activation and proliferation, participate in tumor immune evasion and influence both the immune response and tumor behavior through different signaling pathways. B7-H3 expression has been found to be aberrantly upregulated in many different cancer types, and an association between B7-H3 expression and poor prognosis has been established. Immunotherapy targeting B7-H3 through different approaches has been developing rapidly, and many ongoing clinical trials are exploring the safety and efficacy profiles of these therapies in cancer. In this review, we summarize the emerging research on the function and underlying pathways of B7-H3, the expression and roles of B7-H3 in different cancer types, and the advances in B7-H3-targeted therapy. Considering different tumor microenvironment characteristics and results from preclinical models to clinical practice, the research indicates that B7-H3 is a promising target for future immunotherapy, which might eventually contribute to an improvement in cancer immunotherapy that will benefit patients.
Collapse
Affiliation(s)
- Binghao Zhao
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Huanzhang Li
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Xia
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yaning Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuekun Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yixin Shi
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hao Xing
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tian Qu
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenbin Ma
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
11
|
To kill a cancer: Targeting the immune inhibitory checkpoint molecule, B7-H3. Biochim Biophys Acta Rev Cancer 2022; 1877:188783. [PMID: 36028149 DOI: 10.1016/j.bbcan.2022.188783] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 08/19/2022] [Indexed: 12/26/2022]
Abstract
Targeting the anti-tumor immune response via the B7 family of immune-regulatory checkpoint proteins has revolutionized cancer treatment and resulted in punctuated responses in patients. B7-H3 has gained recent attention given its prominent deregulation and immunomodulatory role in a multitude of cancers. Numerous cancer studies have firmly established a strong link between deregulated B7-H3 expression and poorer outcomes. B7-H3 has been shown to augment cancer cell survival, proliferation, metastasis, and drug resistance by inducing an immune evasive phenotype through its effects on tumor-infiltrating immune cells, cancer cells, cancer-associated vasculature, and the stroma. Given the complex interplay between each of these components of the tumor microenvironment, a deeper understanding of B7-H3 signaling properties is inherently crucial to developing efficacious therapies that can target and inhibit these cancer-promoting interactions. This review delves into the various ways B7-H3 acts as an immunomodulator to facilitate immune evasion and promote tumor growth and spread. With post-transcriptional and post-translational modifications giving rise to different active isoforms coupled with recent discoveries of its putative receptors, B7-H3 can perform diverse functions. Here, we first discuss the dual co-stimulatory/co-inhibitory functions of B7-H3 in the context of normal physiology and cancer. We then discuss the crosstalk facilitated by B7-H3 between stromal components and tumor cells that promote tumor growth and metastasis in different populations of tumor cells, associated vasculature, and the stroma. Concurrently, we highlight therapeutic strategies that can exploit these interactions and their associated limitations, concluding with a special focus on the promise of next-gen in silico-based approaches to small molecule inhibitor drug discovery for B7-H3 that may mitigate these limitations.
Collapse
|
12
|
Ding P, Ma Z, Liu D, Pan M, Li H, Feng Y, Zhang Y, Shao C, Jiang M, Lu D, Han J, Wang J, Yan X. Lysine Acetylation/Deacetylation Modification of Immune-Related Molecules in Cancer Immunotherapy. Front Immunol 2022; 13:865975. [PMID: 35585975 PMCID: PMC9108232 DOI: 10.3389/fimmu.2022.865975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
As major post-translational modifications (PTMs), acetylation and deacetylation are significant factors in signal transmission and cellular metabolism, and are modulated by a dynamic process via two pivotal categories of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). In previous studies, dysregulation of lysine acetylation and deacetylation has been reported to be associated with the genesis and development of malignancy. Scientists have recently explored acetylation/deacetylation patterns and prospective cancer therapy techniques, and the FDA has approved four HDAC inhibitors (HDACi) to be used in clinical treatment. In the present review, the most recent developments in the area of lysine acetylation/deacetylation alteration in cancer immunotherapy were investigated. Firstly, a brief explanation of the acetylation/deacetylation process and relevant indispensable enzymes that participate therein is provided. Subsequently, a multitude of specific immune-related molecules involved in the lysine acetylation/deacetylation process are listed in the context of cancer, in addition to several therapeutic strategies associated with lysine acetylation/deacetylation modification in cancer immunotherapy. Finally, a number of prospective research fields related to cancer immunotherapy concepts are offered with detailed analysis. Overall, the present review may provide a reference for researchers in the relevant field of study, with the aim of being instructive and meaningful to further research as well as the selection of potential targets and effective measures for future cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Huizi Li
- Department of Outpatient, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Di Lu
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| | - Jinliang Wang
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| |
Collapse
|
13
|
Yuan C, Zhao X, Wangmo D, Alshareef D, Gates TJ, Subramanian S. Tumor models to assess immune response and tumor-microbiome interactions in colorectal cancer. Pharmacol Ther 2022; 231:107981. [PMID: 34480964 PMCID: PMC8844062 DOI: 10.1016/j.pharmthera.2021.107981] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Despite significant advances over the past 2 decades in preventive screening and therapy aimed at improving patient survival, colorectal cancer (CRC) remains the second most common cause of cancer death in the United States. The average 5-year survival rate of CRC patients with positive regional lymph nodes is only 40%, while less than 5% of patients with distant metastases survive beyond 5 years. There is a critical need to develop novel therapies that can improve overall survival in patients with poor prognoses, particularly since 60% of them are diagnosed at an advanced stage. Pertinently, immune checkpoint blockade therapy has dramatically changed how we treat CRC patients with microsatellite-instable high tumors. Furthermore, accumulating evidence shows that changes in gut microbiota are associated with the regulation of host antitumor immune response and cancer progression. Appropriate animal models are essential to deciphering the complex mechanisms of host antitumor immune response and tumor-gut microbiome metabolic interactions. Here, we discuss various mouse models of colorectal cancer that are developed to address key questions on tumor immune response and tumor-microbiota interactions. These CRC models will also serve as resourceful tools for effective preclinical studies.
Collapse
Affiliation(s)
- Ce Yuan
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Xianda Zhao
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Dechen Wangmo
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Duha Alshareef
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Travis J Gates
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
14
|
Zhou WT, Jin WL. B7-H3/CD276: An Emerging Cancer Immunotherapy. Front Immunol 2021; 12:701006. [PMID: 34349762 PMCID: PMC8326801 DOI: 10.3389/fimmu.2021.701006] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy aiming at suppressing tumor development by relying on modifying or strengthening the immune system prevails among cancer treatments and points out a new direction for cancer therapy. B7 homolog 3 protein (B7-H3, also known as CD276), a newly identified immunoregulatory protein member of the B7 family, is an attractive and promising target for cancer immunotherapy because it is overexpressed in tumor tissues while showing limited expression in normal tissues and participating in tumor microenvironment (TME) shaping and development. Thus far, numerous B7-H3-based immunotherapy strategies have demonstrated potent antitumor activity and acceptable safety profiles in preclinical models. Herein, we present the expression and biological function of B7-H3 in distinct cancer and normal cells, as well as B7-H3-mediated signal pathways in cancer cells and B7-H3-based tumor immunotherapy strategies. This review provides a comprehensive overview that encompasses B7-H3’s role in TME to its potential as a target in cancer immunotherapy.
Collapse
Affiliation(s)
- Wu-Tong Zhou
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Barone R, Caruso Bavisotto C, Rappa F, Gargano ML, Macaluso F, Paladino L, Vitale AM, Alfano S, Campanella C, Gorska M, Di Felice V, Cappello F, Venturella G, Marino Gammazza A. JNK pathway and heat shock response mediate the survival of C26 colon carcinoma bearing mice fed with the mushroom Pleurotus eryngii var. eryngii without affecting tumor growth or cachexia. Food Funct 2021; 12:3083-3095. [PMID: 33720221 DOI: 10.1039/d0fo03171b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the last few years, there has been emerging interest in developing treatments against human diseases using natural bioactive content. Here, the powder of the edible mushroom Pleurotus eryngii var. eryngii was mixed with the normal diet of mice bearing C26 colon carcinoma. Interestingly, it was evidenced by a significant increase in the survival rate of C26 tumor-bearing mice accompanied by a significant increase in Hsp90 and Hsp27 protein levels in the tumors. These data were paralleled by a decrease in Hsp60 levels. The mushroom introduced in the diet induced the inhibition of the transcription of the pro-inflammatory cytokines IL-6 and IL-1 exerting an anti-inflammatory action. The effects of the mushroom were mediated by the activation of c-Jun NH2-terminal kinases as a result of metabolic stress induced by the micronutrients introduced in the diet. In the tumors of C26 bearing mice fed with Pleurotus eryngii there was also a decreased expression of the mitotic regulator survivin and the anti-apoptotic factor Bcl-xL as well as an increase in the expression levels of Atg7, a protein that drives autophagy. In our hypothesis the interplay of these molecules favored the survival of the mice fed with the mushroom. These data are promising for the introduction of Pleurotus eryngii as a dietary supplement or as an adjuvant in anti-cancer therapy.
Collapse
Affiliation(s)
- Rosario Barone
- Department of Biomedicine, Neurosciences and advanced Diagnostics, University of Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee CC, Ho KH, Huang TW, Shih CM, Hsu SY, Liu AJ, Chen KC. A regulatory loop among CD276, miR-29c-3p, and Myc exists in cancer cells against natural killer cell cytotoxicity. Life Sci 2021; 277:119438. [PMID: 33798549 DOI: 10.1016/j.lfs.2021.119438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022]
Abstract
AIMS Immune checkpoints regulate immunity to prevent autoimmunity and protect the host from damage during pathogenic infection. They also participate in subverting immune surveillance and promote antitumor immunity in cancers. Although immunotherapy improves clinical outcomes, not all cancer patients experience expected responses after therapy. Hence, it would be meaningful to explore crucial immune checkpoints in cancers for future immunotherapies. METHODS AND KEY FINDINGS By analyzing pan-cancer data in The Cancer Genome Atlas (TCGA), cluster of differentiation 276 (CD276), also known as B7H3, was found to be a risk gene in several cancers. A positive correlation existed between CD276 and natural killer (NK) cell infiltration. Overexpression of CD276 attenuated NK cell-mediated cell killing. Furthermore, CD276 levels showed a significant negative association with microRNA (miR)-29c-3p. Overexpression of miR-29c-3p rescued CD276-reduced NK cell cytotoxicity. According to gene set enrichment analyses, CD276-associated genes were found to be enriched in genes that targeted Myc. A negative correlation existed between miR-29 expression and Myc activity. CD276 enhanced Myc phosphorylation levels while suppressing miR-29c-3p expression. In contrast, miR-29c-3p inhibited CD276 expression, leading to reduced Myc activity. Myc suppressed miR-29c-3p expression while promoting CD276 upregulation. SIGNIFICANCE These findings suggest that a negative regulatory loop among CD276, Myc, and miR-29c-3p influences cancer cells against NK cell cytotoxicity.
Collapse
Affiliation(s)
- Chin-Cheng Lee
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Wen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shao-Yuan Hsu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Ann-Jeng Liu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan.
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
17
|
Azuma T, Sato Y, Ohno T, Azuma M, Kume H. Serum soluble B7-H3 is a prognostic marker for patients with non-muscle-invasive bladder cancer. PLoS One 2020; 15:e0243379. [PMID: 33306717 PMCID: PMC7732087 DOI: 10.1371/journal.pone.0243379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background B7-H3 is a member of the B7 family of immune-regulatory ligands and is a costimulatory molecule promoting the T cell response in vitro. We herein investigated the clinical utility of serum soluble B7-H3 (sB7-H3) in patients with non-muscle invasive bladder cancer (NMIBC). Methods We analyzed 555 patients in whom NMIBC was diagnosed at Tokyo Metropolitan Tama Medical Center between 2008 and 2013. We measured the serum sB7-H3 (sB7-H3) level using the enzyme-linked immunosorbent assay (ELISA) and evaluated the utility of sB7-H3 as a prognostic biomarker for NMIBC. We used the Cox proportional hazards regression model to assess recurrence-free survival (RFS) and progression-free survival (PFS) with the sB7-H3 level. Results We detected high levels of sB7-H3 in the sera of 47% of patients with NMIBC versus only 8% in healthy donors. The increase of sB7-H3 was significantly associated with poor RFS and PFS. Multivariate analysis showed that elevated sB7-H3 was an independent prognostic factor of RFS and PFS. According to the European Organization for Research and Treatment of Cancer (EORTC), in intermediate-low and intermediate-high risk groups, the presence of sB7-H3 significantly determined the rate of recurrence and progression. Conclusions Our data suggested that evaluating serum sB7-H3 expression is a useful tool for predicting the prognosis of patients with NMIBC.
Collapse
Affiliation(s)
- Takeshi Azuma
- Department of Urology, Tokyo Metropolitan Tama Medical Center, Fuchu, Tokyo, Japan
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Hongo, Tokyo, Japan
- Department of Urology, The University of Tokyo Graduate School of Medicine, Hongo, Tokyo, Japan
- * E-mail:
| | - Yujiro Sato
- Department of Urology, Tokyo Metropolitan Tama Medical Center, Fuchu, Tokyo, Japan
| | - Tatsukuni Ohno
- Oral Health Science Center, Tokyo Dental College, Chiyoda, Tokyo, Japan
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Hongo, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, The University of Tokyo Graduate School of Medicine, Hongo, Tokyo, Japan
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Immunotherapy has shown an unprecedented response in treatment of tumors. However, challenges such as lack of cytotoxic lymphocytes to mount an immune response or development of resistance to therapy can limit efficacy. Here, we discuss alternative checkpoints that can be targeted to improve cytotoxic lymphocyte function while harnessing other components of the immune system. RECENT FINDINGS Blockade of alternative checkpoints has improved anti-tumor immunity in mouse models and is being tested clinically with encouraging findings. In addition to modulating T cell function directly, alternative checkpoints can also regulate activity of myeloid cells and regulatory T cells to affect anti-tumor response. Combination of immune checkpoint inhibitors can improve treatment of tumors by activating multiple arms of the immune system.
Collapse
Affiliation(s)
- Ayush Pant
- Department of Neurosurgery, Neurosurgery Oncology, Radiation Oncology, Otolaryngology, and Institute of NanoBiotechnology, Brain Tumor Immunotherapy Program, Metastatic Brain Tumor Center, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 123, Baltimore, MD, 21287, USA
| | - Ravi Medikonda
- Department of Neurosurgery, Neurosurgery Oncology, Radiation Oncology, Otolaryngology, and Institute of NanoBiotechnology, Brain Tumor Immunotherapy Program, Metastatic Brain Tumor Center, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 123, Baltimore, MD, 21287, USA
| | - Michael Lim
- Department of Neurosurgery, Neurosurgery Oncology, Radiation Oncology, Otolaryngology, and Institute of NanoBiotechnology, Brain Tumor Immunotherapy Program, Metastatic Brain Tumor Center, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 123, Baltimore, MD, 21287, USA.
| |
Collapse
|
19
|
Wang C, Feng H, Cheng X, Liu K, Cai D, Zhao R. Potential Therapeutic Targets of B7 Family in Colorectal Cancer. Front Immunol 2020; 11:681. [PMID: 32477326 PMCID: PMC7232583 DOI: 10.3389/fimmu.2020.00681] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway blockade has impressively benefited cancer patients with a wide spectrum of tumors. However, its efficacy in colorectal cancer (CRC) is modest, and only a small subset of patients benefits from approved checkpoint inhibitors. Newer checkpoints that target additional immunomodulatory pathways are becoming necessary to activate durable antitumor immune responses in patients with CRC. In this review, we evaluated the mRNA expression of all 10 reported B7 family members in human CRC by retrieving and analyzing the TCGA database and reviewed the current understanding of the top three B7 family checkpoint molecules (B7-H3, VISTA, and HHLA2) with the highest mRNA expression, introducing them as putative therapeutic targets in CRC.
Collapse
Affiliation(s)
- Changgang Wang
- Department of General Surgery, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Feng
- Department of General Surgery, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Cheng
- Department of General Surgery, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Liu
- Department of General Surgery, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongli Cai
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Yang S, Wei W, Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy. Int J Biol Sci 2020; 16:1767-1773. [PMID: 32398947 PMCID: PMC7211166 DOI: 10.7150/ijbs.41105] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
B7-H3 (also known as CD276) is a newly found molecule of B7 family, which may be a promising target for cancer treatment. B7-H3 protein was demonstrated to be expressed in several kinds of tumor tissues including non-small-cell lung cancer (NSCLC) and prostate cancer. Its expression is highly associated with undesirable treatment outcomes and survival time, due to function of the immune checkpoint molecule. It was classified as either a co-stimulatory molecule for T cell activation or the nonimmunological role of regulating signaling pathways. Although there is still no agreed conclusion on the function of B7-H3, it may be a valuable target for cancer therapy. This review aims to provide a comprehensive, up-to-date summary of the advances in B7-H3 targeting approaches in cancer therapy. Although several challenges remain, B7-H3 offers a new therapeutic target with increased efficacy and less toxicity in future cancer treatment.
Collapse
Affiliation(s)
- Shuo Yang
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Biological Imaging & Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Wei Wei
- Guangdong Cord Blood Bank; Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, China
| | - Qi Zhao
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Biological Imaging & Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| |
Collapse
|
21
|
Li M, Sagastume EE, Lee D, McAlister D, DeGraffenreid AJ, Olewine KR, Graves S, Copping R, Mirzadeh S, Zimmerman BE, Larsen R, Johnson FL, Schultz MK. 203/212Pb Theranostic Radiopharmaceuticals for Image-guided Radionuclide Therapy for Cancer. Curr Med Chem 2020; 27:7003-7031. [PMID: 32720598 PMCID: PMC10613023 DOI: 10.2174/0929867327999200727190423] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Receptor-targeted image-guided Radionuclide Therapy (TRT) is increasingly recognized as a promising approach to cancer treatment. In particular, the potential for clinical translation of receptor-targeted alpha-particle therapy is receiving considerable attention as an approach that can improve outcomes for cancer patients. Higher Linear-energy Transfer (LET) of alpha-particles (compared to beta particles) for this purpose results in an increased incidence of double-strand DNA breaks and improved-localized cancer-cell damage. Recent clinical studies provide compelling evidence that alpha-TRT has the potential to deliver a significantly more potent anti-cancer effect compared with beta-TRT. Generator-produced 212Pb (which decays to alpha emitters 212Bi and 212Po) is a particularly promising radionuclide for receptor-targeted alpha-particle therapy. A second attractive feature that distinguishes 212Pb alpha-TRT from other available radionuclides is the possibility to employ elementallymatched isotope 203Pb as an imaging surrogate in place of the therapeutic radionuclide. As direct non-invasive measurement of alpha-particle emissions cannot be conducted using current medical scanner technology, the imaging surrogate allows for a pharmacologically-inactive determination of the pharmacokinetics and biodistribution of TRT candidate ligands in advance of treatment. Thus, elementally-matched 203Pb labeled radiopharmaceuticals can be used to identify patients who may benefit from 212Pb alpha-TRT and apply appropriate dosimetry and treatment planning in advance of the therapy. In this review, we provide a brief history on the use of these isotopes for cancer therapy; describe the decay and chemical characteristics of 203/212Pb for their use in cancer theranostics and methodologies applied for production and purification of these isotopes for radiopharmaceutical production. In addition, a medical physics and dosimetry perspective is provided that highlights the potential of 212Pb for alpha-TRT and the expected safety for 203Pb surrogate imaging. Recent and current preclinical and clinical studies are presented. The sum of the findings herein and observations presented provide evidence that the 203Pb/212Pb theranostic pair has a promising future for use in radiopharmaceutical theranostic therapies for cancer.
Collapse
Affiliation(s)
- Mengshi Li
- Department of Radiology, The University of Iowa, Iowa City, IA USA
- Viewpoint Molecular Targeting, Inc., Coralville, IA USA
| | | | - Dongyoul Lee
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA
| | | | | | | | - Stephen Graves
- Department of Radiology, The University of Iowa, Iowa City, IA USA
| | - Roy Copping
- Oak Ridge National Laboratory, The US Department of Energy, Oak Ridge TN USA
| | - Saed Mirzadeh
- Oak Ridge National Laboratory, The US Department of Energy, Oak Ridge TN USA
| | - Brian E. Zimmerman
- The National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | - Frances L. Johnson
- Viewpoint Molecular Targeting, Inc., Coralville, IA USA
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa USA
| | - Michael K. Schultz
- Department of Radiology, The University of Iowa, Iowa City, IA USA
- Viewpoint Molecular Targeting, Inc., Coralville, IA USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA
- Department of Chemistry, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
22
|
Burugu S, Dancsok AR, Nielsen TO. Emerging targets in cancer immunotherapy. Semin Cancer Biol 2017; 52:39-52. [PMID: 28987965 DOI: 10.1016/j.semcancer.2017.10.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 12/12/2022]
Abstract
The first generation of immune checkpoint inhibitors (anti-CTLA-4 and anti-PD-1/PD-L1) targeted natural immune homeostasis pathways, co-opted by cancers, to drive anti-tumor immune responses. These agents led to unprecedented results in patients with previously incurable metastatic disease and may become first-line therapies for some advanced cancers. However, these agents are efficacious in only a minority of patients. Newer strategies are becoming available that target additional immunomodulatory mechanisms to activate patients' own anti-tumor immune responses. Herein, we present a succinct summary of emerging immune targets with reported pre-clinical efficacy that have progressed to active investigation in clinical trials. These emerging targets include co-inhibitory and co-stimulatory markers of the innate and adaptive immune system. In this review, we discuss: 1) T lymphocyte markers: Lymphocyte Activation Gene 3 [LAG-3], T-cell Immunoglobulin- and Mucin-domain-containing molecule 3 [TIM-3], V-domain containing Ig Suppressor of T cell Activation [VISTA], T cell ImmunoGlobulin and ITIM domain [TIGIT], B7-H3, Inducible T-cell Co-stimulator [ICOS/ICOS-L], CD27/CD70, and Glucocorticoid-Induced TNF Receptor [GITR]; 2) macrophage markers: CD47/Signal-Regulatory Protein alpha [SIRPα] and Indoleamine-2,3-Dioxygenase [IDO]; and 3) natural killer cell markers: CD94/NKG2A and the Killer Immunoglobulin-like receptor [KIR] family. Finally, we briefly highlight combination strategies and potential biomarkers of response and resistance to these cancer immunotherapies.
Collapse
Affiliation(s)
- Samantha Burugu
- Department of Pathology & Laboratory Medicine, University of British Columbia Hospital, Koerner Pavilion, #G-227 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Amanda R Dancsok
- Department of Pathology & Laboratory Medicine, University of British Columbia Hospital, Koerner Pavilion, #G-227 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Torsten O Nielsen
- Department of Pathology & Laboratory Medicine, University of British Columbia Hospital, Koerner Pavilion, #G-227 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
23
|
Li K, Wei X, Zhang G, Li M, Zhang X, Zhou C, Hou J, Yuan H. Different expression of B7-H3 in the caput, corpus, and cauda of the epididymis in mouse. BMC Urol 2017; 17:23. [PMID: 28376772 PMCID: PMC5379651 DOI: 10.1186/s12894-017-0215-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 03/23/2017] [Indexed: 12/28/2022] Open
Abstract
Background B7-H3, a member of the B7 family of the Ig superfamily of proteins, has been detected in the epididymis, which is a storage organ related to sperm maturation. However, the characteristics of its expression in different regions of the epididymis remain unknown. Our aim was to investigate the expression of B7-H3 in the caput, corpus, and cauda of the epididymis. Methods We extracted epididymis specimens from adult male C57BL/6 mice. The expression of B7-H3 was then measured with immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and western blotting. Results B7-H3 protein was predominantly detected on the membrane and in the cytoplasm of the principal cells in the epididymis. Moreover, the level of B7-H3 in the corpus of the mouse epididymis was significantly higher than that in the caput (p < 0.05) or the cauda of the epididymis (P < 0.05). However, there was no remarkable difference in the level of B7-H3 between the caput and the cauda (p > 0.05). Conclusions The caput, corpus, and cauda of the mouse epididymis all expressed B7-H3 protein. However, the levels of B7-H3 were different in the three regions of the epididymis.
Collapse
Affiliation(s)
- Kai Li
- Department of Urology, The First Affiliated Hospital of Soochow University, NO.188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, NO.188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Guangbo Zhang
- The Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, NO. 708 Renmin Road, Suzhou, 215006, China
| | - Miao Li
- Department of Urology, The First Affiliated Hospital of Soochow University, NO.188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Xuefeng Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, NO.188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Chenhao Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, NO.188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, NO.188 Shizi Road, Suzhou, 215006, Jiangsu, China.
| | - Hexing Yuan
- Department of Urology, The First Affiliated Hospital of Soochow University, NO.188 Shizi Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
24
|
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of Medicine; Tsinghua University; Beijing China
| | - Chen Dong
- Institute for Immunology and School of Medicine; Tsinghua University; Beijing China
| |
Collapse
|
25
|
Janakiram M, Shah UA, Liu W, Zhao A, Schoenberg MP, Zang X. The third group of the B7-CD28 immune checkpoint family: HHLA2, TMIGD2, B7x, and B7-H3. Immunol Rev 2017; 276:26-39. [PMID: 28258693 PMCID: PMC5338461 DOI: 10.1111/imr.12521] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022]
Abstract
The B7-CD28 family of ligands and receptors play important roles in T-cell co-stimulation and co-inhibition. Phylogenetically they can be divided into three groups. The recent discovery of the new molecules (B7-H3 [CD276], B7x [B7-H4/B7S1], and HHLA2 [B7H7/B7-H5]/TMIGD2 [IGPR-1/CD28H]) of the group III has expanded therapeutic possibilities for the treatment of human diseases. In this review, we describe the discovery, structure, and function of B7-H3, B7x, HHLA2, and TMIGD2 in immune regulation. We also discuss their roles in important pathological states such as cancers, autoimmune diseases, transplantation, and infection. Various immunotherapeutical approaches are emerging including antagonistic monoclonal antibodies and agonistic fusion proteins to inhibit or potentiate these molecules and pathways in cancers and autoimmune diseases.
Collapse
Affiliation(s)
- Murali Janakiram
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Urvi A Shah
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weifeng Liu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Mark P Schoenberg
- Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xingxing Zang
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
26
|
Malara N, Trunzo V, Foresta U, Amodio N, De Vitis S, Roveda L, Fava M, Coluccio M, Macrì R, Di Vito A, Costa N, Mignogna C, Britti D, Palma E, Mollace V. Ex-vivo characterization of circulating colon cancer cells distinguished in stem and differentiated subset provides useful biomarker for personalized metastatic risk assessment. J Transl Med 2016; 14:133. [PMID: 27176720 PMCID: PMC4866436 DOI: 10.1186/s12967-016-0876-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) represent one of the most interesting target in improving diagnosis, prognosis and treatment. Herein we evaluate the possibility of using an emo-cytometric approach on the evaluation of the heterogeneous population of CTCs to improve personalized metastatic risk assessment. We benchmarked ex vivo behavior of distinct subsets of circulating colon tumor cells with correspondent clinical behavior of patients from which we isolated CTCs. METHODS Isolation and CTC expansion were performed by a gradient protocol. In vitro characterization was determined by flow cytometry, immunofluorescence, western blotting and proteomic profiling. Cell sorter was performed with immunomagnetic beads. Confocal microscopy was used to evaluate tissue sections. Kaplan Mayer curves was cared for through Medcalc program. RESULTS We collected heterogeneous CTCs, derived from the whole blood of seven patients affected by colon cancer, expressing CD133(pos)CD45(neg) (5 ± 1) and (2 ± 1) and CK20(pos)CD45(neg) of (29 ± 3) (11 ± 1) cells/ml in Dukes D and A stage respectively. Proliferation rate of 57 ± 16 %, expression for CXCR4(pos) of 18 ± 7 % and detectable levels of IL-6, IL-8 and SDF-1 cytokines in conditioned culture medium characterized short-time expanded-CTCs (eCTCs). ECTCs organized in tumor sphere were CD45(neg)CD133(pos) while in adhesion were CXCR4(pos)CK20(pos). These two subsets were separately injected in mice. The first group of xenografts developed superficial lesions within 2 weeks. In the second group, in absence of growing tumour, the survival of injected eCTCs was monitored through SDF-1 serum levels detection. The detection of human cancer cells expressing CK20, in mice tissues sections, suggested a different biological behaviour of injected eCTC-subsets: tumorigenic for the first and disseminating for the second. The benchmarking of the experimental data with the clinical course highlights that patients with prevalence of circulating cancer stem cells (CD45(neg)CD133(pos)) have a lower overall survival. Conversely, patients with prevalence of circulating differentiated cells (CXCR4(pos)CK20(pos)) have a low disease-free survival. CONCLUSION On the basis of the heterogeneous composition and despite the low number of CTCs, it was possible to distinguish two subgroups of CTCs, suggesting a different clinical outcome. CTC-subsets detailing is useful to better define the metastatic-risk personalized score thus improving disease management and reducing patient care cost.
Collapse
Affiliation(s)
- Natalia Malara
- />IRC-FSH Laboratories, Department of Health Science, University “Magna Graecia”, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Valentina Trunzo
- />Cellular Toxicological Laboratory, Department of Health Science, Salvatore Venuta Campus, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Umberto Foresta
- />Medical Oncologic Department of Experimental and Clinical Medicine, Salvatore Venuta Campus and Cancer Centre of Excellence, “Magna Graecia”, 88100 Catanzaro, Italy
| | - Nicola Amodio
- />Medical Oncologic Department of Experimental and Clinical Medicine, Salvatore Venuta Campus and Cancer Centre of Excellence, “Magna Graecia”, 88100 Catanzaro, Italy
| | - Stefania De Vitis
- />Bionem Laboratories, Department of Experimental and Clinical Medicine, Salvatore Venuta Campus, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Laura Roveda
- />Oncologic Surgery Unit, Cancer Centre of Excellence, “Magna Graecia”, 88100 Catanzaro, Italy
| | - Mariagiovanna Fava
- />Oncologic Surgery Unit, Cancer Centre of Excellence, “Magna Graecia”, 88100 Catanzaro, Italy
| | - MariaLaura Coluccio
- />Bionem Laboratories, Department of Experimental and Clinical Medicine, Salvatore Venuta Campus, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Roberta Macrì
- />IRC-FSH Laboratories, Department of Health Science, University “Magna Graecia”, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Anna Di Vito
- />Department of Experimental and Clinical Medicine, Salvatore Venuta Campus, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Nicola Costa
- />Cellular Toxicological Laboratory, Department of Health Science, Salvatore Venuta Campus, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Chiara Mignogna
- />Department of Health Science, Salvatore Venuta Campus, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Domenico Britti
- />Department of Health Science, Salvatore Venuta Campus, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Ernesto Palma
- />IRC-FSH Laboratories, Department of Health Science, University “Magna Graecia”, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
- />Cellular Toxicological Laboratory, Department of Health Science, Salvatore Venuta Campus, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- />IRC-FSH Laboratories, Department of Health Science, University “Magna Graecia”, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
- />Cellular Toxicological Laboratory, Department of Health Science, Salvatore Venuta Campus, University “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
27
|
Affiliation(s)
- RD Coletta
- Department of Oral Diagnosis; School of Dentistry; University of Campinas; Piracicaba SP Brazil
| | - AFP Leme
- Mass Spectrometry Laboratory; Brazilian Biosciences National Laboratory-CNPEM; Campinas SP Brazil
| |
Collapse
|
28
|
Narayanan NK, Kunimasa K, Yamori Y, Mori M, Mori H, Nakamura K, Miller G, Manne U, Tiwari AK, Narayanan B. Antitumor activity of melinjo (Gnetum gnemon L.) seed extract in human and murine tumor models in vitro and in a colon-26 tumor-bearing mouse model in vivo. Cancer Med 2015; 4:1767-80. [PMID: 26408414 PMCID: PMC4674003 DOI: 10.1002/cam4.520] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 01/05/2023] Open
Abstract
Melinjo (Gnetum gnemon L.) seed extract (MSE) and its active ingredient gnetin C (GC), a resveratrol dimer, have been shown to possess a broad spectrum of pharmacological activities. In this study, we investigated the antitumor activity of MSE and GC using human and murine tumor cell culture models in vitro. The antitumor activity of GC was compared with trans-resveratrol (tRV), a stilbenoid polyphenol. Our results show that MSE and GC at clinically achievable concentrations significantly inhibited the proliferation of pancreatic, prostate, breast, and colon cancer cell types (P < 0.05), without affecting normal cells. Interestingly, GC exerts enhanced antitumor activity than that of tRV (P < 0.05). MSE and GC significantly induced apoptosis in all the cancer cells, indicating MSE and GC inhibit tumor cell growth by inducing apoptosis (P < 0.001). Our findings provide evidence that MSE might induce apoptosis in cancer cells via caspase-3/7-dependent and -independent mechanisms. However, GC might trigger both early and late stage apoptosis in cancer cells, at least in part by activating caspase 3/7-dependent mechanisms. Furthermore, the antitumor efficacy of MSE observed in vitro was also validated in a widely used colon-26 tumor-bearing mouse model. Oral administration of MSE at 50 and 100 mg/kg per day significantly inhibited tumor growth, intratumoral angiogenesis, and liver metastases in BALB/c mice bearing colon-26 tumors (P < 0.05). In conclusion, our findings provide evidence that MSE and GC have potent antitumor activity. Most importantly, we provide the first evidence that MSE inhibits tumor growth, intratumoral angiogenesis, and liver metastasis in a colon-26 tumor-bearing mice.
Collapse
Affiliation(s)
- Narayanan K Narayanan
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Kazuhiro Kunimasa
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan.,Institution for World Health Development, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Yukio Yamori
- Institution for World Health Development, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Mari Mori
- Institution for World Health Development, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Hideki Mori
- Institution for World Health Development, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Kazuki Nakamura
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - George Miller
- Departments of Surgery and Cell Biology, New York University School of Medicine, New York, New York
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, Ohio
| | - Bhagavathi Narayanan
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
29
|
Luo L, Zhu G, Xu H, Yao S, Zhou G, Zhu Y, Tamada K, Huang L, Flies AD, Broadwater M, Ruff W, van Deursen JMA, Melero I, Zhu Z, Chen L. B7-H3 Promotes Pathogenesis of Autoimmune Disease and Inflammation by Regulating the Activity of Different T Cell Subsets. PLoS One 2015; 10:e0130126. [PMID: 26065426 PMCID: PMC4465912 DOI: 10.1371/journal.pone.0130126] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
B7-H3 is a cell surface molecule in the immunoglobulin superfamily that is frequently upregulated in response to autoantigens and pathogens during host T cell immune responses. However, B7-H3's role in the differential regulation of T cell subsets remains largely unknown. Therefore, we constructed a new B7-H3 deficient mouse strain (B7-H3 KO) and evaluated the functions of B7-H3 in the regulation of Th1, Th2, and Th17 subsets in experimental autoimmune encephalomyelitis (EAE), experimental asthma, and collagen-induced arthritis (CIA); these mouse models were used to predict human immune responses in multiple sclerosis, asthma, and rheumatoid arthritis, respectively. Here, we demonstrate that B7-H3 KO mice have significantly less inflammation, decreased pathogenesis, and limited disease progression in both EAE and CIA mouse models when compared with littermates; these results were accompanied by a decrease in IFN-γ and IL-17 production. In sharp contrast, B7-H3 KO mice developed severe ovalbumin (OVA)-induced asthma with characteristic infiltrations of eosinophils in the lung, increased IL-5 and IL-13 in lavage fluid, and elevated IgE anti-OVA antibodies in the blood. Our results suggest B7-H3 has a costimulatory function on Th1/Th17 but a coinhibitory function on Th2 responses. Our studies reveal that B7-H3 could affect different T cell subsets which have important implications for regulating pathogenesis and disease progression in human autoimmune disease.
Collapse
MESH Headings
- Animals
- Apoptosis
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Asthma/chemically induced
- Asthma/immunology
- Asthma/pathology
- B7 Antigens/physiology
- Blotting, Western
- Cell Differentiation
- Cell Proliferation
- Cells, Cultured
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Humans
- Immunoenzyme Techniques
- Inflammation/chemically induced
- Inflammation/immunology
- Inflammation/pathology
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Th1 Cells/immunology
- Th17 Cells/immunology
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Liqun Luo
- Institute of Immunotherapy, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (LL); (LC)
| | - Gefeng Zhu
- Department of Immunobiology and Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Haiying Xu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sheng Yao
- Department of Immunobiology and Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gang Zhou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yuwen Zhu
- Department of Immunobiology and Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Koji Tamada
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lanqing Huang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andrew D. Flies
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Megan Broadwater
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William Ruff
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jan M. A. van Deursen
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ignacio Melero
- Department of Medicine, University of Navarra, Pamplona, Spain
| | - Zhou Zhu
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lieping Chen
- Department of Immunobiology and Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (LL); (LC)
| |
Collapse
|
30
|
Wu D, Zhang Z, Pan H, Fan Y, Qu P, Zhou J. Upregulation of the B7/CD28 family member B7-H3 in bladder cancer. Oncol Lett 2014; 9:1420-1424. [PMID: 25663925 PMCID: PMC4314980 DOI: 10.3892/ol.2014.2828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 11/27/2014] [Indexed: 12/24/2022] Open
Abstract
Dysregulation of B7-H3 has been observed in a variety of types of human cancers. In the present study, the mRNA expression level of B7-H3 was analyzed in bladder cancer by performing semi-quantitative reverse transcription-polymerase chain reaction on clinical specimens from transitional cell carcinomas (TCCs) and their normal adjacent tissues (NATs). Immunohistochemical analysis was performed to compare the protein expression level of B7-H3 in TCCs and the paired NATs. The present study indicated that the B7-H3 mRNA expression level was significantly higher in the TCC samples compared with the paired NAT samples. Furthermore, immunohistochemical analyses indicated that the B7-H3 protein expression level was significantly upregulated in the TCC samples compared with in the paired NAT samples, indicating that B7-H3 dysregulation may be important in the progression of bladder cancer.
Collapse
Affiliation(s)
- Deyao Wu
- Department of Urology, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Zichun Zhang
- Department of Urology, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Huixing Pan
- Department of Urology, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Yuanfeng Fan
- Department of Urology, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Ping Qu
- Department of Urology, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Jian Zhou
- Department of Urology, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| |
Collapse
|
31
|
Ingebrigtsen VA, Boye K, Nesland JM, Nesbakken A, Flatmark K, Fodstad Ø. B7-H3 expression in colorectal cancer: associations with clinicopathological parameters and patient outcome. BMC Cancer 2014; 14:602. [PMID: 25139714 PMCID: PMC4148536 DOI: 10.1186/1471-2407-14-602] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 07/30/2014] [Indexed: 12/13/2022] Open
Abstract
Background We have previously reported overexpression of the immunoregulatory protein B7-H3 in colorectal cancer and that nuclear expression predicted poor outcome in colon cancer patients. The present study was performed to examine the prognostic role of B7-H3 in an independent colorectal cancer cohort. Methods Using tissue microarrays from 731 colorectal cancer patients, tumour B7-H3 expression was assessed by immunohistochemistry. Associations with clinicopathological parameters and patient outcome were investigated. Results Nuclear expression of B7-H3 in cancer cells was present in 27% of the samples in the total study cohort, while cytoplasmic/membrane and stromal expression was seen in 86% and 77% of the samples, respectively. Nuclear B7-H3 had no prognostic relevance in the complete outcome cohort, neither in colon cancer patients. However, nuclear B7-H3 was significantly associated with reduced recurrence-free survival in TNM stage I colorectal cancer patients. Conclusions Overexpression of B7-H3 in colorectal cancer was confirmed, but in contrast to previous results, nuclear B7-H3 was not a strong prognostic biomarker in this cohort. The discrepancy might be related to the use of single-core tissue microarrays for detection of the heterogeneously expressed B7-H3, and the role of B7-H3 in colorectal cancer still needs further examination. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-602) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vibeke A Ingebrigtsen
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, PO Box 4950, Nydalen, N-0424 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
32
|
DAI WEI, SHEN GENHAI, QIU JIANPING, ZHAO XIN, GAO QUANGEN. Aberrant expression of B7-H3 in gastric adenocarcinoma promotes cancer cell metastasis. Oncol Rep 2014; 32:2086-92. [DOI: 10.3892/or.2014.3405] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022] Open
|
33
|
Wei X, Li Z, Zhang G, Yuan H, Lv J, Jiang Y, Zhang W, Huang Y, Hou J. B7-H3 promoted sperm motility in humans. Urology 2013; 83:324-30. [PMID: 24246324 DOI: 10.1016/j.urology.2013.07.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/21/2013] [Accepted: 07/16/2013] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine whether seminal B7-H3 levels are correlated to semen parameters and affect human sperm functions. METHODS A total of 83 healthy donors of proven fertility (aged 22-37 years) and 176 infertile men (aged 21-38 years) were recruited. Computer-assisted semen analysis and enzyme-linked immunosorbent assay were used to assess the correlations between seminal B7-H3 levels and semen parameters. Flow cytometry and fluorescence microscopy were used to detect the putative receptor for B7-H3. Computer-assisted semen analysis and FITC-conjugated pisum sativum agglutinin staining were performed for assessing sperm motility, capacitation, and acrosome reaction (AR) after incubation with various concentrations of B7-H3 for 0-4 hours in vitro. RESULTS Seminal B7-H3 level was significantly higher in the healthy donors than that in the infertile men (P <.05), and closely associated with sperm concentrations and progressive motility (all P <.05), but not the other parameters examined (all P >.05). A putative receptor for B7-H3 was detected on the surface of sperm, with no significant differences in expression between the healthy donors and infertile men (P >.05). Seminal B7-H3 promoted sperm progressive motility in a time- and dose-dependent manner in vitro, although having no significant influence on sperm capacitation and AR. CONCLUSION B7-H3 showed a favorable effect on human sperm motility, without affecting sperm capacitation and AR.
Collapse
Affiliation(s)
- Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zigang Li
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangbo Zhang
- Clinical Immunology Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hexing Yuan
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingxing Lv
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yufeng Jiang
- Department of Reproductive Laboratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Zhang
- Department of Reproductive Laboratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
34
|
Wang L, Kang FB, Shan BE. B7-H3-mediated tumor immunology: Friend or foe? Int J Cancer 2013; 134:2764-71. [PMID: 24013874 DOI: 10.1002/ijc.28474] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/29/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Ling Wang
- Cancer Research Institute; The Fourth Hospital of Hebei Medical University; Shijiazhuang Hebei People's Republic of China
| | - Fu-Biao Kang
- Department of Liver Diseases; Bethune International Peace Hospital; Shijiazhuang Hebei People's Republic of China
| | - Bao-En Shan
- Cancer Research Institute; The Fourth Hospital of Hebei Medical University; Shijiazhuang Hebei People's Republic of China
| |
Collapse
|
35
|
Zhao X, Li DC, Zhu XG, Gan WJ, Li Z, Xiong F, Zhang ZX, Zhang GB, Zhang XG, Zhao H. B7-H3 overexpression in pancreatic cancer promotes tumor progression. Int J Mol Med 2012; 31:283-91. [PMID: 23242015 PMCID: PMC4042878 DOI: 10.3892/ijmm.2012.1212] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/26/2012] [Indexed: 12/25/2022] Open
Abstract
B7-H3, a member of the B7-family molecules, plays an important role in adaptive immune
responses. In addition, B7-H3 is also expressed in several types of human cancers and is
correlated with the poor outcome of cancer patients. However, its exact role in cancer is
not known. In the present study, we compared B7-H3 expression in normal pancreas and
pancreatic cancer tissue specimens, and determined the effects of low B7-H3 expression on
the human pancreatic cancer cell line Patu8988 using lentivirus-mediated RNA interference.
B7-H3 expression in pancreatic specimens was determined by enzyme-linked immunosorbent
assay (ELISA). A Patu8988 cell line with low B7-H3 expression was established by
lentivirus-mediated RNA interference to investigate the effect of B7-H3 on cell
proliferation, migration and invasion in vitro. By establishing
subcutaneous transplantation tumor and orthotopic transplantation pancreatic cancer mouse
models, the effect of B7-H3 on cell proliferation, migration and invasion was studied
in vivo. B7-H3 in tissue samples was significantly higher in the
pancreatic cancer group than in the normal pancreas group (mean ± SD,
193.6±9.352 vs. 87.74±7.433 ng/g; P<0.0001). B7-H3 knockdown by
RNA interference decreased cell migration and Transwell invasion up to 50%
in vitro. No apparent impact was observed on cell proliferation
in vitro. In the subcutaneous transplantation tumor mouse model, the
tumor growth rate was reduced by the knockdown of B7-H3. In the orthotopic transplantation
pancreatic cancer mouse model, the effect of inhibiting metastasis by knocking down B7-H3
was assessed in terms of the average postmortem abdominal visceral metastatic tumor
weight. This demonstrated that inhibition of B7-H3 expression reduced pancreatic cancer
metastasis in vivo. In conclusion, B7-H3 is aberrantly expressed in
pancreatic cancer. In addition to modulating tumor immunity, B7-H3 may have a novel role
in regulating pancreatic tumor progression.
Collapse
Affiliation(s)
- Xin Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lu P, Liu R, Ma EM, Yang TJ, Liu JL. Functional analysis of B7-H3 in colonic carcinoma cells. Asian Pac J Cancer Prev 2012; 13:3899-903. [PMID: 23098490 DOI: 10.7314/apjcp.2012.13.8.3899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
B7-H3 is a newly discovered member of the B7/CD28 superfamily which functions as an important T-cell immune molecule. It has been reported recently that B7-H3 is highly expressed in many cancer cells, the data indicating that it may be a regulation factor contributing to tumor-resistance. In our study, we used bioinformatics to identify differentially expressed genes between colonic cancer cells and normal colonic cells, aiming to analyze mechanisms and identify sub-pathways closely related to progression, with the final aim of finding small molecule drugs which might interfere this progression. We found that ajmaline is one related factor which may enhance self-immunity in colon carcinoma therapy and B7-H3 plays important roles with regard to immunoreactions of colonic cancer cells. All the results indicate that H7-B3 is a favorable prognostic biomarker for colon carcinomas, providing novel information regarding likely targets for intervention.
Collapse
Affiliation(s)
- Peng Lu
- Department of Oncological Surgery, People's Hospital of Zhengzhou, Zhengzhou, China
| | | | | | | | | |
Collapse
|
37
|
Chen C, Shen Y, Qu QX, Chen XQ, Zhang XG, Huang JA. Induced expression of B7-H3 on the lung cancer cells and macrophages suppresses T-cell mediating anti-tumor immune response. Exp Cell Res 2012; 319:96-102. [PMID: 22999863 DOI: 10.1016/j.yexcr.2012.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 09/10/2012] [Accepted: 09/13/2012] [Indexed: 01/19/2023]
Abstract
Macrophages are the prominent components of solid tumors and have complex dual functions in their interaction with cancer cells. Strong evidence suggests that TAM is a part of inflammatory circuits that promote tumor progression. B7-homologue 3 (B7-H3), a recently identified homologue of B7.1/2 (CD80/86), has been described to exert co-stimulatory and immune regulatory functions. Here, we showed that a fraction of macrophages in tumor stroma expressed surface B7-H3 molecule. Normal macrophages, which did not express B7-H3, would be induced expressing B7-H3 molecule when culturing with tumor cell. Although a lung cancer cell line constitutively expressed B7-H3 mRNA and protein in plasma, primary tumor cell isolated from the transplanted lung carcinoma model expressed B7-H3 on the surface. Interestingly, in transplanted lung carcinoma model, the expression of membrane-bound B7-H3 in tumor cells was increased as prolonging of tumor transformation. In support, IL-10 released from TAM could stimulate cancer cell expression of membrane bound B7-H3. Furthermore, Lung cancer and TAM-related B7-H3 was identified as a strong inhibitor of T-cell effect and influenced the outcome of T cell immune response. In conclusion, TAM-tumor cell interaction-induced membrane-bound B7-H3 represents a novel immune escape mechanism which links the pro-inflammatory response to immune tolerance in the tumor milieu.
Collapse
Affiliation(s)
- Cheng Chen
- Respiratory Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
38
|
Biology and significance of circulating and disseminated tumour cells in colorectal cancer. Langenbecks Arch Surg 2012; 397:535-42. [PMID: 22350614 DOI: 10.1007/s00423-012-0917-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 01/15/2023]
Abstract
PURPOSE More than 130 years ago, circulating tumour cells (CTCs) and disseminated tumour cells (DTCs) have been linked to metastasis. Since then, a myriad of studies attempted to characterise and elucidate the clinical impact of CTCs/DTCs, amongst others in colorectal cancer (CRC). Due to a flood of heterogeneous findings regarding CTCs/DTCs in CRC, this review aims to describe the known facts about CTC/DTC biology and clinical impact. METHODS To identify the basic scientific literature regarding the biology and clinical impact of CTCs/DTCs in CRC, we reviewed the literature in the PubMed database. We focused on publications written in English and published until January 2012. As search terms, we used "colorectal cancer (CRC)", "colon cancer (CC)", "CTC", "DTC", "bone marrow (BM)", "lymph node (LN)", "peripheral blood (PB)", "significance" and "prognosis". RESULTS CTC detection and quantification under standardised conditions is feasible. Several studies in large patient settings have revealed prognostic impact of CTCs in CRC. CRC-derived DTC detection and analysis in BM exhibits a more heterogeneous picture but also shows clinical value. Furthermore, the presence of DTCs in LN has a strong prognostic impact in CRC. CONCLUSIONS Clinical relevance and prognostic significance of CTCs/DTCs in CRC have been clearly demonstrated in many experimental studies. The major challenge in CTC/DTC research is now to harmonise the various identification and detection approaches and consequently to conduct large prospective multi-institutional trials to verify the use of CTCs/DTCs as a valid prognostic and predictive biomarker for clinical routine.
Collapse
|
39
|
Immunoexpression of B7-H3 in endometrial cancer: Relation to tumor T-cell infiltration and prognosis. Gynecol Oncol 2012; 124:105-11. [DOI: 10.1016/j.ygyno.2011.09.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/06/2011] [Accepted: 09/10/2011] [Indexed: 12/20/2022]
|
40
|
Non-small cell lung cancer induces an immunosuppressive phenotype of dendritic cells in tumor microenvironment by upregulating B7-H3. J Thorac Oncol 2011; 6:1162-8. [PMID: 21597388 DOI: 10.1097/jto.0b013e31821c421d] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Tumors may shift the phenotype and function of dendritic cells (DC) toward the induction of tolerance. In the status of full maturity, DC express a multitude of T cell costimulatory molecules enabling them to induce immune reactions, whereas nonactivated resident DC lack these T cell stimulating capacities. Therefore, we investigated the changes in DC phenotype and expression of B7-H molecules induced by non-small cell lung cancer (NSCLC). METHODS The expression of T cell coinhibitory B7 molecules (B7-DC, B7-1, B7-2, B7-H1, B7-H3) on DC isolated from malignant and nonmalignant lung and lymph node tissue from patients attending curative surgery for NSCLC (n = 12) was analyzed. T cell stimulatory functions of DC isolated from malignant and nonmalignant lung and lymph node tissue samples were measured by allogeneic mixed lymphocyte reactions. Furthermore, the secretion of IL-10 and IL-12p40 by DC was analyzed (enzyme-linked immunosorbent assay). RESULTS : B7-H3 was significantly upregulated in tumor-residing DC, whereas the expression of other B7 molecules, such as B7-DC, B7-1, B7-2, B7-H1, remained unchanged. Significantly reduced levels of T cell proliferation in mixed lymphocyte reactions with tumor-derived DC were recorded. Moreover, elevated concentrations of IL-10 were measured in tumor-derived DC, whereas IL-12 levels were reduced. CONCLUSION Our data indicate that (1) DC derived from NSCLC are immunosuppressive, and (2) under tumor conditions the coinhibitory molecule B7-H3 plays a crucial role in mediating the T cell suppressive effects of DC.
Collapse
|
41
|
Sun J, Fu F, Gu W, Yan R, Zhang G, Shen Z, Zhou Y, Wang H, Shen B, Zhang X. Origination of new immunological functions in the costimulatory molecule B7-H3: the role of exon duplication in evolution of the immune system. PLoS One 2011; 6:e24751. [PMID: 21931843 PMCID: PMC3172298 DOI: 10.1371/journal.pone.0024751] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/16/2011] [Indexed: 11/19/2022] Open
Abstract
B7-H3, a recently identified B7 family member, has different isoforms in human and mouse. Mouse B7-H3 gene has only one isoform (2IgB7-H3) with two Ig-like domains, whereas human B7-H3 has two isoforms (2IgB7-H3 and 4IgB7-H3). In this study a systematic genomic survey across various species from teleost fishes to mammals revealed that 4IgB7-H3 isoform also appeared in pigs, guinea pigs, cows, dogs, African elephants, pandas, megabats and higher primate animals, which resulted from tandem exon duplication. Further sequence analysis indicated that this duplication generated a new conserved region in the first IgC domain, which might disable 4IgB7-H3 from releasing soluble form, while 2IgB7-H3 presented both membrane and soluble forms. Through three-dimensional (3D) structure modeling and fusion-protein binding assays, we discovered that the duplicated isoform had a different structure and might bind to another potential receptor on activated T cells. In T cell proliferation assay, human 2IgB7-H3 (h2IgB7-H3) and mouse B7-H3 (mB7-H3) both increased T cell proliferation and IL-2, IFN-γ production, whereas human 4IgB7-H3 (h4IgB7-H3) reduced cytokine production and T cell proliferation compared to control. Furthermore, both h2IgB7-H3 and mB7-H3 upregulated the function of lipopolysacharide (LPS)-activated monocyte in vitro. Taken together, our data implied that during the evolution of vertebrates, B7-H3 exon duplication contributed to the generation of a new 4IgB7-H3 isoform in many mammalian species, which have carried out distinct functions in the immune responses.
Collapse
Affiliation(s)
- Jing Sun
- Suzhou Health Technology College, Suzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Barach YS, Lee JS, Zang X. T cell coinhibition in prostate cancer: new immune evasion pathways and emerging therapeutics. Trends Mol Med 2011; 17:47-55. [PMID: 20971039 PMCID: PMC3039708 DOI: 10.1016/j.molmed.2010.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/23/2010] [Accepted: 09/23/2010] [Indexed: 12/31/2022]
Abstract
T cell-mediated adaptive immune response is controlled by both positive costimulation and negative coinhibition, generated mainly by the interaction between the B7 family and their receptor CD28 family. Coinhibition is exploited by prostate cancer as an immune evasion pathway. Overexpression of coinhibitory B7x and B7-H3 in prostate cancer correlates with poor disease outcome, whereas tumor-infiltrating immune cells have enhanced expression of PD-L1 and its receptor PD-1. New insights into the complex mechanisms governing B7 expression in the tumor microenvironment have been reported and therapies aimed at overcoming T cell coinhibition with antagonistic monoclonal antibodies are emerging as effective tumor immunotherapies. Therapies that block B7x and B7-H3, either as monotherapies or in synergism with traditional therapies, should be pursued.
Collapse
Affiliation(s)
- Yael S Barach
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Sik Lee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
43
|
Aulino P, Berardi E, Cardillo VM, Rizzuto E, Perniconi B, Ramina C, Padula F, Spugnini EP, Baldi A, Faiola F, Adamo S, Coletti D. Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse. BMC Cancer 2010; 10:363. [PMID: 20615237 PMCID: PMC2912868 DOI: 10.1186/1471-2407-10-363] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 07/08/2010] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The majority of cancer patients experience dramatic weight loss, due to cachexia and consisting of skeletal muscle and fat tissue wasting. Cachexia is a negative prognostic factor, interferes with therapy and worsens the patients' quality of life by affecting muscle function. Mice bearing ectopically-implanted C26 colon carcinoma are widely used as an experimental model of cancer cachexia. As part of the search for novel clinical and basic research applications for this experimental model, we characterized novel cellular and molecular features of C26-bearing mice. METHODS A fragment of C26 tumor was subcutaneously grafted in isogenic BALB/c mice. The mass growth and proliferation rate of the tumor were analyzed. Histological and cytofluorometric analyses were used to assess cell death, ploidy and differentiation of the tumor cells. The main features of skeletal muscle atrophy, which were highlighted by immunohistochemical and electron microscopy analyses, correlated with biochemical alterations. Muscle force and resistance to fatigue were measured and analyzed as major functional deficits of the cachectic musculature. RESULTS We found that the C26 tumor, ectopically implanted in mice, is an undifferentiated carcinoma, which should be referred to as such and not as adenocarcinoma, a common misconception. The C26 tumor displays aneuploidy and histological features typical of transformed cells, incorporates BrdU and induces severe weight loss in the host, which is largely caused by muscle wasting. The latter appears to be due to proteasome-mediated protein degradation, which disrupts the sarcomeric structure and muscle fiber-extracellular matrix interactions. A pivotal functional deficit of cachectic muscle consists in increased fatigability, while the reported loss of tetanic force is not statistically significant following normalization for decreased muscle fiber size. CONCLUSIONS We conclude, on the basis of the definition of cachexia, that ectopically-implanted C26 carcinoma represents a well standardized experimental model for research on cancer cachexia. We wish to point out that scientists using the C26 model to study cancer and those using the same model to study cachexia may be unaware of each other's works because they use different keywords; we present strategies to eliminate this gap and discuss the benefits of such an exchange of knowledge.
Collapse
Affiliation(s)
- Paola Aulino
- Department of Histology and Medical Embryology, Sapienza University of Rome, Via Scarpa 16, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kobori H, Hashiguchi M, Piao J, Kato M, Ritprajak P, Azuma M. Enhancement of effector CD8+ T-cell function by tumour-associated B7-H3 and modulation of its counter-receptor triggering receptor expressed on myeloid cell-like transcript 2 at tumour sites. Immunology 2010; 130:363-73. [PMID: 20141543 DOI: 10.1111/j.1365-2567.2009.03236.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
SUMMARY B7-H3 is a B7-family co-stimulatory molecule and is broadly expressed on various tissues and immune cells. Transduction of B7-H3 into some tumours enhances anti-tumour responses. We have recently found that a triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a receptor for B7-H3. Here, we examined the roles of tumour-associated B7-H3 and the involvement of TLT-2 in anti-tumour immunity. Ovalbumin (OVA)(257-264)-specific OT-I CD8(+) T cells exhibited higher cytotoxicity against B7-H3-transduced OVA-expressing tumour cells (B7-H3/E.G7) in vitro and selectively eliminated B7-H3/E.G7 cells in vivo. The presence of B7-H3 on target cells efficiently augmented CD8(+) T-cell-mediated cytotoxicity against alloantigen or OVA, whereas the presence of B7-H3 in the priming phase did not affect the induced cytotoxicity. B7-H3 transduction into five tumour cell lines efficiently reduced their tumorigenicity and regressed growth. Treatment with either anti-B7-H3 or anti-TLT-2 monoclonal antibody accelerated growth of a tumour that expressed endogenous B7-H3, suggesting a co-stimulatory role of the B7-H3-TLT-2 pathway. The TLT-2 was preferentially expressed on CD8(+) T cells in regional lymph nodes, but was down-regulated in tumour-infiltrating CD8(+) T cells. Transduction of TLT-2 into OT-I CD8(+) T cells enhanced antigen-specific cytotoxicity against both parental and B7-H3-transduced tumour cells. Our results suggest that tumour-associated B7-H3 directly augments CD8(+) T-cell effector function, possibly by ligation of TLT-2 on tumour-infiltrating CD8(+) T cells at the local tumour site.
Collapse
Affiliation(s)
- Hiroko Kobori
- Department of Molecular Immunology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Yamato I, Sho M, Nomi T, Akahori T, Shimada K, Hotta K, Kanehiro H, Konishi N, Yagita H, Nakajima Y. Clinical importance of B7-H3 expression in human pancreatic cancer. Br J Cancer 2009; 101:1709-16. [PMID: 19844235 PMCID: PMC2778545 DOI: 10.1038/sj.bjc.6605375] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: B7-H3 is a new member of the B7 ligand family and regulates T-cell responses in various conditions. However, the role of B7-H3 in tumour immunity is largely unknown. The purpose of this study was to evaluate the clinical significance of B7-H3 expression in human pancreatic cancer and the therapeutic potential for cancer immunotherapy. Methods: We investigated B7-H3 expression in 59 patients with pancreatic cancer by immunohistochemistry and real-time PCR. Furthermore, we examined the anti-tumour effect of B7-H3-blocking monoclonal antibody in vivo in a murine pancreatic cancer model. Results: Tumour-related B7-H3 expression was abundant in most human pancreatic cancer tissues and was significantly higher compared with that in non-cancer tissue or normal pancreas. Moreover, its expression was significantly more intense in cases with lymph node metastasis and advanced pathological stage. B7-H3 blockade promoted CD8+ T-cell infiltration into the tumour and induced a substantial anti-tumour effect on murine pancreatic cancer. In addition, the combination of gemcitabine with B7-H3 blockade showed a synergistic anti-tumour effect without overt toxicity. Conclusion: Our data show for the first time that B7-H3 may have a critical role in pancreatic cancer and provide the rationale for developing a novel cancer immunotherapy against this fatal disease.
Collapse
Affiliation(s)
- I Yamato
- Department of Surgery, Nara Medical University, Nara 634-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
SUMMARY B7-H3 and B7-H4 belong to a new class of immune regulatory molecules, which primarily execute their functions in peripheral tissues to fine tune immune responses in target organs. In normal circumstances, while the mRNA for both molecules is broadly distributed, tight control at the post-transcriptional level is imposed. Under a pathogenic environment, such as inflammation and cancer, the control is often aberrant. Upon engaging their receptors, these molecules regulate the immune response in positive or negative ways depending on the expression and type of cells bearing the receptors. Thus, manipulation of the expression of these molecules and/or their receptors may represent a realistic opportunity to fine tune immune responses and to design new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Kyung H. Yi
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lieping Chen
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
47
|
Abstract
T-cell costimulatory molecules deliver positive or negative signals to govern the ultimate fate of immune responses. These ligands and receptors that negatively costimulate T cells (including cytotoxic T-lymphocyte antigen [CTLA]-4, B7-H1, programmed death [PD]-1, B7-H3 and B7x) have received significant interest recently owing to their proposed ability to form a molecular shield for tumor cells. CTLA-4 represents the most extensively studied receptor in the costimulatory pathway and functions as a potent inhibitor of T-cell-mediated immunity. Clinical trials with anti-CTLA-4 are ongoing, although numerous objective responses have been observed in heavily pretreated patients, albeit with autoimmune side effects. In renal cell carcinoma, B7-H1, PD-1 and B7x have been observed to be expressed on tumor cells or infiltrating lymphocytes and are individually associated with adverse pathologic features and poor clinical outcome. In prostate cancer, B7-H3 and B7x immunostaining intensity correlate with disease spread, clinical cancer recurrence and cancer-specific death. External validation and prospective studies are now needed to confirm these findings, while further development of humanized monoclonal antibodies, similar to the experience with anti-CTLA-4, are underway. Herein, we review the B7-CD28 family as it applies to urologic malignancies.
Collapse
MESH Headings
- Antibodies, Blocking/pharmacology
- Antibodies, Blocking/therapeutic use
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Apoptosis Regulatory Proteins/immunology
- Apoptosis Regulatory Proteins/metabolism
- B7-1 Antigen/genetics
- B7-1 Antigen/immunology
- B7-1 Antigen/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- CTLA-4 Antigen
- Carcinoma/immunology
- Carcinoma/pathology
- Carcinoma/therapy
- Clinical Trials as Topic
- Disease Progression
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Immunity, Cellular/drug effects
- Immunotherapy
- Kidney Neoplasms/immunology
- Kidney Neoplasms/pathology
- Kidney Neoplasms/therapy
- Programmed Cell Death 1 Receptor
- Signal Transduction/drug effects
- Signal Transduction/immunology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/pathology
Collapse
Affiliation(s)
| | | | - James P Allison
- Author for correspondence: Ludwig Center for Cancer Immunotherapy, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA Tel.: +1 646 888 2332 Fax: +1 646 422 0618
| |
Collapse
|
48
|
CD40-activated Apoptotic Tumor Cell-pulsed Dendritic Cell Could Potentially Elicit Antitumor Immune Response. J Immunother 2009; 32:29-35. [DOI: 10.1097/cji.0b013e31818c8816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses. Proc Natl Acad Sci U S A 2008; 105:10495-500. [PMID: 18650384 DOI: 10.1073/pnas.0802423105] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The B7 family member B7-H3 (CD276) plays important roles in immune responses. However, the function of B7-H3 remains controversial. We found that murine B7-H3 specifically bound to Triggering receptor expressed on myeloid cells (TREM)-like transcript 2 (TLT-2, TREML2). TLT-2 was expressed on CD8(+) T cells constitutively and on activated CD4(+) T cells. Stimulation with B7-H3 transfectants preferentially up-regulated the proliferation and IFN-gamma production of CD8(+) T cells. Transduction of TLT-2 into T cells resulted in enhanced IL-2 and IFN-gamma production via interactions with B7-H3. Blockade of the B7-H3:TLT-2 pathway with a mAb against B7-H3 or TLT-2 efficiently inhibited contact hypersensitivity responses. Our results demonstrate a direct interaction between B7-H3 and TLT-2 that preferentially enhances CD8(+) T cell activation.
Collapse
|
50
|
|